Ethnobotanical Leaflets 13: 51-54. 2009.

Note on Pharmacological Activities of Calendula officinalis L.

S.Meenatchisundaram*, G.Parameswari, T.Subbraj, T.Suganya and A.Michael

Department of Microbiology, PSG College of Arts and Science, Coimbatore, India

*Corresponding author. Ph: +91- 422 -09842525152 E.Mail:drmscbe@gmail.com

Issued 04 January 2009

Calendula officinalis, known as Pot Marigold or English Marigold, is a plant in the Calendula genus. Calendula officinalis is used for the treatment of skin disorders and pain, and as a bactericide, antiseptic and anti-inflammatory. The petals and pollen contain triterpenoid esters (an antiinflammatory) and the carotenoids flavoxanthin and auroxanthin (antioxidants, and the source of the yellow-orange coloration). The leaves and stems contain other carotenoids, mostly lutein (80%) and zeaxanthin (5%), and beta-carotene. Plant extracts are also widely used by cosmetics, presumably due to presence of compounds such as saponins, resins and essential oils.

Phagocytosis

Three polysaccharides isolated from an aqueous extract of Flos Calendulae enhanced phagocytosis in human granulocytes in vitro in the colloidal carbon clearance test¹. Intraperitoneal injection of a

polysaccharide fraction isolated from an aqueous extract of the flowers to mice (10 mg/kg body weight) enhanced phagocytosis⁴. Intraperitoneal administration of an unsaponifiable fraction (0.5 ml) of a hydroalcoholic extract of the flowers weakly stimulated phagocytosis in mice inoculated with *Escherichia coli*. However, the hydroalcoholic extract was not active⁵.

Antimicrobial activity

The essential oil of the flowers inhibited the growth in vitro of *Bacillus subtilis*, *Escherichia coli*, *Staphylococcus aureus*, *Pseudomonas aeruginosa* and *Candida albican*⁶. A flavonoid fraction isolated from the flowers inhibited the growth in vitro of *S. aureus*, *Sarcina lutea*, *E. coli*, *Klebsiella pneumoniae* and *Candida monosa*⁷. However, chloroform, ethanol, methanol or water extracts of the flowers did not inhibit bacterial growth in vitro⁸⁻¹⁰. Acetone, ethanol or water extracts inhibited the growth in vitro of the fungus *Neurospora crassa*¹¹. Extracts of the flowers inhibited the growth in vitro of *Trichomonas vaginalis*¹². Oxygenated terpenes appear to be responsible for the antimicrobial activity¹³.

Antiviral activity

A tincture of the flowers suppressed the replication of herpes simplex, influenza A2 and influenza APR-8 viruses in vitro¹⁴. However, an aqueous extract of the flowers was not active¹⁴. A chloroform extract of the flowers inhibited the replication of HIV-1 in acutely infected lymphocytic MOLT-4 cells in vitro (IC50 0.4 mg/ml)¹⁵. A chloroform extract also inhibited HIV-1 reverse transcriptase activity in a dose-dependent manner (ED50 51.0 mg/ml). A 5% hot aqueous extract of the flowers (2 ml) inhibited the replication of encephalitis virus after intraperitoneal administration to mice¹⁶.

Anti-inflammaory activity

Topical application of a 70% ethanol extract of the flowers to mice at a dose of 1.2 mg/ear

(corresponding to 4.16 mg crude drug) reduced croton oil-induced ear oedema by 20%¹⁷. External application of a carbon dioxide extract of the flowers (300 mg/cm2) suppressed croton oil-induced ear oedema in mice¹⁸. The triterpene fraction of an extract of the flowers had marked anti-inflammatory activity in mice (1 mg/ear) against ear oedema induced by 12-*O*tetradecanoylphorbol- 13-acetate¹⁹. Faradiol esters isolated from the flowers (240 mg/cm2) inhibited croton oil-induced ear oedema in mice²⁰. Intragastric administration of an aqueous extract of the flowers (100 mg/kg body weight) inhibited carrageenan-induced footpad oedema in rats²¹. However, an 80% ethanol extract of the flowers was weakly active (11% inhibition) at a concentration of 100 mg/kg body weight administered orally 1 hour prior to induction of oedema²². Isorhamnetin glycosides isolated from the flowers in vitro²³.

Wound-healing activity

External application of a hydroalcoholic extract accelerated the rate of contraction and epithelialization of excision wounds in rats²⁴. A 3% freeze-dried aqueous extract of the flowers induced vascularization in the chick chorioallantoic membrane assay. Histological sections of the treated chorioallantoic membranes also indicated the presence of hyaluronan, a tissue glycosaminoglycan associated with neovascularization²⁵.

Clinical pharmacology

Although no randomized, controlled clinical trials have been performed, two case reports in the early medical literature support the traditional use of Flos Calendulae. The reports describe the use of a strong tincture of the flowers applied on compresses to reduce inflammation and suppuration, and to accelerate the healing of wounds ^{26, 27}.

References

1. Varljen J, Lipták A, Wagner H. Structural analysis of a rhamnoarabinogalactan and arabinogalactans with immunostimulating activity from *Calendula officinalis*. *Phytochemistry*, 1989, 28:2379–2383.

2. *ESCOP monographs on the medicinal uses of plant drugs*. Fascicule 1. Elburg, European Scientific Cooperative on Phytotherapy, 1996.

3. Blumenthal M et al., eds. *The complete German Commission E monographs*. Austin, TX, American Botanical Council, 1998.

4. Wagner H et al. Immunstimulierend wirkende Polysaccharide (Heteroglykane) aus höheren Pflanzen. *Arzneimittel-Forschung*, 1985, 7:1069–1075.

5. Delaveau P et al. Drogues végétales stimulant l'activité phagocytaire du système réticuloendothélial. *Planta Medica*, 1980, 40:49–54.

6. Janssen AM et al. Screening for antimicrobial activity of some essential oils by the agar overlay technique. *Pharmaceutisch Weekblad*, 1986, 8:289–292.

7. Tarle D, Dvorzak I. Antimicrobial substances in Flos Calendulae. *Farmacevtski Vestnik* (Ljubljana), 1989, 40:117–120.

8. Rios JL, Recio MC, Villar A. Antimicrobial activity of selected plants employed in the Spanish Mediterranean area. *Journal of Ethnopharmacology*, 1987, 21:139–152.

9. Dornberger K, Lich H. Screening for antimicrobial and presumed cancerostatic plant metabolites. *Pharmazie*, 1982, 37:215–221.

10. Acevedo JG, Lopez JL, Cortes GM. In vitro antimicrobial activity of various plant extracts used by purepecha against some Enterobacteriaceae. *International Journal of Pharmacognosy*, 1993, 31:61–64.

11. Kubas J. Investigations on known or potential antitumoral plants by means of microbiological tests. Part III. Activity of some cultivated plant species in *Neurospora crassa* test. *Acta Biologica Cracoviensia Series Botanica*, 1972, 15:87–100.

12. Racz G et al. Trichomonicidal and anthelmintic activity of Roumanian folkloric plants. *Planta Medica*, 1980, 39:257A.

13. Gracza L. Oxygen-containing terpene derivatives from *Calendula officinalis*. *Planta Medica*, 1987, 53:227.

14. Bogdanova NS et al. Study of antiviral properties of *Calendula officinalis*. *Farmakol Toksikol* (Moscow), 1970, 33:349.

15. May G, Willuhn G. Antiviral activity of aqueous extracts from medicinal plants in tissue cultures. *Arzneimittel-Forschung*, 1978, 28:1–7.

16. Kalvatchev Z et al. Anti-HIV activity of extracts from *Calendula officinalis* flowers. *Biomedicine and Pharmacotherapy*, 1997, 51:176–180.

17. Fokina GI et al. Experimental therapy of tick-borne encephalitis. *Soviet Progress in Virology*, 1991, 1:27–31.

18. Della-Loggia R et al. The role of triterpenoids in the topical anti-inflammatory

activity of Calendula officinalis flowers. Planta Medica, 1994, 60:516-520.

19. Akihisa T et al. Triterpene alcohols from the flowers of Compositae and their anti-inflammatory effects. *Phytochemistry*, 1996, 43:1255–1260.

20. Zitterl-Eglseer K et al. Anti-oedematous activities of the main triterpendiol esters of marigold (*Calendula officinalis* L.). *Journal of Ethnopharmacology*, 1997, 57:139–144.

21. Peyroux J et al. Anti-oedemic and anti-hyperhaemic properties of *Calendula officinalis* L. *Plantes médicinales et Phytotherapie*, 1981, 15:210–216.

22. Mascolo N et al. Biological screening of Italian medicinal plants for anti-inflammatory activity. *Phytotherapy Research*, 1987, 1:20–31.

23. Bezakova L et al. Inhibitory activity of isorhamnetin glycosides from *Calendula officinalis* L. on the activity of lipoxygenase. *Pharmazie*, 1996, 51:126–127.

24. Rao SG et al. *Calendula* and *Hypericum*: two homeopathic drugs promoting wound healing in rats. *Fitoterapia*, 1991, 62:508.

25. Patrick KFM et al. Induction of vascularisation by an aqueous extract of the flowers of *Calendula officinalis* L., the European marigold. *Phytomedicine*, 1996, 3:11–18.

26. Livezey A. Some observations on our indigenous medical flora. *Medical and Surgical Reporter*, 1868, 19:85.

27. Reynolds RG. Calendula. Pacific Medical and Surgical Journal, 1886, 29:720.