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Abstract—This contribution introduces position estimation
methods relying on observations of the received power and mean
delay obtained in a wideband multi-link scenario. In particular,
one- and two-step methods are introduced based on statistical
models of the observed link parameters. The proposed methods
are tested on data from a wideband measurement campaign.
The results show that including observations of mean delay of
the wideband links can notably improve positioning accuracy as
compared to relying on observations of received power alone.

I. INTRODUCTION

Indoor positioning techniques rely on observations of
channel-related parameters obtained from a number of radio-
links. These techniques fall in two categories [1]: The first
category is the so-called fingerprinting techniques where po-
sition estimates are obtained by matching observed channel
parameters (called fingerprints) to a prerecorded database.
The second category are the model-based techniques where
observations of link-parameters are related to geometrical
parameters (e.g. distances, directions, position, etc) via models
of the radio channel. In this contribution we consider the
model-based approaches. Popular link parameters for model-
based indoor positioning include the received power and the
time-of-arrival (ToA) [2, 3, 4]. The received power can be
obtained via the Received Signal Strength Indicator (RSSI)
available in most communication systems. However, due to
fading of the received power, the derived position estimates
are endowed with large errors [2]. In contrast, to obtain ToA
estimates accurate enough for indoor positioning very large
signal bandwidth is needed; typically, this is only possible
in ultra wideband (UWB) systems [2, 3, 4]. Therefore, it
remains important to identify link parameters useful for indoor
positioning and yet obtainable in communication systems with
limited bandwidth.

For a link-parameter to be useful in practical indoor posi-
tioning systems, it must be easy to obtain and carry useful
information about the position. Examples of such parameters
related to link-distance which can be computed in wideband1

systems include the received power and the first- and second
moments of the squared magnitude impulse response, i.e. the
mean delay and rms delay. In [5] a distance-dependent model
is derived for the delay power spectrum of an in-room channel

1We consider here the bandwidth of “wideband systems” to be less than
that of UWB systems.
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Fig. 1. A positioning scenario with three receivers in known positions
(x1, x2, x3) and a transmitter in an unknown position θ. The vector Mi of
distance dependent parameters is obtained from link i.

taking into account effects due to reverberation. From this
model, secondary models for other link parameters, such as
the average path gain and the mean delay of a radio link,
are also derived. From the path gain [which is the inverse
of the path loss] the received power can be computed for
known transmitted power. It is evident from these secondary
models that both mean delay and received power are distance
dependent. The mean delay is an attractive link parameter to
consider in a positioning context since it can be obtained using
both UWB or wideband systems.

In this contribution we consider positioning algorithms rely-
ing on measurements of the mean delay and the received power
of each link. The methods are derived using the secondary
models from [5] modified to include random fluctuations due
to multipath propagation. In line with the observations of [6]
we model the fluctuations of different links as independent
random variables. Moreover, as a first simplifying approxima-
tion, we consider fluctuations in the parameters of each single
link to be independent. Our modeling is used to propose one-
step and two-step positioning algorithms. The derived methods
are tested via simulation and by applying them to in-room
wideband measurement data. These tests show that including
observations of the mean delay yields high accuracy, even in
the case of wideband systems.

II. SIGNAL MODEL

An indoor positioning scenario is considered, with K re-
ceivers in known positions x1, x2, . . . , xK and a transmitter in
an unknown position θ, as shown in Fig. 1. The transmitter
is communicating with the receivers via K radio links. Its



position is estimated using distance dependent link parameters.
The observations can be described as random variables, where
the mean is predicted by the models. We denote the vector of
observed link parameters by M = [M1,M2, . . . ,MK ] where
Mi denotes the observations obtained for link i. Each link
allows for observations of received power Gi, observed mean
delay µi or both. This corresponds to the cases, Mi = Gi,
Mi = µi, or Mi = [Gi, µi], respectively. We model the
received power (in dB) for link i as:

10 logGi = 10 logG(di) + εG,i (1)

where G(di) is the average power, predicted by a path loss
model and di is the distance of link i, i.e. the distance between
the transmitter and receiver i. The observation noise εG,i is a
zero-mean random variable with the same standard deviation
σG for all links. Similarly, the model for the observed mean
delay for link i reads

µi = µτ (di) + εµ,i, (2)

where µτ (di) is predicted by a mean delay model and the
observation noise εµ,i is a zero-mean random variable with
the same standard deviation σµ for all links.

A. Mean Models for Link Parameters

We apply the models for the received power and mean
delay proposed in [5]. These models are both derived from
a model of the delay power spectrum of an in-room wideband
channel, which is a superposition of a primary component and
a component due to reverberation. The secondary models have
the same superposition structure. The average power is thus a
sum of a primary component and a reverberant component:

G(d) = G0

(
d0
d

)n
+G0

R0

1−R0
e

d0−d
cT , (3)

where G(d) is the average power at distance d. The parameters
of the model are: d0 (refrence distance), G0 (average power at
d0), R0 (reverberation ratio at d0), n (path loss exponent) and
T (reverberation time). The constant c is the speed of light.
The the first term in (3) is due to the primary component, i.e. it
accounts for the directly propagating signal and possibly first
order reflections with small excess delays. The second term
is due to an exponentially decaying diffuse tail of the delay-
power spectrum with onset at delay d/c. As a consequence of
the distance dependent onset, the second term in (3) decays
exponentially with distance. The reverberant component in (3)
vanishes when R0 = 0 and the expression becomes equivalent
to the well-known one-slope path loss model [7]. The model
for mean delay reads

µτ (d) =
d

c
+ TR(d). (4)

with reverberation ratio

R(d) =
1

1 + 1−R0

R0

(
d0
d

)n
e

d−d0
cT

. (5)

This model accounts for the shift in mean delay due to an
exponential tail of the delay-power spectrum.

B. Statistical Models for Link Parameters

We analyze the received power residuals and observed mean
delay residuals in order to formulate a statistical model for the
observations in (1) and (2). As found in [8], received power
can be assumed independent for different links. Moreover, it
appears from further analysis of the same measurement data
that the correlation of observed mean delay residuals between
links is small. Received power is typically modeled as log-
normal (i.e. Gaussian if taken in dB) [7], which was also con-
firmed in [8]. Furthermore, the analysis of the observed mean
delay residual suggests that mean delay can be modeled as a
Gaussian random variable. Therefore, as a first approximation
we consider the observations in M to be independent random
variables with joint pdf

fM(M;d) =
K∏
i=1

fMi
(Mi; di), (6)

where d = [d1, d2, ..., dK ] and the ith factor is of the form

fMi(Mi; di) =


fG(Gi; di), Mi = Gi

fµ(µi; di), Mi = µi

fG(Gi; di) · fµ(µi; di), Mi = [Gi, µi]
(7)

where fG is the log-normal pdf

fG(Gi; di) =
1

ln 10GiσG
√
2π
×

exp

(
− (10 logGi − 10 logG(di))

2

2σ2
G

)
, Gi > 0 (8)

while fµ is a Gaussian pdf

fµ(µi; di) =
1

σµ
√
2π

exp

(
− (µi − µ(di))2

2σ2
µ

)
, (9)

with mean µ(di) given by (4) and variance σ2
µ.

III. POSITION ESTIMATION

Position estimation can be performed following one of the
two approaches: one-step or two-step. In a one-step approach
the position θ is estimated directly from the observations M.
In a two-step approach, the distances in the vector d are first
extracted from the observations M and then used to infer on
the position θ. Although two-step methods are typically less
accurate, their complexity is lower in comparison to one-step
methods. We describe first a one-step maximum likelihood
method and then a heuristic two step method. Fig. 2 gives an
overview of the algorithms.

First we consider a one-step method where the position θ is
directly estimated from the observations M via the maximum
likelihood principle. Writing the distance di as a function of
the unknown position θ, di(θ) = ||xi − θ||2, and defining
fM(M;θ) = fM(M;d(θ)) with d(θ) = [d1(θ), . . . , dK(θ)],
the maximum likelihood estimator for θ reads

θ̂ = argmax
θ

fM(M;θ). (10)
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Fig. 2. Overview of the considered one-step (left) and two-step (right)
positioning methods.

The complex structure of the likelihood function prohibits an
analytical solution to this maximization. Therefore, we resort
to numerical optimization techniques. Due to the complexity
of the likelihood function and the presence of local maxima,
we applied a modified version of the simulated annealing
algorithm [9]. This is an iterative method which requires
initialization. For this purpose we used the position estimate
obtained by the two-step method described in the following.

In the two-step method we first estimate the link distances d
from the observed link parameters M. The distance di can be
estimated from the observed power as G−1(Gi) where G−1 is
the inverse of G(d) in (3) which can be obtained numerically
using a root-finding algorithm. In a similar way a distance
estimate can be obtained as µ−1

τ (µi) by inversion of (4). Thus
for links with observations of both received power and mean
delay, we obtain two distance estimates denoted by d̂1,i and
d̂2,i, respectively. The estimated link distances are then used
for position estimation by solving a heuristically posed least
squares problem:

θ̂ = argmin
θ

K∑
i=1

dim(Mi)∑
`=1

(di(θ)− d̂`,i)2, (11)

where dim(·) denotes the dimension of the vector given as
argument. A solution to the nonlinear least squares problem
(11) can be approximated by a Gauss-Newton algorithm [10].

IV. MEASUREMENT DATA

The proposed methods are evaluated using measurement
data obtained from an indoor experiment, conducted at the
premises of the German Aerospace Center (DLR) [5], [8].
The measurements were taken in a room, depicted in Fig. 3.

The receiver was placed at fixed positions (Rp1 to Rp5),
and the transmitter was moving along two tracks (T1 and T2).
The positions of the receivers and transmitters were measured
with an accuracy of about 1 cm. The environment was static
and nobody was in the room during the measurements gath-
ering. The measurements for different receiver positions were

Fig. 3. Schematic of the room where the experiment took place.
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Fig. 4. Observed power (left), mean delay (right). Parameter values of fitted
mean models. G0 = 6.85 · 10−6, n = 2.2, R0 = 0.35, T = 18.4 ns.
Estimated standard deviations: σ̂G = 0.93 [dB], and σ̂µ = 2.57 [ns],
respectively.

collected sequentially. They are combined according to the
respective transmitter positions to obtain a set of multi-link
measurements for the positioning application.

The used transmit antenna was omni-directional. At the
receiver a uniform circular array with 8 monopoles was used.
The transmitter and receiver antenna heights were 1.26 m and
1.1 m, respectively. The transmitter and the receiver were
synchronized via cables to a common clock. The channel
transfer function for a bandwidth of 120 MHz and a carrier
frequency of 5.2 GHz was measured [8].

Similar to [5], the magnitude squared samples of the channel
transfer function are averaged over the entire frequency band
and the 8 receiver antennas to obtain an estimate of the
received power. After filtering the channel transfer function
with a Hann window we apply the inverse discrete Fourier
transform to obtain estimates of the channel impulse responses.
We take the average of the magnitude squared channel impulse
responses for the 8 receiver antennas to obtain an estimate of
the delay power spectrum. From the estimated delay power
spectrum we estimate the mean delay in [5]. The models (3)
and (4) were fitted to the measurement data using non-linear
least-squares techniques. The obtained results are reported in
Fig. 4.
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Fig. 5. Position estimates of the one-step algorithm in a simulated scenario
for two cases of observed link parameters Mi: Blues crosses: received power,
i.e., Mi = Gi. Black dots: mean delay observations, i.e., Mi = µi. Grey
lines: errors for the Mi = µi case.

V. RESULTS

The proposed one- and two-step positioning methods were
tested by applying them to measurement and simulation data.
The resulting positioning errors are computed as the Euclidean
distance between the estimated and the true position of the
transmitter. In the simulations, the observations of received
power and mean delay are generated for the scenario with
receiver and transmitter positions as in Fig. 3 by the statistical
models defined in Subsection II-B. The results are reported
in the empirical cdfs of the position error for the proposed
methods, for measured data in Fig. 8 and for the simulations
in Fig. 7. The results are summarized in terms of the root
mean squared error (RMSE) in Table I.

The simulation results in Fig. 5 and Fig. 7 demonstrate
that both one- and two-step methods work for the considered
statistical model. Moreover, as expected, some performance
loss in terms of accuracy results from using the two-step
method. For both one- and two-step methods, it is apparent
that between the two considered types of link parameters, the
power observation is least and mean delay is the most infor-
mative. It also appears from Fig. 7 that the gain in accuracy
by including both types of observations in the estimator, is
modest compared to positioning relying on mean delay only.

The results in Fig. 6 and Fig. 8 obtained for the measure-
ment data are very similar to the simulation results. However,
the improvement that hybrid methods (i.e. with observation
of both received power and mean delay) have compared to
methods using only mean delay is less pronounced than in
the simulation data. The effect is also visible in the RMSE
values in Table I. The RMSE obtained by the one-step method
for mean delay observations alone is 0.34 m which is only
reduced by mere 1 cm by taking received power into account
in addition. It seems plausible to attribute a part of this effect

0 1 2 3 4 5

0

1

2

3

4

5
  Rp1   Rp2

  Rp3Rp4

  Rp5

T1

T2

ROOM

Room dimension

R
oo

m
 d

im
en

si
on

Fig. 6. Position estimates of the one-step algorithm for measurement data
for two cases of observed link parameters Mi: Blues crosses: received power,
i.e., Mi = Gi. Black dots: mean delay observations, i.e., Mi = µi. Grey
lines: errors for the Mi = µi case.
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Fig. 7. Empirical cdfs of the positioning errors from simulation data.
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TABLE I
ROOT MEAN SQUARED ERRORS OF POSITION ESTIMATES AND

ALGORITHM RUNTIMES

Method Mi RMSE [m] Runtime [s]

meas. sim.

Two-step G 0.87 0.68 0.63
Two-step µ 0.57 0.49 0.44
Two-step G,µ 0.57 0.43 1.44
One-step G 0.77 0.58 4.20
One-step µ 0.34 0.33 2.24
One-step G,µ 0.33 0.28 4.50

to the approximation of statistically independent observations
of mean delay and power. Moreover, it seems that considering
only observed power, that the estimators return larger errors as
compared to the simulations. This may indicate that the model
for the received power could be refined, i.e. a better suited
model than the log-normal fading should be considered.

The obtained RMSE is remarkably low for indoor posi-
tioning when considering the 120 MHz bandwidth of the
sounding signal. At this bandwidth, first order reflections in-
terfere with the direct signal which leads to poor performance
of ToA estimators [3]. This effect is less severe for mean
delay estimation. This observation demonstrates the value of
mean delay observation for positioning algorithms using data
from wideband systems. The performance of the mean delay
estimator and its impact on the positioning accuracy should be
further investigated to conclude on how much the performance
degrades if the signal bandwidth is reduced.

To provide a rough comparison of the relative computational
demand of each of the methods, runtimes for Matlab imple-
mentations of each of the methods are given in I. The reported
runtimes are averages of ten runs on a standard PC. One run
includes position estimation of all points on both tracks using
measurement data.

VI. CONCLUSION

In this contribution we considered in-room positioning
utilizing observations of received power and mean delay. This
work relies on the delay power spectrum model and the sec-
ondary models of path gain and mean delay [5]. These models
predict the mean of the link parameters and were extended to
include observation noise due to multipath propagation. As a
starting point, we modeled the observations of path gain and
mean delay to be statistically independent. This assumption
was made for reasons of simplicity. Based on this model we
investigated two different methods for positioning: A one-
step method where the position is directly obtained from the
measurements via a maximum-likelihood estimator, and a two-
step method where the position is obtained from distances
estimated from each link.

The proposed methods were tested on data from a wideband
measurement campaign. The experiment was carried out using
a signal bandwidth of 120 MHz. The results show that the
mean delay parameter improves the positioning accuracy in
comparison to methods relying on observations of received

power only. In the considered set-up, relying on power only
the one-step method could achieve a root mean squared error
of 0.77 m; for mean delay the corresponding number is 0.34 m.
Using observations of both power and mean delay lowers the
RMSE to 0.33 m, i.e. by only 1 cm. It thus seems that the
mean delay data is very informative for estimation of position.
This conclusion is remarkable, in particular when compared
to the long pulse duration for the sounding signal used in the
measurement. Further work is needed in order to yield insight
into how the bandwidth affects the positioning accuracy when
relying on the mean delay.
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