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Time-Varying FOPDT Modeling and
On-line Parameter Identification

Zhenyu Yang ∗ Zhen Sun ∗

∗ Department of Energy Technology, Aalborg University, Esbjerg
Campus, Niels Bohrs Vej 8, DK-6700 Esbjerg, Denmark (e-mail: yang,

zhen@et.aau.dk).

Abstract:
A type of Time-Varying First-Order Plus Dead-Time (TV-FOPDT) model is extended from
SISO format into a MISO version by explicitly taking the disturbance input into consideration.
Correspondingly, a set of on-line parameter identification algorithms oriented to MISO TV-
FOPDT model are proposed based on the Mixed-Integer-Nonlinear Programming, Least-Mean-
Square and sliding window techniques. The proposed approaches can simultaneously estimate
the time-dependent system parameters, as well as the unknown disturbance input if it is the
case, in an on-line manner. The proposed concepts and algorithms are firstly illustrated through
a numerical example, and then applied to investigate transient superheat dynamic modeling in
a supermarket refrigeration system.

Keywords: System identification, FOPDT, time-delay system

1. INTRODUCTION

Modeling a large scale complex system for the control
purpose is often a challenging task. By following the first-
principle strategy, this modeling task often needs to ex-
tensively explore diverse physical domains and knowledge.
It can be very time consuming and also bear the risk that
the developed model could be too complicated to be used
for supporting control design. A Alternatively, the data-
driven modeling strategy, sometimes also referred to as
black-box modeling, could avoid extensive working loads
and meanwhile control the complexity of the intended
model, but the accuracy of the model developed through
this strategy heavily depend on how the experiment is
designed, the selection of model structure and the qual-
ity of the measured data (Ljung (1999)). Thereby the
estimated model usually is not flexible and has strong
limitation of applicable range. In general, the modeling
issue of a large-scaled complex system needs to balance
all above mentioned perspectives. In this paper, we will
investigate an online (data-driven) system identification
approach for a class of time-varying linear time-delay
systems, which is basically extended from conventional
First-Order Plus Dead-Time (FOPDT) models (Åström
and Hägglund (1995)).

The FOPDT model has been extensively used in the pro-
cess modeling and control due to its simplicity. However,
sometimes this type of model is not sufficient and flex-
ible enough to catch the key dynamic characteristics of
complex system under diverse operating conditions. For
instance, Gralda and MacArthur (1992); Li et al (2008);
Rasmussen and Larsen (2009) have discovered that sys-
tem parameters, such as the system gain, time-constant
and time-delay, in a standard FOPDT formulation of the
transient superheat dynamic can be time-varying. In order
to keep the FOPDT model’s merit, but, meanwhile be

able to correctly reflect system’s key transient dynamics,
Sun and Yang (2011); Yang and Sun (2011) proposed
a type of nonlinear FOPDT model, named Time-Varying
FOPDT (TV-FOPDT), to model the transient superheat
dynamic in a refrigeration system. The TV-FOPDT model
is an extension of the standard FOPDT by allowing the
system parameters, i.e., the system gain, the time constant
and the time-delay, to be time dependent. Of course, this
time dependency could also be due to the situation that
some system parameters are correlated with some system
variables, such as the input dependent time-delay which is
studied in (Sun and Yang (2011)).

The TV-FOPDT model exhibits the system’s dynamic
characteristics from both the frequency and time perspec-
tives within one complete formulation. Some similar TV-
FOPDT models have also been observed in a number of
nonlinear control applications, such as Brazauskas and
Levisauskas (2007); Lee et al (1997); Kwok et al (1997);
Richard (2003). For instance, the similar model used in
Brazauskas and Levisauskas (2007) is called an adaptive
transfer function. This adaptive model is obtained by
linearizing the nonlinear dynamic description at each sam-
pling time, so that the system parameters are (sampling)
time dependent. Lee et al (1997) proposed a nonlinear
FOPDT model by linearizing the nonlinear system at a
number of different operating points, so that the system
parameters of this type of FOPDT are operating-point
dependent. No matter through which way to linearize the
considered nonlinear system, both models and modeling
approaches request a precise nonlinear system description
beforehand. An on-line identification approach of a time
dependent FOPDT is proposed in Kwok et al (1997),
by using the so-called long-range predictive identification
method. However, due to the technical limitation, the con-
sidered unknown time-delay in Lee et al (1997) is classified
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into four different potential scenarios before converting a
nonlinear identification optimization problem into a Least-
Square (LS) problem using the spectral factorization tech-
nique.

As what we noticed so far that all these TV-FOPDT
relevant studies are limited to Single-Input Single-Output
(SISO) consideration, which is not realistic in many
complicated systems. Thereby, in this paper we pro-
pose a type of Multiple-Input Single-Output (MISO) TV-
FOPDTmodel, and correspondingly, two sets of parameter
identification algorithms are proposed to optimally esti-
mate the time dependent unknown system coefficients, as
well as the unknown input, in an on-line manner. The pro-
posed concepts and algorithms are firstly tested through
a number of numerical examples, and then are applied to
model and identify the superheat dynamic in a supermar-
ket refrigeration system based on the experimental field
data.

The rest of the paper is organized as the following: Section
2 formulates the proposed MISO TV-FOPDT model; Sec-
tion 3 proposes a set of on-line MISO TV-FOPDT identifi-
cation algorithms depending on different disturbance input
situations; Section 4 illustrates the proposed concepts and
methods through a numerical example and the superheat
dynamic modeling in a supermarket refrigeration system;
finally, we conclude the paper in Section 5.

2. MISO TV-FOPDT FORMULATION

The output of a MISO TV-FOPDT model can be de-
scribed as

X(s) = Gt
1(s)U1(s) +Gt

2(s)U2(s), (1)

where u1(t) is a scalar known (control) input. u2(t)
is a scalar disturbance input, and it can be measur-
able/known or unmeasurable/unknown, depending on
a specific application. x(t) is the ”noise-free” output,
and X(s), {Ui(s)}i=1,2 are the corresponding Laplace-
transforms of the system output and inputs, respectively.
The two transfer functions in (1) are type of TV-FOPDT
models (Yang and Sun (2011)), i.e.,

Gt
1(s)=̂

Kt
1

τ t1s+ 1
e−T t

1s, (2)

and

Gt
2(s)=̂

Kt
2

τ t2s+ 1
e−T t

2s, (3)

where τ ti ,K
t
i , T

t
i for i = 1, 2 are corresponding system

time constants, gains and time-delays, respectively. The
superscript t indicates that these system parameter can
be time dependent.

The measurement of a MISO TV-FOPDT model can be
described as

y(t) = Ctx(t) + ω(t), (4)

where Ct is a scalar coefficient and it can be time depen-
dent as well. The measurement noise ω(t) is assumed as a
white Gaussian noise with zero mean and variance Q(t).
The combination of (1) and (4) is referred to as a MISO
TV-FOPDT model in the following.

Compared with the state space description of time-delay
systems (Richard (2003)), the TV-FOPDT description
can be possibly converted into a time-varying state space
model with input time-delay. Vise versa, a state space de-
scription of a linear time-delay system can also be possibly
converted into an equivalent TV-FOPDT model. Thereby,
the TV-FOPDT identification methods proposed here can
also be possibly used to identify system coefficients of a
time-delay system described by a state space formulation.
Of course, some extra knowledge or information may be
needed in order to achieve a unique solution (identifiability
issue Orlov et al (2003)).

3. ON-LINE MISO TV-FOPDT IDENTIFICATION

The estimation of system time-delay is always a challeng-
ing issue for time-delay systems, and the on-line estimation
of time-varying time-delay is even more open at this stage
(Ljung (1999); Richard (2003)). We also observed that
the estimation of varying time-delay can result in a non-
convex optimization problem (Yang and Sun (2011)). The
simplest and straightforward way to estimate the input-
output delay of a LTI system is to use the cross-correlation
analysis (Richard (2003)), or by some experimental ap-
proaches (Åström and Hägglund (1995)). These signal-
based approaches are heavily limited by the measured
signals’ quality and signal-to-noise-ratio. From the time-
domain model-based point of view, because the time-delay
exhibits inside the time index of state/input/output vari-
ables, some mathematical operation is often needed so as
to be able to have the explicit expression of this parameter
out of the time index, before any identification algorithm
proceeds further. This mathematical operation can be re-
alized through applying an integrator or derivative filter
on both side of the system equation (Ahmed et al (2006);
Young (2002)). These methods are only suitable for time-
invariant parameters and off-line identification, i.e., the
input signal should be available beforehand.

The general on-line MISO TV-FOPDT identification prob-
lem can be formulated as to optimally estimate the time-
dependent parameters {Kt

i}i=1,2, {τ ti }i=1,2, {T t
i }i=1,2 and

Ct, based on measurements of system input(s) and output
in an on-line optimal manner. If the disturbance input
u2(t) is available, then it will also be used in the identifi-
cation procedure. Otherwise, it may need to be estimated
as well.

In order to make the identification procedure proposed in
the following feasible, we make the following assumptions:

• The subsystem (2) and (3) have common time con-
stants, i.e., τ t2 ≡ τ t1=̂τ t for any t ≥ 0;

• In case that u2(t) is unknown and it needs to be
estimated as well, we assume Kt

2 ≡ 1, T t
2 ≡ 0; and

• The system output gain Ct is always constant, with-
out losing of generality, we assume Ct ≡ 1.

The second assumption is reasonable w.r.t. the fact that
any deviations of Kt

2 and T t
2 from assumed values can be

accounted as the influence from the unknown input u2(t).

3.1 Discretization

The considered continuous-time system (1) and (4) can
be approximated by its discrete-time equivalence once a
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proper sampling frequency is selected. Here we denote the
sampling period as Ts, then there is

X(z) = Gk
1(z)U1(z) +Gk

2(z)U2(z), (5)

with

Gk
1(z) =

Kk
1 (1− αk)

zl
k
1 (z − αk)

, (6)

and

Gk
2(z) =

Kk
2 (1− αk)

zl
k
2 (z − αk)

, (7)

where αk=̂ exp−
Ts
τk . {Kk

i }i=1,2 and τk are called as the
kth-step sampled system gains and time constant, re-
spectively (Yang and Sun (2011)). It should be noticed
that {Kk

i }i=1,2 and τk are not as same as {Kt
i}i=1,2

and τ t in (2) and (3), correspondingly. The former ones
are piecewise-constant (i.e., constant during every sam-
pling period) time functions, while the latter ones are
continuously-varying time functions. The relationship of
them can be expressed as:

Kk
i = Kt

i , for i = 1, 2 and τk = τ t when t = kTs

for any integer k.

The coefficients {lki }i=1,2 in (6) and (7) are some integer
numbers and they are called the corresponding discrete
approximations of the kth-step sampled time-delays (Yang
and Sun (2011)), which are denoted as {T k

i }i=1,2 with
the property: T k

i = T t
i when t = kTs for any integer k.

Coefficients {lki }i=1,2 satisfy the property:

lki Ts ≤ T k
i < (lki + 1)Ts, for i = 1, 2. (8)

Define βk
i =̂Kk

i (1 − αk) for i = 1, 2, then, the system (5)
can be converted into a difference equation description as:

x(k) = αkx(k − 1) + βk
1u1(k − lk1 − 1) + βk

2u2(k − lk2 − 1),(9)

for k = lm + 1, lm + 2, · · ·∞, where lm=̂max{lk1 , lk2}. The
output signal will be measured at each sampling time, i.e.,

y(k) = x(k) + ω(k). (10)

By combining (9) and (10), we have

y(k) = αky(k − 1) + βk
1u1(k − lk1 − 1)

+βk
2u2(k − lk2 − 1) + ω̂(k),

(11)

for k = lm + 1, lm + 2, · · ·∞. Here ω̂(k) is the filtered
noise through the relationship ω̂(k) = ω(k)− αkω(k − 1).
If the disturbance input u2(t) is measurable along with
the system operation, then, the original system identi-
fication problem based on (1) and (4) is transferred to
be an identification problem based on (11): to develop a
procedure which can optimally estimate sample-dependent
coefficients αk, {βk

i }i=1,2, and {lki }i=1,2 based on a number
of sampled inputs and output in an on-line manner. We
refer to this problem as Case-with-Known-u2(t) (abbr.
Case-Known-u2).

If the disturbance u2(t) is not measurable or unknown
along with the system operation, we will simplify the
considered identification problem using the assumption
Kk

2 ≡ 1, T k
2 ≡ 0. Then, system (11) is simplified as

y(k) = αky(k − 1) + βk
1u1(k − lk1 − 1) + ûk

2 + ω̂(k), (12)

where ûk
2=̂(1 − αk)u2(t − 1). In the following, we regards

ûk
2 as one unknown sample-dependent system parameter,

instead of an input signal. Thereby, the original system
identification problem based on (1) and (4) is transferred
to be an identification problem based on (12): to develop a
procedure which can optimally estimate sample-dependent
coefficients αk, βk

1 , lk1 and ûk
2 , based on a number of

sampled inputs and output in an on-line manner. We
refer to this problem as Case-with-Unknown-u2(t) (abbr.
Case-Unknown-u2). We recommend readers to check our
previous work (Yang and Sun (2011); Sun and Yang
(2011)) for the case that u2(t) is always zero.

3.2 Iterative LMSP Method for Case-Known-u2

Assume the considered system (11) currently is at kth
sampling step, and we take a moving window with the
length of N for selecting latest sampled data at each step.
Define Υk=̂[αk βk

1 βk
2 ]

T , then the identification of (11) at
the kth sampling step can be formulated as a Stochastic
Mixed Integer Non-Linear Programming (SMINLP) prob-
lem defined as

min
lk1 , l

k
2 : positive integers

Υk ∈ Ωk

E{‖ Bk
N −Ak

N (lk1 , l
k
2)Υ

k ‖22},(13)

where Bk
N is a stack of N number of latest measured

outputs up the current kth step, i.e.,

Bk
N =̂[y(k) y(k − 1) · · · y(k −N + 1)]T . (14)

Ak
N (lk1 , l

k
2) is a stack of N pair of measured inputs and

outputs, depending on parameters lk1 and lk2 , i.e.,

Ak
N (lk1 , l

k
2 )=̂

⎛
⎜⎜⎝

y(k − 1) u1(k − lk1 − 1) u2(k − lk2 − 1)

y(k − 2) u1(k − lk1 − 2) u2(k − lk2 − 2)
.
..

.

..
.
..

y(k −N) u1(k − lk1 −N) u2(k − lk2 −N)

⎞
⎟⎟⎠ . (15)

Ωk represents the possible range of Υk, which is deter-
mined by limits of the original system gains {Kt

i}i=1,2 and
time constant τ t in (2) and (3) at the current sampling
time kTs.

If both time-delays are known, then the optimization
problem (13) is simplified to a standard Least Mean
Square (LMS) problem. We have observed that due to
the time-varying delays, the considered SMINLP problem
(13) can be non-convex. This observation results us into
the usage of the Branch-and-Bound (BB) method from
MINLP techniques (Grossman and Sahinidis (2002))
at the current stage. The BB method is basically an
approach to enumerate all considered possibilities under
the condition that some pre-knowledge about the system
time-delays can be obtained, such as the potential upper
and lower limits of the time-delays for the entire system
or at each sampling step. An iterative numerical approach,
which we refer to as an Iterative LMS Prediction (LMSP)
algorithm, is proposed in the following, by combining BB
method, LMS and sliding window techniques for solving
SMINLP problem (13):

• Pre-knowledge: The upper and lower boundaries for
time-delays in terms of some integer number multi-
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plying with sampling period. Without losing of gen-
erality, we assume that lki min ≤ lki ≤ lki max and lki min,
lki max are known beforehand for i = 1, 2.

• Initialization: selection of a sliding window, which
could consists of a specific type of window, the length
(N) and the potential weighting etc., e.g., using the
forgetting factor (Fortescue et al (1981)).

• Data collection period: Since the beginning of the op-
eration, the algorithm only collect sampled data until
the process reaches a specific step first time, which is
denoted as kini, where kini = N+max{lk1max, l

k
2max}.

It is to guarantee that there are enough data for
constructing matrix (7).

• Iteration period: The iterative identification starts
from kinith step. At each step, two while-loops need
to be constructed w.r.t. lki starting from lki min and
ending at lki max for i = 1, 2 by taking unit increments.

· For each iteration (t1, t2) of {lt11 , lt22 } with lki min ≤
ltii ≤ lki max for i = 1, 2, a LMS problem of (13)
can be solved as

Υk(lt11 , lt22 ) = ((Ak
N (lt11 , lt22 ))TAk

N (lt11 , lt22 ))−1

(Ak
N (lt11 , lt22 ))TBk

N .
(16)

and record the corresponding prediction error of
(13).

· The set of (Υk(lt11 , lt22 ) and (lt11 , lt22 ) which result
in the minimal prediction error among all iter-
ations moving from lki min to lki max for i = 1, 2,
denoted as (Υk∗, {lk∗i }i=1,2), is the optimal solu-
tion for (13) at the current step.

· The optimal estimation of system parameters of
(11), τk and {Kk

i }i=1,2, can be obtained from
Υk∗ = [αk∗ βk∗

1 βk∗
2 ]T by

τk∗ = − Ts

lnαk∗ , and Kk∗
i =

βk∗
i

1− αk∗ for i = 1, 2.(17)

The optimally estimated time-delays of {T k
i }i=1,2

are {lk∗i Ts}i=1,2.
• Repeat the above steps when a set of new data of
inputs and output are obtained.

3.3 Iterative LMSP Method for Case-Unknown-u2

For the situation of Case-Unknown-u2, the on-line system
identification of (12) is to obtain the optimal estimations
of αk, βk

1 , l
k
1 and ûk

2 at each sampling step based on the
obtained measurements of u1(t) and y(t). For the purpose
of simplification, we denote lk1 as lk in the following.
Then, the proposed approach for Case-Known-u2 in last
Subsection can also be used over here with some minor
changes.

In order to consider the influences of different data, espe-
cially from time evolutional point of view, we employ a
constant forgetting factor in the following. The forgetting
factor, denoted as ρ, has the property 0 < ρ < 1. The
output data vector corresponding to (6) becomes

Bk
N =̂[y(k) ρy(k − 1) · · · ρN−1y(k −N + 1)]T , (18)

and the input-output data matrix corresponding to (7)
becomes

Ak
N (lk)=̂

⎡
⎢⎢⎣

y(k − 1) u1(k − lk − 1) 1

ρy(k − 2) ρu1(k − lk − 2) ρ
..
.

..

.
..
.

ρN−1y(k −N) ρN−1u1(k − lk −N) ρN−1

⎤
⎥⎥⎦ (19)

Define θk=̂[αk βk ûk
2 ]

T , the optimal identification prob-
lem of (12) at the kth sampling step can be formulated
as:

min
lk ∈ L
θk ∈ Θk

E{‖ Bk
N −Ak

N (lk)θk ‖22}, (20)

Here Θk represents the possible range of θk, L stands for
the boundaries of time-delay. ρ is a forgetting factor, which
is used to decrease the effect of old data to the estimation
at the current sampling time. It is quite useful especially
under the circumstance that some of system characteristics
may vary according to time (Fortescue et al (1981)).

By using the BB method, there is only one while-loop is re-
quested, due to the fact that only lk needs to be estimated.
The LMS solution and its corresponding covariance at the
tth iteration can be obtained as
θ̂k(lt) = ((Ak

N (lt))T Q̂(k)−1Ak
N (lt))−1(Ak

N (lt))T Q̂(k)−1Bk
N ,

Cov(θ̂k) = ((Ak
N (lt))T Q̂(k)−1Ak

N (lt))−1,
(21)

for lkmin ≥ lt ≥ lkmax. Here Q̂(k) is the variance of
filtered noise ω̂(k) at the kth sampling step. It is estimated
through

Q̂(k) = Q(k)− [(αk−1)�]2Q(k − 1).

The optimal solutions of τk and Kk
1 at the kth step will

have the same expressions as in (17), and the optimal
estimation of sampled unknown input u2(t) has the for-
mulation as

(uk−1
2 )� =

(ûk
2)

∗

(1− αk∗)2
.

It can be noticed that the proposed approaches can guar-
antee the global optimal solution as long as the priori
knowledge of time-delay boundaries is reasonable and the
considered situation has a good SNR. The estimation accu-
racy here has two perspective meanings: (i) The accuracy
of estimated parameters w.r.t. true values at each sam-
pling time; (ii) The accuracy of the time varying features
captured by estimated parameters w.r.t. those of true pa-
rameters. Both issues are relevant to the window selection.
The proposed algorithms are iterative but not recursive,
i.e., the estimation result at each step is independent from
other step’s results. Thereby, the proposed algorithms
won’t be disturbed by the diverging problem, while it is
often an big issue for recursive computation algorithms
(Orlov et al (2003)).

4. ILLUSTRATIVE EXAMPLES

Consider a switching system (1) with properties as:

• When t < 30 second, there are τ t = 2, Kt
1 = 3, Kt

2 =
3 and T t

1 = 3.05;
• When t ≥ 30 second, system parameters change to be
τ t = 3, Kt

1 = 4, Kt
2 = 4, T t

1 = 2.05;
• The measurement noise follows N (0, 0.001);
• The sampling period is set as Ts = 0.1 second;
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• A sliding rectangular window is selected withN = 50;
• A constant forgetting factor is selected as ρ = 0.95;
• The boundaries of delay are lkmax = 40, lkmin = 0;
• A sweeping signal is used as the control input;
• A piecewise constant signal is used as the unknown

input, i.e., u2(t) =

{
1, t < 40
1.2, 40 ≤ t < 60
2, t ≥ 60.

.

20 30 40 50 60 70 80 90 100

2

2.2

2.4

2.6

2.8

3

3.2

Delay Td
t

Time

Va
lue

new method
real value
old method

Fig. 1. Comparison of estimated time-delay T t
1
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Fig. 2. Comparison of estimated system gain Kt
1
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Fig. 3. Comparison of estimated time constant τ t

Fig. 1, Fig. 2, Fig. 3 and Fig. 4 illustrate estimation results,
respectively. Here the red line indicates the true value, the
blue one shows the estimated result using the proposed
approach here and the green one is the result using the
original approach in Yang and Sun (2011). It is obvious
that the proposed method exhibited much better results
than the previous one did, which is originally proposed to
cope with the SISO TV-FOPDT case. Some fluctuations
can be clearly observed during a short period just after
the switch occurred, as well as when the unknown input

10 20 30 40 50 60 70 80 90 100 110
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1.8

2
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2.4
Input u2

Time
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estimated value
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Fig. 4. Comparison of estimated unknown input with true
values

jumped at 40th and 60th second, respectively. All steady-
state estimated errors are bounded within 2%.

The data generated from a real-sized supermarket refrig-
eration system is used to estimate a MISO TV-FOPDT
model of the superheat dynamic inside the considered
system. We refer to Yang et al (2011) for a detailed
description of this testing facility. A set of relay-type of
control input (openness degree of the expansion valve)
and the corresponding measured system output (superheat
temp) are illustrated in Fig.5.
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input u1 and output

Time
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input u1

Fig. 5. The experimental input and output data

One set of estimated system parameters are illustrated in
Fig. 6, Fig. 7 and Fig. 8, respectively. With respect to the
expectation that a model is capable to model the transient
superheat dynamic in a large operating region, there is no
doubt that a MISO TV-FOPDT model should be the best
candidate for this task at the current stage. The validation
of the practical system study is still under going, and we
expect to report those results in the near future.
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Fig. 6. Comparison of estimated time-delays

5. CONCLUSIONS

A type of MISO TV-FOPDT model is proposed based
on the SISO TV-FOPDT model by introducing an extra
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Fig. 7. Comparison of estimated system gains and time
constants
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Fig. 8. Estimated the unknown disturbance input

input, named disturbance input, which is used to repre-
sent all key external influences to the system performance
except the control input. A set of on-line parameter iden-
tification approaches are proposed to estimate the time-
varying parameters as well as the unknown input if it is
the case. It is noticed that the proper selection of a window
type, window length, the forgetting factor and the input
signal, can result into significantly different estimation
results. Even though the proposed approaches are not
computationally efficient yet, which is mainly due to the
fact that we wish to avoid the non-convex optimization
problems of (13)/(20) by sacrificing some computation
efficiency, there is no doubt that the proposed model
and approaches can provide a more flexible and realistic
capability in modeling complicated dynamic systems.
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