

Aalborg Universitet

Selecting Optimal Parameters of Random Linear Network Coding for Wireless Sensor
Networks

Heide, Janus; Zhang, Qi; Fitzek, Frank

Published in:
Vehicular Technology Conference (VTC Fall), 2013 IEEE 78th

DOI (link to publication from Publisher):
10.1109/VTCFall.2013.6692403

Publication date:
2013

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Heide, J., Zhang, Q., & Fitzek, F. (2013). Selecting Optimal Parameters of Random Linear Network Coding for
Wireless Sensor Networks. In Vehicular Technology Conference (VTC Fall), 2013 IEEE 78th (pp. 1 - 6). IEEE. I
E E E V T S Vehicular Technology Conference. Proceedings https://doi.org/10.1109/VTCFall.2013.6692403

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/VTCFall.2013.6692403
https://vbn.aau.dk/en/publications/e049e459-63fd-40fb-b475-b363e2fca9bf
https://doi.org/10.1109/VTCFall.2013.6692403

Selecting Optimal Parameters of Random Linear

Network Coding for Wireless Sensor Networks

Janus Heide∗, Qi Zhang†, Frank H.P. Fitzek∗,
∗Department of Electronic Systems, Faculty of Engineering and Science, Aalborg University, Denmark

†Aarhus University, Denmark

Email: jah@es.aau.dk, qz@iha.dk, ff@es.aau.dk

Abstract—This work studies how to select optimal code param-
eters of Random Linear Network Coding (RLNC) in Wireless
Sensor Networks (WSNs). With Rateless Deluge [?] the authors
proposed to apply Network Coding (NC) for Over-the-Air Pro-
gramming (OAP) in WSNs, and demonstrated that with NC a
significant reduction in the number of transmitted packets can
be achieved. However, NC introduces additional computations
and potentially a non-negligible transmission overhead, both of
which depend on the chosen coding parameters. Therefore it is
necessary to consider the trade-off that these coding parameters
present in order to obtain the lowest energy consumption per
transmitted bit. This problem is analyzed and suitable coding
parameters are determined for the popular Tmote Sky platform.
Compared to the use of traditional RLNC, these parameters
enable a reduction in the energy spent per bit which grows as
the generation size grows. These results also indicate that the use
of high field sizes could be problematic from an energy point of
view due to the additional complexity.

I. INTRODUCTION

In WSNs it is necessary to upgrade programs on the sensor

nodes after deployment, e.g. to fix bugs, replace program

modules or tune module parameters [?], which is referred to

as code dissemination. Usually it is impractical or impossible

to manually reprogram deployed sensor nodes. Therefore, the

update must be disseminated over the air, referred to as OAP.

OAP is crucial for the success of WSN as it facilitates manage-

ment, maintenance, and adaptive WSN applications [?]. The

challenges of OAP for WSNs are due to the extreme resource

constraints of the sensor nodes in terms of energy capacity,

memory size, and computation capability. Additionally, OAP

requires 100% reliability over the unreliable wireless links.

Deluge [?] is a widely used OAP protocol which aims to

achieve reliable code dissemination with low control message

overhead by dynamic advertisement, retransmission request

suppression and achieves rapid code dissemination through

exploiting spatial multiplexing. Subsequently rateless Deluge

has been proposed [?] which applied RLNC [?] to Deluge,

and demonstrated a reduction in the number of transmitted

data packets by 15-30% and control packets by 50-80%.

With RLNC a single linear combination can fix different

missing packets at different receivers. Thus the feedback from

a receiver is reduced to the number of missing packets. By

reducing the number of transmitted data and control packets,

rateless Deluge offers the prospect of significant energy sav-

ings. However, the added memory and computational overhead

due to the coding processes remains uninvestigated so far.

RLNC provides a theoretically efficient method for coding

[?], as the overhead can asymptotically approach zero. In

practical applications of RLNC, the original data is typically

divided into generations [?]. This ensures that the performance

of RLNC is independent of the data size and reduces both the

computational work and the decoding delay. Unfortunately, it

also increases the probability of receiving linearly dependent

symbols and introduces the need for additional signaling

[?]. The probability of linear dependency and the coding

vector which describes the performed coding, adds to the

transmission overhead. Additionally, the coding processes in-

troduces computational complexity in terms of memory access

and computations. Both the overhead and the computational

complexity adds to the total energy spent to communicate a

bit and depends on coding parameters such as generation size,

field size and density. The generation size defines the decoding

delay and thus cannot be chosen freely, but depends on the

content that is distributed. It has also been shown that a high

field size and density does not always result in the lowest

overhead [?]. To achieve the maximal energy savings, the pa-

rameters of the used RLNC code must be carefully selected to

obtain the best trade-off between complexity and transmission

overhead for the considered platform and scenario.

In this work the deployment of practical RLNC for sen-

sor nodes is investigated. The primary contribution is the

analysis of the computational complexity of RLNC in terms

of memory access and symbol additions, and the resulting

transmission overhead in terms of retransmissions and coding

vector representation. The expressions are used to determine

coding parameters that minimize the energy for the Tmote

platform under consideration. The numerical results show that

the achieved reduction in energy used per bit grows with the

generation size. Thus using optimal coding parameters enables

the use of higher generation sizes on energy constrained plat-

forms. This could improve the performance of the protocols

which utilize NC to achieve reliability.

The remainder of this paper is structured as follows. In

Section II the cost due to coding is analyzed in terms of

overhead due to generation size, field size, density, and the

coding vector, and the computational complexity in terms of

memory access and row operations. Based on this the energy

used per transmitted bit for the source and receiver is analyzed.

Numerical results are presented in Section III, discussed in

Section IV and final conclusions are drawn in Section V.

II. APPLYING RLNC IN WSNS

Coding at all nodes is performed using RLNC as introduced

in [?]. Here follows a brief introduction, we refer interested

readers to [?], [?] for more thorough introductions. The data to

be transmitted from a source B is divided into generations M .

Each generation constitutes g symbols, where each symbol has

the size m bits and is represented by ⌈ m
log

2
(q)⌉ field elements

in a finite field Fq of size q. Each generation is represented

by g ·m bits.

During encoding, a coding vector v is generated comprising

elements in Fq . A coded symbol x is created by multiplying

the coding vector with the original data x = M · v. The

density d of the coding vector is defined as the ratio of non-

zero elements in the coding vector, i.e., P (vi 6= 0) = d, 0 <
d ≤ 1− 1

q .

At a receiver, the symbols and coding vector pairs can be de-

coded as M̂ = X̂ ·V̂
−1

when g linearly independent symbols

are collected. To collect g linearly independent symbols, on

average g+ ρ symbols must be collected where ρ depends on

the used code. A receiver may recode a symbol x̃ and coding

vector ṽ based on the received symbols and coding vectors

arranged in X̂ and V̂ , by creating a local recoding vector h,

x̃ = X̂ · h, ṽ = V̂ · h. Notations used in the analysis are

listed in Table I.

TABLE I: Notation

Symbol Unit Definition

g symbols Generation size
q - Field size
d - Density, ratio of elements that are non-zero
δ - Ratio of elements in v that are drawn at random
m bits Symbol size
b - Element in F2

a, c, e - Elements in Fq

x, y, z - Symbols, vectors of elements in Fq

v, u Coding vector
α - Expected number of retransmissions per genera-

tion due to the field size
β - Expected number of retransmissions per genera-

tion due to the density
γ bits Size of a coding vector size (compressed)
µ bits Size of a coding vector size (uncompressed)
r - Rank at a receiver
i, j, k Counter variables
ρ - Expected number of redundant symbols
σ bits Overhead
τ bits Expected total bits per generation
R kb/s data rate
ǫ - Packet erasure probability
̺ bits microprocessor operation length

⊕̇ - Row multiplication-addition
RD bits Number of bits read from memory
WR bits Amount of bits written into memory

The size of the coding vector in memory is defined as

µ = g · log2(q)

As the elements in the coding vector are drawn at random

from Fq , the density d can be calculated as follows.

d = d(v) = P (vi 6= 0) = δ · (1− q−1)

Where δ > 0 denotes the ratio of elements drawn at random

from Fq, hence 0 < d < δ ≤ 1. For high q, d ≈ δ. When

q is small, the number of zero elements drawn at random

becomes significant. The following constraint ensures that the

probability of generating the zero vector remains low when

each element is drawn at random.

g · d > 1 ↔ δ >
1

g · (1− q−1)

A. Overhead

When RLNC is applied two types of overhead are in-

troduced in terms of extra bits that must be transmitted.

One source of overhead is due to linear dependency. If a

received symbol is a linear combination of the already received

symbols, then the newly received symbol does not provide any

new information to the receiver. The other source of overhead

is the coding vector that has to accompany each coded symbol

to communicate the operations performed during the coding

procedure.

The overhead depends on the coding parameters such as

the generation size, field size and density. Here we will briefly

introduce the necessary expressions, for details we refer to [?].

1) Generation Size: The generation size g defines the

number of symbols over which coding is performed. A higher

g reduces the probability of linearly dependent symbols, but

at the same time increases the delay and the complexity at the

receiver, which also increase the energy consumption. Hence

g cannot be chosen freely, but is a trade-off between delay,

decoding complexity, and linear dependency.

2) Field Size: The field size q defines the size of Fq which

represents the elements in symbols and coding vectors. Small

values of q impose lower computational complexity from a

theoretical point of view, but typically g is chosen so that it fits

vith a native data container to enable efficient implementations,

e.g. g = {2, 28, 216}.

The rank at the receiver is denoted r, hence g − r pivot

elements have not been identified. For an incoming coded

symbol to be linearly dependent, the corresponding g − r
elements must be zero. An element drawn at random is zero

with probability 1
q , hence the probability that all elements

are zero is given by (1/q)g−r. Hence, the probability that

the symbol contains a novel pivot element can be found

and the expected number of transmissions can be calculated.

The expected number of retransmissions of symbols in one

generation can be calculated by summing the expected number

of retransmissions at all possible ranks of the receiver.

α(q, g) =

g−1
∑

r=0

(

(

1−
1

qg−r

)

−1

− 1

)

=

g−1
∑

r=0

(

1

qg−r − 1

)

(1)

3) Density: The density d defines the number of symbols

that are combined to create a coded symbol. Reducing d
can reduce the computational load, but can also increase the

probability of linear dependency during decoding.

The number of symbols received by the receiver is denoted

k. Necessary but insufficient conditions for the receiver to

attain full rank are; k ≥ g, and that all pivot positions are

non-zero in at least one of the received coding vectors. The

probability that a pivot is zero for all k received coding vectors

is (1 − d)k. The probability that for all g pivot positions,

at least one of the k coding vectors is non-zero is given by

(1− (1− d)k)g .

To find the expected number of symbols that must be

received in addition to g we sum the probability that all k
received symbols are zero for (at least) one pivot position.

β(d, g) =

∞
∑

k=g

(

1−
(

1− (1− d)k
)g
)

(2)

where 0 < d ≤ 1− q−1

4) Coding Vector: The coding vector communicates all

operations performed on the symbol during encoding and

recoding. Such a coding vector can be efficiently represented

by a bit array and a set of scalars [?]. The bit array b =
[b1, b2 . . . , bg] indicates the non-zero elements. The scalars,

[a, c, . . . , e], define the values of the non-zero elements.

b1 b2 . . . bg a c . . . e

The bit array can be represented by g bits. If the bit array

is compressed with an optimal code, the necessary amount of

bits can be reduced to the entropy of the bit vector, H(b),
which can be calculated from d and g. Each of the scalars can

be represented by log2(q) bits, on average there are g · d such

scalars for each coded symbol.

γ = H(b) + log2(q) · g · d (3)

When symbols are transmitted over the network, the coding

vector is compressed to γ bits. However, it is represented in

its uncompressed form of µ bits when symbols are processed

at the source and the receivers . This is to ensure fast addition

of two vectors.

5) Total: From these expressions, the following metrics can

be expressed. The expected number of redundant symbols,

ρ ≥ 0. The overhead, σ ≥ g · γ. The expected total bits per

generation τ ≥ g ·m.

ρ = (α+ β) (4)

σ = (α+ β) ·m+ (g + α+ β) · γ (5)

τ = (g + α+ β) · (m+ γ) (6)

B. Computational Complexity

The complexity for a generation is analyzed using the metric

of symbol multiplication-addition, which we denote ⊕̇. A

symbol multiplication-addition means that the elements in a

symbol are multiplied with a scalar and added element-wise

to the elements in another symbol, x = c·y⊕z, where x,y, z
are vectors of elements in Fq and c ∈ Fq .

In the case of encoding, the coding vector v is read

one element at a time and the appropriate operations are

performed. However, during decoding an additional operation

is performed v = c · u ⊕ v, in order to update the coding

vector as decoding is performed.

Note that for the binary field F2/{0} = {1}, and there-

fore each symbol operation degenerates to the element row

addition, which in F2 is the elementwise XOR.

Uniform density for all symbols is assumed, hence d =
E (d(vi)) ∀i, where vi is an element in a coding vector.

1) Encoding: The expected number of encoded symbols is

(g+ ρ). To encode a single symbol, on average g · d symbols

are combined.

⊕̇enc = (g + ρ) · g · d (7)

2) Decoding: During decoding we assume a brute force

decoding algorithm that attempts to identify an unseen pivot

element by subtracting previously received and partially de-

coded symbols from it. Thus no sorting or swapping to reduce

the amount of fill-in is utilized. When a symbol is received, its

first non-zero element is identified which is its pivot element,

and the symbol is normalized with respect to the pivot1. If

none of the previously received and partially decoded symbols

has the same pivot as the newly received symbol, then the

element is decoded and stored. If the pivot element was

identified in a previously received symbol, then the previously

received symbol is subtracted from the new symbol, a new

pivot element is identified, and the process is repeated.

We note that linearly dependent symbols can be detected

and discarded before decoding them by first performing row

operations on the coding vector only.

When two coding vectors y and z are added, the probability

that an element in the resulting vector is the zero element,

P (yi ⊕ zi = 0|d), where d = d(y) = d(z), is given by

the probability that both elements in y and z are zero,

and the probability that both are the same non-zero value.

The probability that the combination of two scalars over Fq

equals zero is the probability that they are both zero plus the

probability that they both have the same non-zero value, see

Equation (8).

P (yi ⊕ zi = 0| d) = (1− d)2 + d2 ·
1

q − 1
(8)

For each row the symbol has a non-zero probability of being

non-zero in which case it will be combined with the existing

row, which can increase its density. If the element correspond-

ing to the pivot position is zero, with probability (1− d), it is

inserted and the density of the symbol remains the same. With

probability dj the corresponding pivot element is non-zero in

the received symbol in which case the density of the remaining

g−j elements in the symbol is P (yi⊕zi 6= 0|dj). As rows are

inserted and decoded their density will increase as more and

more rows are inserted. The density of the partially decoded

rows is recursively defined in Equation (9). With probability

(1 − d) the density remain the same, in the case where the

1All elements in the symbol are multiplied with the inverse of the pivot
element.

scalar was zero, with probability d the density increases, if

the scalar was non-zero.

dj+1 = (1− dj) · dj + dj · P (yj ⊕ zj 6= 0|dj) (9)

d0 = d

To calculate the accumulated complexity for all the elements

that must subsequently be removed sum over all the resulting

coding vectors, excluding their pivot element. The first i
scalars in each row are zeros, where i is the row index, the

pivot element is 1 and the remaining elements are non-zero

with probability dj . Hence the expected number of non-zero

elements can be calculated with Equation (10).

⊕̇dec =

g−1
∑

j=1

(g − j − 1) · dj =
g · (g − 1)

2
· dj (10)

This only accounts for the row operations performed during

forward substitution. Backwards substitution is performed in

a similar way, only upwards, which can be expressed as
1
∑

j=g−1

0
∑

i=j−1

di

 =

1
∑

j=g−1

(g− j− 1) · dj = ⊕̇dec and hence

the number of operations during backwards substitution is the

same as during forward substitution. A minor difference is that

during backwards substitution the operations on the coding

vectors can be omitted [?].

C. Memory Access

We assume that the algorithm reads and writes symbols and

coding vectors on the full representation of µ bits.

1) Encoding: The expected number of symbols which are

combined to create the g+ρ symbols is given by ⊕̇enc, hence

⊕̇enc symbols are read and g + ρ symbols and their coding

vectors are written. The amount of bits read and written during

encoding RDenc and WRenc, respectively, can be expressed

as.

RDenc = ⊕̇enc ·m (11)

WRenc = (g + ρ) · (m+ µ) (12)

2) Decoding: During forward substitution g symbols and

coding vectors are read. The ρ symbols that are linearly

dependent can be detected via their coding vector, and thus it

is only necessary to read the coding vector of these ρ symbols.

The ⊕̇dec symbols and their coding vectors used to reduce the

incoming symbols are read. Finally the g resulting symbols

and coding vectors are written.

During backward substitution all g symbols and coding

vectors are read one at a time. Additionally the ⊕̇dec symbols

and coding vectors used to decode the g symbols are read.

Finally the g fully decoded symbols are written, we note that

it is not necessary to write the coding vectors.

The amount of bits read and written during decoding RDdec

and WRdec, respectively, can be expressed as.

RDdec = 2 · (g + ⊕̇dec) · (m+ µ) + ρ · µ (13)

WRdec = g · (2 ·m+ µ) (14)

D. Energy

We consider the following components that contribute to

energy usage at a source and receivers: the network interface,

the processing unit, and the memory.

The energy used for memory access and XOR’ing is ob-

tained from [?], where the authors perform a series of measure-

ments on the Tmote Sky based on the MSP430 microprocessor

and the CC2420 radio chip. The reported results can be verified

with a few simple calculations. Based on the reported setup,

the supply voltage at the chip was 1500Ω
1500Ω+101Ω ·2.7V = 2.53V

since it was in series with a resistor. The energy used for

one NOP operation can be calculated based on the spec-

ified current and operating frequency from the data sheet

1.8mA · 2.53V/106Hz = 4.55nJ. This value is close to the

reported value of 4.4nJ for a NOP operation.

The expected energy consumed for sending and receiving a

single bit can be calculated using Equation (15).

Etx/rx =
Ophy + γ +m

m
·
U · I

R
(15)

Where Ophy is the packet overhead added on the physical

layers, U is the voltage drop over the radio chip, and I is

the current drawn by the chip. The necessary values can be

obtained from the data sheet for the used C2420 chip [?].

TABLE II: The used energy values in the evaluation.

Symbol Value Description

Exor 4.8 nJ Energy XOR’ing two 16 bit words
Erd 13.2 nJ Energy reading 16 bits from memory
Ewr 17.0 nJ Energy writing 16 bits to memory
Erx 155.1 nJ Energy receiving a bit
Etx 143.5 nJ Energy sending a bit

Additionally, in the considered scenario the following pa-

rameters are defined, the generation size g ∈ [8, 128], the field

size q = 2, the symbol size m = 880 bits, the data rate

R = 250 kbs, the CPU instruction length ̺ = 16 bits, and

the packet erasure probability ǫ = 0.07 [?].

Finally we can define the energy consumed per transmitted

generation from the application layer at a sender.

Esender =
RDenc

̺
· Erd +

WRenc

̺
· Ewr +

⊕̇enc ·m

̺
· Exor+

1

1− ǫ
· τ · Etx +Oack · Erx (16)

As all transmitted packets are processed on the physical

layer at the receiver, 1
1−ǫ is included in the term 1

1−ǫ · τ ·Erx.

Thus the energy per received generation in the application

layer is defined as.

Ereceiver =
RDdec

̺
· Erd +

WRdec

̺
· Ewr +

1

1− ǫ
· τ · Erx+

2 · ⊕̇dec · (m+ µ)

̺
· Exor +Oack · Etx (17)

The energy per application-layer bit is thus Esender

g·m and
Ereceiver

g·m , respectively. Note that only one acknowledgment per

generation is needed, instead of one for each packet.

III. RESULTS

We consider the case of a single source and a single re-

ceiver that communicate over an erasure channel with erasure

probability ǫ = 0.07 [?].

To obtain results, minimization of several expressions is

performed wrt. d, subject to 1 ≥ δ > 1
g·(1−q−1) and q = 2.

Thus d is varied in order to minimize the energy spent.

The expression min(Esender

g·m) minimizes at the sender, and

min(Ereceiver

g·m) minimizes at the receiver. min(Esender+Ereceiver

2·g·m)
minimizes the average energy usage, or alternatively the to-

tal/system usage.

In some cases it might also be relevant to minimize

min(max(Esender

g·m , Ereceiver

g·m)) in order to maximize the system

operation time, if it is assumed that the sender and the

receiver have the same energy available. However, for the

case considered here the energy spent at the receiver was

always higher than that at the sender, and is therefore equal

to min(Ereceiver

g·m).
Fig. 1 shows the resulting densities that minimize energy

for the source and receiver independently and jointly. The x-

axis denotes the generation size, and the y-axis denotes the

optimal density.

8 16 24 32 48 64 128
Generation size

0.5

0.4

0.3

0.2

0.1
0.08
0.06
0.04
0.02

De
ns

ity

Receiver
Jointly
Sender

Fig. 1: The resulting density for the minimizing energy con-

sumed on the sender, the receiver, and jointly.

First, it is apparent that as g grows, the optimal density

becomes much smaller than 1 − q−1. Thus a high density

assumed in most works is very far from the optimal solution.

Secondly, the resulting densities that minimize the energy

spent per bit are very similar for the sender and receiver. It

is somewhat surprising that the densities are almost the same,

but fortunately it means that optimizing for e.g. the receiver

still provides decent results at the sender.

Fig. 2 shows the energy per bit at different values of g
for the two cases; traditional RLNC where d = 1 − q−1,

and the optimal density for each generation size. Results are

provided for the source and receiver independently, and jointly

for a system comprising one source and one receiver. The x-

axis denotes the generation size, and the y-axis denotes the

expected energy spent sending and/or receiving one bit.

8 16 24 32 48 64 128
Generation size

170

180

190

200

210

220

230

En
er
gy
 p
er
 b
it
[n
J]

Receiver, optimal d
Jointly, optimal d
Sender, optimal d
Sender, optimal receiver d

Receiver, RLNC
Jointly, RLNC
Sender, RLNC

Fig. 2: The energy used per transmitted bit for the sender,

receiver, and jointly, for the two cases, RLNC and when the

energy per bit is minimized wrt. to d.

Compared to RLNC, using the optimal density results in a

lower or identical energy consumption per bit for all values

of g. The difference between the two approaches goes to zero

as g goes towards one, which is unsurprising as the optimal

densities obtained in Fig. 1 show that in this case the optimal

density approaches d = 1 − q−1. Conversely, as g increases

the optimal density goes towards zero.

For the case of optimal density, the lowest energy per bit at

the sender is obtained when g is chosen as large as possible.

To minimize energy at the receiver, the best trade-off for g is

in the range between 16 and 32. This will also maximize the

network life time, if both the sender and receiver have same

energy available. From the perspective of the entire system, g
should be chosen in the range between 24 and 48. It is worth

noticing that for RLNC a good choice of g is slightly different

as it should be between 12 and 24.

The receiver achieves the lowest energy per bit at g = 17
for RLNC, and g = 24 for the optimal density. However, in

general g is not chosen to minimize the energy per bit, but

instead based on the delay requirements and/or the network

topology. At the highest g = 48 considered in [?], RLNC

uses 8.7% more energy per bit compared to when the optimal

density is used. For the energy per bit obtained with RLNC

and g = 20 [?], the same energy per bit is obtained at g = 44
when the optimal density is used.

If the optimized density for the receiver is used at the sender,

the cost in terms of energy is only slightly increased at the

sender, and only when g increases above 64. This is worth

noticing because the receiver incurs the highest energy cost,

and often the number of receivers will be higher than the

number of senders.

IV. DISCUSSION

The obtained results can be put into context by drawing

parallels to the interesting work on rateless Deluge [?]. The

authors use a field size of 28 implemented with a lookup table.

This field size is often used in studies of RLNC as it provides

a decoding probability that can be ignored for all practical

considerations, and its implementation is straightforward. With

a lookup table, field operations are performed by reading from

memory which is relatively cheap at 26.4 nJ for two bytes, but

it is still five times more expensive than an XOR at 4.8 nJ,

which implements addition in F2. If a multi-hop scenario is

considered, the important recoding of NC feature should also

be employed. However, when recoding it is difficult, possibly

impossible, to utilize the neat trick of a seed combined with a

pseudo-random generator [?]. Until a suitable solution to this

problem is presented, RLNC with a high field size and density

will result in a coding vector overhead of g · log2(q) bits for

each coded symbol, which is particularly problematic for WSN

where the packet size is small.

The presented results also provide insights into scenarios

with multiple sources and/or multiple sinks. For multiple

receivers with homogeneous packet erasure probability, the

system energy consumed per bit will approach min(Ereceiver

g·m),
because when the number of receivers grows, the energy

spent by the sender will become negligible. For multiple

receivers with different erasure probabilities, it can simply be

assumed that ǫ = max(ǫ), where ǫ is the vector of erasure

probabilities from the sender to the individual receivers. This

is because the source(s) must only overcome the maximum

erasure probability, ǫ, in order to successfully transmit data

to all the receivers. Namely, if the receiver with the highest

erasure probability is satisfied, then so are the remaining

receivers. With multiple senders, the number of transmissions

can simply be spread among the senders. In such a case

the receiver(s) would still be the node(s) which consume the

highest energy per bit.

As sensor nodes evolve in the future with more powerful

hardware, more memory and higher computational capabili-

ties, the ratio between transmission cost and computational

cost may change. Additionally, the evolution of new use cases

for WSNs may also impact this ratio since generally the

cost per transmitted bit increases with the communication

range and decreases as the transmission rate increases. If the

cost of computations decreases relatively to the transmission

cost, it should be expected that higher values of q, g, and

d will provide a lower energy per bit cost. For higher field

sizes, an interesting future direction would be the use of

iterative algorithms which would remove the need for a lookup

table. Additionally, it could enable the use of multiple fields

simultaneously which would permit adaptation of q to different

scenarios. Another promising direction is the development of

code variants that enables faster decoding, and faster decoding

algorithms. Such approaches should be designed jointly to

permit the decoding algorithms to exploit special structures

in the coded symbols.

V. CONCLUSION

In this work, we have analyzed the performance of RLNC

on sensor nodes in terms of transmission overhead and com-

putational complexity, both as a function of typical adjustable

coding parameters. Expressions for the energy per bit were

found and used to evaluate the energy cost based on values

obtained from the Tmote Sky platform.

The numerical results showed that for the binary field, the

lowest energy cost at the receiver is obtained for a generation

size in the range [16, 32] and a density in the range [0.2, 0.3].
When the sender and the receiver are considered jointly a

generation size in the range [24, 48] and a density in the

range [0.1, 0.2] should be used. This is significantly different

from most existing studies where the generation size, field

size, and density are typically assumed as high as possible,

and the overhead in terms of transmissions and computational

complexity is ignored. However, both of these overheads add

to the energy consumption of the communication system and

are therefore particularly relevant for WSNs.

Two interesting questions are left for future work. The

impact on the overlaying protocols, where lower generation

sizes generally require more feedback, and the extension of

the analysis to higher fields.

REFERENCES

[1] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless deluge:
Over-the-air programming of wireless sensor networks using random
linear codes,” in Proceedings of the 7th international conference on

Information processing in sensor networks, ser. IPSN ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 457–466.

[2] Q. Wang, Y. Zhu, and L. Cheng, “Reprogramming wireless sensor
networks: challenges and approaches,” Network, IEEE, vol. 20, no. 3,
pp. 48 – 55, may-june 2006.

[3] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in Proceedings of the 2nd

international conference on Embedded networked sensor systems, ser.
SenSys ’04. New York, NY, USA: ACM, 2004, pp. 81–94.

[4] T. Ho, R. Koetter, M. Médard, D. Karger, and M. ros, “The benefits
of coding over routing in a randomized setting,” in Proceedings of the

IEEE International Symposium on Information Theory, ISIT ’03, June
29 - July 4 2003.

[5] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” Proceed-

ings of the annual Allerton conference on communication control and

computing, vol. 4, pp. 40–49, 2003.
[6] P. Maymounkov, N. J. A. Harvey, and D. S. Lun, “Methods for Efficient

Network Coding,” 44th Allerton Annual Conference, 2006.
[7] J. Heide, M. V. Pedersen, F. H. Fitzek, and M. Médard, “On code

parameters and coding vector representation for practical rlnc,” in IEEE

International Conference on Communications (ICC) - Communication

Theory Symposium, Kyoto, Japan, jun 2011.
[8] C. Fragouli, J. Boudec, and J. Widmer, “Network coding: an instant

primer,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 63–68,
2006.

[9] J. Heide, M. V. Pedersen, F. H. Fitzek, and T. Larsen, “Cautious view on
network coding - from theory to practice,” Journal of Communications

and Networks (JCN), vol. 10, no. 4, pp. 403–411, December 2008.
[10] J. Heide, M. V. Pedersen, and F. H. Fitzek, “Decoding algorithms for

random linear network codes,” in IFIP International Conferences on

Networking - Workshop on Network Coding Applications and Protocols

(NC-Pro), ser. Lecture Notes in Computer Science, vol. 6827, Valencia,
Spain, may 2011, pp. 129–137.

[11] N. Lane and A. Campbell, “The influence of microprocessor instructions
on the energy consumption of wireless sensor networks,” in Third

Workshop on Embedded Networked Sensors (EmNets), vol. 34, 2006.
[12] “Chipcon CC2420 Datasheet: http://focus.ti.com/lit/ds/symlink/cc2420.pdf,

Texas Instruments,” 2007.

