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This paper introduces a standard logistic L-moment-based system of distributions. The proposed
system is an analog to the standard normal conventional moment-based Tukey g-h, g, h, and h-h
system of distributions. The system also consists of four classes of distributions and is referred to as
(i) asymmetric γ-κ, (ii) log-logistic γ , (iii) symmetric κ, and (iv) asymmetric κL-κR. The system can
be used in a variety of settings such as simulation or modeling events—most notably when heavy-
tailed distributions are of interest. A procedure is also described for simulating γ-κ, γ , κ, and κL-κR
distributions with specified L-moments and L-correlations. The Monte Carlo results presented in
this study indicate that estimates of L-skew, L-kurtosis, and L-correlation associated with the γ-κ, γ ,
κ, and κL-κR distributions are substantially superior to their corresponding conventional product-
moment estimators in terms of relative bias and relative standard error.

1. Introduction

Simulating ormodeling phenomena that involve heavy-tailed distributions have increasingly
become of interest in many areas. Some examples include investigations associated with
modeling stream flow and flood frequency [1–3], regional frequency analysis [4], aircraft
landing processes [5], disaster analysis [6], finance [7], signal and image processing [8], and
latent traits in the social and behavioral sciences [9]. Further, it is also common practice for
methodologists to investigate the type I error and power properties associated with infer-
ential statistics using heavy-tailed distributions [10–14]. In many cases, these investigations
may only require an elementary transformation to produce heavy-tailed distributions with
specified values of conventional skew and kurtosis. A system of transformations that is
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particularly well suited for this task is the Tukey g-h, g, h, and h-h classes, which can be used
for simulating or modeling univariate and multivariate heavy-tailed distributions [14–20].

The quantile function associated with g-h distributions can be succinctly described as

q(Z) = g−1
(
egZ − 1

)
ehZ

2
, (1.1)

where Z ∼N(0, 1), the parameters g /= 0 and h ≥ 0 control the skew and kurtosis of q(Z), and
the quantile functions for the one-parameter log-normal g or symmetric h distributions can
be obtained by taking the limh→ 0q(Z) or limg→ 0q(Z), respectively. The class of asymmetric
h-h distributions can be obtained by a doubling technique of h distributions that is described
in [18, 21]. Hence, an attractive feature of the Tukey system (g-h, g, h, h-h classes) is that it is
computationally efficient because each class of distributions only requires the knowledge of
one or two parameters and an algorithm that generates standard normal random deviates.

One problem that arises in the context of heavy-tailed distributions is that conven-
tional moment-based estimators of skew and kurtosis have unfavorable attributes insofar as
they can be substantially biased, have high variance, or can be influenced by outliers [4, 22–
25]. To obviate this problem, L-moment-based estimators such as L-skew and L-kurtosis
were introduced to address the limitations associated with conventional estimators [22].
Specifically, some of the advantages that L-moments have over conventional moments are
that they (i) exist whenever the mean of the distribution exists, (ii) are nearly unbiased for all
sample sizes and distributions, and (iii) are more robust in the presence of outliers [4, 22–25].

Thus, it would be advantageous to have a L-moment-based Tukey system of transfor-
mations for the purpose of simulating or modeling univariate and multivariate heavy-tailed
distributions. However, because of the complexities associated with (1.1) and the fact that
the standard normal distribution function is not available in closed form, the derivation of
a L-moment-based Tukey system would be problematic. We would note that the Tukey h
and h-h classes of distributions have been characterized in the context of L-moments and the
L-correlation (see [21]).

In view of the above, the present aim is to introduce an L-moment Tukey system
analog that is based on the standard logistic distribution. More specifically, the system
consists of four quantile functions that produce continuous symmetric and asymmetric
distributions with specified values of L-skew, L-kurtosis, and L-correlation. The four classes
of distributions are referred to as (i) asymmetric γ-κ, (ii) log-logistic γ , (iii) symmetric κ,
and (iv) asymmetric κL-κR. Some of the advantages that the new system has is that the class
of log-logistic (γ) distributions has demonstrated to be more efficient than its log-normal (g)
counterpart in terms of computing its hazard function or when censored data are encountered
in the context of survival analysis [26]. Note that the κ and κL-κR classes of distributions were
recently introduced in an article by Headrick and Pant [27].

The rest of the paper is outlined as follows. In Section 2, the cumulative distribution
function and probability density function as well as other properties associated with the
four classes of distributions are derived. A summary of univariate L-moment theory is
also provided, and the derivations of the systems of equations for specifying values of
L-skew and L-kurtosis for the four classes of distributions are subsequently provided. In
Section 3, the coefficient of L-correlation is introduced, and the equations are developed for
determining intermediate correlations for specified L-correlations associated with the four
classes of distributions. In Section 4, the steps for implementing a simulation procedure are
described. Numerical examples and the results of a simulation are also provided to confirm
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the derivations and compare the new methodology with its conventional moment-based
counterpart. In Section 5, the results of the simulation are discussed.

2. Methodology

2.1. Definitions and Properties for the System of
γ-κ, γ , κ, and κL-κR Distributions

The derivation of the cumulative distribution function (cdf), probability density function
(pdf), and other properties associated with the system of γ-κ, γ , κ, and κL-κR distributions
begins with the following definitions.

Definition 2.1. Let X be a random variable that has a standard logistic distribution with cdf
and pdf expressed as

FX(x) = Ψ(x) = Pr(X ≤ x) = 1
(1 + e−x)

, (2.1)

fX(x) = ψ(x) =
e−x

(1 + e−x)2
, −∞ < x < +∞. (2.2)

Definition 2.2. Let the quantile function q(X) associated with the system of γ-κ, γ , κ, and κL-
κR distributions be defined as

q(X) = qγ,κ(X) = γ−1
(
eγX − 1

)
eκ|X|, (2.3)

q(X) = qγ,0(X) = lim
κ→ 0

qγ,κ(X) = γ−1
(
eγX − 1

)
, (2.4)

q(X) = q0,κ(X) = lim
γ→ 0

qγ,κ(X) = Xeκ|X|, (2.5)

q(X) = qκL,κR(X) =

{
XeκL|X|, for X ≤ 0,

XeκR|X|, for X ≥ 0,
(2.6)

where q(X) in (2.3)–(2.6) is a strictly monotone increasing function with real-valued param-
eters γ , κ, κL, κR. Equations (2.3)–(2.6) produce distributions defined as (i) asymmetric γ-κ
(γ /= 0, κ ≥ 0), (ii) log-logistic γ (γ /= 0), (iii) symmetric κ (κ ≥ 0), and (iv) asymmetric κL-
κR (κL ≥ 0, κR ≥ 0, κL /=κR). The parameter ±γ in (2.3) and (2.4) controls the degree of
skew associated with a distribution. Taking the negative of γ will change the direction of
the skew but not its magnitude that is, q−γ,κ(X) = −qγ,κ(−X). The parameter κ in (2.3) and
(2.5) controls the tail weight of a distribution where the function eκ|X| (i) preserves symmetry,
(ii) is increasing for X ≥ 0 and κ ≥ 0, and (iii) produces increased tail weight as the value of
κ becomes larger. Analogous to κ, the real-valued parameter κL (κR) in (2.6) controls the left
(right) tail weight of a κL-κR distribution.
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Theorem 2.3. The cdf and pdf associated with the γ-κ, γ , κ, and κL-κR classes of distributions in
(2.3)–(2.6) are

Fq(X)(x) = Ψ(x), (2.7)

fq(X)(x) =
ψ(x)
q′(x)

(2.8)

with derivatives q′(x) expressed as

q′(x) = q′γ,κ(x) = e
γx+κ|x| + γ−1

(
eκ|x|(eγx − 1)κ

d|x|
dx

)
,

q′(x) = q′γ,0(x) = e
γx,

q′(x) = q′0,κ(x) = e
κ|x| + xκeκ|x|

d|x|
dx

,

q′(x) = q′κL,κR(x) =

{
eκL|x| − xκLeκL|x|, for x ≤ 0,

eκR|x| + xκReκR|x|, for x ≥ 0,

(2.9)

where q′(x) > 0 and q′(x = 0) = 1 for (2.9).

Proof. The requirement that q(X) in (2.3)–(2.6) is a strictly monotone increasing function
implies that an inverse function (q−1) exists and thus y = Fq(X)(x) = Ψ(x). Differentiating both
sides with respect to q(x) yields dy/dq(x) = fq(x)(x). Hence, dy/dq(x) = (dy/dx)/(dq(x)/
dx) = ψ(x)/q′(x). Whence, the pdf in (2.8) integrates to one because ψ(x) is the logistic pdf in
(2.2) and will be nonnegative on its support q(x) for x ∈ (−∞,+∞) given from Definition 2.2
that γ /= 0, κ ≥ 0, κL ≥ 0, κR ≥ 0, and where limx→±∞ψ(x)/q′(x) = 0 as limx→±∞ψ(x) = 0 and
limx→±∞1/q′(x) = 0.

Definition 2.4. If the monotonicity assumption (q′(x) > 0) holds for the pdf in (2.8) for all
x ∈ (−∞,+∞), then (2.8) is defined to be a global pdf.

Remark 2.5. Inspection of (2.2) and (2.3)–(2.9) indicates that the height of a global pdf in (2.8)
for any γ-κ, γ , κ, or κL-κR distribution at x = 0 will be ψ(x) = 1/4.

Remark 2.6. The mode associated with a global pdf in (2.8) is located at q(x̃) where x = x̃ is
the critical number that solves d(ψ(x)/q′(x))/dq(x) = 0 and globally maximizes ψ(x̃)/q′(x̃)
at the mode q(x̃). It is noted that a global pdf in (2.8)will have a global maximum because the
standard logistic pdf in (2.2) has a global maximum, and the transformations in (2.3)–(2.6)
are assumed to be strictly monotone increasing functions.

Remark 2.7. The median associated with a global pdf in (2.8) is located at q(x = 0) = 0. This
can be shown by letting Ψ(x) = 0.50 denote the 50th percentile. In general, we must have
x = 0 such that Ψ(0) = Pr{X ≤ 0} = 0.50 holds in (2.7) for the standard logistic distribution.
As such, the limit of the quantile function q(x) locates the median at limx→ 0q(x) = 0 for the
system of γ-κ, γ , κ, and κL-κR distributions.
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Remark 2.8. In terms of the κL-κR (or κ) class of distributions, the monotonicity assumption
(q′(x) > 0) holds locally in (2.8) for cases where κL,R < 0 and (1/κL < x < 0 or 0 ≤ x < −1/κR).
This leads to Definition 2.9.

Definition 2.9. A κL-κR (or κ) distribution is defined to have a local pdf if the monotonicity
assumption holds in accordance with Remark 2.8 and 1 − Pr{q(x ≤ |1/κL,R|)} ≤ ε, where ε is
a user specified threshold probability based on the cdf in (2.7) (e.g., ε ≤ 0.001).

Examples of γ-κ, γ , κ, and κL-κR distributions based on the cdf and pdf in (2.7) and
(2.8) are presented in Figure 1 through Figure 4, respectively. The heavy-tailed distributions
in Figures 1(a), 2(a), 3(b), and 4(a) are used in the simulation portion of this study in
Section 4. In the next section, univariate L-moments are introduced, and the L-moments for
the system of γ-κ, γ , κ, and κL-κR distributions are subsequently derived, and other proper-
ties are discussed.

2.2. Preliminaries on Univariate L-Moments

Let Y1, . . . , Yj , . . . , Yn be independent and identically distributed random variables each with
continuous pdf fY (y), cdf FY (y), order statistics denoted as Y1:n ≤ · · · ≤ Yj:n ≤ · · · ≤ Yn:n,
and L-moments defined in terms of either linear combinations of (i) expectations of order
statistics or (ii) probability weighted moments (βi). For the purposes considered herein, the
first four L-moments associated with Yj:n are expressed as [4, pages 20–22]

λ1 = E[Y1:1] = β0, (2.10)

λ2 =
1
2
E[Y2:2 − Y1:2] = 2β1 − β0, (2.11)

λ3 =
1
3
E[Y3:3 − 2Y2:3 + Y1:3] = 6β2 − 6β1 + β0, (2.12)

λ4 =
1
4
E[Y4:4 − 3Y3:4 + 3Y 2:4 − Y1:4] = 20β3 − 30β2 + 12β1 − β0, (2.13)

where the βi are determined from

βi =
∫
y
{
FY
(
y
)}i

fY
(
y
)
dy, (2.14)

where i = 0, . . . , 3. The coefficients associated with βi in (2.14) are obtained from shifted
orthogonal Legendre polynomials and are computed as shown in [4, page 20] or in [22].

The L-moments λ1 and λ2 in (2.10) and (2.11) are measures of location and scale and
are the arithmetic mean and one-half the coefficient of mean difference, respectively. Higher
order L-moments are transformed to dimensionless quantities referred to as L-moment ratios
defined as τr = λr/λ2 for r ≥ 3, and where τ3 and τ4 are the analogs to the conventional
measures of skew and kurtosis. In general, L-moment ratios are bounded in the interval −1 <
τr < 1 as is the index of L-skew (τ3)where a symmetric distribution implies that all L-moment
ratios with odd subscripts are zero. Other smaller boundaries can be found for more specific
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Pdf characteristics Parameters Percentiles

Mode = 0

Max(height) = 0.25

Median = 0

Mean = 0.3284 Skew: α3 = 3.488

Kurtosis: α4 = 120

q(x)0.05 = −2.96843
q(x)0.25 = −1.09985

q(x)0.75 = 1.29689
q(x)0.95 = 4.6168

1

0.8

0.6

0.4

0.2

−2 2

0.25

0.125

−4 64−2 2−4 64

γ = 0.15, κ = 0.075

L-kurtosis: τ4 = 0.2506

L-skew: τ3 = 0.1664

(a)

1

0.8

0.6

0.4

0.2

−10 −6 −2 2 6

0.2

0.1

−10 −6 −2 2 6

Median = 0
Mode = 0

Max(height) = 0.25

Pdf characteristics Parameters Percentiles

Mean = −0.492 q(x)0.05 = −5.84095
q(x)0.25 = −1.411107
q(x)0.75 = 1.07221
q(x)0.95 = 2.79766

Skew: α3 = −14.68
Kurtosis: α4 = +∞

γ = −0.2, κ = 0.1

L-skew: τ3 = −0.2296
L-kurtosis: τ4 = 0.2892

(b)

Figure 1: Two asymmetric γ-κ pdfs and their cdfs. The parameters of skew (α3) and kurtosis (α4) are based
on (A.2) in Appendix A. The parameters of L-skew (τ3) and L-kurtosis (τ4) are based on (2.19) and (2.20).

cases. For example, the index of L-kurtosis (τ4) has the boundary condition for continuous
distributions of [28]

5τ23 − 1
4

< τ4 < 1. (2.15)
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0.2

0.1

64−2 2 64

Median = 0

Pdf characteristics Parameters Percentiles

q(x)0.05 = −2.225279
q(x)0.25 = −0.986291

q(x)0.75 = 1.228655
q(x)0.95 = 4.0099

Mean = 0.3448 Skew: α3 = 2.485

Kurtosis: α4 = 26.57

Max(height) = 0.2603

Mode = −0.3895

−4 −4

γ = 0.2, κ = 0

L-skew: τ3 = 0.2
L-kurtosis: τ4 = 0.2

(a)

Median = 0

Pdf characteristics Parameters Percentiles

q(x)0.05 = −1.92255
q(x)0.25 = −0.889015

q(x)0.75 = 1.37961
q(x)0.95 = 5.61784

Mean = 0.8033

Max(height) = 0.2947
Mode = −0.7187

1

0.8

0.6

0.4

0.2

0.25

0.125

Kurtosis: α4 = +∞

−2 2 4 6 8 10 −2 2 4 6 8 10

Skew: α3 = +∞

γ = 0.4, κ = 0

L-skew: τ3 = 0.4
L-kurtosis: τ4 = 0.3

(b)

Figure 2: Two log-logistic γ pdfs and their cdfs. The parameters of skew (α3) and kurtosis (α4) are based
on (A.2) in Appendix A. The parameters of L-skew (τ3) and L-kurtosis (τ4) are based on (2.23) and (2.24).

2.3. L-Moments for the System of γ-κ, γ , κ, and κL-κR Distributions

The derivation of the first four L-moments associated with the γ-κ class of distributions
begins by defining the probability weighted moments based on (2.14) in terms of (2.1)–(2.3)
as

βi =
∫+∞

−∞
q
(
x, γ, κ

){Ψ(x)}iψ(x)dx. (2.16)
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0.2

0.1

−4 −2 2 4 −4 −2 2 4
κ = 0.05

1

0.8
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0.4

0.2

Pdf characteristics Parameters Percentiles

q(x)0.05 = −3.41145

q(x)0.75 = 1.16065
q(x)0.95 = 3.41145

Kurtosis: α4 = 3.585

Max(height) = 0.25

Mean = 0

Median = 0

Mode = 0
q(x)0.25 = −1.16065

Skew: α3 = 0

L-skew: τ3 = 0
L-kurtosis: τ4 = 0.1876

(a)

0.2

0.1

−4 −2 2 4 −4 −2 2 4

κ = 0.15

1

0.8

0.6

0.4

0.2

Pdf characteristics Parameters Percentiles

q(x)0.05 = −4.57946

q(x)0.75 = 1.295424
q(x)0.95 = 4.57946

Kurtosis: α4 = 39.83

Max(height) = 0.25

Mean = 0
Median = 0
Mode = 0

q(x)0.25 = −1.295424
3Skew: α = 0

66−6 −6

L-skew: τ3 = 0
L-kurtosis: τ4 = 0.2958

(b)

Figure 3: Two symmetric κ pdfs and their cdfs. The parameters of skew (α3) and kurtosis (α4) are based
on (A.2) in Appendix A. The parameters of L-skew (τ3) and L-kurtosis (τ4) are based on (2.27) and (2.28).

In general, to obtain finite values of λ1, λ2, τ3, τ4 based on (2.16), we must have (i) γ + κ < 1,
(ii) κ < 1, and (iii) 1+ γ > κ. As such, integrating (2.16) for i = 0, 1, 2, 3 and using (2.10)–(2.13)
gives λ1, λ2, τ3, and τ4 as

λ1 =

((−γ − κ)h1 +
(
γ − κ)h2 +

(−γ + κ)h3 + 2κh4 +
(
γ + κ

)
h5 − 2κh6

)
(
2γ
) , (2.17)

λ2 =

(
2γ − (γ + κ)2h1 +

(
γ − κ)2(h2 − h3) +

(
γ + κ

)2
h5
)

(
2γ
) , (2.18)
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q(x)0.05 = −3.38644

q(x)0.75 = 1.275371
q(x)0.95 = 4.3919

Kurtosis: α4 = 23.48

Max(height) = 0.25

Mean = 0.177
Median = 0
Mode = 0

q(x)0.25 = −1.157465
3Skew: α = 1.83

κL = 0.0475, κR = 0.1358

L-skew: τ3 = 0.1
L-kurtosis: τ4 = 0.25

Global Pdf characteristics

(a)

0.2
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−4 −2 2 4 6 −4 −2 2 4 6

1

0.8

0.6

0.4

0.2

Parameters Percentiles

q(x)0.05 = −2.57544

q(x)0.75 = 1.26292
q(x)0.95 = 4.278

Kurtosis: α4 = 24.21

Max(height) = 0.2521

Mean = 0.331
Median = 0 q(x)0.25 = −1.04507

3Skew: α = 2.47

Mode = −0.1817

Local Pdf characteristics

L-skew: τ3 = 0.18
L-kurtosis: τ4 = 0.22

κL = −0.0455, κR = 0.1269

(b)

Figure 4: Two asymmetric κL-κR distributions pdfs and their cdfs. The parameters of skew (α3) and
kurtosis (α4) are based on (A.2) in Appendix A. The parameters of L-skew (τ3) and L-kurtosis (τ4) are
based on (2.32) and (2.33). The distribution in (b) is a local pdf in the range of q(x) ∈ (−8.085,+∞) where
(2.7) yields 1 − Pr{q(x) ≤ | − 8.085|} = 0.0003.

τ3 =

(
2γ2 − (γ + κ)3h1 +

(
γ − κ)3h2 −

(
γ − κ)3h3 + 2κ3h4 +

(
γ + κ

)3
h5 − 2κ3h6

)

2γλ2
, (2.19)

τ4 =
(
2γ
(
1 + 5γ2 + 5κ(1 − 3κ)

)
− (γ + κ)2

(
1 + 5

(
γ + κ

)2)
h1

+
(
1 + 5

(
γ − κ)2

)(
γ − κ)2(h2 − h3) +

(
γ + κ

)2(1 + 5
(
γ + κ

)2)
h5/
(
12γλ2

)) (2.20)
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with harmonic number functionsH[·] of h1 = H[(1/2)(−1−γ −κ)], h2 = H[(1/2)(−1+γ −κ)],
h3 = H[(1/2)(γ − κ)], h4 = H[(1/2)(−1 − κ)], h5 = H[(−1/2)(γ + κ)], and h6 = H[−(1/2)κ].
As such, given user specied values of τ3 and τ4, (2.19) and (2.20) can be numerically solved
to obtain the parameters for γ and κ.

Taking the limit of (2.17)–(2.20) as κ → 0 gives the class associated with the log-
logistic γ distributions in (2.4) as

λ1 = πcsc
(
γπ
) − 1

γ
, (2.21)

λ2 = γπcsc
(
γπ
)
, (2.22)

τ3 = γ, (2.23)

τ4 =
1
6

(
1 + 5γ2

)
. (2.24)

Analogously, taking the limit of (2.17)–(2.20) as γ → 0 gives the system associated with the
symmetric κ family of distributions in (2.5) as in [27]

λ1 = 0, (2.25)

λ2 =
1
2
(
2 + κ

(−4p1 + 4p2 + κ
(
p3 − p4

)))
, (2.26)

τ3 = 0, (2.27)

τ4 =
1
6

(
1 + 5κ2 +

10κ
(
1 + 2κ + 2κ2(h6 − h4)

)

2λ2

)
(2.28)

with polygamma functions P[·] of p1 = P[0, 1/2 − κ/2], p2 = P[0, 1 − κ/2], p3 = P[1, 1/2 −
κ/2], and p4 = P[1, 1 − κ/2].

The L-moments for the class of asymmetric κL-κR distributions in (2.6) can be deter-
mined by separately evaluating and summing two integrals of the form in (2.16) as

βi =
∫0

−∞
q(x, κL){Ψ(x)}iψ(x)dx +

∫+∞

0
q(x, κR){Ψ(x)}iψ(x)dx. (2.29)

For an asymmetric κL-κR distribution with a global pdf to have finite values of λ1, λ2, τ3, τ4
based on (2.29) will require κL < 1 and κR < 1. As such, integrating (2.29) to obtain β0, . . . , β3
and subsequently substituting these terms into (2.10)–(2.13) yield as in [27]

λ1 =
1
4
(
2p5 − 2p6 − 2p7 + 2p8 − κLp9 + κLp10 + κRp11 − κRp12

)
, (2.30)

λ2 =
1
4
(
4 + κL

(−4p5 + 4p6 + κL
(
p9 − p10

))
+ 4 + κR

(−4p7 + 4p8 + κR
(
p11 − p12

)))
, (2.31)

τ3 =

{
4κR − 4κL + κ2L

(
6p5 − 6p6 + κL

(
p10 − p9

))
+ κ2R

(−6p7 + 6p8 + κR
(
p11 − p12

))}

(4λ2)
,

(2.32)
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τ4 =
{
2(2 + 5κL(1 + 3κL) + 5κR(1 + 3κR)) − 4

(
κL + 10κ3L

)
p5 − 4

(
κR + 10κ3R

)
p7

+ 5κL
((

4 + 40κ2L
)
p6 + κL

(
1 + 5κ2L

)(
p9 − p10

)

+κR
((

4 + 40κ2R
)
p8 + κR

(
1 + 5κ2R

)(
p11 − p12

)))}
/(24λ2)

(2.33)

with polygamma functions P[·] of p5 = P[0, 1/2 − κL/2], p6 = P[0, 1 − κL/2], p7 = P[0, 1/2 −
κR/2], p8 = P[0, 1 − κR/2], p9 = P[1, 1/2 − κL/2], p10 = P[1, 1 − κL/2], p11 = P[1, 1/2 − κR/2],
p12 = P[1, 1 − κR/2].

As with the γ-κ class of distributions, given specified values of τ3 and τ4, (2.32) and
(2.33) can be numerically solved to obtain the corresponding values of κL and κR. Inspection
of (2.32) and (2.33) reveals that interchanging values for the parameters of κL and κR reverses
the direction of τ3 and has no effect on τ4. As such, a graph of the region for feasible
combinations of |τ3| and τ4 for (2.32) and (2.33) is provided in Figure 5. Feasible combinations
of L-skew and L-kurtosis will lie in the region above the curve graphed in the |τ3|, τ4 plane
of Figure 5. Note that the curve in Figure 5 was graphed by setting κL = 0 with κR ∈ [0, 1] in
(2.32) and (2.33).

The conventional moment-based systems for the γ-κ and κL-κR classes of distributions
are given in Appendices A and B, respectively. These systems were used to determine the
values of skew and kurtosis associatedwith the distributions given in Figures 1–4. It is worthy
to point out that the conventional moment-based systems have a disadvantage in terms of
moment existence. That is, the integral in (A.1) of Appendix A reveals that for the rthmoment
to exist wemust have in general (i) γ+κ < 1/r, (ii) κ < 1/r and (iii) 1/r+γ < κ. For example, if
the mean, variance, skew, and kurtosis exist, then wemust have 1/r = 0.25. And, analogously
for the κL-κR class of distributions in Appendix B, the parameters are bounded in the range of
0 ≤ κL < 0.25 and 0 ≤ κR < 0.25. The advantage that the L-moment system has in this context
is attributed to Hosking’s Theorem 1 [22] which states that if the mean (λ1) exists, then all
other L-moments will have finite expectations. We note that the conventional moment-based
systems for the log-logistic γ and symmetric κ classes of distributions can be obtained by
simplifying the system as described in Appendix A. In the next section we first introduce the
topic of the L-correlation and subsequently develop the methodology for simulating γ-κ, γ ,
κ, and κL-κR distributions with specified L-correlations.

3. L-Correlations for the System of γ-κ, γ , κ, and κL-κR Distributions

The coefficient of L-correlation [29] is introduced by considering two random variables Yj
and Yk with distribution functions F(Yj) and F(Yk), respectively. The second L-moments of
Yj and Yk can alternatively be expressed as

λ2
(
Yj
)
= 2Cov

(
Yj, F

(
Yj
))
, (3.1)

λ2(Yk) = 2Cov(Yk, F(Yk)). (3.2)

The second L-comoments of Yj toward Yk and Yk toward Yj are

λ2
(
Yj, Yk

)
= 2Cov

(
Yj, F(Yk)

)
, (3.3)

λ2
(
Yk, Yj

)
= 2Cov

(
Yk, F

(
Yj
))
. (3.4)
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Figure 5: Graph of the region for feasible combinations of (absolute value) L-skew |τ3| and L-kurtosis τ4
for global κL-κR pdfs. Asymmetric κL-κR distributions will lie in the area above the curve graphed in the
|τ3| and τ4 plane.

As such, the L-correlations of Yj toward Yk and Yk toward Yj are expressed as

ηjk =
λ2
(
Yj, Yk

)

λ2
(
Yj
) , (3.5)

ηkj =
λ2
(
Yk, Yj

)

λ2(Yk)
. (3.6)

The L-correlation in (3.5) (or (3.6)) is bounded such that −1 ≤ ηjk ≤ 1 where a value of ηjk = 1
(ηjk = −1) indicates a strictly increasing (decreasing) monotone relationship between the two
variables. In general, we would also note that ηjk /=ηkj .

In the context of the L-moment-based γ-κ, γ , κ, and κL-κR classes of distributions,
suppose that it is desired to simulate a T -variate distribution based on quantile functions
of the forms in (2.3)–(2.6) with a specified L-correlation matrix and where each distribution
has its own specified values of τ3 and τ4. Let Z1, . . . , ZT denote standard normal variables
where the distribution functions and bivariate density function associated with Zj and Zk

are expressed as

Φ
(
zj
)
= Pr

{
Zj ≤ zj

}
=
∫zj
−∞

(2π)−1/2 exp

{−w2
j

2

}
dwj, (3.7)

Φ(zk) = Pr{Zk ≤ zk} =
∫zk
−∞

(2π)−1/2 exp

{−w2
k

2

}
dwk, (3.8)

fjk =
(
2π
(
1 − ρ2jk

)1/2)−1
exp
{
−
(
2
(
1 − ρ2jk

))−1(
z2j + z

2
k − 2ρjkzjzk

)}
. (3.9)

Using (3.7), it follows that the jth distribution associated with (2.3)–(2.6) can be expressed as
qj(g(Φ(Zj))), where g(Φ(Zj)) = ln(Φ(Zj)/(1 − Φ(Zj))) is standard logistic because Φ(Zj) ∼
U(0, 1). As such, using (3.5), the L-correlation of qj(g(Φ(Zj))) toward qk(g(Φ(Zk))) can
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be evaluated using the solved value(s) of the parameter(s) (i.e., γj-κj ; γj ; κj ; κLj -κRj ) for
qj(g(Φ(Zj))), a specified intermediate correlation (IC) ρjk in (3.9), and the following integral
generally expressed as

ηjk = 2
√
π

∫∫+∞

−∞
sj
(
qj
(
g
(
Φ
(
zj
))
, γj , κj , κLj , κRj

))
Φ(zk)fjkdzjdzk. (3.10)

We would point out that the purpose of the IC (ρjk) in (3.9) and (3.10) is to adjust for the
effect of the transformation qj(g(Φ(Zj))), which is induced by the parameters, such that
qj(g(Φ(Zj))) has its specified L-correlation (ηjk) toward qk(g(Φ(Zk))). Further, to simplify
the computation, the quantile function in (3.10) is standardized by a linear transformation
such that it has a mean of zero and one-half the coefficient of mean difference equal to that of
the unit-normal distribution as

sj
(
qj
(
g
(
Φ
(
zj
))
, γj , κj , κLj , κRj

))
= δ ×

(
qj
(
g
(
Φ
(
zj
))
, γj , κj , κLj , κRj

)
− λ1
)
, (3.11)

where λ1 is a mean from (2.17), (2.21), (2.25), or (2.30) and δ is a constant that scales λ2 in
(2.18), (2.22), (2.26), or (2.31) and in the denominator of (3.5) to 1/

√
π as

δ = δγj ,κj =
2γj(√

π
(
2γj − h1

(
γj + κj

)2 + (γj − κj
)2(h2 − h3) + h5

(
γj + κj

)2)) ,

δ = δγj =
sin
(
γjπ
)

γjπ3/2
,

δ = δκj =
2(√

π
(
2 + κj

(−4p1 + 4p2 + κj
(
p3 − p4

)))) ,

δ = δκLj , κRj = 4/
(√

π
(
4 − 4p5κLj + 4p6κLj + p9κ

2
Lj

− p10κ2Lj
− 4p7κRj + 4p8κRj

+p11κ2Rj
− p12κ2Rj

))
.

(3.12)

Analogously, the L-correlation of qk(g(Φ(Zk))) toward qj(g(Φ(Zj))) is expressed as

ηkj = 2
√
π

∫∫+∞

−∞
sk
(
qk
(
g(Φ(zk)), γk, κk, κLk , κRk

))
Φ
(
zj
)
fjkdzk dzj . (3.13)

Note also for the special case that if qj(g(Φ(Zj))) in (3.10) and qk(g(Φ(Zk))) in (3.13) have
the same parameters, that is, γj = γk; κj = κk; κLj = κLk ; κRj = κRk , then ηjk = ηkj . Source code
written in Mathematica [30] that implements the computation of an IC (ρjk) based on (3.10)
is provided in Algorithm 1. The details for simulating γ-κ, γ , κ, and κL-κR distributions with
specified values of L-skew, L-kurtosis, and L-correlations are described in the next section.
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(∗Intermediate Correlation for Distributions 1 and 2. See Table 3.∗)
ρjk = 0.380206;

Needs[“MultivariateStatistics
′
”]

fjk = PDF[MultinormalDistribution[{0, 0}, {{1, ρjk}, {ρjk, 1}}], {Zj, Zk}];
Fj = CDF[NormalDistribution[0, 1], Zj];
Fk = CDF[NormalDistribution[0, 1], Zk];

(∗Parameters for Figure 1(a)∗)
γj = 0.15;
κj = 0.075;

Xj = Log[Fj/(1 −Fj)];

(∗Quantile function from (2.3)∗)
qγj ,κj = γ

−1
j ∗ (Exp[γjXj] − 1) ∗ Exp[κj ∗Abs[Xj]];

(∗Standardizing constants λ1 from (2.17) and δγj ,κj from (3.12)∗)
Sqγj ,κj = δγj ,κj ∗ (qγj ,κj − λ1);

(∗Compute the specified L-correlation in Table 1 for Distributions 1 and 2∗)
ηjk = 2

√
π ∗NIntegrate[Sqγj ,κj ∗ Fk ∗ fjk, {Zj,−10, 10}, {Zk,−10, 10}

Method → MultiDimensional]

0.40

Algorithm 1: Mathematica source code for computing intermediate correlations for specified L-correla-
tions. The example is for distribution j = 1 towards distribution k = 2 (η12) in Figures 1(a) and 2(a). See
Tables 1 and 3.

4. The Procedure for Simulation and Monte Carlo Study

To implement the method for simulating γ-κ, γ , κ, and κL-κR distributions with specified
L-moments and L-correlations we suggest the following six steps.

(1) Specify the L-moments for T transformations of the forms in (2.3)–(2.6) that is,
q1(g(Φ(Z1))), . . . , qT (g(Φ(ZT ))) and obtain the solutions for the parameters of γ-
κ, γ , κ, or κL-κR distributions by solving (2.19), (2.20); (2.23), (2.24); (2.27), (2.28);
(2.32), (2.33) using the specified values of L-skew (τ3) and L-kurtosis (τ4) for each
distribution. Specify a T × T matrix of L-correlations (ηjk) for qj(g(Φ(Zj))) toward
qk(g(Φ(Zk))), where j < k ∈ {1, 2, . . . , T}.

(2) Compute the (Pearson) intermediate correlations (ICs) ρjk by substituting the solu-
tions of the parameters from Step (1) into (3.10) and then numerically integrate to
solve for ρjk (see Algorithm 1 for an example). Repeat this step separately for all
T(T − 1)/2 pairwise combinations of correlations.

(3) Assemble the ICs into a T × T matrix and decompose this matrix using a Cholesky
factorization. Note that this step requires the IC matrix to be positive definite.
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(∗Intermediate Correlation for Distributions 1 and 4. See Table 2.∗)
ρjk = 0.835142;

Needs[“MultivariateStatistics
′
”]

fjk = PDF[MultinormalDistribution[{0, 0}, {{1, ρjk}, {ρjk, 1}}], {Zj, Zk}];
Fj = CDF[NormalDistribution[0, 1], Zj];
Fk = CDF[NormalDistribution[0, 1], Zk];

(∗Parameters for Figure 1(a) and Figure 4(a) in Figure 4∗)
γj = 0.15;
κj = 0.075;
κLk = 0.0475;
κRk

= 0.1358;

Xj = Log[Fj/(1 −Fj)];
Xk = Log[Fk/(1−Fk)];

(∗Quantile functions from (2.3) and (2.6)∗)
qγj ,κj = γ

−1
j ∗ (Exp[γjXj] − 1) ∗ Exp[κj ∗Abs[Xj]];

qLk
= Xk ∗ Exp[κLk

∗Abs[Xk]];
qRk

= Xk ∗ Exp[κRk
∗Abs[Xk]];

(∗Standardizing constants λ1j , λ1k ((2.17), (2.30)) and α2j , α2k ((A.2), (B.2)) from
Appendices A and B∗)
Sqγj ,κj = (qγj ,κj − λ1j )/α2j ;
SqLk

= (qLk
− λ1k )/α2k ;

SqRk
= (qRk

− λ1k )/α2k ;

(∗Compute the specified Pearson correlation in Table 1 for Distributions 1 and 4.∗)
ρ∗
jk

= NIntegrate[Sqγj ,κj ∗ Piecewise[{{SqLk
, Xk ≤ 0}, {SqRk

, Xk > 0}}] ∗ fjk , {Zj , −10, 10}, {Zk ,
−10, 10}, Method→MultiDimensional]

0.80

Algorithm 2:Mathematica source code for computing intermediate correlations for specified conventional
Pearson correlations. The example is for distributions j = 1 and k = 4 (ρ∗14) in Figures 1(a) and 4(a). See
Tables 1 and 2.

(4) Use the results of the Cholesky factorization from Step (3) to generate T standard
normal variables (Z1, . . . , ZT ) correlated at the intermediate levels as follows:

Z1 = a11V1,

Z2 = a12V1 + a22V2,

...

Zj = a1jV1 + a2jV2 + · · · + aijVi + · · · + ajjVj ,
...

ZT = a1TV1 + a2TV2 + · · · + aiTVi + · · · + ajTVj + · · · + aTTVT ,

(4.1)
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Table 1: Specified correlation matrix for the distributions in Figures 1(a), 2(a), 3(b), and 4(a).

1 2 3 4
1 1
2 0.40 1
3 0.60 0.50 1
4 0.80 0.70 0.60 1

Table 2: Intermediate correlations for the conventional moment procedure.

1 2 3 4
1 1
2 0.446226 1
3 0.671890 0.566802 1
4 0.835142 0.740484 0.653826 1

where V1, . . . , VT are independent standard normal random variables and where aij
represents the element in the ith row and the jth column of the matrix associated
with the Cholesky factorization performed in Step (3).

(5) SubstituteZ1, . . . , ZT from Step (4) into the following Taylor series-based expansion
for the standard normal cdf [30]:

Φ
(
Zj

)
=
(
1
2

)
+ φ
(
Zj

)
⎧
⎨
⎩Zj +

Z3
j

3
+

Z5
j

(3 · 5) +
Z7
j

(3 · 5 · 7) + · · ·
⎫
⎬
⎭, (4.2)

where φ(Zj) denotes the standard normal pdf and where the absolute error associ-
ated with (4.2) is less than 8 × 10−16.

(6) Substitute the zero-one uniform deviates,Φ(Zj), generated from Step (5) into the T
equations of the form of qj(g(Φ(Zj))), where g(Φ(Zj)) = ln(Φ(Zj)/(1 −Φ(Zj))) is
standard logistic to generate the γ-κ, γ , κ, and κL-κR distributions with the specified
L-moments and L-correlations.

To demonstrate the steps above and evaluate the proposed method, a comparison between
the proposed L-moment and conventional product-moment-based procedures is subse-
quently described. Specifically, the heavy-tailed distributions in Figures 1(a), 2(a), 3(b), and
4(a) are used as a basis for a comparison using the specified correlation matrix in Table 1.
Tables 2 and 3 give the solved ICmatrices for the conventional moment and L-moment-based
methods, respectively. See Algorithm 2 for an example of computing ICs for the conventional
method. Tables 4 and 5 give the results of the Cholesky decompositions on the IC matrices,
which are then used to create Z1, . . . , Z4 with the specified ICs by making use of the formulae
given in (4.1) of Step (4) with T = 4. The values of Z1, . . . , Z4 are subsequently transformed
toΦ(Z1), . . . ,Φ(Z4) using (4.2) and then substituted into equations of the forms in (2.3)–(2.6)
to produce q1(g(Φ(Z1))), . . . , q4(g(Φ(Z4))) for both methods.

In terms of the simulation, a Fortran algorithm was written for both methods to gen-
erate 25,000 independent sample estimates for the specified parameters of (i) conventional
skew (α3), kurtosis (α4), and Pearson correlation (ρ∗jk) and (ii) L-skew (τ3), L-kurtosis (τ4),
and L-correlation (ηjk). All estimates were based on sample sizes of n = 25 and n = 1000.
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Table 3: Intermediate correlations for the L-moment procedure.

1 2 3 4
1 1
2 0.380206 1
3 0.576862 0.486201 1
4 0.782049 0.686737 0.568733 1

Table 4: Cholesky decompositions for the conventional moment procedure.

a11 = 1 a12 = 0.446226 a13 = 0.671890 a14 = 0.835142
0 a22 = 0.894920 a23 = 0.298336 a24 = 0.411011
0 0 a33 = 0.677908 a34 = −0.044131
0 0 0 a44 = 0.362849

The formulae used for computing estimates of α3,4 were based on Fisher’s k-statistics that is,
the formulae currently used by most commercial software packages such as SAS, SPSS, and
Minitab, for computing indices of skew and kurtosis (where α3,4 = 0 for the standard normal
distribution). The formulae used for computing estimates of τ3,4 were Headrick’s Equations
(2.4) and (2.6) [25]. The estimate for ρ∗jk was based on the usual formula for the Pearson
product moment of correlation statistic, and the estimate for ηjk was computed based on
(3.5) using the empirical forms of the cdfs in (3.1) and (3.3). The estimates for ρ∗

jk
and ηjk were

both transformed using Fisher’s z′ transformation. Bias-corrected accelerated bootstrapped
average (mean) estimates, confidence intervals (CIs), and standard errors were subsequently
obtained for the estimates associated with the parameters (α3,4, τ3,4, z′ρ∗

jk
, z′ηjk) using 10,000

resamples via the commercial software package Spotfire S+ [31]. The bootstrap results for the
estimates of the means and CIs associated with z′ρ∗

jk
and z′ηjk were transformed back to their

original metrics (i.e., estimates for ρ∗
jk

and ηjk). Further, if a parameter (P) was outside its
associated bootstrap CI, then an index of relative bias (RB)was computed for the estimate (E)
as RB = ((E−P)/P) × 100. Note that the small amount of bias associatedwith any bootstrap CI
containing a parameter was considered negligible and thus not reported. The results of the
simulation are reported in Tables 6–13 and are discussed in the next section.

5. Discussion and Conclusion

One of the primary advantages that L-moments have over conventional moment-based
estimators is that they can be far less biased when sampling is from distributions with
more severe departures from normality (e.g., [21, 25]). Inspection of the simulation results in
Tables 6 and 7 of this study clearly indicates that this is also the case for the system of γ-κ, γ , κ,
and κL-κR distributions. Specifically, the superiority that estimates of L-moment ratios (τ3, τ4)
have over their corresponding conventional moment-based counterparts (α3, α4) is obvious.
For example, with samples of size n = 25 the estimates of skew and kurtosis for Distribution
1 (Tables 6 and 8) were, on average, only 26.80% and 2.38% of their associated population
parameters whereas the estimates of L-skew and L-kurtosis were 87.80% and 94.81% of their
respective parameters. It is also evident from Tables 6 and 8 that L-skew and L-kurtosis are
more efficient estimators as their relative standard errors RSE = (standard error/estimate) ×
100 are substantially smaller than the conventional estimators of skew and kurtosis. For
example, in terms of Distribution 1, inspection of Tables 7 and 9 indicates RSE measures of
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Table 5: Cholesky decompositions for the L-moment procedure.

a11 = 1 a12 = 0.380206 a13 = 0.576862 a14 = 0.782049
0 a22 = 0.924902 a23 = 0.288544 a24 = 0.421015
0 0 a33 = 0.764181 a34 = −0.005081
0 0 0 a44 = 0.459478

Table 6: Skew (α3) and Kurtosis (α4) results for the conventional moment procedure. Sample size of n = 25.

Dist. Parameter Estimate 95% bootstrap C.I. Standard error Relative bias %

1 α3 = 3.488 0.9348 0.9229, 0.9495 0.00676 −73.2
α4 = 120.0 2.861 2.8107, 2.9087 0.02499 −97.6

2 α3 = 2.485 1.074 1.0641, 1.0853 0.00541 −56.8
α4 = 26.57 2.240 2.1963, 2.2856 0.02272 −91.6

3 α3 = 0.0 0.0125 −0.0052, 0.0294 0.00875 —
α4 = 39.83 3.365 3.3157, 3.4122 0.02464 −91.6

4 α3 = 1.83 0.5777 0.5633, 0.5907 0.00693 −68.4
α4 = 23.48 2.5360 2.4915, 2.5778 0.02190 −89.2

RSE(α̂3) = 0.436 and RSE(α̂4) = 1.12 compared with RSE(τ̂3) = 0.109 and RSE(τ̂4) = 0.048.
This demonstrates that L-skew and L-kurtosis have more precision because they have less
variance around their estimates.

The results associated with the conventional Pearson and L-correlations are presented
in Tables 10–13. Overall inspection of these tables indicates that the L-correlation is substan-
tially superior to the Pearson correlation in terms of relative bias. For example, in terms of a
moderate correlation (Table 10, n = 25, ρ∗12 = 0.40) the relative bias for Distributions 1 and 2
was 9.73% for the Pearson correlation compared to only 1.85% for the L-correlation (Table 12,
n = 25, η12 = 0.40). Further, for large sample sizes (Table 13, n = 1000), the L-correlation
bootstrap CIs contained all of the population parameters whereas the Pearson correlation CIs
contained none of the parameters (Table 11).

In summary, the proposed L-moment-based system of γ-κ, γ , κ, and κL-κR distribu-
tions is an attractive alternative to the traditional conventional-moment-based system. In par-
ticular, the L-moment-based system has distinct advantages when heavy-tailed distributions
are of concern. Finally, we would note that Mathematica Version 8.0 [30] source code is
available from the authors for implementing the L-moment-based method.

Appendices

A. System of Conventional Moment-Based Equations for
γ-κ Distributions

The moments (μr=1,...,4) associated with the class of γ-κ distributions in (2.3) can be deter-
mined from

μr =
∫+∞

−∞
q
(
x, γ, κ

)r
fX(x)dx. (A.1)
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Table 7: Skew (α3) and Kurtosis (α4) results for the conventional moment procedure. Sample size of n =
1000.

Dist. Parameter Estimate 95% bootstrap CI Standard error Relative bias %

1 α3 = 3.488 2.562 2.5383, 2.5823 0.01117 −26.5
α4 = 120.0 22.15 21.6873, 22.6698 0.24850 −81.5

2 α3 = 2.485 2.180 2.1668, 2.1944 0.00697 −12.3
α4 = 26.57 13.36 13.0936, 13.6467 0.14100 −49.7

3 α3 = 0.0 −0.0051 −0.0265, 0.0163 0.01100 —
α4 = 39.83 18.57 18.2203, 18.9412 0.18330 −53.4

4 α3 = 1.83 1.54 1.5246, 1.5539 0.00743 −15.8
α4 = 23.48 12.91 12.6537, 13.1903 0.13610 −45.0

Table 8: L-skew (τ3) and L-kurtosis (τ4) results. Sample size of n = 25.

Dist. Parameter Estimate 95% bootstrap CI Standard error Relative bias %

1 τ3 = 0.1664 0.1461 0.1443, 0.1480 0.00095 −12.2
τ4 = 0.2506 0.2376 0.2362, 0.2389 0.00069 −5.19

2 τ3 = 0.20 0.1833 0.1819, 0.1849 0.00079 −8.35
τ4 = 0.20 0.1911 0.1898, 0.1923 0.00064 −3.35

3 τ3 = 0.0 0.0014 −0.0008, 0.0037 0.00115 —
τ4 = 0.2958 0.2809 0.2795, 0.2823 0.00070 −5.04

4 τ3 = 0.10 0.0879 0.0859, 0.0897 0.00096 −12.1
τ4 = 0.25 0.2400 0.2388, 0.2414 0.00065 −4.00

Table 9: L-skew (τ3) and L-kurtosis (τ4) results. Sample size of n = 1000.

Dist. Parameter Estimate 95% bootstrap CI Standard error Relative bias %

1 τ3 = 0.1664 0.1657 0.1653, 0.1660 0.00018 −0.421
τ4 = 0.2506 0.2502 0.2499, 0.2504 0.00012 −0.160

2 τ3 = 0.20 0.1995 0.1992, 0.1997 0.00013 −0.250
τ4 = 0.20 0.1997 0.1995, 0.1999 0.00011 −0.150

3 τ3 = 0.0 −0.0001 −0.0005, 0.0003 0.00022 —
τ4 = 0.2958 0.2954 0.2951, 0.2956 0.00012 −0.135

4 τ3 = 0.10 0.0995 0.0992, 0.0999 0.00017 −0.500
τ4 = 0.25 0.2497 0.2495, 0.2499 0.00011 −0.120

Table 10: Correlation results for the conventional moment procedure. Sample size of n = 25.

Parameter Estimate 95% bootstrap CI Standard error Relative bias %
ρ∗12 = 0.40 0.4389 0.4365, 0.4413 0.00153 9.73
ρ∗13 = 0.60 0.6522 0.6504, 0.6540 0.00153 8.70
ρ∗14 = 0.80 0.8296 0.8287, 0.8308 0.00165 3.70
ρ∗23 = 0.50 0.5441 0.5420, 0.5460 0.00142 8.82
ρ∗24 = 0.70 0.7306 0.7293, 0.7321 0.00157 4.37
ρ∗34 = 0.60 0.6417 0.6400, 0.6435 0.00154 6.95
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Table 11: Correlation results for the conventional moment procedure. Sample size of n = 1000.

Parameter Estimate 95% bootstrap CI Standard error Relative bias %
ρ∗12 = 0.40 0.4040 0.4035, 0.4044 0.00029 1.00
ρ∗13 = 0.60 0.6067 0.6063, 0.6072 0.00036 1.12
ρ∗14 = 0.80 0.8041 0.8038, 0.8044 0.00042 0.51
ρ∗23 = 0.50 0.5037 0.5032, 0.5040 0.00029 0.74
ρ∗24 = 0.70 0.7027 0.7024, 0.7030 0.00033 0.39
ρ∗34 = 0.60 0.6041 0.6036, 0.6044 0.00032 0.68

Table 12: Correlation results for the L-moment procedure. Sample size of n = 25.

Parameter Estimate 95% bootstrap CI Standard error Relative bias %
η12 = 0.40 0.4074 0.4049, 0.4099 0.00154 1.85
η13 = 0.60 0.6068 0.6049, 0.6087 0.00153 1.13
η14 = 0.80 0.8058 0.8046, 0.8067 0.00152 0.73
η23 = 0.50 0.5078 0.5056, 0.5100 0.00151 1.56
η24 = 0.70 0.7076 0.7061, 0.7091 0.00154 1.09
η34 = 0.60 0.6063 0.6045, 0.6083 0.00155 1.05

In general, to obtain defined values of μr based on (A.1) we must have (i) γ + κ < 1/r, (ii)
κ < 1/r, and (iii) 1/r + γ < κ.

The mean, variance, skew, and kurtosis are defined in general as in [17]

α1 = μ1,

α22 = μ2 − μ2
1,

α3 =

(
μ3 − 3μ2μ1 + 2μ3

1

)

α32
,

α4 =

(
μ4 − 4μ3μ1 − 3μ2

2 + 12μ2μ
2
1 − 6μ4

1

)

α42
.

(A.2)

The moments associated with the location and scale parameters in (A.2) are

α1 = μ1 =

((−γ − κ)h11 +
(
γ − κ)h12 +

(−γ + κ)h13 + 2κh14 +
(
γ + κ

)
h15 − 2κh16

)
(
2γ
) (A.3)

with harmonic number functionsH[·] of h11 = H[(1/2)(−1−γ−κ)], h12 = H[(1/2)(−1+γ−κ)],
h13 = H[(1/2)(γ − κ)], h14 = H[(1/2)(−1 − κ)], h15 = H[(−1/2)(γ + κ)], h16 = H[(−1/2)κ],
and

μ2 =
(−(γ − 2κ

)
h21 − 2κh22 −

(
γ + κ

)
h23 +

(
γ + κ

)
h24 +

(
γ + 2κ

)
h25

−(γ + 2κ
)
h26 +

(
γ − 2κ

)
h27 +

(
γ − κ)h28 +

(−γ + κ)h29 + 2κh210/
(
2γ2
)) (A.4)
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Table 13: Correlation results for the L-moment procedure. Sample size of n = 1000.

Parameter Estimate 95% bootstrap CI Standard error Relative bias %
η12 = 0.40 0.4000 0.3996, 0.4004 0.00023 —
η13 = 0.60 0.6002 0.5999, 0.6005 0.00023 —
η14 = 0.80 0.8001 0.7999, 0.8002 0.00023 —
η23 = 0.50 0.4997 0.4994, 0.5001 0.00023 —
η24 = 0.70 0.7002 0.6999, 0.7004 0.00023 —
η34 = 0.60 0.5999 0.5996, 0.6002 0.00023 —

with harmonic number functions H[·] of h21 = H[(1/2)(−1 + γ − 2κ)], h22 = H[−1/2 − κ],
h23 = H[−1/2 − γ − κ], h24 = H[−γ − κ], h25 = H[−1/2 − γ/2 − κ], h26 = H[−γ/2 − κ],
h27 = H[γ/2 − κ], h28 = H[−1/2 + γ − κ], h29 = H[γ − κ], and h210 = H[−κ].

The moments associated with the shape parameters of skew and kurtosis in (A.2) are

μ3 = 3
(−(γ + κ)h31 −

(
γ + 3κ

)
h32 +

(
γ − 3κ

)
h33 −

(
γ − 3κ

)
h34 +

(
γ − κ)h35 + 2κh36

+
(
2γ + 3κ

)
h37 +

(−2γ − 3κ
)
h38 +

(
γ + 3κ

)
h39 +

(−2γ + 3κ
)
h310

+
(
2γ − 3κ

)
h311 +

(−γ + κ)h312 − 2κh313 +
(
γ + κ

)
h314
)
/
(
2γ3
)

(A.5)

with harmonic number functions H[·] of h31 = H[(1/2)(−1 − 3γ − 3κ)], h32 = H[(1/2)(−1 −
γ − 3κ)], h33 = H[(1/2)(−1 + γ − 3κ)], h34 = H[(1/2)(γ − 3κ)], h35 = H[(1/2)(−1 + 3γ − 3κ)],
h36 = H[−1/2 − 3κ/2], h37 = H[−1/2 − γ − 3κ/2], h38 = H[−γ − 3κ/2], h39 = H[−γ/2 − 3κ/2],
h310 = H[−1/2 + γ − 3κ/2], h311 = H[γ − 3κ/2], h312 = H[3(γ − κ)/2], h313 = H[−3κ/2],
h314 = H[−3(γ + κ)/2], and

μ4 = 2
(−(γ − 4κ

) − 2κh41 −
(
γ + κ

)
h42 +

(
3γ + 4κ

)
h43 +

(−3γ − 4κ
)
h44

− 3
(
γ + 2κ

)
h45 + 3

(
γ + 2κ

)
h46 +

(
γ + 4κ

)
h47 −

(
γ + 4κ

)
h48

+
(
γ − 4κ

)
h49 + 3

(
γ − 2κ

)
h410 +

(−3γ − 2κ
)
h411 +

(−3γ + 4κ
)
h412

+
(
3γ − 4κ

)
h413 +

(
γ − κ)h414 +

(−γ + κ)h415 + 2κh416

+
(
γ + κ

)
h417
)
/
(
γ4
)

(A.6)

with harmonic number functions H[·] of h41 = H[−1/2 − 2κ], h42 = H[−1/2 − 2γ − 2κ],
h43 = H[−1/2 − 3γ/2 − 2κ], h44 = H[−3γ/2 − 2κ], h45 = H[−1/2 − γ − 2κ], h46 = H[−γ − 2κ],
h47 = H[−1/2 − γ/2 − 2κ], h48 = H[−γ/2 − 2κ], h49 = H[γ/2 − 2κ], h410 = H[−1/2 + γ − 2κ],
h411 = H[γ − 2κ], h412 = H[−1/2 + 3γ/2 − 2κ], h413 = H[3γ/2 − 2κ], h414 = H[−1/2 + 2γ − 2κ],
h415 = H[2γ − 2κ], h416 = H[−2κ], and h417 = H[−2γ − 2κ].

The moments for the asymmetric γ class of distributions in (2.4) can be obtained by
taking the limit of (A.3)–(A.6) as κ → 0. Analogously, the moments for the symmetric κ class
of distributions in (2.5) can be obtained by taking the limit of (A.3)–(A.6) as γ → 0.
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B. System of Conventional Moment-Based Equations for
κL-κR Distributions

The moments (μr=1,...,4) associated with the asymmetric κL-κR class of distributions in (2.6)
can be determined from

μr =
∫0

−∞
q(x, κL)rfX(x)dx +

∫+∞

0
q(x, κR)rfX(x)dx. (B.1)

Using the expressions in (A.2), the moments for the location and scale parameters are

α1 = μ1 =
1
4
(
2p11 − 2p12 − 2p13 + 2p14 − κLp15 + κLp16 + κRp17 − κRp18

)
, (B.2)

μ2 =
1
2

(
κLHZ

[
3,

1
2
− κL

]
− κLHZ[3, 1 − κL] + p15 + p16

)

+
1
2

(
κRHZ

[
3,

1
2
− κR

]
− κRHZ[3, 1 − κR] + p17 − p19

)
,

(B.3)

where the polygamma functions P[·] are: p11 = P[0, 1/2 − κL/2], p12 = P[0, 1 − κL/2], p13 =
P[0, 1/2 − κR/2], p14 = P[0, 1 − κR/2], p15 = P[1, 1/2 − κL/2], p16 = P[1, 1 − κL/2], p17 =
P[1, 1/2 − κR/2], p18 = P[1, 1 − κR/2], and p19 = P[1, 1 − κR]. The notation HZ[·] in (B.3) is
the Hurwitz zeta function. The moments related to skew and kurtosis are as follows:

μ3 =
3
16

(
2p31 − 2p32 − κLp33 + κLp34

+
3
8

(
p35 + 2Z

[
3,

1
2
(1 − 3κR)

]
+ 3κRZ

[
4,

1
2
(1 − 3κR)

]
− 3κRZ

[
4, 1 − 3κR

2

]))
,

(B.4)

μ4 =
1
8
(
p41 − p42 − κLp43 + κLp44

)
+
1
8
(
2p45 − 2p46 − κRp47 + κRp48

)
, (B.5)

where the polygamma functions P[·] are p31 = P[2, 1/2 − 3κL/2], p32 = P[2, 1 − 3κL/2],
p33 = P[3, 1/2 − 3κL/2], p34 = P[3, 1 − 3κL/2], p35 = P[2, 1 − 3κR/2], p41 = P[3, 1/2 − 2κL],
p42 = P[3, 1 − 2κL], p43 = P[4, 1/2 − 2κL], p44 = P[4, 1 − 2κL], p45 = P[3, 1/2 − 2κR], p46 =
P[3, 1 − 2κR], p47 = P[4, 1/2 − 2κR], and p48 = P[4, 1 − 2κR]. The notation Z[·] in (B.4) is the
zeta function.
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