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Direct measurements of field-induced adiabatic temperature changes near
compound phase transitions in Ni–Mn–In based Heusler alloys
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The adiabatic temperature changes ��Tad� in the vicinity of the Curie and martensitic transition
temperatures of Ni50Mn35In15 and Ni50Mn35In14Z �Z=Al and Ge� Heusler alloys have been studied
using an adiabatic magnetocalorimeter of 250–350 K temperature interval for applied magnetic field
changes up to �H=1.8 T. The largest measured changes were �Tad=−2 and 2 K near the
martensitic �first-order� and ferromagnetic �second-order� transitions for �H=1.8 T, respectively. It
was observed that ��Tad��1 K for relatively small field changes ��H=1 T� for both types of
transitions. The results indicate that these materials should be further explored as potential working
materials in magnetic refrigeration applications. © 2011 American Institute of Physics.
�doi:10.1063/1.3574088�

The magnetic materials that exhibit large magnetocaloric
effects �MCEs�, i.e., the ability to absorb or produce heat as
the result of the application of external magnetic fields �H�,
are of significant interest because of their potential impact
for application in environmentally friendly refrigeration
devices.1 The MCE originates from the change in magneti-
zation induced by the magnetic field, and characterized by a
change in magnetic entropy and, therefore, in the tempera-
ture of the sample. Magnetic systems that undergo field-
induced phase transitions, characterized by large, sharp
changes in magnetization near or above room temperature,
are of considerable interest as promising MCE materials.
One such system is the off-stoichiometric Ni50Mn50−xInx
Heusler alloys. It has been found that these compounds, with
concentrations in vicinity of x=15, demonstrate a specific
type of structural instability known as a martensitic transfor-
mation. This instability is described as a temperature-induced
first-order structural phase transition �at TM� from a high-
temperature austenitic phase �AP� with cubic L21 or B2 crys-
tal structure, to a low-temperature martensitic phase �MP� �or
inverse transition at TA�, characterized by a crystal cell of
lower symmetry �tetragonal, tetragonal modulated, ortho-
rhombic, or monoclinic�.2 In most cases, the AP is ferromag-
netically ordered below TC, and TC is greater than TA and
TM. At least four magnetic phases can be detected in the
compounds; �i� a low temperature ferromagnetic MP �below
TCM�, �ii� an antiferromagnetic/paramagnetic MP �TCM�T
�TM�, �iii� a ferromagnetic AP �TM�T�TC�, and �iv� a
high temperature paramagnetic AP �TC�T� �see, for ex-
ample, Ref. 3, and references therein�.

The off-stoichiometric Ni–Mn–In Heusler alloys exhibit
a magnetostructural, field-induced metamagnetism at H
=HM, exchange bias, nonreciprocal effects in magnetization,
large MCEs, and so on �see Refs. 2–6, and references
therein�. Large negative �normal� and positive magnetic en-
tropy changes, attributed to the first-order transition �FOT�

and second-order transition �SOT�, have been observed in
these materials near room temperature.2–4 The presence of
both “normal” and “inverse” magnetic entropy changes near
room temperature in the Heusler alloys �sometimes in the
same material�, has spurred the development of a refrigera-
tion cycle that exploits both types of effects.7,8 It was re-
ported that the �SM and net refrigeration capacity, �after ac-
counting for hysteresis loss� of Ni50Mn35In15 in the vicinity
of the FOT and SOT were, respectively, 35 J kg−1 K−1, 57
J/kg and −5.7 J kg−1 K−1, 123 J/kg for �H=5 T.9 It has
been also shown that the MCE of the In-based Heusler alloys
are extremely sensitive to elemental substitution and stoichi-
ometric variations. One example is the Si-doped Ni–Mn–In
system, Ni50Mn35In15−xSix �1�x�5�. In this case, it was
found that the Si doping resulted in a 300% enhancement
�for x=3� of the maximum inverse magnetic entropy change
to a value of �SM= �+�124 J Kg−1 K−1 for a field change of
5 T. The normal �negative� magnetic entropy change that
occurs at the SOT spans a large temperature range �240–290
K�.3,8,10 The adiabatic change in temperature, �Tad, has been
studied for off-stoichiometric Heusler alloys in Refs. 11–13.
It was found that �Tad at TM is about �3 K for �H
=50 kOe for Ni50Mn34In16 and Ni50Mn34In14Ga2. The �Tad
�0.01 and 0.02 K for �H�0.1 T has been reported in vi-
cinity of TM and TC, respectively, for Mn50Ni40In10. How-
ever, most studies have concentrated on the �SM evaluation
from isothermal magnetizations measurements. Therefore,
the search for materials that show a large value in field-
induced adiabatic temperature changes in the vicinity of first-
and second-order phase transitions at relatively low fields is
important from an application perspective.

In this letter, we report the results of direct �magneto-
calorimetric� measurements of �Tad in vicinity of the phase
transitions of Ni50Mn35In15 and Ni50Mn35In14Z �Z=Al and
Ge� for applied magnetic field changes up to 1.8 T. The
maximum �Tad of about �2 and 2 K were found for FOT
and SOT at �H=1.8 T, respectively, for all samples under
investigation. It was observed that the presence of Z atomsa�Electronic mail: igor_doubenko@yahoo.com.
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��1% Z� in In sites shifts the �Tad maxima and slightly
affects the value of �Tad of Ni50Mn35In15.

The samples were prepared by conventional arc-melting
of high purity metal components in an argon atmosphere,
followed by annealing at 850 °C for 24 h in vacuum
�10−4 torr�. The phase purity of the samples has been tested
by x-ray powder diffraction at room temperature using
Cu K� radiation. Direct temperature changes, �Tad, have
been obtained with an adiabatic magnetocalorimeter in a
temperature range of 250–350 K, and in magnetic fields up
to 1.8 T. The external magnetic fields have been ramped at a
rate of up to 2 T/s during �TAD measurements. For MCE
measurements the samples have been cut into two plates of
similar dimensions �about 3�2�1 mm3�. The final adjust-
ment of the sample mass has been done using an analytical
balance with 10−4 g accuracy. Magnetization studies have
been done using a vibrating sample magnetometer �Lake
Shore VSM 7400 System� in a temperature interval of 80–
400 K, and in fields up to 1.8 T. All measurements were
carried out during heating after the samples were cooled
from 400 to 80 K at zero magnetic field that correspond to
the zero field cooled �ZFC� measurements.

Figures 1�a�–1�c� show room temperature x-ray diffrac-
tion �XRD� patterns of the samples under investigation. The
crystal structures of the Ni50Mn35In15 and Ni50Mn35In14Z
�Z=Al and Ge� have been determined �Refs. 7 and 9� as
martensitic orthorhombic Pmm2 and Pmmm. The M�T�
curves of all samples are very similar and can be character-
ized by three phase transition temperatures; TCM, TA, and TC.
Ferromagnetic type magnetization curves were observed in
the T�TCM and TA�T�TC intervals, and paramagnetic be-
havior was observed above TC. The sharp change in magne-
tization at TA is associated with a martensitic transition from
the magnetic state characterized by low magnetic moment
�antiferromagnetic or paramagnetic state� to a ferromagnetic
AP. The change in the ZFC magnetization in the low-

temperature region �T�TCM� is typical for many Ni–Mn–In
based compounds, and is related to the magnetic heterogene-
ity that can result in exchange bias effects.3,9

Negative and positive changes in sample temperature
were found, as expected, in the presence of external mag-
netic fields in the vicinity of the FOT and SOT, respectively
�see Fig. 3�. The magnitudes of �Tad were found to be nearly
similar �but opposite in sign� at both transitions. This behav-
ior may be related to the similar nature of the transitions; a
ferromagnetic to paramagnetic transition at TC, and an in-
verse of that transition at TM. The maxima of �Tad are a
linear function of applied field for the SOT but only slightly
change at low magnetic fields �0.3–1.0 T� for the FOT �see
inset of Fig. 3�a�� and increase nonlinearly at H�1.0 T. The
maxima of �Tad are slightly smaller �by about 20%� for
Ni50Mn35In14Ge �compared to the other alloys� for both tran-
sitions. The FOT and SOT temperature ranges for this com-
pound nearly overlap �see Fig. 2�, and the ferromagnetic or-
dering in the AP is incomplete. Thus the magnetization of
Ni50Mn35In14Ge above TM is smaller than that observed for
Ni50Mn35In14Al and Ni50Mn35In15 �see Fig. 2�, and this dif-
ference in magnetic order results in a decrease in �Tad.

The MCE at low magnetic fields is of particular impor-
tance from an application point of view. As one can see from
Fig. 3�d�, the changes in the sample temperatures remain
rather large �about 1 K� for both transitions for a relatively
small magnetic field change of 1.0 T. The relative cooling
power �RCP�, based on the adiabatic temperature change,
has been estimated as RCP�T�=�Tad�T;H��dTFWHM.14

�RCP�=23 K2 and 6 K2, for Ni50Mn35In15; 24 K2 and 7 K2,
for Ni50Mn35In14Al; and 5 K2 and 2 K2, for Ni50Mn35In14Ge
as calculated in vicinity of TC and TM, respectively, for
�H=1 T, and Ref. 14.

The maxima of �Tad at the SOT are shifted to lower
and higher temperature regions for Ni50Mn35In14Ge and
Ni50Mn35In14Al, respectively, compared to the parent com-
pound. The temperature of the maximum of �Tad at the FOT
increases from 298 to 309 K for Ni50Mn35In15, following the
changes in TM. The observed results are in agreement with
the estimation of �Tad obtained in Ref. 15 from magnetiza-
tion and specific heat capacity measurements of

FIG. 1. Room temperature XRD patterns of Ni50Mn35In15, Ni50Mn35In14Al,
and Ni50Mn35In14Ge.

FIG. 2. �Color online� ZFC magnetization curves M�T� for Ni50Mn35In15,
Ni50Mn35In14Al, and Ni50Mn35In14Ge Heusler alloys, obtained at H
=0.03 T. Inset: dM/dT curves in vicinity of TA and TC.
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Ni48Co2Mn35In15. The �Tad observed for Ni50Mn35In15 and
Ni50Mn35In14Al are larger than those reported for
Ni50Mn34In16 in Refs. 11–13. This can be explained as a
result of the difference in the magnetic states of these com-
pounds just below their respective martensitic transition tem-
peratures.

It is necessary to emphasize here that �Tad is approxi-
mately the same magnitude at the FOT and SOT. However,
�Tad is free of hysteresis at the SOT, and there is no time
dependence of �Tad at the SOT �at least on the timescale of
the most important applications, which typically operate at
1–10 Hz �Ref. 1��. Our direct measurements of �Tad with the
rate of changing magnetic field of 0.05–2.0 T/s did not reveal
any time dependence of �Tad at the SOT. In comparison with
Gd, which is �according Ref. 1� the most effective near room
temperature, the Ni50Mn35In14Z �Z=In, Al, and Ge� Heusler
alloys exhibit approximately the same MCE properties in
vicinity of the SOT but they are much cheaper and do not
contain chemically active components.

Using a magnetocalorimeter, we have directly measured
the adiabatic temperature changes ��Tad� of three Ni–Mn–In
based Heusler alloys near their respective FOT �martensitic�
and SOT �ferromagnetic�. At the SOT, the magnitudes of
�Tad for these materials are a nearly linear function of ap-
plied field, whereas �Tad at the FOT slightly changes at H
=0.3–1.0 T. The largest negative �Tad was observed in
Ni50Mn35In15 to be about �2 K at the martensitic transfor-
mation for a field change of 1.8 T. The adiabatic temperature
changes in about 1 K have been revealed for both, FOT and
SOT, at a relativity small magnetic field change of 1 T for all
of the studied compounds. The temperatures of the maxima
of �Tad were found to be tunable in the quaternary alloys
Ni50Mn35In14Z by substituting 1% of Z=Al and Ge; the
maxima could be shifted up to 11 K relative to the parent
compound. These results, and the implied potential impact

on magnetic refrigeration applications, provide an impetus
for further research on these systems.

This work was supported by the Russian Foundation for
Basic Research under Project No. 09-02-00309; by the
Basque Foundation for Science; and by the Materials Sci-
ence Division �BES�, U.S. Department of Energy under
Grant No. DE-FG02-06ER46291.
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FIG. 3. �Color online� ��a�–�c�� The adiabatic tempera-
ture changes obtained at different magnetic fields �as it
legend in �c�� and temperatures for Ni50Mn35In15,
Ni50Mn35In14Al, and Ni50Mn35In14Ge. �d� Adiabatic
temperature changes ��Tad� as a function of tempera-
ture �T� for �H=1 T for Ni50Mn35In15,
Ni50Mn35In14Al, and Ni50Mn35In14Ge. Inset of Fig. 1�a�,
The maxima of �Tad as a function of applied H. The
results have been detected for magnetic fields ramped at
a rate of 2 T/s.
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