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This paper characterizes the conventional moment-based Schmeiser-Deutsch (S-D) class of
distributions through the method of L-moments. The system can be used in a variety of settings
such as simulation or modeling various processes. A procedure is also described for simulating
S-D distributions with specified L-moments and L-correlations. The Monte Carlo results presented
in this study indicate that the estimates of L-skew, L-kurtosis, and L-correlation associated with the
S-D class of distributions are substantially superior to their corresponding conventional product-
moment estimators in terms of relative bias—most notably when sample sizes are small.

1. Introduction

The conventional moment-based Schmeiser-Deutsch (S-D) [1] class of distributions has
demonstrated to be useful for modeling or simulating phenomena in the contexts of
operations research and industrial engineering. Some examples include modeling stochastic
inventory processes and lead time distributions [2–7], unpaced line efficiency [8, 9], two-
stage production systems [10], stochastic activity networks [11, 12], and the newsboy
problem [13]. Further, it is also common practice for methodologists to investigate
the Type I error and power properties associated with inferential statistics (e.g., [14]).
In many cases, these investigations may only require an elementary transformation to
produce distributions with specified values of conventional skew, kurtosis, and Pearson
correlations (or Gaussian copulas). The S-D class of distributions is particularly well suited
for this task as it is computationally efficient because it only requires the knowledge
of four parameters and an algorithm that generates zero-one uniform pseudorandom
deviates.
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Figure 1: A graph of an S-D distribution based on the pdf in (2.4). The values of skew and kurtosis were
determined based on (A.2) for α3 and α4 in the Appendix. The values of τ3 and τ4 were determined
based on (3.4) and (3.5). The estimates (α̂3,4; τ̂3,4) and bootstrap confidence intervals (C.I.s) were based
on resampling 25,000 statistics. Each sample statistic was based on a sample size of n = 25.

Specifically, the quantile function for generating S-D distributions can be succinctly
described as in [1]:

X = q(U) =

⎧⎪⎨⎪⎩
γ1 − γ2

(
γ4 −U

)γ3 , for U ≤ γ4,

γ1 + γ2
(
U − γ4

)γ3 , for U > γ4,

(1.1)

where U is zero-one uniformly distributed. The values of γ1 ∈ (−∞,+∞) and γ2 ≥ 0 are the
location and scale parameters, while γ3 ≥ 0 and γ4 ∈ [0, 1] are the shape parameters that
determine the skew and kurtosis. The system of equations for determining the parameters in
(1.1) for a S-D distribution with prespecified values of mean, variance, skew, and kurtosis is
given in the Appendix. Figure 1 gives an example of an S-D distribution.

There are problems associatedwith conventional moment-based estimators (e.g., skew
and kurtosis α̂3, 4 in Figure 1) insofar as they can be substantially biased, have high variance,
or can be influenced by outliers. For example, inspection of Figure 1 indicates, on average,
that the estimates of α̂3, 4 attenuate 27.51% and 38.82% below their associated population
parameters. Note that each estimate of α̂3, 4 in Figure 1 was calculated based on samples of
size n = 25 and the formulae currently used by most commercial software packages such as
SAS, SPSS, and Minitab for computing skew and kurtosis.
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However, L-moment-based estimators, such as L-skew (τ̂3), L-kurtosis (τ̂4), and the
L-correlation, have been introduced to address the limitations associated with conventional
moment-based estimators [15–18]. Specifically, some of the advantages that L-moments have
over conventional moments are that they (i) exist whenever the mean of the distribution
exists, (ii) are nearly unbiased for all sample sizes and distributions, and (iii) are more
robust in the presence of outliers. For example, the estimates of τ̂3, 4 in Figure 1 are relatively
much closer to their respective parameters τ3, 4 with smaller relative standard errors than
their corresponding conventional moment-based analogs α̂3, 4. More specifically, the estimates
of τ̂3, 4 that were simulated are, on average, 9.19% below and 5.7% above their respective
parameters.

Thus, the present aim here is to characterize the S-D class of distributions through
the method of L-moments. The characterization will enable researchers to model or
simulate nonnormal distributions with specified values of L-skew, L-kurtosis, and L-
correlation. The rest of the paper is outlined as follows. In Section 2, a summary of
univariate L-moment theory is provided as well as additional properties associated with S-D
distributions. In Section 3, the derivation of the system of equations for specifying values
of L-skew and L-kurtosis for the S-D class of distributions is subsequently provided. In
Section 4, the coefficient of L-correlation is introduced and the equations are developed
for determining intermediate correlations for specified L-correlations associated with the
S-D class of distributions. In Section 5, the steps for implementing a simulation procedure
are described. Numerical examples and the results of a simulation are also provided to
confirm the derivations and compare the new methodology with its conventional moment-
based counterparts. In Section 6, the results of the simulation are discussed and concluding
comments are made.

2. Preliminaries on Univariate L-Moments and the Schmeiser-Deutsch
Class of Distributions

2.1. Univariate L-Moments

Let Y1, . . . , Yj , . . . , Yn be identically and independently distributed random variables each
with continuous pdf f(y), cdf F(y), order statistics denoted as Y1 :n ≤ · · · ≤ Yj :n ≤ · · · ≤ Yn :n,
and L-moments defined in terms of either linear combinations of (i) expectations of order
statistics or (ii) probability weighted moments (βi). For the purposes considered herein, the
first four L-moments associated with Yj :n are expressed as [16, pages 20–22]

λ1 = E[Y1 : 1] = β0,

λ2 =
1
2
E[Y2 : 2 − Y1 : 2] = 2β1 − β0,

λ3 =
1
3
E[Y3 : 3 − 2Y2 : 3 + Y1 : 3] = 6β2 − 6β1 + β0,

λ4 =
1
4
E[Y4 : 4 − 3Y3 : 4 + 3Y 2 : 4 − Y1 : 4] = 20β3 − 30β2 + 12β1 − β0,

(2.1)
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where the βi are determined from

βi =
∫
y
{
F
(
y
)}i

f
(
y
)
dy, (2.2)

where i = 0, . . . , 3. The coefficients associated with βi in (2.2) are obtained from shifted
orthogonal Legendre polynomials and are computed as shown in [16, page 20].

The L-moments λ1 and λ2 in (2.1) are measures of location and scale and are the
arithmetic mean and one-half the coefficient of mean difference, respectively. Higher order L-
moments are transformed to dimensionless quantities referred to as L-moment ratios defined
as τr = λr/λ2 for r ≥ 3, and where τ3 and τ4 are the analogs to the conventional measures of
skew and kurtosis. In general, L-moment ratios are bounded in the interval −1 < τr < 1 as is
the index of L-skew (τ3)where a symmetric distribution implies that all L-moment ratios with
odd subscripts are zero. Other smaller boundaries can be found for more specific cases. For
example, the index of L-kurtosis (τ4) has the boundary condition for continuous distributions
of [19] (5τ23 − 1)/4 < τ4 < 1.

2.2. The Schmeiser-Deutsch (S-D) Class of Distributions

The cdf and pdf associated with the S-D quantile function in (1.1) are expressed as in [1]:

FX(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γ4 −

(
γ1 − x

γ2

)1/γ3
, if γ1 − γ2γ4

γ3 ≤ x ≤ γ1

γ4 +
(
x − γ1
γ2

)1/γ3
, if γ1 ≤ x ≤ γ1 + γ2

(
1 − γ4

)γ3 , (2.3)

fX(x) =
1

γ2γ3

∣∣∣∣γ1 − x

γ2

∣∣∣∣(1−γ3)/γ3 , for γ1 − γ2γ4
γ3 ≤ x ≤ γ1 + γ2

(
1 − γ4

)γ3 . (2.4)

Setting γ4 = 0.50 in (2.4) produces symmetric S-D densities with a lower bound of kurtosis
of α4 = −2 as γ3 → 0. Positive (negative) skew is produced for cases where 0 ≤ γ4 < 0.50
(0.50 < γ4 ≤ 1) and γ3 > 1, where γ3 < 1 reverses the direction of skew. For γ3 > 1 (0 < γ3 < 1),
the uniquemode (antimode) is located at γ1 andwhere γ3 = 1 produces uniform distributions.
For example, the distribution in Figure 1 is bounded in the range of 9.9372 ≤ x ≤ 11.2748 with
mode, mean, and variance of 10, 10.042, and 0.0271, respectively. See the Appendix for the
formulae for computing the moments associated with S-D distributions. In the next section,
the system of L-moments for the class of S-D distributions is derived.

3. L-Moments for the Schmeiser-Deutsch (S-D) Class of Distributions

The derivation of the first four L-moments associated with the S-D class of distributions
begins by defining the probability weighted moments based on (2.2) in terms of (1.1) as

βi =
∫ γ4

0
q
(
u, γ1, γ2, γ3, γ4

){F(u)}if(u)du +
∫1

γ4

q
(
u, γ1, γ2, γ3, γ4

){F(u)}if(u)du, (3.1)
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where F(u) = u and f(u) = 1 are the zero-one uniform cdf and pdf. As such, integrating (3.1)
for i = 0, 1, 2, 3 and simplifying using (2.1) give λ1, λ2, τ3, and τ4 as

λ1 = γ1 +
γ2
(
1 − γ4

)1+γ3(
1 + γ3

) − γ1γ4 + γ4

(
γ1 −

γ2γ4
γ3(

1 + γ3
)), (3.2)

λ2 =

(
−γ2γ1+γ34

(
2γ4 − γ3 − 2

)
+ γ2
(
1 − γ4

)1+γ3(γ3 + 2γ4
))

((
1 + γ3

)(
2 + γ3

)) , (3.3)

τ3 = −
{((

1 − γ4
)1+γ3(γ3(1 − 6γ4

) − γ23 + 6
(
1 − 2γ4

)
γ4
)

+γ1+γ34

(
6 + 5γ3 + γ23 − 6

(
3 + γ3

)
γ4 + 12γ24

))
/
((

3 + γ3
)((

2 + γ3 − 2γ4
)
γ4

1+γ3 +
(
1 − γ4

)1+γ3(γ3 + 2γ4
)))}

,

(3.4)

τ4 =
{
−(1 − γ4

)1+γ3((γ3 − 2
)(
γ3 − 1

)
γ3 + 12

(
γ3 − 2

)(
γ3 − 1

)
γ4 + 60

(
γ3 − 2

)
γ24 + 120γ34

)
+γ1+γ34

(
−24 − 26γ3 − 9γ23 − γ33 + 12

(
3 + γ3

)(
4 + γ3

)
γ4 − 60

(
4 + γ3

)
γ24 + 120γ34

)}
/
{(

3 + γ3
)(
4 + γ3

)(
γ
1+γ3
4

(
2γ4 − γ3 − 2

) − (1 − γ4
)1+γ3(γ3 + 2γ4

))}
.

(3.5)

Thus, given user-specified values of λ1, λ2, τ3, and τ4, (3.2)–(3.5) can be numerically solved
to obtain the parameters for γ1, γ2, γ3, and γ4. Inspection of (3.4) and (3.5) indicates that the
solutions to τ3 and τ4 are independent of the location and scale parameters (λ1 and λ2). As
with the conventional S-D class of symmetric distributions (γ4 = 0.5) the lower-bound of
L-kurtosis τ4 = −0.25 is obtained as γ3 → 0.

Table 1 gives four examples of S-D distributions. These four distributions are used
in the simulation portion of this study in Section 5. Distribution 1 was used by Lau [13] for
stochastic modeling related to the newsboy problem andDistribution 2was used byAardal et
al. [2] in the context of modeling inventory-control systems. The values of conventional skew
and kurtosis for the four distributions were determined based on (A.2) in the Appendix. In
the next section, we introduce the topic of the L-correlation and subsequently develop the
methodology for simulating S-D distributions with specified L-correlations.

4. L-Correlations for the Schmeiser-Deutsch (S-D) Class
of Distributions

The L-correlation [17, 18] is introduced by considering two random variables Yj and Yk with
distribution functions F(Yj) and F(Yk), respectively. The second L-moments of Yj and Yk can
alternatively be expressed as

λ2
(
Yj

)
= 2Cov

(
Yj, F

(
Yj

))
, (4.1)

λ2(Yk) = 2Cov(Yk, F(Yk)). (4.2)
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Table 1: Four S-D distributions and their associated L-moments, conventional moments (C-moments), and
S-D parameters used in the simulation. The values of L-skew (τ3) and L-kurtosis (τ4) are based on (3.4)
and (3.5). The values of skew (α3) and kurtosis (α4) are based on the expressions in (A.2) of the Appendix.

Distribution L-moments C-moments S-D parameters

L-moment C-moment

(1) Moderate positive skew and platykurtic

λ1 = 0 α1 = 0 γ1 = −0.8429 γ1 = −0.8427
λ2 = 1/

√
π α2 = 1 γ2 = 4.6222 γ2 = 4.6213

τ3 = 0.1647 α3 = 0.5524 γ3 = 1.5 γ3 = 1.5

τ4 = 0.01606 α4 = −0.9261 γ4 = 0.25 γ4 = 0.25

(2) Symmetric and mesokurtic

λ1 = 0 α1 = 0 γ1 = 0 γ1 = 0

λ2 = 1/
√
π α2 = 1 γ2 = 22.568 γ2 = 21.166

τ3 = 0 α3 = 0 γ3 = 3 γ3 = 3

τ4 = 0.2857 α4 = 0.7692 γ4 = 0.50 γ4 = 0.50

(3) Positive skew and leptokurtic

λ1 = 0 α1 = 0 γ1 = −0.2344 γ1 = −0.1373
λ2 = 1/

√
π α2 = 1 γ2 = 59196.04 γ2 = 34569.55

τ3 = 0.3314 α3 = 3 γ3 = 12.89 γ3 = 12.89

τ4 = 0.7011 α4 = 15 γ4 = 0.4853 γ4 = 0.4853

(4) Negative skew and leptokurtic

λ1 = 0 α1 = 0 γ1 = 0.6148 γ1 = 0.3043

λ2 = 1/
√
π α2 = 1 γ2 = 2960.06 γ2 = 1465.19

τ3 = −0.8414 α3 = −4.181 γ3 = 15 γ3 = 15

τ4 = 0.6483 α4 = 18.21 γ4 = 0.70 γ4 = 0.70

The second L-comoments of Yj toward Yk and Yk toward Yj are

λ2
(
Yj, Yk

)
= 2Cov

(
Yj, F(Yk)

)
, (4.3)

λ2
(
Yk, Yj

)
= 2Cov

(
Yk, F

(
Yj

))
. (4.4)

As such, the L-correlations of Yj toward Yk and Yk toward Yj are expressed as

ηjk =
λ2
(
Yj, Yk

)
λ2
(
Yj

) , (4.5)

ηkj =
λ2
(
Yk, Yj

)
λ2(Yk)

. (4.6)

The L-correlation in (4.5) (or (4.6)) is bounded such that −1 ≤ ηjk ≤ 1 where a value of ηjk = 1
(ηjk = −1) indicates a strictly increasing (decreasing) monotone relationship between the two
variables. In general, we would also note that ηjk /=ηkj .
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In the context of the L-moment-based S-D class of distributions, suppose it is desired
to simulate a T -variate distribution based on quantile functions of the forms in (1.1) with a
specified L-correlation matrix and where each distribution has its own specified values of τ3
and τ4. Let Z1, . . . , ZT denote standard normal variables where the distribution functions and
bivariate density function associated with Zj and Zk are expressed as

Φ
(
zj
)
= Pr

{
Zj ≤ zj

}
=
∫zj

−∞
(2π)−1/2 exp

{−w2
j

2

}
dwj, (4.7)

Φ(zk) = Pr{Zk ≤ zk} =
∫zk

−∞
(2π)−1/2 exp

{−w2
k

2

}
dwk, (4.8)

fjk =
(
2π
(
1 − ρ2jk

)1/2) −1
exp
{
−
(
2
(
1 − ρ2jk

))−1(
z2j + z2k − 2ρjkzjzk

)}
. (4.9)

Using (4.7), it follows that the jth S-D distribution associated with (1.1) can be expressed
as qj(Φ(Zj)) since Φ(Zj) is zero-one uniformly distributed. As such, using (4.5), the L-
correlation of qj(Φ(Zj)) toward qk(Φ(Zk)) can be evaluated using the solved values of the
parameters for qj(Φ(Zj)), a specified intermediate correlation (IC) ρjk in (4.9), and the following
integral generally expressed as

ηjk = 2
√
π

∫∫+∞

−∞
qj
(
Φ
(
zj
)
, γ1j , γ2j , γ3j , γ4j

)
Φ(zk)fjk dzj dzk, (4.10)

where it is required that the location and scale parameters (γ1j , γ2j ) in (4.10) are to be solved
such that qj(Φ(Zj)) will have the values of λ1 = 0 and λ2 = 1/

√
π in (3.2) and (3.3), that

is, set to the values of λ1 and λ2 associated with the unit normal distribution. Note that
this requirement is not a limitation as the L-correlation is invariant to linear transformations
[17]. Further, we would point out that the purpose of the IC (ρjk) in (4.9) and (4.10) is to
adjust for the effect of the transformation qj(Φ(Zj)), which is induced by the parameters,
such that qj(Φ(Zj)) has its specified L-correlation (ηjk) toward qk(Φ(Zk)). Analogously, the
L-correlation of qk(Φ(Zk)) toward qj(Φ(Zj)) is expressed as

ηkj = 2
√
π

∫∫+∞

−∞
qk
(
Φ(zk), γ1k , γ2k , γ3k , γ4k

)
Φ
(
zj
)
fjk dzk dzj . (4.11)

Note for the special case that if qj(Φ(Zj)) in (4.10) and qk(Φ(Zk)) in (4.11) have the same
parameters, that is, γ1j = γ1k ; γ2j = γ2k ; γ3j = γ3k ; γ4j = γ4k , then ηjk = ηkj . Provided in
Algorithm 1 is source code written in Mathematica [20] that implements the computation
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(∗ Intermediate Correlation for Distributions 1 and 2. See Table 4. ∗)
ρjk = 0.714645;

Needs[“MultivariateStatistics”]
fjk = PDF[MultinormalDistribution[{0, 0}, {{1, ρjk}, {ρjk, 1}}], {Zj, Zk}];
Fj = CDF[NormalDistribution[0, 1], Zj];
Fk = CDF[NormalDistribution[0, 1], Zk];

(∗ S-D L-moment Parameters for Distribution j = 1 in Table 1 ∗)
γ1 = −0.8429;
γ2 = 4.6222;
γ3 = 1.5;
γ4 = 0.25;
(∗ Quantile function for (1.1) ∗)
q1j = γ1j − γ2j ∗ (γ4j − Fj)

γ3j ;
q2j = γ1j + γ2j ∗ (Fj − γ4j )

γ3j ;
Xj =Piecewise[{{q1j , Fj ≤ γ4j }, {q2j , Fj > γ4j }}]

(∗ Compute the specified correlation in Table 2 for Distributions 1 and 2 ∗)
ηjk = 2

√
π ∗NIntegrate[Xj ∗ Fk ∗ fjk, {Zj,−10, 10}, {Zk,−10, 10},Method → MultiDimensional]

0.70

Algorithm 1: Mathematica source code for computing intermediate correlations for specified L-correla-
tions. The example is for distributions j = 1 and k = 2 (η12) in Table 1. See Tables 2 and 4.

of an IC (ρjk) based on (4.10). The details for simulating S-D distributions with specified
values of L-skew, L-kurtosis, and L-correlations are described in the next section.

5. The Procedure for Simulation and Monte Carlo Study

To implement a method for simulating S-D distributions with specified L-moments and L-
correlations we suggest the following six steps.

(1) Specify the L-moments for T transformations of the forms in (1.1), that is,
q1(Φ(Z1)), . . . , qT (Φ(ZT )) and obtain the solutions for the parameters of γ1j , γ2j , γ3j ,
and γ4j by solving (3.2)–(3.5)with λ1 = 0 and λ2 = 1/

√
π using the specified values

of L-skew (τ3) and L-kurtosis (τ4) for each distribution. Specify a T × T matrix
of L-correlations (ηjk) for qj(Φ(Zj)) toward qk(Φ(Zk)), where j < k ∈ {1, 2, . . . ,
T}.

(2) Compute the (Pearson) intermediate correlations (ICs) ρjk by substituting the
solutions of the parameters from Step (1) into (4.10) and then numerically integrate
to solve for ρjk (see Algorithm 1 for an example). Repeat this step separately for all
T(T − 1)/2 pairwise combinations of correlations.

(3) Assemble the ICs into a T × T matrix and decompose this matrix using a
Cholesky factorization. Note that this step requires the IC matrix to be positive
definite.
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(4) Use the results of the Cholesky factorization from Step (3) to generate T standard
normal variables (Z1, . . . , ZT ) correlated at the intermediate levels as follows:

Z1 = a11V1,

Z2 = a12V1 + a22V2,

...

Zj = a1jV1 + a2jV2 + · · · + aijVi + · · · + ajjVj ,

...

ZT = a1TV1 + a2TV2 + · · · + aiTVi + · · · + ajTVj + · · · + aTTVT ,

(5.1)

where V1, . . . , VT are independent standard normal random variables and where aij

represents the element in the ith row and the jth column of the matrix associated
with the Cholesky factorization performed in Step (3).

(5) SubstituteZ1, . . . , ZT from Step (4) into the following Taylor series-based expansion
for the standard normal cdf [21]:

Φ
(
Zj

)
=
(
1
2

)
+ φ
(
Zj

)⎧⎨⎩Zj +
Z3

j

3
+

Z5
j

(3 · 5) +
Z7

j

(3 · 5 · 7) + · · ·
⎫⎬⎭, (5.2)

where φ(Zj) denotes the standard normal pdf and where the absolute error
associated with (5.2) is less than 8 × 10−16.

(6) Substitute the zero-one uniform deviates, Φ(Zj), generated from Step (5) into the
T equations of the form of qj(Φ(Zj)) to generate the S-D distributions with the
specified L-moments and L-correlations.

To demonstrate the steps above, and evaluate the proposed method, a comparison
between the proposed L-moment and conventional product-moment-based procedures is
subsequently described. Specifically, the parameters for the distributions in Table 1 are used
as a basis for a comparison using the specified correlation matrix in Table 2. Tables 3 and
4 give the solved IC matrices for the conventional moment and L-moment-based methods,
respectively. See Algorithm 2 for an example of computing ICs for the conventional method.
Tables 5 and 6 give the results of the Cholesky decompositions on the IC matrices, which are
then used to create Z1, . . . , Z4 with the specified ICs by making use of the formulae given
in (5.1) of Step (4) with T = 4. The values of Z1, . . . , Z4 are subsequently transformed to
Φ(Z1), . . . ,Φ(Z4) using (5.2) and then substituted into equations of the forms in (1.1) to
produce q1(Φ(Z1)), . . . , q4(Φ(Z4)) for both methods.

In terms of the simulation, a Fortran algorithm was written for both methods
to generate 25,000 independent sample estimates for the specified parameters of (i)
conventional skew (α3), kurtosis (α4), and Pearson correlation (ρ∗

jk
); (ii) L-skew (τ3), L-

kurtosis (τ4), and L-correlation (ηjk). All estimates were based on sample sizes of n = 25
and n = 1000. The formulae used for computing estimates of α3, 4 were based on Fisher’s k-
statistics, that is, the formulae currently used by most commercial software packages such
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Table 2: Specified correlation matrix for the distributions in Table 1.

1 2 3 4
1 1
2 0.70 1
3 0.60 0.60 1
4 0.35 0.60 0.40 1

Table 3: Intermediate correlations for the conventional moment procedure.

1 2 3 4
1 1
2 0.761371 1
3 0.945345 0.813672 1
4 0.810720 0.956258 0.910196 1

Table 4: Intermediate correlations for the L-moment procedure.

1 2 3 4
1 1
2 0.714645 1
3 0.615758 0.584908 1
4 0.362634 0.584908 0.332108 1

as SAS, SPSS, and Minitab, for computing indices of skew and kurtosis (where α3, 4 = 0
for the standard normal distribution). The formulae used for computing estimates of τ3, 4
were Headrick’s equations (2.4) and (2.6) [22]. The estimate for ρ∗jk was based on the usual
formula for the Pearson product-moment of correlation statistic and the estimate for ηjk
was computed based on (4.5) using the empirical forms of the cdfs in (4.1) and (4.3). The
estimates for ρ∗jk and ηjk were both transformed using Fisher’s z′ transformation. Bias-
corrected-accelerated-bootstrapped average (mean) estimates, confidence intervals (C.I.s),
and standard errors were subsequently obtained for the estimates associated with the
parameters (α3, 4, τ3, 4, z′ρ∗

jk
, z′ηjk) using 10,000 resamples via the commercial software package

Spotfire S+ [23]. The bootstrap results for the estimates of the means and C.I.s associated with
z′ρ∗

jk
and z′ηjk were transformed back to their original metrics (i.e., estimates for ρ∗

jk
and ηjk).

Further, if a parameter (P) was outside its associated bootstrap C.I., then an index of relative
bias (RB) was computed for the estimate (E) as: RB = ((E − P)/P) × 100. Note that the small
amount of bias associated with any bootstrap C.I. containing a parameter was considered
negligible and thus not reported. The results of the simulation are reported in Tables 7–12
and are discussed in the next section.

6. Discussion and Conclusion

One of the primary advantages that L-moments have over conventional moment-based
estimators is that they can be far less biased when sampling is from distributions with more
severe departures from normality (e.g. [16, 21]). Inspection of the simulation results in Tables
7 and 8 of this study clearly indicates that this is also the case for the S-D class of distributions.
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(∗ Intermediate Correlation for Distributions 1 and 2. See Table 3. ∗)
ρjk = 0.761371;

Needs[“MultivariateStatistics”]
fjk = PDF[MultinormalDistribution[{0, 0}, {{1, ρjk}, {ρjk, 1}}], {Zj, Zk}];
Fj = CDF[NormalDistribution[0, 1], Zj];
Fk = CDF[NormalDistribution[0, 1], Zk];

(∗ S-D C-Moment Parameters Distributions j = 1 and k = 2 in Table 1 ∗)
γ1j = −0.8427;
γ2j = 4.6213;
γ3j = 1.5;
γ4j = 0.25;
γ1k = 0.0;
γ2k = 21.166;
γ3k = 3.0;
γ4k = 0.5;

(∗ Quantile functions for (1.1) ∗)
q1j = γ1j − γ2j ∗ (γ4j − Fj)

γ3j ;
q2j = γ1j + γ2j ∗ (Fj − γ4j )

γ3j ;
Xj = Piecewise[{{q1j , Fj ≤ γ4j }, {q2j , Fj > γ4j }}]

q1k = γ1k − γ2k ∗ (γ4k − Fk)
γ3k ;

q2k = γ1k + γ2k ∗ (Fk − γ4k )
γ3k ;

Xk = Piecewise[{{q1k, Fk ≤ γ4k}, {q2k, Fk > γ4k}}]

(∗ Compute the specified correlation in Table 2 for Distributions 1 and 2. ∗)
ρ∗
jk

=NIntegrate[Xj ∗Xk ∗ fjk , {Zj,−10, 10}, {Zk,−10, 10}, Method→MultiDimensional]

0.70

Algorithm 2:Mathematica source code for computing intermediate correlations for specified conventional
Pearson correlations. The example is for distributions j = 1 and k = 2 (ρ∗12) in Table 1. See also Tables 2 and
3.

Table 5: Cholesky decompositions for the conventional moment procedure.

a11 = 1 a12 = 0.761371 a13 = 0.945345 a14 = 0.810720
0 a22 = 0.648316 a23 = 0.144858 a24 = 0.522892
0 0 a33 = 0.292128 a34 = 0.232914
0 0 0 a44 = 0.122753

Table 6: Cholesky decompositions for the L-moment procedure.

a11 = 1 a12 = 0.714645 a13 = 0.615758 a14 = 0.362634
0 a22 = 0.699487 a23 = 0.207094 a24 = 0.465703
0 0 a33 = 0.760233 a34 = 0.016269
0 0 0 a44 = 0.807064
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Table 7: Skew (α3) and kurtosis (α4) results for distributions 2 and 4 in Table 1.

Dist Parameter Estimate 95% bootstrap C.I. Standard error Relative bias %
n = 25

2 α3 = 0.0 0.0019 −0.0055, 0.0094 0.00381 —
α4 = 0.7692 1.166 1.1496, 1.1821 0.00825 51.59

4 α3 = −4.181 −3.581 −3.5917, −3.5702 0.00549 −14.35
α4 = 18.21 13.61 13.5278, 13.6973 0.04337 −25.26

n = 1000
2 α3 = 0.0 −0.0005 −0.0013, 0.0004 0.00042 —

α4 = 0.7692 0.7798 0.7778, 0.7817 0.00100 1.38

4 α3 = −4.181 −4.190 −4.1936, −4.1866 0.00177 0.22
α4 = 18.21 18.44 18.4046, 18.4738 0.01775 1.26

Table 8: L-skew (τ3) and L-kurtosis (τ4) results for distributions 2 and 4 in Table 1.

Dist Parameter Estimate 95% bootstrap C.I. Standard error Relative bias %
n = 25

2 τ3 = 0.0 0.0002 −0.0014, 0.0018 0.00079 —
τ4 = 0.2857 0.2981 0.2968, 0.2993 0.00063 4.34

4 τ3 = −0.8414 −0.8638 −0.8647, −0.8628 0.00049 2.66
τ4 = 0.6483 0.6956 0.6935, 0.6975 0.00102 7.30

n = 1000
2 τ3 = 0.0 −0.0001 −0.0003, 0.0001 0.00010 —

τ4 = 0.2857 0.2860 0.2859, 0.2862 0.00008 0.11

4 τ3 = −0.8414 −0.8422 −0.8423, −0.8420 0.00007 0.095
τ4 = 0.6483 0.6498 0.6495, 0.6501 0.00015 0.23

Table 9: Correlation results for the conventional moment procedure n = 25.

Parameter Estimate 95% bootstrap C.I. Standard error Relative bias %
ρ∗12 = 0.70 0.7083 0.7071, 0.7095 0.00121 1.19
ρ∗13 = 0.60 0.6396 0.6380, 0.6414 0.00146 6.60
ρ∗14 = 0.35 0.3837 0.3826, 0.3848 0.00065 9.63
ρ∗23 = 0.60 0.6342 0.6327, 0.6356 0.00122 5.70
ρ∗24 = 0.60 0.6342 0.6330, 0.6353 0.00097 5.70
ρ∗34 = 0.40 0.4958 0.4919, 0.5000 0.00272 23.95

Table 10: Correlation results for the L-moment procedure n = 25.

Parameter Estimate 95% bootstrap C.I. Standard error Relative bias %
η12 = 0.70 0.7155 0.7140, 0.7170 0.00152 2.21
η13 = 0.60 0.6155 0.6137, 0.6173 0.00148 2.58
η14 = 0.35 0.3588 0.3562, 0.3611 0.00143 2.51
η23 = 0.60 0.6116 0.6099, 0.6136 0.00149 1.93
η24 = 0.60 0.6057 0.6038, 0.6075 0.00151 0.95
η34 = 0.40 0.4217 0.4177, 0.4259 0.00257 5.43
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Table 11: Correlation results for the conventional moment procedure n = 1000.

Parameter Estimate 95% bootstrap C.I. Standard error Relative bias %

ρ∗12 = 0.70 0.7001 0.6999, 0.7003 0.00018 —

ρ∗13 = 0.60 0.6004 0.6001, 0.6006 0.00021 0.07

ρ∗14 = 0.35 0.3502 0.3500, 0.3504 0.00011 —

ρ∗23 = 0.60 0.6002 0.5999, 0.6004 0.00019 —

ρ∗24 = 0.60 0.6004 0.6002, 0.6006 0.00015 0.07

ρ∗34 = 0.40 0.4009 0.4004, 0.4013 0.00027 0.23

Table 12: Correlation results for the L-moment procedure n = 1000.

Parameter Estimate 95% bootstrap C.I. Standard error Relative bias %

η12 = 0.70 0.7002 0.7000, 0.7004 0.00022 —

η13 = 0.60 0.6005 0.6003, 0.6008 0.00021 0.08

η14 = 0.35 0.3501 0.3498, 0.3505 0.00021 —

η23 = 0.60 0.6000 0.5997, 0.6002 0.00022 —

η24 = 0.60 0.6002 0.5999, 0.6005 0.00021 —

η34 = 0.40 0.3984 0.3979, 0.3988 0.00035 −0.40

Specifically, the superiority that estimates of L-moment ratios (τ3, τ4) have over their
corresponding conventional moment based counterparts (α3,α4) is obvious. For example,
with samples of size n = 25 the estimates of skew and kurtosis for Distribution 4 (Table 7)
were, on average, 85.65% and 74.74% of their associated population parameters, whereas the
estimates of L-skew and L-kurtosis were 97.34% and 92.70% of their respective parameters.
Similar results were also obtained for Distributions 1 and 3 and thus not reported. It is also
evident from Tables 7 and 8 that L-skew and L-kurtosis are more efficient as their relative
standard errors RSE = (standard error/estimate) × 100 are smaller than the conventional
estimators of skew and kurtosis. For example, in terms of Distribution 4, inspection of Tables
7 and 8 (n = 25) indicates RSE measures of RSE(α̂3) = 0.1533% and RSE(α̂4) = 0.3187%
compared with RSE(τ̂3) = 0.0567% and RSE(τ̂4) = 0.1466%. This demonstrates that L-
skew and L-kurtosis have more precision because they have less variance around their
estimates.

Presented in Tables 9–12 are the results associated with the conventional Pearson and
L-correlations. Inspection of Tables 9 and 10 indicates that the L-correlation is substantially
superior to the Pearson correlation in terms of relative bias for small sample sizes. For
example, in terms of a moderate correlation (Table 9, n = 25, ρ∗12 = 0.40) the relative bias
for Distributions 3 and 4 was 23.95% for the Pearson correlation compared to 5.43% for the L-
correlation (Table 10, n = 25, η12 = 0.40). For large sample sizes (Tables 11 and 12, n = 1000),
both procedures performed adequately as their estimates were in close proximity with their
respective population parameters.

In summary, the proposed L-moment-based S-D class of distributions is an attractive
alternative to the conventional moment-based S-D system. In particular, the L-moment-based
system has distinct advantages when leptokurtic distributions and small sample sizes are of
concern. Finally, we would note that Mathematica Version 8.0 [20] source code is available
from the authors for implementing the L-moment-based method.
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Appendix

System of Conventional Moment-Based Equations for
S-D Distributions

The moments (μr=1,...,4) associated with the S-D class of distributions in (1.1) can be
determined from

μr =
∫ γ4

0
q
(
u, γ1, γ2, γ3, γ4

)r
f(u)du +

∫1

γ4

q
(
u, γ1, γ2, γ3, γ4

)r
f(u)du, (A.1)

where f(u) = 1 is the zero-one uniform pdf. The mean, variance, skew, and kurtosis are
defined in general as in [24]:

α1 = μ1,

α2
2 = μ2 − μ2

1,

α3 =

(
μ3 − 3μ2μ1 + 2μ3

1

)
α3
2

,

α4 =

(
μ4 − 4μ3μ1 − 3μ2

2 + 12μ2μ
2
1 − 6μ4

1

)
α4
2

.

(A.2)

The moments associated with the location and scale parameters in (A.2) are

μ1 = γ1 +
γ2
(
1 − γ4

)1+γ3(
1 + γ3

) − γ1γ4 + γ4

(
γ1 −

γ2γ
γ3
4(

1 + γ3
)),

μ2 =
2γ1γ2

(
1 − γ4

)1+γ3(
1 + γ3

) +
γ22
(
1 − γ4

)1+2γ3(
1 + 2γ3

) − γ21
(
γ4 − 1

)

+ γ4

(
γ21 + γ2γ

γ3
4

(
γ2γ

γ3
4(

1 + 2γ3
) − 2γ1(

1 + γ3
))).

(A.3)

The moments associated with the shape parameters of skew and kurtosis in (A.2) are

μ3 =
3γ21 γ2

(
1 − γ4

)1+γ3(
1 + γ3

) + 3γ1γ22

(
1 − γ4

)1+2γ3(
1 + 2γ3

) − γ32
(
1 − γ4

)1+3γ3 − γ31
(
γ4 − 1

)

+ γ4

(
γ31 + γ2γ

γ3
4

(
−3γ21(
1 + 1γ3

) + γ2γ
γ3
4

(
3γ1(

1 + 2γ3
) − γ2γ

γ3
4(

1 + 3γ3
)))),
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μ4 =
4γ31 γ2

(
1 − γ4

)1+γ3(
1 + γ3

) +
6γ21 γ

2
2

(
1 − γ4

)1+2γ3(
1 + 2γ3

) +
4γ1γ32

(
1 − γ4

)1+3γ3(
1 + 3γ3

) +
γ42
(
1 − γ4

)1+4γ3(
1 + 4γ3

) − γ41
(
γ4 − 1

)

+ γ4

(
γ41 + γ2γ

γ3
4

( −4γ31(
1 + γ3

) + γ2γ
γ3
4

(
6γ21(

1 + 2γ3
) + γ2γ

γ3
4

(
−4γ1(
1 + 3γ3

) + γ2γ
γ3
4(

1 + 43γ3
))))).

(A.4)
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