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Wind power is a fast-growing, sustainable energy source. However, the problem of wind
variability as it relates to wind power reliability is an obstacle to its large-scale deployment. It is
possible to improve the reliability of wind power by interconnecting wind generation. In this
study, wind power plants within the Midwest ISO were aggregated to examine the effect on
reliability. Wind speed data from the North American Regional Reanalysis were used to
calculate wind power data. It was found that the reliability of interconnected wind power was
improved relative to individual wind power plants in both the short-term and the long-term, and
that the most significant improvements were at the highest scales of interconnection. It was also
found that the reliability of interconnected wind power is more directly related to the area of the

network rather than the number of wind power plants in the network.
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CHAPTER 1

INTRODUCTION

1.1 Background

The objective of this study is to determine the extent to which the geographic dispersal of
wind power plants (WPPs) can mitigate the effects of wind variability on power generation.
Wind is an ideal source of energy because it is clean and renewable, but its spatial and temporal
variability, and the resulting variability of wind-derived power generation is a major impediment
to the large-scale deployment of WPPs (DeCarolis and Keith 2005; Kempton et al. 2010).
Overcoming the problem will lead to faster large-scale deployment of WPPs and earlier
mitigation of environmental impacts associated with non-renewable energy sources.

The question of how to satisfy our growing energy demand is central to many of the most
pressing issues facing humanity. Coal, oil, and natural gas supplies, the dominant power
sources, are finite and have been drastically depleted in the last century (Heinberg and Fridley
2010). Beyond the fact that fossil fuels are nonrenewable, burning them to generate energy
releases carbon compounds and a host of toxic chemicals into the atmosphere. Coal is the
second most widely consumed fossil fuel after crude oil and the largest single source for
electricity generation. It provides 41% of worldwide electricity generation and half of electricity
generation within the U.S. (Shindell and Faluvegi 2010). Carbon dioxide, the principal gas
released during fossil fuel combustion, is a greenhouse gas. Increasing energy demands have led
to the burning of fossil fuels at such a rate that humans have increased the concentration of

carbon dioxide in the atmosphere by over 30% since the start of the Industrial Revolution,



reaching levels higher than any in the last 650,000 years (IPCC 2007). Climate scientists believe
with greater than 90% certainty that most of the observed global warming over the last 50 years
is the result of anthropogenic emissions of greenhouse gases, mainly carbon dioxide. Further,
there is greater than 90% certainty that the 21% century will be even warmer than the 20" century
if greenhouse gas emissions continue at current rates or accelerate (IPCC 2007).

Wind power is a renewable energy source derived from the natural movement of air in
the atmosphere. Global wind energy potential is an estimated 72 TW, far greater than the energy
needs of humanity (Kempton et al. 2010). The U.S. is in the midst of a rapid growth in installed
wind capacity (Constantinescu et al. 2011; Mann et al. 2011). A number of factors are behind
this rapid growth, including the Federal Production Tax Credit, state renewable portfolio
standards, as well as the inherent economic and environmental advantages of wind power (Smith
et al. 2007). Manufacturing, fabrication, transportation and eventual disassembly and disposal of
the turbines account for some carbon emissions, but the actual generation of electricity from
wind is 100% clean. A significant economic advantage of wind power is that, unlike fossil fuels
or nuclear power, the “fuel” that contains the energy does not require transport, and can be
withdrawn as needed. Wind is not a physical commodity susceptible to price fluctuations. It
does not require the large volumes of water necessary to run thermoelectric generators. Further,
wind power does not require large swaths of land to be sacrificed to energy production. Only 1 -
5% of the land in an array of turbines is physically occupied by actual turbines and infrastructure
(Wiltshire and Prose 1987). Many WPPs are actually on farmland, generating power amongst
agricultural fields. Beyond its environmental benefits, wind energy promotes energy
independence, domestic economic growth, national security, and diversifies the U.S. energy

portfolio.



While the advantages of wind power are numerous, it does have some drawbacks.
Because of the bold visual impact an array of turbines has on the landscape, many people are
opposed to wind power development near where they live, or areas of aesthetic value
(Pasqualetti 2000). There is also concern about blade noise and shadow flicker (Wolsink 2007).
Ecologists note the increased level of bat and avian mortalities around WPPs (Cryan and Barclay
2009). The above-mentioned problems can be addressed through close cooperation among wind
energy developers and local communities, government and private landowners (Pasqualetti
2000), and ecologists (Cryan and Barclay 2009). The high cost of electricity transmission is
another challenge for wind power. Within the United States, areas with the greatest potential for
wind power generation are often great distances from urban load centers, meaning that costly
infrastructure would need to be built to distribute the electricity to areas with the greatest
demand. The final drawback, and the focus of this study, is that wind is variable; that is, winds

speeds fluctuate, reducing the reliability of electricity generated using wind power.

1.2 Problem Statement

This study focuses on assessing the geographic distribution of WPPs as a means to
mitigate the effects of wind variability on power generation. The variability of wind power
poses a significant challenge to renewable energy developers. At the site of a single turbine,
temporal variability of wind is high, but when distributed over an entire array of turbines, it is
lower. The larger the area, the less variable the average wind speed will be (Archer and
Jacobson 2007). Therefore, as WPPs are geographically distributed and connected, fluctuations

in the power output are smoothed, and the reliability of power output is improved (Holttinen and



Hirvonen 2005).

The U. S. electric grid is organized as a patchwork of independent service operators
(1SOs) and regional transmission organizations (RTOs) that oversee the distribution of power
within their boundaries. 1SOs and RTOs are composed of a patchwork of balancing authorities,
that actually match generation to demand. The balancing authorities within an 1SO do not
aggregate their generation capacity, meaning that WPPs located in one balancing authority are
effectively isolated from neighboring balancing authorities. Often the area covered by an ISO is
referred to by the name of the ISO, so that the governing body and the area itself are
interchangeable. Previous studies have addressed geographic dispersion as a means of reducing
the effect of wind variability on power generation using multi-state study areas (Simonsen and
Stevens 2004, Archer and Jacobson 2007, Kempton et al. 2010), but there has not been a study
that analyzes the effects of geographic dispersion and interconnection of WPPs within an entire
ISO/RTO. This study will examine the effects of connecting WPPs on power generation within

the U.S. component of the Midwest 1ISO (see Figure 1.1).
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Figure 1.1. Map showing the regional transmission organizations (RTOs) and independent
system operators (ISOs) of North America (ISO/RTO Council 2011). Areas within each RTO or
ISO belong to a common electric grid, and allow for easy transfer of power within their
boundaries. This study focuses on Illinois, Indiana, lowa, Michigan, Minnesota, North Dakota,
Ohio, South Dakota, and Wisconsin, the states covered by the Midwest 1SO.

The analyses presented herein are focused on wind power during the months of January
and July. January and July were chosen because they are at the extremes of electricity
consumption due to heating (January) and cooling (July)(EIA 2011). Moreover, the difference in
weather patterns in January and July represent the winter and summer circulation patterns in the
Midwest (Coleman and Klink 2009). Further work applying the same methods to every month is
planned for the future. Specific attention is given to comparing different metrics of aggregation,
specifically the relationships between the reliability of wind and power and both the number of

connected WPPs in the network and the area of the network, an approach that has not yet been



utilized. Archer and Jacobson (2007) based their analysis on the number of WPPs in a connected
network, and Kempton et al. (2010) focused on distance between WPPs along the Eastern
Seaboard, but neither examined the relationship between network area and variability of power

generation.

1.3 Research Questions

This study aims to characterize the effect of the interconnection of WPPs on the
variability and reliability of generated power. Specifically, the following research questions are
addressed:

1) What is the effect of interconnecting WPPs on the variability of generated power within
the Midwest ISO? It is already known that the reliability of wind power is improved when WPPs
are interconnected (Khan 1979; Robeson and Shein 1997; Simonsen and Stevens 2004; Archer
and Jacobson 2007; Cassola et al. 2008; Milligan et al. 2009; Kempton et al. 2010), but the effect
of interconnection on wind power reliability within the entire Midwest 1SO (or any ISO or RTO)
has never been studied. It is vital to understand the effect of interconnection on wind generated
electricity within the Midwest 1ISO because it covers a region of large population centers and
significant wind resources, particularly in the west (NREL 2012), and contains over 100 WPPs
of 10 MW capacity or higher (The Wind Power 2011). Three reliability metrics will be
employed to answer this question: standard deviation of power produced, % of time with zero
power produced, and firm capacity (see section 3.4).

2) Is the number of sites in a network or the area of the network more directly related to the

variability of interconnected wind power? The answer to this research question will inform the



planners of any future WPP network so that the maximum reliability of the network can be
realized. The same reliability metrics employed to address the first research question were used
here. Statistics were generated based on both network characteristics and then compared to
determine whether the number of connected sites in the network or network area was more

important to reliability.

1.4 Significance of the Study

The need for clean, renewable sources of energy like wind power will increase as energy
consumption increases in the U.S. and the rest of the world (Keay 2007). Ramping up coal, oil,
natural gas and nuclear power production would exacerbate ongoing environmental effects
related to power production, such as climate change and mining-related landscape degradation,
as well as cause increased reliance on fuels whose prices are subject to fluctuation. The
expansion of wind power would help alleviate those problems. Wind turbines have a minimal
impact on the environment, and generate energy while releasing zero greenhouse gases during
their operating lifespan (Pasqualetti 2000). Variability of generated power from the wind
resource has been frequently cited as a limitation to further expansion of wind power (Milligan et
al. 2009).

There has yet to be a study that examines the effects of interconnection on the reliability
of wind power over an entire 1SO. The results of this study will serve as the basis for further,
more exhaustive analyses of wind interconnection. This study is valuable because as the need
for renewable power sources like wind increases, the challenge of improving the reliability of

wind power must to be addressed. Because this study utilizes a data set with high spatial and



temporal resolution, the North American Regional Reanalysis (NARR) (Mesinger et al. 2006),
that has not been widely applied to study wind power, it offers an unprecedented opportunity to
conduct an analysis of the potential improvements of wind power in the United States, and
allows for an updated method for implementing the power law for the vertical extrapolation of
wind speed that reduces the potential for extrapolation error. The NARR data are utilized to
produce an 80 m wind speed map of the Midwest ISO. The results of the analysis are used to
produce a map showing optimal locations for new WPPs to maximize wind power reliability
through interconnection. This study is useful to utilities and grid operators for planning new
wind transmission and interconnection infrastructure, and offers new insights into the geography

of wind energy.

1.5 Description of Chapters

The remainder of this study is organized into four chapters. Chapter 2 provides a survey
of literature on the conventional energy sources, wind power meteorology, methods for vertical
extrapolation of wind speeds, spatial aspects of wind power, and wind power integration.
Chapter 3 provides a description of the study design, the study area, the data used for the
analyses, and a description of methods. The results of the analyses are presented in Chapter 4,

with further discussion and summarization in Chapter 5.



CHAPTER 2

LITERATURE REVIEW

2.1 Energy Challenges

The main driver of wind power development in the U.S. is the Federal Production Tax
Credit (Smith et al. 2007), which was conceived as a response to environmental concerns of
carbon dioxide emissions and global warming. Armaroli and Balzani (2006) published a study
that surveyed the major energy sources of coal, oil, natural gas, and nuclear power, as well as
renewables, and provided an analysis of the environmental and economic costs of each energy
source. They point out that the most easily accessible fossil fuel reserves are being depleted,
necessitating the exploitation of more environmentally damaging reserves, like shale gas and
coal recovered through mountain-top-removal.

Nuclear energy is the second largest generator of power worldwide after coal, accounting
for 15% of global generation, and contributes dramatically less carbon emissions per unit of
power generated, almost zero (Sovacool and Cooper 2008). However, nuclear power has major
drawbacks. The exorbitant cost required to insure a nuclear power plant means that nuclear
energy has been heavily subsidized in the United States. The Price-Anderson Act sets a cap of
$200 million on the cost of private insurance. In the case of nuclear power, the extra liability
required is provided by American taxpayers. Some observers question whether any nuclear
power plants would ever have been built in the U.S. without taxpayer support (Armaroli and
Balzani 2006). Beyond the cost, serious safety factors must be considered if nuclear power is to

be expanded. There is a small, though omnipresent risk of a reactor meltdown like the



catastrophe at Chernobyl in the Ukraine in 1986, or the Fukushima disaster in 2011.

The continuing use of coal as a major energy source is largely due to the perceived low
cost of coal power. Coal power is the largest single source of electricity worldwide, accounting
for 41% of all electricity generated, and half of the electricity generated in the U.S (Shindell and
Faluvegi 2010). There is a movement to try to mitigate the negative effects of coal burning by
capturing the carbon emissions underground, a technology called carbon sequestration. This
technique and other “clean coal” technologies face a host of environmental, technical,
economical, and political obstacles. The scope of the challenges facing clean coal technologies
strongly suggests that it will not become a viable large-scale energy source (Ehlig-Economides
and Economides 2010).

Jacobson and Masters (2001) demonstrated that coal power is not the cheapest source of
energy, and is in fact more expensive than wind power when all externalities are taken into
account. For a coal power plant, energy costs are low, only 3.5 - 4 cents per kilowatt hour
(kwh). When health and environmental costs are added to that figure, including the federal
black-lung disease benefits program that has cost $35 billion since 1973, the actual cost of coal
energy is 5.5 - 8.3 cents/kWh. Even without the health and environmental costs factored in,
wind power is competitive with existing coal power. When turbine manufacture and scrapping
costs are considered, the average energy costs of a large wind turbine equates to 3 - 4 cents/kWh
(Jacobson and Masters 2001). Because the capacity factor of wind power (proportion of
nameplate capacity that the WPP is producing at any given moment) can be estimated at about
30 - 35% of nameplate capacity, a third of wind generation can be used as baseload power, while
the remaining energy can be used for powering batteries in electric cars or other uses (Archer and

Jacobson 2007). Wind power can therefore be considered a future energy source of tremendous

10



importance. A role of this study is to gain knowledge that will make large-scale wind energy

more economically feasible.

2.2 Wind Power Meteorology

Because this study deals with the spatial relationships of wind speed as it relates to power
production, it is important to understand the factors that affect wind power, and the science of
maximizing wind power potential. Wind power meteorology is a relatively new subfield of
atmospheric science that brings together aspects of meteorology, climatology, and physical
geography. Most research is conducted within the atmospheric boundary layer, the layer of air
adjacent to the earth’s surface. The thickness of the layer fluctuates diurnally and based on wind
conditions. It ranges from about 100 m above the surface on a clear night with low wind speeds,
to 2 km above ground in the middle of a summer day. The surface layer, referring to the bottom
10% of the atmospheric boundary layer, is of primary concern for harnessing wind energy
because the logarithmic law for the wind profile (the linear relationship between wind speed and
logarithm of height) only applies there (Petersen et al. 1998).

The variability of wind speed as it relates to wind power output is of central importance
to this study. Figures 2.1a and 2.1b illustrate the high variability of wind generation at a single
site. In the two-week period shown, fluctuations of capacity factor greater than 0.5 are not
uncommon, nor are extended episodes of zero power output. In one instance capacity factor
drops from 1 to under 0.2 in a three-hour span. The average capacity factor of the site over the
entire two-week period is 0.31, which is nearly equal to January mean wind speed for all WPP

sites in the MISO (see Table 4.1). The rapid transition between times of peak output and zero

11



output is likely related to the passage of synoptic-scale weather systems, which generally pass

every few days in the mid-latitudes during winter.
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Figure 2.1. (a) Capacity factor of a single GE 1.5 turbine at 47.4861 N, 101.1729 W in central
North Dakota, based on wind speed data from the NARR data set. The site was chosen because
its January mean wind speed was closest to the January mean of all sites in the study area. The
two-week period shown is from January 1, 2010 to January 14, 2010, and the data are divided
into three-hour intervals. (b) Same as Figure 2.1a, but the two-week period shown is from July 1,
2010 to July 14, 2010.

For instance, on January 2, 2010 a mid-latitude cyclone was passing over central North

Dakota, causing strong winds and high wind power output. By the next day the cyclone had
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passed the site, and for the next couple of days power output was minimal. Mid-latitude
cyclones do not explain all of the wind patterns during the winter months, but play an important
role in determining periods of significant wind power output. Figure 2.1b differs from Figure
2.1ain that there is a lack of an obvious synoptic-scale cycle, and an average capacity factor that
is visibly lower in July. The more northerly position of the jet stream over North America during
summer, and relative weakness compared to that of the winter jet stream leads to diminished
cyclonic activity in the U.S. (Coleman and Klink 2009), which helps explain the lower mean
wind speed and lack of synoptically-induced variability in the July period, as discussed in section
4.2 (see Figure 2.1b and 4.5, and Tables 4.3 and 4.4).

The natural variability of wind affects the variability of wind generation on all time
scales. On a second-to-second time scale, variations are largely smoothed out because of the
inertia of the turbine blade. A single turbine’s output can vary from second-to-second up to 7%
of capacity in extreme cases. However, most of the time these variations are not significant, and
are negligible when an entire WPP is considered (Petersen et al. 1998). Hourly variations can
reach 30% of capacity in extreme cases in Denmark, but these decrease as the area considered
increases. On average hourly variations are 5% of the capacity (Holttinen and Hirvonen 2005).
This study looks at how three-hourly variations (finest temporal resolution afforded by the data
set) in capacity are affected by WPP interconnection.

Perhaps the most important function of wind power meteorology is the short-term
prediction of wind power potential, from seconds to days ahead. Prediction systems usually
consist of a numerical weather prediction (NWP) model output, input of observations, a model,
and the output (Landberg et al. 2003). The output of a prediction system consists of estimated

energy production of the WPP, normally in hourly or three-hourly steps from 0 to 48 hours into
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the future, along with an estimate of the error of each prediction, represented as standard
deviation or confidence intervals. Power system operators rely most heavily on predictions for a
few minutes to hours in the future (Dragoon 2010). Also relevant to power system operators is
the probability distribution of power output, the range of the distribution, and seasonal and
diurnal patterns of the generation. (Holttinen and Hirvonen 2005).

The Western Wind and Solar Integration Study found that weather forecast error causes
the most serious challenges for grid operators (GE Energy 2010a), and the Eastern Wind and
Transmission Study found that the average cost attributable to forecast error is $2.57 (in 2024
dollars) per MW/hour of wind power generated. In a scenario with 20% wind penetration
nationwide, improved forecasts could save up to $2.1 billion in wind integration costs annually
(EnerNex 2010). The need for wind power prediction as a result of wind variability. Predicting
wind at the meso-scale (local to regional) is a difficult and computationally intensive endeavor
that is limited by the chaotic processes that are fundamental to weather. However, the theoretical
limit of forecast technology has yet to be reached.

Continuing advancements in computer technology and data compiling allow for
increasing accuracy of wind forecasting (Dragoon 2010), as seen in the recent partnership
between the National Center for Atmospheric Research (NCAR) and Xcel Energy, which serves
customers in Colorado, New Mexico, Texas, and the Upper Midwest. In 2009, NCAR began
developing improvements to Xcel’s wind prediction system, saving the company $6 million in
2010 (UCAR 2011). Accurately predicting power potential for a WPP allows grid managers to
plan the dispatch of baseload power, and to take full advantage of generated wind power
(Landberg et al. 2003; Giebel 2003). Cutting-edge forecasting has been shown to provide 80%

of the benefits that, in retrospect, perfect forecasting would have provided (GE Energy 2005).
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One way to reduce forecasting error is to increase the size of the area served by the forecast
(Milligan et al. 2009; Marquis et al. 2011), a benefit similar to the improvement in reliability

caused by interconnection of WPPs, the focus of this study.

2.3 Extrapolation of Wind Speeds

Wind speed measurements are not routinely collected at the standard hub height of
modern wind turbines (80 m). Therefore, wind speeds must be extrapolated up to turbine hub
height in order to be useful to studies concerning wind energy. Two commonly used methods
for extrapolating wind speed data are the logarithmic law method and the power law method
(Petersen et al. 1997; Robeson and Shein 1997; Archer and Jacobson 2003; Ray et al. 2006).

The logarithmic law is given:

_In(zy/2y)
Y2 T Min (2 /20)

where u, and u, are wind speeds (m/s) at heights z; and z, (m), and z, (m) is roughness length,
a measure of surface roughness (Oke 1987). It assumes neutral atmospheric stability where
buoyancy is unimportant. In unstable conditions, heating of the surface and robust vertical
mixing reduce the vertical wind speed gradient, while cooling at the surface and stifled vertical
mixing amplify the vertical wind speed gradient in stable conditions (Petersen et al. 1997).
Because the equation for logarithmic wind speed increase requires a specific value for roughness
length, the method is flawed for extrapolating wind speeds over large areas with varying
roughness lengths. The differing roughness lengths between a forest and agricultural land, or

hilly land and flat land makes a significant difference in the value of u,.
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The power law is another method for extrapolating wind speed (Petersen et al. 1997,

Robeson and Shein 1997; Archer and Jacobson 2003), and is given:

— Zza
U = Uy 7

where u, and u, are wind speeds (m/s) at heights z; and z, (m), and a is the roughness
exponent, typically (1/7)(Arya 1988). Like the logarithmic law, the power law is dependent on a
roughness variable that varies widely over large areas. Although it lacks the theoretical basis of
the logarithmic law, the power law does describe observed wind profiles with an acceptable level
of accuracy (Archer and Jacobson 2003). Musgrove (2010) provides estimates of the power
law’s roughness exponent for various landscapes: a = 0.1 over the sea; a ~ 0.14 for open
countryside; a ~ 0.24 for open countryside with scattered hedges and trees; and a > 0.3 for
urban areas. Because both of the above methods require just a single constant parameter, they
are simple to apply, and provide an approximation of the vertical wind speed profile.

The wind speed data used in this study had to be vertically extrapolated to 80 m. It was
determined that the power law was most applicable, due to the necessary assumption of neutral
atmospheric stability for the logarithmic law. While the power law is only a method of
approximating wind speed at different altitudes, the pressure level data employed in this study
(Mesinger et al. 2006) allow for a decreased extrapolation distance, potentially mitigating a

source of error.
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2.4 Spatial Aspects of Wind Power

Literature addressing the relationship between space and wind power is of vital
importance to this study. Studies indicate that spatially distributed WPP networks are more
reliable than isolated individual WPPs, which provides the context for the first research question.
Archer and Jacobson (2003) analyzed surface measurements for the year 2000 at 1327 weather
stations and sounding measurements from 87 stations from the National Climatic Data Center
and found that 24% of the U.S. has economically viable wind energy potential, meaning that
these areas have mean annual wind speeds of 6.9 m/s or greater at a height of 80 m (NREL
2012). The objective was to determine if a large network of WPPs could provide a reliable and
steady source of power. It was found that standard deviation of wind speeds was always less
when averaged over multiple locations than when taken at any individual location. In an eight-
station area, stretching across parts of New Mexico, Texas, and Oklahoma, 550 x 700 km, the
average 80 m wind speed never fell below 3 m/s, which is significant because 3 m/s is the cut-in
speed of the GE 1.5MW turbine used in this study.

Robeson and Shein (1997) analyzed wind speed data from the Solar and Meteorological
Surface Observation Network, consisting of hourly measurements at 37 stations from 1961 -
1990 in Illinois, lowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, and
Wisconsin, in an effort to evaluate the spatial variability of wind resources in the study area, and
also to assess the effectiveness of methods for the spatial analysis of wind. It was found that the
distance-decay relationship of wind speeds lack coherence on an annual scale. Monthly wind
speeds are more spatially coherent, but it was at the daily and hourly scales that wind speed

correlations decreased predictably with distance (Figure 2.2).
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Figure 2.2. Spatial autocorrelation functions for (a) annual, (b) monthly, (c) daily, and (d) hourly
wind speeds for the 37 stations over the period 1961 to 1990. The daily and hourly data show
the greatest spatial coherence; however, much of this coherence is caused by nonstationarities in
the data (e.g., diurnal and annual cycles)(Robeson and Shein 1997). Reprinted with permission
from Physical Geography, 1997, 18, 6, pp. 487. ©Bellwether Publishing, Ltd. All rights
reserved.
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This is important because minute-to-minute and hour-to-hour are the time scales in which WPPs
are able to balance one another’s power generation, and because it reinforces the concept of
interconnection of WPPs as a method of improving reliability.

In regards to reliability, it has been universally found that interconnecting WPPs reduces
the variability of power output (Khan 1979, Simonsen and Stevens 2004, Archer and Jacobson
2007, Kempton et al. 2010). Reliability for interconnected WPPs increases as separation
distance increases (Kempton et al. 2010) and as the number of WPPs in the interconnection
increases (Archer and Jacobson 2007). In the first study to address dispersed wind power
generation, Kahn (1979) found that the average correlation between site pairs decreased when
the number of WPPs interconnected went from two to 13. Kempton et al. (2010) analyzed data
from 11 weather stations along the eastern seaboard from the Florida Keys to Maine, as well as
data from the North American Regional Reanalysis data set. They found that correlation of wind
speeds between sites fell to 0.1 at distances greater than 1000 km, and that fluctuations in output
were greatly diminished. In regards to WPP interconnection, Archer and Jacobson (2007), using
19 sites across Kansas, New Mexico, Oklahoma, and Texas, found that as plants are added to the
network, power generation becomes more reliable (Figure 2.3). Interconnecting more WPPs
decreased the standard deviations of array-average wind speeds and power output, and reserve
requirements. These marginal benefits decreased as more plants were added to the network, but
there was no saturation of benefits, so marginal benefits were always found. Connecting WPPs
to a common point was found to reduce the long-distance portion of transmission capacity up to

20%, while losing only 1.6% of energy (Archer and Jacobson 2007).
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Figure 2.3. Generation duration curves for base-case array configurations: single-, 7-, and 19-
site arrays. Each point on the x axis represents the percent of hours in a year that wind power
production is greater than or equal to the corresponding power (y axis) on the curve. The area
below the generation curve represents the total energy (kwWh) produced in a year by the array.
Shaded areas represent the difference in total energy produced between single-sites and 19-site
arrays. The thatched areas are the energy lost (9.8% and 1.6%) if the size of the transmission

lines is reduced from 1500 to 1200 kW for the 1- and 19-site arrays, respectively (Archer and
Jacobson 2007). ©American Meteorological Society. Reprinted with permission.

Simonsen and Stevens (2004) analyzed one year of wind speed data at 28 sites across
lowa, Kansas, Minnesota, and North Dakota. They found that compared to any one of the sites
individually, those 28 geographically dispersed WPPs reduced the overall variability in power
output by a factor of 1.75 to 3.4. They also found that their array had a less pronounced diurnal
pattern than a single turbine, and that power output peaked in the afternoon, the same time as

peak demand.
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It has been demonstrated that the reliability of wind power is improved when generation
is aggregated (Robeson and Shein 1997; Simonsen and Stevens 2004; Archer and Jacobson
2007; Cassola et al. 2008; Milligan 2009; Kempton et al. 2010). The literature lacks a study that
examines the effect on reliability of interconnecting existing WPPs within an entire 1SO or RTO,
a situation that provides the impetus for the first research question. Further, no study has
explicitly compared the relationship between reliability and the number of WPPs in a network
with the relationship between reliability and the area of the network, which allows for the second

research question.

2.5 Wind Power Integration

Understanding the effects of integrating wind generated power into the electric grid is
important, because the relevance of this study rests on the likely premise that the share of load
served by wind power will increase in years to come, a view supported by DeCarolis and Keith
(2005) and Dragoon (2010). As wind power’s load share increases, certain wind integration
costs arise. For instance, the variability of wind power generation necessitates increased reserves
to balance supply and demand. The need for increased reserves is an example of a wind
integration cost, as is new transmission. Importantly, however, the economic benefits of wind
energy could actually lower the cost of electricity for the entire system, thereby minimizing the
significance of wind integration costs (Milligan et al. 2009; Marquis et al. 2011).

A significant aspect of the value of wind power comes from the decreased operating costs
and emissions that occur when generation from conventional power plants is reduced. The

ability to maximize these savings is strongly tied to the accuracy of wind generation forecasts
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(Dragoon 2010), as discussed in section 2.1. A study in Texas (Cullen 2008) found that on
average 1 MW/hr of wind power displaced 0.19 MW/hrs of coal power, a disparity caused by
coal being a low-variable cost, baseload generation that is generally not displaced at high volume
by wind. However, if a carbon dioxide penalty were placed on coal plants the circumstances
could change significantly, and wind generation could start to displace coal generation at more
substantial levels.

In order to be cost-effective, power plants are rated by their marginal operation costs, a
rating known as merit order. Power plants with the lowest marginal operating costs are at the top
of the merit order, and are in operation all the time. Units with higher marginal operating costs
are generally scheduled for times with higher demand. Wind power plants are at the top of the
merit order because they have very low operating costs, so their power is deployed as it is
produced, offsetting the production of conventional energy sources like coal plants (Holttinen
and Hirvonen 2005).

There are some in the energy community who assert that because of the variability of
wind, and the looming probability that little or no wind power will be available during times of
peak load means that wind power cannot be a factor in contributing to meeting peak loads
(Pavlak 2008). This argument does not consider the fact that conventional generators
occasionally experience unplanned outages during peak load periods. As noted by Archer and
Jacobson (2007), between 2000 and 2004 coal plants in the U.S. were shut down due to
scheduled maintenance 6.5% of the time, and unscheduled maintenance or forced outage 6% of
the time, so in that period electricity from coal plants was assured only 87.5% of the time, with a

range of 79 - 92% (Giebel 2000; NERC 2005). In fact, there is evidence that the addition of
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wind generation, when coupled with new equipment designs and appropriate plant engineering,
can improve system stability in the face of a significant plant or line outage (GE Energy 2005).

There is also some conjecture that wind power will never be able to provide for any more
than a small fraction of total demand, because of the costs that variability imposes on grid
operation. DeCarolis and Keith (2005) argue that there is no threshold (the fraction of power
demand that wind power serves) above which wind imposes prohibitive costs due to variability.
They assert that undispatchable wind energy imposes costs on grid operations that increase
linearly and smoothly as the fraction of wind power serving demand increases, an assertion
verified by Demeo et al. (2005). They point out that arguments for the hypothetical threshold
assume that the grid will remain static as the fraction of wind power serving demand increases.
DeCarolis and Keith (2005) believe that because large scale wind power penetration (one-third
of demand or more) will take at least a few decades to achieve, it is likely that the grid will co-
evolve with wind power and will be better equipped to handle wind variability, as discussed in
Chapter 5 of this study.

The Tres Amigas project is an example of future grid technology. The project is a
planned “SuperStation” to be located in Clovis, New Mexico, that will connect the Western
Interconnection, the Texas Interconnection, and the Eastern Interconnection (Tres Amigas LLC
2010). The station will connect the grids with a combination of underground direct current
superconducting cables, voltage source converters, and energy storage systems. The initial
power transfer capacity will be 5 GW, equivalent to the power used by about 5 million U.S.
households, with room to eventually grow to 30GW. To grid operators in each interconnection,
the station will behave like a large generator. The project has the potential to mitigate stability

and voltage problems caused by variations in power generation like wind power variability.
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While the expansion of wind power does entail some integration costs, they are not
prohibitively expensive. The U.S. Department of Energy devised the Joint Coordinated System
Plan (DOE 2008a), a theoretical transmission and generation plan for large portions of the
Eastern U.S. In a 20% wind penetration by 2024 scenario, it was found that benefits outweighed
all costs (including transmission) by 1.7 to 1. Taken alone, the costs of expanding transmission
to accommodate 20% wind penetration are a mere 2% of the projected total wholesale energy
costs for 2024. Further, according to the 2008 Annual Report on U.S. Wind Energy Markets
(Wiser and Bolinger 2008), for the period 1998 - 2007, average wind power prices have been
near or less than the low end of the wholesale power price range.

Demeo et al. (2005) summarized the findings and insights of individual wind integration
studies, and derived some broad conclusions concerning wind power integration. Wind
variability imposes modest costs on system operation, usually less than 10% of the wholesale
value of the energy, and sometimes substantially less. In fact, in power systems with a large
fraction of demand served by natural gas, wind power provides a buffer against fluctuations in
gas costs (Demeo et al. 2005). Systems with a significant natural gas component are also suited
to wind power in that variations related to wind variability can be corrected by quick ramping up
of natural gas generated electricity (DeCarolis and Keith 2005). Wind power forecasting has
considerable value, especially in the day-ahead time frame because of its influence on decisions
regarding unit-commitment (Demeo et al. 2005). WPPs have some non-zero capacity credit,
meaning that the addition of wind power to the system increases the total capacity of the system,
rather than only subtracting from the load devoted to conventional power sources. The specific
value of the credit is influenced primarily by wind energy availability during peak hours. The

transmission characteristics of the system have a strong bearing on the system operating costs
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arising from wind power variability, and can hinder the system’s ability to accommodate wind
power variability if not sufficiently extensive. The system operating costs imposed by wind’s
variability are strongly related to the size (in MW) of the associated balancing authority, as
discussed in Chapter 5. Larger balancing authorities that include multiple WPPs would
effectively interconnect wind generation, smoothing power output and reducing wind integration

Costs.

2.6 Summary

Existing research shows that the problems associated with fossil fuel-based energy
sources (e.g., increasing atmospheric greenhouse gas concentrations (IPCC 2007), ecological
destruction (Armaroli and Balzani 2006), damage to human health (Epstein 2000), rising fuel
prices (Keay 2007) necessitate an expansion of clean, renewable energy sources. Wind power is
a clean, renewable, and abundant alternative energy source. The science of wind power
meteorology has developed over the last few decades, and aims to understand the dynamics of
the atmospheric boundary layer as it relates to wind power in order to optimize the siting of
WPPs, improve wind power prediction capabilities, and understand the variability of wind
power, which is a major hurdle in the large-scale implementation of wind power.

Studies have shown that aggregating spatially distributed WPPs mitigates the effects of
wind variability on power generation. However, further research is needed to determine the
effect of interconnecting existing WPPs over an entire ISO. The integration of wind power into

the system does impose costs associated with variability, but these costs are outweighed by the
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benefits of wind power integration. Further, the costs of wind power integration will decrease as
grid technology and infrastructure becomes more sophisticated.

This study reinforces the link between interconnection of WPPs and improved wind
power reliability. The study fills a gap in the literature by using high-resolution wind speed data
applied to the locations of WPPs within the Midwest ISO to examine the effect of
interconnection on the reliability of wind power across the entire ISO. It also provides a new
method for vertical extrapolation of wind speed to 80 m based on the North American Regional
Reanalysis (NARR), which has been under-utilized in wind power studies (see section 3.3).
Finally, the results of the study are utilized to suggest optimal locations for future wind power

development.
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CHAPTER 3

METHODOLOGY

3.1 Study Design

This study is designed to gain a better understanding of the relationship between the
geographic distribution of wind power generation and the reliability of wind power within the
Midwest 1SO by examining the effect on reliability of interconnecting WPPs. Reliability of
wind power refers to the variability of power generation. Networks with low variability of
power generation are more reliable than those with higher variability. The standard deviation of
the capacity factor is one measure of the variability of wind power generation. A low standard
deviation of capacity factor signifies a reliable power source. This study also seeks to determine
whether it is the number of WPPs in an interconnected network or the area of the network that
most directly affects the reliability of interconnected wind power, and how the mean capacity

factor is affected by interconnection.

3.2 Study Area

The study area corresponds with the U.S. section of the Midwest ISO. It consists of the
states of Illinois, Indiana, lowa, Michigan, Minnesota, North Dakota, Ohio, South Dakota, and
Wisconsin (see Figure 3.1). Small sections of Illinois, Indiana, and Michigan, and large areas of
Ohio, as well as Nebraska, are not covered by the Midwest 1SO, but were included in the

analysis to simplify the organizational aspect of the study. The area corresponding to the
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Midwest 1SO was chosen as the study area because of its large size, and for the fact that the
distribution of electricity within in its borders is overseen by one body, aiding integration of

geographically dispersed wind power into the system. It also an area of widely varying

population densities and significant wind power potential. Significantly, a study on the effects of

interconnection on wind generation has never been conducted on such a large scale.
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Figure 3.1. Map of the U.S. with study area in light grey.
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3.3 Data

This study utilizes the North American Regional Reanalysis (NARR) (Mesinger et al.
2006). Reanalysis projects are created by assimilating data from synoptic weather stations,
radiosondes (high altitude weather balloons), aircraft, ships, buoys, and satellites (Figure 3.2)
(Petersen et al. 1998). Reanalysis data sets are complete, containing no missing values in the
data. This is a significant advantage over observational data, which are often incomplete for
large scales of analysis, and do not even exist for some areas. Further, observational data can
give the false impression of climatic trends and shifts when new forecast models or analysis
schemes are introduced. Reanalysis data are especially valuable when undertaking analysis of
climatic conditions or trends for an area with large holes in observational data. However, there
are flaws associated with reanalysis data sets. Errors or inconsistencies derived from
observational data can be promulgated through the process of creating the data set, or the model
used to compute the data set may have unrealistic atmospheric parameters. Programming bugs
or human error can introduce flaws into the data set as well (ESRL 2011). While reanalysis data
sets are not perfect, they are a valuable resource for atmospheric scientists, and are under-utilized

in studies of wind power.
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Figure 3.2. Chart illustrating the types of data that are assimilated to create reanalysis data sets.

The NARR is a comprehensive set of climatic model output constrained by various types
of observational data for the North American sector. The NARR was conceived as a regionally-
focused outgrowth of the NCEP-NCAR Global Reanalysis project. It assimilates improved
versions of data sets used in the Global Reanalysis, as well as additional data sets. The goal of
the NARR was to improve the depiction of the hydrologic cycle, the diurnal cycle, and other
meteorological and climatic variables. The NARR covers January 1, 1979 to the present, and is
updated daily (Mesinger et al. 2006).

The NARR spatial coverage consists of assimilated data of multiple climatic variables on
a 32 x 32 km grid, formatted as a Lambert Conformal Conic Projection, for the North American
sector; the highest spatial resolution of any reanalysis data sets covering North America
(Mesinger et al. 2006). The NARR vertical resolution extends to 29 pressure levels from 1000

mb to 100 mb at 25 or 50 mb intervals, and includes the heights of each pressure level. The
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NARR temporal coverage consists of climatic variable data in three-hour intervals, at every grid
point and pressure level. The data used in this study cover the month of January from 1979 to
2010, and July from 1979 to 2010. Because of its exceptional spatial, vertical, and temporal
resolution, the NARR is well-suited for studies of North American climatic variability. Further,
the high vertical resolution offers an opportunity to mitigate potential sources of error in
estimates of 80 m wind speeds that are normally based on surface station measurements that are
subject to numerous discontinuities, including, but not limited to, changing roughness around the
station through time, unreported station relocation, and deterioration of anemometer performance

(DeGaetano 1998).

3.4 Objectives

In order to address the research questions, several objectives were formulated:
1. Determine locations of existing WPPs within the study area and match each to its nearest
NARR grid point. There is no freely available data set with the locations of each U.S. WPPs, so
such a set was compiled.
2. Extrapolate NARR wind speeds to 80 m. The NARR does not contain explicit 80 m wind
speeds, so the power law was used to calculate 80 m winds.
3. Convert 80 m wind speeds into wind power capacity factors. To accomplish this Archer and
Jacobson’s (2007) power curve for the GE 1.5MW turbine was utilized.
4. Aggregate WPPs into networks. Because this study looks at the reliability of interconnected
wind power, WPPs were aggregated into networks ranging in size from pairs to all WPPs within

the study area.
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5. Calculate reliability statistics. The results of the study come from the analysis conducted for

this objective.

These objectives are addressed in further detail below.

3.4.1 Locate WPPs within the MISO

Data processing and analysis was done using MATLAB. The study area was extracted
from the NARR by delineating the boundaries using latitudinal and longitudinal coordinates, and
the locations of existing wind power plants within the study area were determined. Because
there are no free, ready-made data sets with the locations of all the wind power plants in the U.S.,
such a data set was compiled. Noting only those wind power plants with a nameplate capacity of
10 MW or greater, a data set was compiled using the list of U.S. wind power plants on The Wind
Power website as a guide (The Wind Power 2011). In total, 116 wind power plants were
catalogued within the study area, but the locations of only 108 were used in the analysis because
some wind power plants are so near to one another that they are beyond the spatial resolution of
the NARR (Figure 3.3). WPPs were individually identified with their nearest NARR grid point
so that wind speed and wind power could be calculated at each three-hour time step for every

WPP in the study area.
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Figure 3.3. Map of the study area showing the locations of existing WPPs as black dots.

3.4.2 Extrapolate Wind Speeds to 80 m

The NARR separates wind speed into its zonal and meridional components, so wind
speed had to be calculated by combining both components into a single value (Mesinger et al.
2006). For assessment of the wind power resource at each site, it was assumed that a single GE
1.5 turbine was used, which has a hub height of 80 m (GE Energy 2010b), so wind speeds at 80
m are required. One of the significant challenges inherent in the research was the process of
extrapolating wind speeds to 80 m. Wind speeds at 80 m are not routinely observed, nor
included explicitly in the NARR data. The NARR includes wind speeds at various pressure
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levels ranging from 1000 millibars (mb) to 100 mb, at 25 or 50 mb intervals. Usually the 1000
mb pressure level is below 80 m. The power law method was utilized, a common approach for
extrapolating wind speeds to higher heights (section 2.3). Normally the power law is used to
extrapolate based on single near-surface (i.e. 10 m) station measurements, but the high vertical
resolution of the NARR potentially allows for a higher degree of precision in estimating 80 m

wind speeds. The power law is defined:

Zy @
UV, =1y

z;
where v; and v, are wind speeds (m/s) at heights z, and z, (m), and a is the roughness exponent
(Arya 1988). For surface station measurements the roughness exponent is typically assumed to
be 1/7 (Musgrove 2010), but the vertical resolution of the NARR allows for varying values of the
roughness exponent based on the atmospheric conditions at each grid point and each time step.

The roughness exponent, o, was determined using the following equation:

_ In(vyg0/Vago)
In(z/2450)

where vyg, IS the wind speed at the pressure level nearest to, but below 80 m, v,g, is the wind
speed at the pressure level nearest to, but above 80 m, and z,g, and z,g, are the heights of those
respective pressure levels (Oke 1987). 80 m wind speed estimates derived from 10 m surface
station measurements require extrapolation spanning 70 m, which can introduce a large error. In
this study wind speeds were extrapolated to 80 m from the pressure level nearest to, but below 80
m, which is generally a much shorter distance, potentially minimizing error.

To gain an idea of the how the NARR data characterized the wind resource in the study

area, a map was produced (Figure 3.4).
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Figure 3.4. Map of mean annual wind speeds at 80 m for the study area, derived from the NARR
data using the power law method of extrapolation. White circles represent the NARR grid points
nearest to existing WPPs.

It is intuitive that the majority of WPPs are in the upper distribution of wind speeds, because it
does not make economic sense to build a WPP in an area with a poor wind resource. However,
according to the NARR data, none of the WPPs are in areas with annual mean wind speeds
above 6.9 m/s, the minimum for a site to be considered fit for wind power development. This is
not due to poor WPP siting, but rather to the NARR’s underestimation of wind speeds in the
Midwest (Pryor et al. 2012). It is also likely related to the use of the power law for extrapolation,

which according to Archer and Jacobson (2003) causes underestimation of 80 m wind speeds.
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3.4.3 Calculate Capacity Factor

The wind speeds were converted into wind power at each WPP grid point for every three-
hour time step. Each WPP grid point was assumed to have one GE 1.5 MW turbine. The GE 1.5
is a widely deployed turbine in the United States with over 10,000 active units. It has a
nameplate capacity of 1.5 MW, a cut-in wind speed of 3 m/s, a cut-out speed of 25 m/s, and
power generation maxes out at 12 m/s (GE Energy 2010b). Archer and Jacobson’s (2007) power

curve for the GE 1.5 was used to compute wind power (Figure 3.5).

1500

1200

Power (kW)

600

300

0 5 10 15 20 25 30
Wind Speed (m/s)

Figure 3.5. Power curve for the GE 1.5 MW turbine.

36



Two third-order polynomials are needed to calculate wind power, one for the portion of wind
speeds below the sign change of the concavity of the power curve (wind speed of 8 m/s), and one
for the portion of wind speeds above the sign change:

Piower = V3 + 8v% — 530 + 60

Pupper = —11.2503 + 307.50% — 25200 + 6900

where P, ., IS the power (kW) produced below the sign change of the concavity of the power
curve, Ppper is the power (KW) produced above the sign change of the concavity of the power
curve, and v is the wind speed (m/s).

Capacity factor was calculated by dividing the wind power at each time step and grid
point by 1500, the maximum kilowatt output of the GE 1.5. The capacity factor therefore
represents the proportion of the total possible power output of the WPP that is being produced at

any given moment.

3.4.4 Aggregate WPPs

The WPP grid points were organized into groups, or networks, based on proximity to
neighboring WPP grid points. Point pairs were organized first, by simply taking each point and
pairing it with the nearest neighbor, only considering unique point pairs. Networks containing 3
- 108 WPPs were then organized on the same basis, only including unique network

combinations. Including individual sites, there were 7704 unique networks analyzed.
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3.4.5 Calculate Reliability Statistics

Information regarding the networks’ geographic and power production characteristics

was computed. For each unique network the following information was computed:

Table 3.1. Reliability statistics and definitions.

Variable

Definition

Minimum distance
Mean distance

Maximum distance
Area

Mean wind speed
Standard deviation of wind
speed

Mean capacity factor

Standard deviation of
capacity factor

Percentiles of capacity factor

Distribution of capacity
factor fluctuations

Firm capacity at 70%
Firm capacity at 80%

Firm capacity at 90%

Minimum distance between any two sites in the network (zero for individual sites)
Mean distance among the sites in the network (zero for individual sites)

Maximum distance between any two sites in the network (zero for individual sites)

Area of the convex hull polygon defined by the sites in the network (zero for individual sites
and pairs)

Mean wind speed of the site(s) in the network for the entire study period (m/s)

Standard deviation of wind speed of the site(s) in the network for the entire study period
(m/s)

Mean capacity factor of the site(s) in the network for the entire study period (m/s)
Standard deviation of capacity factor of the site(s) in the network for the entire study period
(m/s)

1%t 2™ 3, 99" percentiles of capacity factor for the site or network

Percentage of time step pairs with a -90%, -80%, ... 0%, ... +100% change in capacity factor
for the site or network

Proportion of site or network capacity that can be depended on at any given time at a 70%
probability

Proportion of site or network capacity that can be depended on at any given time at a 80%
probability

Proportion of site or network capacity that can be depended on at any given time at a 90%
probability

Firm capacity, a measure of the dependability of power (Archer and Jacobson 2007), is

included in the above table. If a 5000 MW WPP network has a firm capacity of 0.1 at 80%

probability, then it can be relied upon for up to 500 MW 80% of the time. The three above

probabilities were chosen arbitrarily in order to compare varying degrees of WPP network

dependability.
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CHAPTER 4

RESULTS

4.1 Introduction of Results

In Chapter 1, two research questions were introduced: (1) What is the effect of
interconnecting wind power plants on the variability of generated power within the Midwest
ISO? (2) Is the number of sites in a network or the area of the network more directly related to
the variability of interconnected wind power? In regards to the first research question, the results
show that interconnecting WPPs reduces the variability of wind power within the study area.
Short-term fluctuations in power output are smoothed, and the frequency of large fluctuations in
power output is greatly diminished. The frequency of low capacity factors is reduced with
interconnection, and the overall reliability of wind power within the study area is improved. In
regards to the second research question, the results show that network area more efficiently
mitigates the variability of wind power than the number of WPPs (n) in the network. In the case

of networks with equal n, those networks with larger areas were more reliable.

4.2 Interconnection and Reliability

In accord with previous studies (Robeson and Shein 1997; Simonsen and Stevens 2004;

Archer and Jacobson 2007; Cassola et al. 2008; Milligan et al. 2009; Kempton et al. 2010), it can

be concluded that as (n) and/or network area increase, reliability improves (Tables 4.1 — 4.4).
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Table 4.1. Performance statistics for networks of connected wind power plants as a function of n
for the month of January (1979 - 2010). For details see section 3.4.

No. of WPPs per network (1) 1 3 10 25 50 80 108
No. of networks analyzed 108 88 90 91 78 60 1
Min. network area (thousands of km?) 0 0.02 5.20 29.65 117.45 490.79 1211.01
l“(";az')' network area (thousands of 0 1.88 3271 113.89 28525  640.68  1211.01
Max. network area (thousands of kmz) 0 23.39 123.16 391.46 568.56 880.11 1211.01
Network mean wind speed (m/s) 6.35 6.40 6.39 6.41 6.43 6.40 6.35
St. dev. of network wind speed (m/s) 2.91 2.81 2.68 2.54 2.38 2.18 1.97
Network mean capacity factor 0.29 0.30 0.30 0.30 0.30 0.30 0.29
St. dev. of network capacity factor 0.31 0.30 0.28 0.26 0.25 0.23 0.20
:f;;i"ct: dge of time with zero power 12.44 7.07 261 038 0 0 0
:f:; c:orlll(ltf\l/rm capacity at 70% 0.06 0.07 0.08 0.10 0.12 0.14 0.15
:f:g;?l‘i::,’m capacity at 80% 0.02 0.03 0.04 0.06 0.07 0.09 0.11
:f:;‘; flll‘l::m capacity at 90% 0 0 0.01 0.02 0.03 0.05 0.07

Table 4.2. Performance statistics for networks of connected wind power plants as a function of
network area for the month of January (1979 - 2010). For details see section 3.4.

R f network th f -
anzge of network areas (thousands o 0 0-65 6.5-18 18- 50 50 - 200 200 > 400

km?) 400
M twork th ds of
k:;")‘ network area (thousands o 0 2.29 1155 3330 11690 29497  653.56
Number of networks within range (n) 108 447 368 719 1900 1676 2486
Size of smallest network within range 1 2 3 3 5 12 27
Mean 1 within range 1 4.73 11.11 18.49 32.06 47.94 76.92
Size of largest network within range 1 11 20 33 57 74 108
Network mean wind speed (m/s) 6.35 6.46 6.45 6.44 6.42 6.39 6.40
St. dev. of network wind speed (m/s) 2.91 2.85 2.78 2.68 2.53 2.33 2.18
Network mean capacity factor 0.29 0.31 0.30 0.30 0.30 0.30 0.30
St. dev. of network capacity factor 0.31 0.30 0.29 0.28 0.26 0.24 0.22
Percentage of time with zero power 12.44 6.65 3.49 1.43 0.06 0 0
produced

. . .
Network firm capacity at 70% 0.06 0.07 0.08 0.09 0.10 0.12 0.14
probability

" . o
Network firm capacity at 80% 0.02 0.03 0.03 0.04 0.06 0.07 0.09
probability

" : 3
Network firm capacity at 50% 0 0 0 0.01 0.02 0.04 0.05
probability

40



Table 4.3. Same as Table 4.1, but for July.

For details see section 3.4.

No. of WPPs per network (11) 1 3 10 25 50 80 108
No. of networks analyzed 108 88 90 91 78 60 1
Min. network area (thousands of km?) 0 0.02 5.20 29.65 117.45 490.79 1211.01
l“:';az'; network area (thousands of 0 1.88 3271 11389 28525 64068  1211.01
Max. network area (thousands of km?) 0 23.39 123.16 391.46 568.56 880.11 1211.01
Network mean wind speed (m/s) 4.81 4.86 4.87 4.88 4.92 4.88 4.81
St. dev. of network wind speed (m/s) 2.35 2.28 2.00 2.01 1.86 1.67 1.44
Network mean capacity factor 0.15 0.15 0.15 0.15 0.16 0.15 0.15
St. dev. of network capacity factor 0.21 0.20 0.19 0.18 0.17 0.15 0.13
:f;ﬁr:;a dge of time with zero power 24.91 15.89 7.11 1.82 0 0 0
g::l‘:; ‘l’;lll(ltf";m capacity at 70% 0.01 0.01 0.02 0.03 0.04 0.05 0.06
:::I:;'i'l‘i:;'m capacity at 80% 0 0 0.01 0.02 0.03 0.04 0.04
:f;‘":; ‘l’orlll‘l:";m capacity at 90% 0 0 0 0.01 0.01 0.02 0.03
Table 4.4. Same as in Table 4.2, but for July. For details see section 3.4.

:i?]r:zg)e of network areas (thousands of 0 0-65 6.5-18 18- 50 50 - 200 2::0— > 400
l“(";az')' network area (thousands of 0 2.29 11.55 3330 11690 29497  653.56
Number of networks within range (1) 108 447 368 719 1900 1676 2486
Size of smallest network within range 1 2 3 3 5 12 27
Mean N within range 1 4.73 11.11 18.49 32.06 47.94 76.92
Size of largest network within range 1 11 20 33 57 74 108
Network mean wind speed (m/s) 4.81 4.88 4.88 4.87 4.90 4.83 4.88
St. dev. of network wind speed (m/s) 2.35 2.31 2.24 2.13 2.00 1.78 1.66
Network mean capacity factor 0.15 0.15 0.15 0.15 0.15 0.15 0.15
St. dev. of network capacity factor 0.21 0.21 0.20 0.19 0.18 0.16 0.15
Zf;;i'l?dge of time with zero power 24.91 15.22 8.86 4.72 0.93 0 0
:f:&%?l‘itf:,"“ capacity at 70% 0.01 0.01 0.02 0.02 0.03 0.04 0.05
gf:l‘:'a cl)):l;tf:/rm capacity at 80% 0 0 0.01 0.01 0.02 0.03 0.04
Network firm capacity at 90% 0 0 0 0 0.01 0.01 0.02

probability

Standard deviation of mean capacity factor decreases significantly. Percentage of time

with zero power produced decreases as n and area increase. Firm capacity at each probability

level also improves uniformly as n and network area increase (Tables 4.1 — 4.4).

41



The effects of interconnection on wind power reliability, even at small scales, are
consistent. The standard deviation of capacity factor decreases, percentage of time with zero
power decreases, and firm capacity increases. However, the most dramatic effects are to be
observed for large-scale interconnection. In January the mean standard deviation of capacity
factor among individual WPPs is 0.31, compared to a mean capacity factor of 0.29, while in July
the mean standard deviation of capacity factor among individual WPPs is 0.21, and mean
capacity factor is 0.15. Among WPP networks greater than 400,000 km?, the standard deviation
of capacity factor is two-thirds of mean capacity factor in January (0.22), and equal to mean
capacity factor in July (0.15).

Short-term reliability of wind power was improved by interconnection (Figures 4.1 —
4.2). For asingle WPP (Figure 4.1a), three-hour fluctuations in power output greater than 50%
of capacity factor are rare, but do occur. At the largest scales of interconnection, power
fluctuations greater than 40% within a three-hour period do not occur. Wind speed, like most
meteorological phenomena, and indeed most geographic phenomena, is more similar to wind
speed at closer locations than to farther locations, and so as the area of a network of WPPs
increases, sites are further apart and wind speeds are less correlated (Robeson and Shein 1997).
It is less likely that low wind speeds will be experienced by multiple networks at the same time,

thereby balancing the power output of the network.
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Figure 4.1. Histograms of the frequency of various magnitudes of changes in the capacity factor
on the three-hour scale for the month of January (1979 - 2010). (a) single WPP at 47.4861 N,
101.1729 W in central North Dakota, (b) all 108 WPPs in the study area, (c) mean of networks
between 0 and 6500 km? in area, and (d) mean of networks greater than 400,000 km? in area.
The error bars signify one standard deviation above and below the mean.
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Figure 4.2. Same as in Figure 4.1, but for July (1979 - 2010).

Figures 4.1a-b and 4.2a-b show short-term power fluctuations as a function of n, and the same
trends as in Figures 4.1c-d and 4.2c-d are visible. As the scale of interconnection increases, the
magnitude of short-term fluctuations in capacity factor show demonstrable decreases, and the
frequency of periods of steady power output show demonstrable increases. Also, the variability
in power fluctuations among networks of equal n or area decreases as the scale of
interconnection increases, as demonstrated by error bars in Figures 4.1c-d and 4.2c-d. Therefore,

the power output of WPP networks becomes more predictable at larger scales of interconnection.
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The standard deviation of capacity factor decreases as n and area increase, and so
reliability improves. Figures 4.3 and 4.4 demonstrate the effects of interconnection on the
standard deviation of capacity factor. The immediate benefits of interconnection are more
pronounced at small scales of interconnection, and begin to diminish as n goes beyond 15 WPPs,
or about 50,000 km? for the month of January. Improvements to reliability do not reach a
saturation point, and would likely continue if the study area was enlarged and more WPPs were
added to the analysis. The results for July are more complex, and are likely related to the
sporadic nature of wind events during the summer in the Midwest. When looking at July
standard deviation of capacity as a function of n, the decreases in variability are smooth. Similar
to January, the benefits to reliability are most pronounced at small scales of interconnection. As
a function of network area, variability is less predictable, although it still follows the same
decreasing trend. Up to network areas of about 25,000 km? variability decreases rapidly, almost
11%. In some cases variability increases slightly as network area increases. It should also be
noted that there is an observable point in both Figure 4.3b and 4.4b, between about 20,000 and
25,000 km?, where the mean line flattens out, suggesting that improvements in reliability reach a
minor plateau at that area, although benefits continue to accumulate at higher levels of
interconnection. In Figures 4.3b and 4.4b a second plateau occurs at approximately 200,000

km?, which is discussed further in Chapter 5.
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Figure 4.3. Standard deviation of capacity factor in January (1979 — 2010) as a function of n (a),
and, (b) as a function of network area, for individual WPPs and WPP networks in the study area.
Each point represents one individual WPP or network. The red line denotes the mean standard
deviation of capacity factor for each n or area quantile.
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Figure 4.4. Same as Figure 4.3, but for July (1979 — 2010).
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For a small subset of networks in January and a sizeable minority of networks in July,
standard deviation of capacity factor increases as area increases (see Figures 4.3 and 4.4). This is
most likely not random statistical noise. Most of these networks have very low mean capacity
factors, meaning that the standard deviation of capacity factor is low as well. As n and/or
network area increase, including larger proportions of WPPs with higher mean capacity factors,
mean capacity factor increases, and standard deviation of capacity factor increases in tandem

(Figure 4.5).
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Figure 4.5. Standard deviation of capacity factor in (a) January, and (b) July (1979 — 2010) as a
function of network area for individual WPPs and WPP networks. Each point represents one
individual WPP or network. Points are color-coded to denote the January mean capacity factor
of each network.

49



The effect of interconnection on wind generation was also analyzed by looking at the

frequency of 50 quantiles of capacity factor as a function of n and network area (Figures 4.6 and

4.7).
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Figure 4.6. Frequency of 50 quantiles of mean capacity factor for the month of January (1979 —
2010). (a) single WPP at 47.4861 N, 101.1729 W in central North Dakota, (b) mean of all 108
WPPs, (c) mean of networks between 0 and 6500 km? in area, and (d) mean of networks greater
than 400,000 km? in area. The error bars signify one standard deviation above and below the
mean.
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A single WPP in north-central North Dakota experiences a capacity factor between 0 and 0.02

roughly 23% of the time for the month of January (Figure 4.6a), and experiences a capacity

factor between 0 and 0.02 about 37% of the time in July (Figure 4.7a). The lowest quantile is the

most prevalent by a significant margin for single WPPs. In January and July, the 0 — 0.02 range

of capacity factors is not the most prevalent quantile when all networks are aggregated (Figure

4.6b and 4.7b), nor for networks larger than 400,000 km? (Figures 4.6d and 4.7d). The January

and July distribution of capacity factor frequencies are similarly affected by interconnection, but
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with some differences. In both months lower-range capacity factors (roughly 0.02 — 0.1)
increase in frequency as the lowest quantile decreases in frequency, due to interconnection. At
high levels of interconnection those lower-range capacity factors decrease as slightly higher-
range capacity factors increase (Figures 4.6d and 4.7d). In July the lower-range capacity factors
remain more frequent as interconnection increases than do their January counterparts due to the
lower mean wind speed in the Midwest in July (4.81 m/s versus 6.35 m/s in January).

Generation duration curves provide a sophisticated look at the reliability of a power
source (Figures 4.8 —4.9). As the scale of interconnection increases, networks can be counted
upon to produce power more frequently. In January, for approximately 20 - 35% of the time, the
mean of individual WPPs produced more power than the networks (Figure 4.8a — b). However,
approximately 65 - 80% of the time networks out-generated the mean of individual WPPs, on the
basis of n in January. In terms of network area in January, networks produced more power about
78 - 85% of the time (Figure 4.8b). In July for n, networks out-generated the mean of individual
WPPs approximately 75 — 90% of the time, although the difference is miniscule in the 0.4 — 0.6
capacity factor range (Figure 4.9a —b). Networks outperformed the mean of individual WPPs for

about 80% of capacity factors based on network area in July.
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Figure 4.8. Generation duration curves of the mean capacity factors (a) as a function of n, and
(b) as a function of network area for January (1979 - 2010). Each point on the x-axis signifies
the percentage of time that wind generation is greater than or equal to the corresponding capacity
factor on the curve. Firm capacity for each network at 70%, 80%, and 90% is the capacity factor
at the intersection of the percentage line with the generation duration curve.
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Figure 4.9. Same as Figure 4.8, but for July (1979 - 2010).
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4.3 Number of WPPs vs. Network Area

To address the second research question, comparisons can be made between the
relationship of n and network area to the reliability of wind power output (Tables 4.5 and 4.6,
also see Tables 4.1 — 4.4). 1t can be concluded that the network area is more directly related to
variability than n. This is apparent when comparing Figures 4.3 and 4.4. Also, the distribution
of points in the area-based graphics (Figures 4.3b and 4.4b) are more constrained than in the n-

based graphics (Figures 4.3a and 4.4a).

Table 4.5. Comparison of reliability statistics based on network area within groups of size n for
the month of January (1979 - 2010). The numbers on the left of each column are the mean
statistics of networks whose areas are lower than the median area for the column, while the
numbers on the right represent the mean of those networks whose areas area greater than the
median column area.

No. of WPPs per network (11) 3 10 25 50 80
Median network area (thousands of

kl:lz')a" network area (thousands o 0.52 14.21 81.45 285.57 624.22
f;/i';"' of network mean wind speed 287 277 281 255 270 239 249 226 220 217

St. dev. network mean capacity factor 0.31 0.29 0.30 0.26 0.28 0.25 0.26 0.24 0.23 0.23
Percentage of time with zero power

766 647 411 1.11 078 0 00 00

produced

' X .
e lnEabas it 007 007 008 009 009 011 011 0.3 013 0.14
probability

1 H 0,
Network firm capacity at 80% 003 003 003 005 005 007 007 008 009 0.09
probability

Y i .
e b R 0 0 001 002 001 003 003 004 0.05 0.05
probability
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Table 4.6. Same as Table 4.5, but for July (1979 - 2010).

No. of WPPs per network (1) 3 10 25 50 80
Medi K h
edian network area (thousands 0.52 1421 81.45 285.57 624.22
of km*)
St. dev. of network mean wind 230 2.26 229 198 221 181 199 172 165 1.68
speed (m/s)
St. dev. network mean capacity
020 0.20 021 017 020 016 0.8 0.15 015 0.15

factor
Percentage of time with zero 17.91 13.86 9.96 427  3.16 0.49 00 00
power produced

! i .
Network firm capacity at 70% 001 0.02 002 003 004 002 004 005 005 0.06
probability
Network firm capacity at 80% 0 001 0 002 002 001 002 003 0.03 0.04
probability

y i .
Network firm capacity at 50% 0 0 0 0 001 001 001 001 002 002
probability

Among networks with equal n, there is a large range of areas (see Tables 4.1 —4.4). The
least expansive network containing three WPPs covers 200 km?, while the largest three-WPP
network covers 23,390 km?. Networks containing five WPPs range from 5200 km? to 123,160
km?. Because some WPPs are clustered near one another, particularly in lowa and southern
Minnesota, the benefits of interconnecting nearest neighbors in some areas are not as great as
when connecting more distant WPPs. This is an important reason why network area has a
greater effect on reliability than n, and can be demonstrated by comparing percentage of time
with zero power produced as a function of mean network area. For networks containing 10
WPPs, mean network area is 32,710 km? and percentage of time with zero power produced is
2.61% in January, and 7.11% in July. Networks covering between 18,000 and 50,000 km? had a
mean network area of 33,300 km? and percentage of time with zero power produced is 1.43% in
January and 4.72% in July (Tables 4.1 — 4.4). This is a reinforcement of the idea that a large
network area is more effective at mitigating wind variability than large n.

The relationship to between wind power variability and n versus network area was

directly compared by dividing networks of a particular n into those whose areas are less than the
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median area for networks of size n, and those with larger areas, and then comparing the two
groups (see Tables 4.5 and 4.6). Almost without exception networks with larger areas performed
better than those with smaller areas in the same n group. The difference is most significant for
the middle range of aggregation (n = 10, 25, 50), and less pronounced at the small scale (n = 3)
and the large scale (n = 80). In several cases there is no difference in a reliability statistic for a
group, and in one case (standard deviation of network mean wind speed for n = 80, July) the
networks below median area perform slightly better, but for the vast majority of measures a

larger area corresponds to a more reliable network more closely than does a large n.

4.4 Summary of Results

A central goal of this study is to determine the effect of interconnecting WPPs within the
Midwest 1SO on the reliability of wind power. It can be concluded that the interconnection of
WPPs within the Midwest 1ISO improves the reliability of wind power. As n and network area
increase, standard deviation of capacity factor decreases. Firm capacity at 70%, 80%, and 90%
probability levels increases as the scale of interconnection increases. Instances of zero power
output become rarer, and eventually stop occurring entirely as interconnection increases (see
Tables 4.1 — 4.4). In regards to the effects of interconnection on short-term reliability,
fluctuations in generation on the three-hour scale are diminished as n and network area increase
(Figures 4.1 and 4.2). Another central goal of this study, addressed by the second research
question, is to determine if the reliability of interconnected wind power is more closely related to
n or network area. It can be concluded that network area has a more direct relationship with

wind power reliability than n (see Tables 4.5 and 4.6; Figures 4.3 and 4.4). The magnitude of
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fluctuations of capacity factor decreases as the scale of interconnection increases, due to its

lower standard deviation.
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CHAPTER 5

DISCUSSION AND CONCLUSION

The main objective of this study was to determine the effect of interconnecting WPPs on
the reliability of generated power within Midwest ISO (see Figure 3.1). The variability of wind
power is a major impediment to its implementation. This study was undertaken to promote
greater development of wind energy by providing a better understanding of the relationship
between space and wind power reliability.

The raw data for the study were wind speed data at 10 m and various pressure levels from
the North American Regional Reanalysis (NARR). Using the power law, wind speeds were
extrapolated to 80 m, the hub height of the GE 1.5 MW turbine assumed in the study. 108 WPPs
within the Midwest ISO were associated with their nearest NARR grid point (see Figure 3.2).
The WPPs were aggregated into nearest neighbor networks ranging from pairs to a single
network containing all 108 WPPs. January and July wind power from 1979 to 2010 was
calculated from NARR wind speed data and the power curve for the GE 1.5 MW turbine (see
Figure 3.3), which was assumed at each site. Analysis was then conducted based on the two

research questions. The key findings of this study are:

1. Interconnecting WPPs within the Midwest ISO mitigates the effects of wind variability on
wind power and improves reliability, with greater improvements at larger scales of
interconnection.

2. The variability of interconnected wind power is more directly related to the area of the

network than the number of WPPs in the network.
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The analysis confirms what previous studies have found; aggregating dispersed WPPs
improves wind power reliability and reduces variability of power generation (Robeson and Shein
1997; Simonsen and Stevens 2004; Archer and Jacobson 2007; Cassola et al. 2008; Milligan et
al. 2009; Kempton et al. 2010). Significantly, no previous studies have compared the
relationship between reliability and the number of WPPs in a network (n) vs. network area. This
study found that network area is more important than n in determining the reliability of the
network, and therefore makes an original contribution to the science of wind power geography.
The results of this study can be used to plan WPP networks that maximize reliability.

In order to suggest the optimal locations for new WPPs on the basis of network area, it
was necessary to determine a threshold-area beyond which reductions in standard deviation of
capacity factor are diminished. Using the mean line from Figures 4.3b and 4.4b as a guide,
200,000 km? was isolated as the approximate network area where a plateau in marginal
improvements to standard deviation of capacity factor occurs. A minimum distance for new
WHPP sites, based on an optimal network area of 200,000 km?, from existing WPPs was

calculated (Figure 5.1).
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Figure 5.1. Mean distance among WPPs in networks as a function of network area. Each point
represents one individual WPP or network. The red line is a linear fit to the points in the scatter
plot. The blue line is based on the diminishing improvements to reliability once networks are
larger than 200,000 km? (see Figure 4.3b and 4.4b).

The intersection of the blue line and red line in Figure 5.1 marks the minimum distance among
WPPs in a network that appreciably reduces the standard deviation of capacity factor for the
network: 200 km. A map showing the different degrees of saturation of WPPs in the study area

was made, using the 200 km distance as a benchmark (Figure 5.3).
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Figure 5.2. Map of the study area showing saturation of WPPs. The map is color-coded to show
the number of WPPs that are at least 200 km from each NARR grid point (colored square). For
example, points in red areas are within 200 km of 1 to 3 WPPs. Points that are at least 200 km
from a high number of WPPs are better locations for wind power development. White circles
represent the NARR grid points nearest to existing WPPs.

A cluster of wind development in lowa and southern Minnesota is apparent. Based on the

analysis, greater improvements in wind power reliability can be made by increasing wind power

development in remote areas, rather than near clusters of existing WPPs, because of the greater

smoothing effect on power fluctuations provided by large catchment areas versus smaller areas.
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In preparation for a map that suggests locations for future wind power development based
on both the wind resource and WPP saturation, a categorical map was produced showing the 80

m wind resource of the study area, based on Figure 3.4 (Figure 5.3).

Poor
Fair
Excellent
o WPP NARR point

200 km

——

Figure 5.3. Map of the study area showing mean annual wind speeds at 80 m. Areas with a
“Poor” wind resource have mean annual wind speeds less than 4.9 m/s, “Fair” areas have mean
annual wind speeds between 4.9 and 5.9 m/s, and “Excellent” areas have mean annual wind
speeds greater than 6.9 m/s. Map is a categorical description of wind speeds using the same data
from Figure 3.4.

In order to more realistically estimate the optimal locations for future wind power development,

the information presented in Figures 5.2 and 5.3 were combined into one map (Figure 5.4).
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Figure 5.4. Map of the study area that suggests optimal locations for new wind power
development based on mean annual wind speeds, and proximity to existing WPPs. Areas with
high mean annual wind speeds and low saturation of WPPs are the best locations for future
development. Areas with high saturation are within 200 km of at least eight WPPs, areas of
medium saturation are within 200 km of three to seven WPPs, and areas of low saturation are
within 200 km of two or less WPPs. Locations with an “x” are within 200 km of zero WPPs.
Wind categories are the same as those in Figure 5.3.

Areas in magenta and red can be considered the best areas for new WPPs in order to maximize
the reliability of interconnected wind power, while those locations marked with an “x” are the

best of the best because they have an adequate wind resource and are at least 200 km distant
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from any existing WPPs. The choice of 200 km as a distance threshold was made based on
Figure 5.1. The wind speed categories were chosen with the recognition that the NARR likely
underestimates wind speeds in the Midwest. Therefore, areas with 80 m mean annual wind
speeds above 5.9 m/s were deemed “excellent”, even though according to NREL (2012), 80 m
mean annual wind speeds must be above 6.9 m/s in order for wind power to be economically
viable on a large scale. The categories represent the same wind speed divisions used in Figure
3.4, aggregated into three categories. The map shows that there are vast areas of unexploited
wind power potential in the Midwest ISO, particularly in the Great Plains and over the Great
Lakes. In some cases the map shows optimal locations for wind development directly adjacent
to areas with a “poor” wind resource, as in southwestern South Dakota. This specific case is
likely due to topographically-induced variations in wind speed caused by the Black Hills that are
not resolved at the 32 x 32 km scale of the NARR data. Further, there are several areas with a
“poor” wind resource and a high saturation of WPPs. It is possible that those areas are also
subject to microclimatic variations in wind speed that the NARR data are unable to resolve. In
the case that areas with WPPs that are represented as having a poor wind resource actually aren’t
economical choices for wind development, it is possible that the Production Tax Credit for WPPs
(Smith et al. 2007) made construction of the plant lucrative for developers. It should be noted
that Figure 5.4 does not consider other factors important to WPP siting, such as proximity to
high-voltage transmission lines, urban load centers, airports, roads, migration pathways, and
conservation areas (Mann et al. 2011).

At present the likelihood of the implementation of the results of this study, specifically
for larger WPP networks, is limited due to the cost of new infrastructure. However, as the

existing power grid is updated and electricity can be more readily shared and transmitted over
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larger regions and between ISOs and RTOs, the prospects of large WPP networks improve. In
regards to such a scenario, the statistics of large-scale connected networks are useful because the
gains made with regard to wind power reliability with networks covering tens and hundreds of
thousands of km? are much more dramatic than for networks covering several thousand km?.
As the U.S. grid is improved, it is foreseeable that in upcoming decades WPP networks will span
beyond the boundaries of any single ISO. The results of this study infer that improvements to
wind power reliability would continue to accrue if the analysis was extended beyond the
Midwest ISO, because there was no saturation in benefits found (see Tables 4.1 — 4.4 and
Figures 4.3 — 4.4). This is important, because as network area increases and the standard
deviation of wind power is reduced, wind’s potential penetration of system load is increased.
Further research is required to determine to what threshold(s) standard deviation of capacity
factor must be reduced in order to for the system to accommodate various levels of wind
penetration (20%, 35%, 50%, etc.).

Projects designed to improve the power transfer capabilities of the grid are already under
way, like the Tres Amigas project discussed in Section 2.5. The Tres Amigas Electricity
Superstation will connect the U.S.’s three isolated power grids: the Western, Texas, and Eastern
Interconnections. It will particularly aid in the distribution of renewable energy that is typically
generated in rural areas remote from urban load centers (Tres Amigas LLC 2010). As part of the
American Recovery and Reinvestment Act of 2009, the federal government allocated $4.5 billion
for electric grid modernization, which was matched with $5.5 billion from the private sector
(White House Press Secretary 2011). Much of that money is being used by 1SOs and RTOs to
lay thousands of miles of new transmission lines, and to add sophisticated devices to existing

lines that give grid operators more control over the system (Weeks 2010).
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Because of the rapid growth in wind energy (39% per year from 2004 to 2009; Marquis et
al. 2011), wind may serve up to 20 or even 30% of U.S. energy needs within the next few
decades (DeMeo et al. 2005; DeCarolis and Keith 2006; Smith et al. 2007; Milligan et al. 2009).
The U.S. Department of Energy (2008b) undertook a study to examine the costs, impacts, and
benefits of 20% wind penetration by 2030. It was found that larger balancing authorities would
decrease energy costs in systems with wind, as well as improve reliability, a finding supported
by Smith et al. (2007). Having larger balancing authorities would, in essence, interconnect
WPPs so that within the system they behaved as though they were directly interconnected.
Larger balancing authorities would also provide a larger mix of other energy sources to improve
overall system reliability. It is also conceivable that balancing authorities buy and sell electricity
in real-time, liquid power markets, which would expand the effective utilization of wind power
(Dragoon 2010). Wind power forecasting errors are also reduced when larger geographic areas
are considered (Milligan et al. 2009; Marquis et al. 2011). Smith et al. (2007) posits that a
“deep, liquid, real-time” energy market with WPP participation would lower the cost of wind
power and help to provide the balancing energy for WPPs.

There are caveats to this study. Because of the reliance on the NARR, any errors or
inaccuracies in that data would be manifest in the results. In order to provide spatially and
temporally complete wind speed data over such a large and geographically diverse area, over-
generalizing may have taken place. For instance, there are microclimatic variations in wind
speed that are not resolved by the NARR. 80 m wind speeds are likely conservative (and as a
result, capacity factor as well) because of the NARR underestimation of wind speeds in the
Midwest (Pryor et al. 2012), reliance on the power law method of vertical extrapolation, and

possibly because of the roughness exponent equation detailed in section 3.4.2. Archer and
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Jacobson (2003) found that their least-squares method of extrapolation was more accurate than
the power law and the logarithmic law when compared to the wind profiles from twice-daily
soundings, and that on average wind speeds at 80 m were 1.3 — 1.7 m/s faster than those
calculated using the other two methods. The least-squares method requires data that are
unavailable using the NARR data, and so could not be used in this stud