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Abstract

Power method polynomials are used for simulating non-normal dis-
tributions with specified product moments or L-moments. The power
method is capable of producing distributions with extreme values of
skew (L-skew) and kurtosis (L-kurtosis). However, these distributions
can be extremely peaked and thus not representative of real-world data.
To obviate this problem, two families of distributions are introduced
based on a doubling technique with symmetric standard normal and
logistic power method distributions. The primary focus of the method-
ology is in the context of L-moment theory. As such, L-moment based
systems of equations are derived for simulating univariate and multivari-
ate non-normal distributions with specified values of L-skew, L-kurtosis,
and L-correlation. Evaluation of the proposed doubling technique in-
dicates that estimates of L-skew, L-kurtosis, and L-correlation are su-
perior to conventional product-moments in terms of relative bias and
relative efficiency when extreme non-normal distributions are of con-
cern.
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1 Introduction

The power method (PM) transformation [4, 6, 7] has been used in a variety of
settings for the purpose of simulating non-normal distributions with specified
product moments. Some examples include: asset pricing theory [1], toxicology
research [17], price risk [25], business-cycle features [15], regression analysis
[10], ANOVA [3, 23, 24], ANCOVA [5, 12], microarray analysis [30], multi-
variate analysis [32], item response theory [33], nonparametric statistics [2],
and structural equation modeling [14]. The third-order PM transformation is
defined as in [4, 6, 7].

p(Z) = c0 + c1Z + c2Z
2 + c3Z

3 (1)

where Z ∼ iidN(0, 1) with standard normal probability density function (pdf)
and cumulative distribution function (cdf) denoted as φ(z) and Φ(z). In or-
der for (1) to produce a valid pdf it requires that the PM transformation be
a strictly increasing monotone function [7, p. 12]. This requirement implies
that an inverse function (p−1) exists. As such, the cdf associated with (1)
can be expressed as F (p(z)) = Φ(z) and subsequently differentiating this cdf
with respect to z will yield the PM pdf as f(p(z)) = φ(z)/(p′(z)). We would
note that the PM cdf and pdf could also be expressed as F (y) = Φ(z) and
f(y) = φ(z)/(p′(z)), where z = p−1(y).

One of the limitations associated with the PM is that distributions with
large values of skew and (or) kurtosis can be excessively leptokurtic and thus
may not be representative of real world data. For example, Figure 1 (Panel A)
gives a PM pdf with skew and kurtosis of γ3 = 4 and γ4 = 40. This example il-
lustrates the limitation that the PM can have in terms of excessive peakedness.

Another limitation associated with the PM is that conventional estimators
of γ3 and γ4 have unfavorable attributes insofar as they can be substantially
biased, have high variance, or can be influenced by outliers [8, 16]. To ad-
dress the latter limitation, the PM has been characterized in the context of
L-moments [8]. Specifically, some of the advantages that L-moment based es-
timators (e.g., L-skew and L-kurtosis) have over conventional moments in the
context of PM are that they (a) exist whenever the mean of the distribution
exists, (b) are nearly unbiased for all sample sizes and distributions, and (c)
are more robust in the presence of outliers [18-21].

Although the PM has been traditionally used for simulating non-normal
distributions with controlled Pearson correlations (e.g. [6, 11, 36]; [7, p.29]),
it also has limitations in this context. Specifically, the PM procedure is based
on conventional product moments and the popular NORTA ([28]) approach,
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which begins with generating multivariate standard normal deviates. The pri-
mary limitation associated with NORTA is that the Pearson correlation is not
invariant under nonlinear strictly increasing transformations such as (1). As
such, the NORTA approach must begin with the computation of an interme-
diate correlation (IC) matrix, which is different than the specified correlation
matrix between the non-normal PM distributions. The purpose of the IC
matrix is to adjust for the non-normalization effect of the transformation in
(1) such that the resulting non-normal distributions have their specified skew,
kurtosis, and specified correlation matrix. This requires the absolute values
of the solved intermediate correlations to be greater than (or equal to) their
associated specified Pearson correlations [36].
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c0 = −0.271450, c1 = 0.130891,

c2 = 0.271450, c3 = 0.211277

CL = 0.307610, CR = 0.985795

Figure 1: Graphs of a traditional third order (Panel A) and a double-SN (Panel
B) PM distributions based on matching the conventional skew of 4 and kurto-
sis of 40. The values of coefficients ci=0,1,2,3 for the distribution in Panel A and
the values of CL and CR for the distribution in Panel B were determined by
solving systems of equations (2.20) and (2.21) from [7, p. 15] and equations
(58) and (59) from the Appendix B, respectively.

Two other limitations associated with NORTA approach in this context are
that solutions to an IC matrix may neither (a) exist in the range of [-1, +1],
nor (b) yield a positive definite intermediate correlation matrix. To demon-
strate, Table 1 gives a computed IC matrix based on four non-normal PM
distributions and a specified positive definite correlation matrix. Inspection of
this table demonstrates the problem associated with this IC matrix as it is not
positive definite.
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In view of the above, we introduce two families of L-moment based distri-
butions that will ameliorate the problems of (a) excessive leptokurtic behavior
that is associated with some PM distributions and (b) biased estimates of
conventional measures of skew and kurtosis. These families of distributions
are referred herein as the double-SN and the double-SL PMs and are based
on a doubling technique as in [27]. Specifically, the double-SN PM family
of distributions is a combination of two piecewise polynomials of standard
normal-based transformations expressed as

p(Z) =

{
Z + CLZ

3, for Z ≤ 0
Z + CRZ

3, for Z ≥ 0
(2)

where CL ≥ 0 and CR ≥ 0. To demonstrate, Figure 1 (Panel B) shows the
graph of a double-SN distribution which has the height of the standard nor-
mal distribution and γ3 = 4, γ4 = 40 and with corresponding parameters of
L-skew and L-kurtosis of τ3 = 0.2559 and τ4 = 0.4007, respectively. Inspection
of Figure 1 (Panels A and B) clearly indicates that these two PM distributions
are markedly different even though both distributions have the same values of
skew and kurtosis (γ3 = 4, γ4 = 40).

Further, another goal of this article is to extend the advantages of the
L-moment-based PM [8] from univariate to multivariate non-normal data gen-
eration. Specifically, the purpose is to develop a methodology and a procedure
for simulating non-normal double PM distributions with specified L-moments
and controlled L-correlations. Two primary advantages of the proposed pro-
cedure are that intermediate correlations are less than, and in closer proximity
to, their respective specified correlations and thus less likely than the tradi-
tional PM procedure to produce an IC matrix that is not positive definite. To
demonstrate, inspection of Table 2 indicates that the problems associated with
the intermediate correlation matrix in Table 1 are circumvented by the new
L-moment-based procedure. More specifically, the solved values of intermedi-
ate correlations are in closer proximity to their respective specified correlations
and comprise a positive definite matrix.

The remainder of the paper is outlined as follows. In Section 2, a summary
of univariate L-moment theory is provided along with the derivations of the
systems of equations for the double PM families. Also included in Section 2
is the derivation of a double-SL PM family based on standard logistic distri-
bution, i.e., W + CLW

3 for W ≤ 0 and W + CRW
3 for W ≥ 0 in equation

(2). In Section 3, an introduction to the coefficient of L-correlation is provided
and the methodology for solving for intermediate correlations for specified L-
correlations between the double PM distributions is presented. In Section 4,
the steps for implementing the proposed L-moment procedure are described
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for simulating non-normal double PM distributions with controlled skew (L-
skew), kurtosis (L-kurtosis), and Pearson correlations (L-correlations). Nu-
merical examples and the results of simulation are also provided to confirm
the derivations and compare the new procedure with the traditional or con-
ventional moment-based procedure. In Section 5, the results of the simulation
are discussed.

1 2 3 4
1 1
2 0.688701 (0.60) 1
3 0.781855 (0.70) 0.554625 (0.50) 1
4 0.946869 (0.85) 0.753626 (0.70) 0.530600 (0.50) 1

Table 1: An invalid conventional moment-based intermediate correlation matrix
for the distributions in Figure 3. The specified values of Pearson correlation are
shown in the parentheses. The matrix of the solved intermediate correlations is not
positive definite even though the matrix of specified correlations is positive definite

1 2 3 4
1 1
2 0.552568 (0.60) 1
3 0.653742 (0.70) 0.464701 (0.50) 1
4 0.816350 (0.85) 0.664034 (0.70) 0.474651 (0.50) 1

Table 2: A valid (positive definite) L-moment-based double PM intermediate corre-
lation matrix for the distributions in Figure 3. The specified values of L-correlation
in parentheses correspond to the same specified values of Pearson correlation in
Table 1.

2 Methodology

2.1 Preliminaries

Let X be a continuous random variable from a distribution with cdf F (x), pdf
f(x), and probability weighted moments (PWMs) expressed as

βr =
∫
x{F (x)}rf(x)dx. (3)

The first four L-moments (λi=1,...,4) associated with X can be expressed as
linear combinations of the PWMs as in Headrick [8] (see, also [18-21])

λ1 = β0 (4)
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λ2 = 2β1 − β0 (5)

λ3 = 6β2 − 6β1 + β0 (6)

λ4 = 20β3 − 30β2 + 12β1 − β0. (7)

The coefficients associated with βr=0,...,3 in (4)-(7) are determined from shifted
orthogonal Legendre polynomials and are computed as shown in [21, p. 20] or
in [8].

As with conventional moments, the L-moments λ1 and λ2 in (4) and (5)
are measures of location and scale, which are the arithmetic mean and one-
half the coefficient of mean difference. The third- and fourth-order L-moments
are transformed to dimensionless L-moment ratios defined as τ3 = λ3/λ2 and
τ4 = λ4/λ2 and are referred to as the indices of L-skew and L-kurtosis. In
general, L-moment ratios are bounded in the interval of −1 < τr < 1, for
r ≥ 3, where a symmetric distribution (τ3 = 0) implies that all L-moment
ratios with odd subscripts are zero. Other smaller boundaries can be found
for more specific cases. For example, for continuous distributions the index of
L-kurtosis (τ4) has the boundary condition of ([22])

5τ3
2 − 1

4
< τ4 < 1. (8)

2.2 L-moments for the double-standard normal (SN)
PM distributions

The derivation of the L-moment-based system of equations begins with defin-
ing the PWMs based on (3) in terms of p(Z) in (2) and the standard normal
pdf φ(z) and cdf Φ(z) as

βr =
∫ 0

−∞
(z + CLz

3){Φ(z)}rφ(z)dz +
∫ ∞
0

(z + CRz
3){Φ(z)}rφ(z)dz. (9)

Integrating (9) for r = 0 and 1 and substituting into (4) and (5) gives

λ1 = (CR − CL)
√

2/π (10)

λ2 =
4 + 5CL + 5CR

4
√
π

. (11)

In terms of deriving β2, (9) can be further split into four parts as

β2 =
∫ 0

−∞
z{Φ(z)}2φ(z)dz + CL

∫ 0

−∞
z3{Φ(z)}2φ(z)dz

+
∫ ∞
0

z{Φ(z)}2φ(z)dz + CR

∫ ∞
0

z3{Φ(z)}2φ(z)dz

= I1 + CLI2 + I3 + CRI4. (12)
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where I1, I2, I3, and I4 in (12) are evaluated after several manipulations and
are presented in the Appendix A. The values of these integrals are subsequently
substituted into (12) to yield

β2 =
6π + 15πCR + (CR − CL){

√
2 + 3

√
2π − 15tan−1(

√
2)}

12π3/2
. (13)

In terms of deriving β3, it is convenient to consider the left and the right
tails of the double-SN PM distribution separately. Thus,

β3 = β3L + β3R (14)

where β3L and β3R are obtained by separately solving the following two equa-
tions

τ4L =
λ4L
λ2L

=
20β3L − 30β2L + 12β1L − β0L

λ2L
(15)

τ4R =
λ4R
λ2R

=
20β3R − 30β2R + 12β1R − β0R

λ2R
(16)

where β2L = I1 +CLI2 and β2R = I3 +CRI4. The terms β0L, β1L and β0R, β1R
are obtained by integrating (9) for r = 0, 1; the terms λ2L and λ2R are obtained
using (5); and τ4L and τ4R are obtained from using Headrick′s equation (2.17)
[8, p. 7]. Thus, we have

β3L =
12tan−1(

√
2)(2 + 5CL)− (6 +

√
2)π − CL{

√
2 + (15 + 2

√
2)π}

16π3/2
(17)

β3R =
(6 +

√
2)π + CR{3

√
2 + (15 + 2

√
2)π}

16π3/2
. (18)

Using (17) and (18) into (14), we obtain

β3 =
12tan−1(

√
2)(2 + 5CL) +

√
2(3CR − CL) + (15 + 2

√
2)(CR − CL)π

16π3/2
.

(19)

Hence, substituting β0, β1, β2, β3 into (6) and (7) gives the terms for λ3 and
λ4, which subsequently yield L-skew and L-kurtosis as follows

τ3 =
(CL − CR){−2

√
2 + (2

√
2− 15)π + 30tan−1(

√
2)}

(4 + 5CL + 5CR)π
(20)
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τ4 =
120tan−1(

√
2)− 36π + 5(CL + CR){

√
2− 9π + 30tan−1(

√
2)}

(4 + 5CL + 5CR)π
. (21)

As such, given specified values of τ3 and τ4, (20) and (21) can be numerically
solved for the corresponding values of CL and CR. Simple inspection of (20)
and (21) indicates that interchanging values of CL and CR reverses the sign
of τ3 and has no effect on τ4. Presented in Figure 2 (Panel A) is a graph
of the region for possible combinations of |τ3| and τ4 in (20) and (21). Note
that the graph in Figure 2 (Panel A) was drawn by setting CL = 0 with
CR ∈ [0,∞) in (20) and (21). Specifically, Figure 2 (Panel A) shows the
minimum value of τ4 for the double-SN PM distributions as min(τ4) ≈ .1226,
where CL = CR = C = 0 and τ3 = 0, which are associated with the standard
normal pdf. The maximum value of τ4 is max(τ4) ≈ .5728, which is the limiting
value of τ4 in (21) when CL = CR → ∞, and is associated with the pdf of
p(Z) = (2/5)Z3 [9, p. 3]. Figure 3 provides an example of four double-SN PM
distributions to demonstrate the methodology.

0.2 0.4 0.6 0.8
Τ3

0.125

0.25

0.375

0.5

Τ4

A

0.2 0.4 0.6 0.8
Τ3

0.125

0.25

0.375

0.5

0.625

Τ4

B

Figure 2: Boundary graphs of the regions for possible combinations of (abso-
lute value) L-skew (|τ3|) and L-kurtosis (τ4) for the double-SN (Panel A) and
the double-SL (Panel B) PM distributions.

The conventional moment based system for the double-SN PM distribu-
tions is given in Appendix B. This system was used to solve for the values of
CL and CR for specified values of γ3 and γ4 associated with the distributions
in Figure 3. The solved values of CL and CR were eventually substituted into
(20) and (21) to determine the values of τ3 and τ4. The four distributions in
Figure 3 are used in simulation portion of the study in Section 4.
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The unique solutions for CL and CR in (20) and (21) can also be obtained
by evaluating the following expressions for specified values of τ3 and τ4 as

CL = [(30− 4
√

2)π2(9 + τ4)− 120(
√

2− 15d)d+ 2π{2(9
√

2 + τ4(
√

2− 15d)

+30(
√

2− 12)d)}]/[5(2
√

2− 15)π2(9 + τ4) + 10{2 + 15(
√

2− 30d)d}
−5π{4 + 3

√
2 + 2τ4(

√
2− 15d) + 60(

√
2− 12)d}] (22)

CR = [2{−10πτ3 − ((30d− 2
√

2 + π(2
√

2− 15− 5τ3)){60(
√

2− 15d)d

+(2
√

2− 15)π2(9 + τ4) + π(5
√

2τ3 − 2(9
√

2 + τ4(
√

2− 15d)

+30(
√

2− 12)d)}}}/{4 + (2
√

2− 15)π2(9 + τ4) + 30(
√

2− 15d)d

−π(4 + 3
√

2 + 2τ4(
√

2− 15d) + 60(
√

2− 12)d))}]
/[5{30d− 2

√
2 + π(2

√
2− 15 + 5τ3)}] (23)

where d = tan−1(
√

2) in (22) and (23).

2.3 L-moments for the double-standard logistic (SL) PM
distributions

The derivation of L-moment-based system of equations for the double-SL PM
distributions associated with (2) can be analogously determined based on the
methodology presented in the previous section by evaluating the following
integral

βr =
∫ 0

−∞
(w+CLw

3){Φ(w)}rφ(w)dw+
∫ ∞
0

(w+CRw
3){Φ(w)}rφ(w)dw. (24)

where φ(w) = (π/
√

3) exp {−(π/
√

3)w}/(1 + exp {−(π/
√

3)w})2 and Φ(w) =
(1 + exp {−(π/

√
3)w})−1 are the pdf and cdf associated with the standard

logistic distribution.

Thus, integrating (24) for r = 0, . . . , 3 and subsequently substituting the
expressions for β0, β1, β2, β3 into (4)-(7) and simplifying yields the following
system

λ1 =
27
√

3(CR − CL)Zeta[3]

2π3
(25)

λ2 =

√
3(2 + 3CL + 3CR)

2π
(26)

τ3 =
18(CR − CL) ln 4

(2 + 3CL + 3CR)π2
(27)
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τ4 =
1

6
+

15(CL + CR)

(2 + 3CL + 3CR)π2
(28)

where Zeta[3] = 1.202056903159594 in (25).

For given values of τ3 and τ4, (27) and (28) can be numerically solved for
the corresponding values of CL and CR. Simple inspection of (27) and (28)
indicates that interchanging values of CL and CR reverses the sign of τ3 and
has no effect on τ4. Presented in Figure 2 (Panel B) is a graph of the region for
possible combinations of |τ3| and τ4 in (27) and (28). Note that the graph in
Figure 2 (Panel B) was drawn by setting CL = 0 with CR ∈ [0,∞) in (27) and
(28). Also note that Figure 2 (Panel B) shows the minimum value of τ4 for the
double-SL PM distributions as min(τ4) = 1/6, where CL = CR = C = 0 and
τ3 = 0, which are associated with the standard logistic pdf. The maximum
value of τ4 is max(τ4) ≈ .6733, which is the limiting value of τ4 in (28) when
CL = CR → ∞. The conventional moment based system for the double-SL
PM distributions is given in Appendix C. This system was used to solve for
the values of CL and CR for specified values of γ3 and γ4 associated with the
distributions in Figure 4.These distributions are also used in simulation por-
tion of the study in Section 4.

The unique solutions for CL and CR can be determined by evaluating the
following expressions for given values of τ3 and τ4 as

CL =
π2{(1− 6τ4) ln 4 + 5τ3}
3{π2(6τ4 − 1)− 30} ln 4

(29)

CR =
π2{(1− 6τ4) ln 4− 5τ3}
3{π2(6τ4 − 1)− 30} ln 4

(30)
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Figure 3: Three asymmetric (Distributions 1-3) and one symmetric (Distri-
bution 4) double-SN PM distributions with their conventional and L-moment
parameters of skew (γ3) and L-skew (τ3), kurtosis (γ4) and L-kurtosis (τ4), and
corresponding coefficients for equation (2).
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Figure 4: Three asymmetric (Distributions 1-3) and one symmetric (Distri-
bution 4) double-SL PM distributions with their conventional and L-moment
parameters of skew (γ3) and L-skew (τ3), kurtosis (γ4) and L-kurtosis (τ4), and
corresponding coefficients for equation (2).
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3 Multivariate double-SN and SL PM distri-

butions

3.1 Preliminaries : The L-correlation

The coefficient of L-correlation (see [31]) is defined by considering two random
variables Yj and Yk with cdfs F (Yj) and F (Yk), respectively. The second L-
moments of Yj and Yk can be expressed as

λ2(Yj) = 2Cov(Yj, F (Yj)) (31)

λ2(Yk) = 2Cov(Yk, F (Yk)). (32)

The second L-comoments of Yj toward Yk and Yk toward Yj are defined as

λ2(Yj, Yk) = 2Cov(Yj, F (Yk)) (33)

λ2(Yk, Yj) = 2Cov(Yk, F (Yj)). (34)

As such, the L-correlations of Yj toward Yk and Yk toward Yj are expressed as

ηjk =
λ2(Yj, Yk)

λ2(Yj)
(35)

ηkj =
λ2(Yk, Yj)

λ2(Yk)
. (36)

The L-correlation in (35) (or 36) is bounded such that −1 ≤ ηjk ≤ 1 where a
value of ηjk = 1(ηjk = −1) indicates a strictly increasing (decreasing) mono-
tone relationship between the two variables. In general, we would also note
that ηjk 6= ηkj.

3.2 The L-correlation for double-SN (or SL) PM distri-
butions

In the context of L-moment based double-SN PM distributions, suppose it is
desired to simulate T distributions based on (2) with a specified L-correlation
matrix and where each distribution has its own specified values of τ3 and τ4.
Define p(Zj) and p(Zk) as in (2) where Zj and Zk have intermediate (Pearson)
correlation (IC) of rjk and standard normal bivariate density of

fjk = {2π(1− r2jk)1/2}−1exp{−(z2j + z2k − 2rjkzjzk)/{2(1− r2jk)1/2}}. (37)
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Using (2), (35) with the denominator standardized to λ2 = 1/
√
π for the stan-

dard normal distribution, cdf of the standard normal distribution, and (37),
the L-correlation of p(Zj) toward p(Zk) can be expressed as

ηjk = 2
√
π Cov{xj(p(Zj)), Fp(Zk)(p(Zk))}

= 2
√
π Cov{xj(p(Zj)),Φ(Zk)}

= 2
√
π
∫ +∞

−∞

∫ +∞

−∞
xj(p(Zj))Φ(Zk)fjkdzjdzk (38)

where xj(p(Zj)) is the standardized piecewise function of p(Zj) in (2) such
that it has a mean of zero and one-half the coefficient of mean difference equal
to that of the standard normal distribution as

xj(p(Zj)) = δ(p(Zj)− λ1) (39)

where λ1 is the mean from (10) and δ is a constant that scales λ2 in (11) and
in the denominator of (35) to 1/

√
π as

δ = 4/(4 + 5CL + 5CR) (40)

Analogously, the L-correlation of p(Zk) toward p(Zj) is

ηkj = 2
√
π
∫ +∞

−∞

∫ +∞

−∞
xk(p(Zk))Φ(Zj)fjkdzkdzj. (41)

Given a specified value of ηjk, the intermediate correlation (rjk) can be de-
termined by solving equation (38) for rjk using solved values of CLj and CRj.
Note that for the special case of where CLj = CLk and CRj = CRk in (38)
and (41), then ηjk = ηkj. The details for simulating the double-SN (or SL)
distributions with specified values of L-skew, L-kurtosis, and L-correlations
are described in the next section.

4 The Procedure and Simulation Study

The procedure for simulating double-SN (or SL) PM distributions with spec-
ified L-moments and specified L-correlations is summarized in the following
five (seven) steps:

1. Specify the L-moments for T transformations of the form in (2), i.e.,
p(Z1), . . . , p(ZT ) for the double-SN (p(W1), . . . , p(WT ) for the double-
SL) and obtain the parameters of CLj and CRj by solving equations
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(20) and (21) ((27) and (28)) using the specified values of L-skew (τ3)
and L-kurtosis (τ4) for each distribution. Specify a T × T matrix of L-
correlations (ηjk) for p(Zj) toward p(Zk) (p(Wj) toward p(Wk)), where
j < k ∈ {1, 2, . . . , T}.

2. Compute the intermediate (Pearson) correlations (ICs), rjk, by substi-
tuting the value of the specified L-correlation ηjk and the parameters
of CLj and CRj from Step 1 into the left- and the right-hand sides of
(38), respectively, and then numerically solve for rjk. Repeat this step
separately for all T (T − 1)/2 pairwise combinations of ICs.

3. Assemble the solved values of ICs from Step 2 into a T × T matrix and
decompose this matrix using a Cholesky factorization. Note that this
step requires the IC matrix to be positive definite.

4. Use the results of the Cholesky factorization from Step 3 to generate
T standard normal variables (Z1, . . . , ZT ) correlated at the IC levels as
follows:

Z1 = a11V1

Z2 = a12V1 + a22V2
...

Zj = a1jV1 + a2jV2 + . . .+ aijVi + . . .+ ajjVj (42)
...

ZT = a1TV1 + a2TV2 + . . .+ aiTVi + . . .+ ajTVj + . . .+ aTTVT

where V1, . . . , VT are independent standard normal random variables and
where aij represents the element in the i-th row and the j-th column of
the matrix associated with the Cholesky factorization performed in Step
3.

5. Substitute Z1, . . . , ZT from Step 4 into T equations of the form in (2), as
noted in Step 1, to generate the non-normal double-SN PM distributions
with the specified values of L-moments and L-correlations.

6. Substitute Z1, . . . , ZT from Step 4 into the following Taylor series-based
expansion for the standard normal cdf, Φ(Zj) [26]:

Φ(Zj) = (1/2) +φ(Zj){Zj +Z3
j /3 +Z5

j /(3 · 5) +Z7
j /(3 · 5 · 7) + . . .} (43)

where φ(Zj) denotes the standard normal pdf and where the absolute
error associated with (43) is less than 8× 10−16.
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7. Substitute the zero-one uniform deviates, Φ(Zj), generated from Step
6 into the T equations of the form p(Wj) in (2), where Wj = (

√
3/

π) ln {Φ(Zj)/(1− Φ(Zj))} is standard logistic deviate to generate the
double-SL PM distributions with specified values of L-moments and L-
correlations.

To demonstrate the steps above, and evaluate the proposed procedure, a
comparison between the new L-moment and the conventional moment-based
procedures is subsequently described. Specifically, the distributions in Fig-
ure 3 and Figure 4 are used as a basis for a comparison using the specified
correlations in Table 3 where a mixture of moderate and strong correlations
is considered in a single matrix. Presented in Matrix A (Matrix B) in Table
4 and Table 5 are the solved IC matrices for the conventional moment- and
the L-moment-based procedures, respectively, for the distributions in Figure
3 (Figure 4). Figure 5 and Figure 6 (Figure 7 and Figure 8) provide Math-
ematica [38] algorithms and examples for computing ICs respectively for the
L-moment- and the conventional moment-based procedures for distributions
in Figure 3 (Figure 4). Table 6 and Table 7 provide the results of the Cholesky
decompositions on the IC matrices, which are then used to create Z1, . . . , Z4

with the solved ICs by making use of the formulae given in (42) of Step 4 with
T = 4. The values of Z1, . . . , Z4 are subsequently substituted into equations
of the form in (2) to produce p(Z1), . . . , p(Z4) for both procedures for distri-
butions in Figure 3. For generating distributions in Figure 4, however, two
extra steps (e.g., Steps 6 and 7 above) are required. That is, (a) the values
of Z1, . . . , Z4 from Step 4 are substituted in (43) to obtain Φ(Z1), . . . ,Φ(Z4),
which are used (b) for generating four standard logistic variables W1, . . . ,W4

as described in Step 7, above. These standard logistic variables are subse-
quently substituted in p(W1), . . . , p(W4) of the form (2) to generate the four
distributions in Figure 4.

In terms of the simulation, a Fortran algorithm was written for both pro-
cedures to generate 25,000 independent sample estimates for the specified pa-
rameters of: (a) conventional skew (γ3), kurtosis (γ4), and Pearson correlation
(ρjk); and (b) L-skew (τ3), L-kurtosis (τ4), and L-correlation (ηjk) based on
samples of sizes n = 25 and n = 1000. The estimates for γ3,4 were based on
Fisher′s k-statistics, i.e., the formulae currently used by most commercial soft-
ware packages such as SAS, SPSS, Minitab, etc., for computing indices of skew
and kurtosis (where γ3,4 = 0 for the standard normal distribution). The formu-
lae used for computing estimates for τ3,4 were Headrick′s equations (2.4) and
(2.6) [8]. The estimate for ρjk was based on the usual formula for the Pearson
product-moment of correlation statistic and the estimate for ηjk was computed
based on (38) using the empirical forms of the cdfs in (31) and (33). The esti-
mates for ρjk and ηjk were both transformed using Fisher′s z′ transformation.



Doubling the power method 6453

Bias-corrected accelerated bootstrapped average estimates, 95% confidence in-
tervals (C.I.s), and standard errors (St. Error) were subsequently obtained
for the estimates associated with the parameters (γ3,4, τ3,4, z

′
(ρjk)

, z′(ηjk)) using

10,000 resamples via the commercial software package Spotfire S+ [34]. The
bootstrap results for the estimates of z′(ρjk) and z′(ηjk) were transformed back to

their original metrics. Further, if a parameter (P ) was outside its associated
bootstrap C.I., then an index of relative bias (RB%) was computed for the
estimate (E) as: RB% = {((E − P )/P ) × 100}. The results of the simula-
tion are reported in Tables 12-13 and are discussed in the next section. Also
provided in Tables 14-15, are the simulation results associated with Pearson
and L-correlation estimates of distribution j toward distribution k for the four
double-SL PM distributions in Figure 4.

1 2 3 4
1 1
2 0.65 1
3 0.70 0.70 1
4 0.85 0.70 0.80 1

Table 3: Specified correlation matrix for the conventional- and L-moment-based
procedures for the distributions in Figure 3 and Figure 4.

A
1 2 3 4

1 1
2 0.734127 1
3 0.781855 0.748604 1
4 0.946869 0.753626 0.825323 1

B
1 2 3 4

1 1
2 0.737648 1
3 0.762846 0.757042 1
4 0.904769 0.746903 0.827009 1

Table 4: Intermediate correlation matrix A (B) for the conventional moment-based
procedure for the distributions in Figure 3 (Figure 4).
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A
1 2 3 4

1 1
2 0.602576 1
3 0.653742 0.664034 1
4 0.816350 0.664034 0.778880 1

B
1 2 3 4

1 1
2 0.612930 1
3 0.664304 0.671261 1
4 0.825357 0.671261 0.780879 1

Table 5: Intermediate correlation matrix A (B) for the L-moment-based procedure
for the distributions in Figure 3 (Figure 4).

A
1 a11 = 1 a12 = 0.734127 a13 = 0.781855 a14 = 0.946869
2 0 a22 = 0.679012 a23 = 0.257172 a24 = 0.086159
3 0 0 a33 = 0.567948 a34 = 0.110663
4 0 0 0 a44 = 0.289429

B
1 a11 = 1 a12 = 0.737648 a13 = 0.762846 a14 = 0.904769
2 0 a22 = 0.675186 a23 = 0.287817 a24 = 0.117748
3 0 0 a33 = 0.578988 a34 = 0.177757
4 0 0 0 a44 = 0.368688

Table 6: Cholesky decomposition matrix A (B) for the conventional moment-based
procedure for the distributions in Figure 3 (Figure 4).

5 Discussion

One of the advantages that L-moment ratios have over conventional moment-
based estimators is that they can be far less biased when sampling is from
distributions with more severe departures from normality ([21, 32]). Inspec-
tion of the simulation results in Table 8 and Table 9 (Table 10 and Table 11)
clearly indicates that this is the case for the double-SN (double-SL) PM dis-
tributions. That is, the superiority that estimates of L-moment ratios (τ3, τ4)
have over their corresponding conventional moment-based counterparts (γ3,
γ4) is obvious. For example, with samples of size n = 25 the estimates of
skew and kurtosis for Distribution 1 in Figure 3 (Figure 4) were, on average,
only 34.5% (14.9%) and 14.9% (4.6%) of their associated population param-
eters whereas the estimates of L-skew and L-kurtosis were 85.66% (80.69%)
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A
1 a11 = 1 a12 = 0.602576 a13 = 0.653742 a14 = 0.816350
2 0 a22 = 0.798061 a23 = 0.338450 a24 = 0.215673
3 0 0 a33 = 0.676811 a34 = 0.254433
4 0 0 0 a44 = 0.471509

B
1 a11 = 1 a12 = 0.612930 a13 = 0.664304 a14 = 0.825357
2 0 a22 = 0.790137 a23 = 0.334231 a24 = 0.209299
3 0 0 a33 = 0.668572 a34 = 0.243260
4 0 0 0 a44 = 0.464548

Table 7: Cholesky decomposition matrix A (B) for the L-moment-based procedure
for the distributions in Figure 3 (Figure 4).

and 94.76% (92.50%) of their respective parameters. It is also evident from
comparing Tables 8-11 that L-skew and L-kurtosis are more efficient estima-
tors as their relative standard errors RSE = {(St. Error/Estimate)× 100} are
considerably smaller than the conventional-moment based estimators of skew
and kurtosis. For example, in terms of Distribution 1 in Figure 3, inspection of
Table 8-B and Table 9-B indicates RSE measures of: RSE(γ̂3) = 0.235% and
RSE(γ̂4) = 0.508% compared with RSE(τ̂3) = 0.079% and RSE(τ̂4) = 0.025%.
This demonstrates that L-skew and L-kurtosis have more precision because
they have less variance around their estimates.

Presented in Tables 12-15 are the results associated with the conventional
Pearson and L-correlations. Overall inspection of these tables indicates that
the L-correlation is superior to the Pearson correlation in terms of relative bias.
For example, for n = 25 the relative bias for the two heavy-tailed distributions
(i.e., Distributions 1 and 2) in Figure 3 (Figure 4) was 8.32% (10.46%) for the
Pearson correlation compared with only 0.91% (0.62%) for the L-correlation.
It is also noted that the variability of the L-correlation appears to be more
stable than that of the Pearson correlation both within and across different
conditions.

In summary, the new L-moment-based procedure is an attractive alterna-
tive to the traditional conventional moment-based procedure. In particular,
the L-moment based procedure has distinct advantages when distributions
with large departures from normality are used. Finally, we note that Mathe-
matica Version 8.0.1 [38] source code is available from the authors for imple-
menting both the conventional and new L-moment-based procedures.
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A. n = 25
Dist Parameter Estimate 95% Bootstrap C.I. St. Error RB%

1 γ3 = 4 1.381 1.363, 1.401 0.0097 -65.5
γ4 = 40 5.979 5.916, 6.043 0.0325 -85.1

2 γ3 = 2 0.717 0.698, 0.734 0.0092 -64.2
γ4 = 20 4.361 4.312, 4.410 0.0263 -78.2

3 γ3 = 1 0.415 0.400, 0.430 0.0077 -58.5
γ4 = 10 2.970 2.930, 3.011 0.0213 -70.3

4 γ3 = 0 0.009 -0.004, 0.021 0.0064 - - - -
γ4 = 5 2.003 1.972, 2.038 0.0168 -59.9

B. n = 1000
Dist Parameter Estimate 95% Bootstrap C.I. St. Error RB%

1 γ3 = 4 3.619 3.601, 3.635 0.0085 -9.53
γ4 = 40 30.66 30.35, 30.96 0.1559 -23.4

2 γ3 = 2 1.839 1.827, 1.852 0.0064 -8.05
γ4 = 20 16.82 16.65, 16.98 0.0853 -15.9

3 γ3 = 1 0.941 0.933, 0.949 0.0042 -5.90
γ4 = 10 9.000 8.923, 9.081 0.0419 -10.0

4 γ3 = 0 -0.001 -0.006, 0.004 0.0026 - - - -
γ4 = 5 4.738 4.706, 4.774 0.0175 -5.24

Table 8: Skew (γ3) and kurtosis (γ4) results for the distributions in Figure 3.
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A. n = 25
Dist Parameter Estimate 95% Bootstrap C.I. St. Error RB%

1 τ3 = 0.2559 0.2192 0.2163, 0.2217 0.0014 -14.3
τ4 = 0.4007 0.3797 0.3782, 0.3813 0.0008 -5.24

2 τ3 = 0.1252 0.1084 0.1061, 0.1111 0.0013 -13.4
τ4 = 0.3407 0.3252 0.3238, 0.3266 0.0007 -4.55

3 τ3 = 0.0695 0.0617 0.0598, 0.0640 0.0011 -11.2
τ4 = 0.2778 0.2675 0.2664, 0.2690 0.0007 -3.71

4 τ3 = 0 0.0011 -0.0006, 0.0030 0.0009 - - - -
τ4 = 0.2342 0.2278 0.2266, 0.2290 0.0006 -2.73

B. n = 1000
Dist Parameter Estimate 95% Bootstrap C.I. St. Error RB%

1 τ3 = 0.2559 0.2546 0.2541, 0.2550 0.0002 -0.51
τ4 = 0.4007 0.4001 0.3998, 0.4003 0.0001 -0.15

2 τ3 = 0.1252 0.1246 0.1242, 0.1250 0.0002 -0.48
τ4 = 0.3407 0.3402 0.3400, 0.3404 0.0001 -0.15

3 τ3 = 0.0695 0.0692 0.0689, 0.0695 0.0002 -0.43
τ4 = 0.2778 0.2775 0.2773, 0.2777 0.0001 -0.11

4 τ3 = 0 -0.0001 -0.0004, 0.0002 0.0002 - - - -
τ4 = 0.2342 0.2341 0.2339, 0.2342 0.0001 -0.04

Table 9: L-skew (τ3) and L-kurtosis (τ4) results for the distributions in Figure 3.
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A. n = 25
Dist Parameter Estimate 95% Bootstrap C.I. St. Error RB%

1 γ3 = 3 0.447 0.427, 0.466 0.0097 -85.1
γ4 = 90 4.136 4.074, 4.191 0.0295 -95.4

2 γ3 = −2 -0.333 -0.351, -0.317 0.0086 -83.4
γ4 = 50 3.310 3.261, 3.363 0.0260 -93.4

3 γ3 = 1 0.218 0.201, 0.232 0.0079 -78.2
γ4 = 25 2.677 2.631, 2.721 0.0230 -89.3

4 γ3 = 0 0.009 -0.004, 0.022 0.0065 - - - -
γ4 = 9 1.892 1.857, 1.928 0.0182 -79.0

B. n = 1000
Dist Parameter Estimate 95% Bootstrap C.I. St. Error RB%

1 γ3 = 3 1.992 1.959, 2.024 0.0165 -33.6
γ4 = 90 35.87 35.26, 36.50 0.3195 -60.1

2 γ3 = −2 -1.450 -1.475, -1.425 0.0127 -27.5
γ4 = 50 24.28 23.81, 24.73 0.2378 -51.4

3 γ3 = 1 0.778 0.760, 0.795 0.0090 -22.2
γ4 = 25 15.19 14.90, 15.48 0.1481 -39.2

4 γ3 = 0 -0.002 -0.012, 0.007 0.0050 - - - -
γ4 = 9 7.205 7.093, 7.343 0.0633 -19.9

Table 10: Skew (γ3) and kurtosis (γ4) results for the distributions in Figure 4.
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A. n = 25
Dist Parameter Estimate 95% Bootstrap C.I. St. Error RB%

1 τ3 = 0.0787 0.0635 0.0610, 0.0661 0.0013 -19.3
τ4 = 0.3174 0.2936 0.2921, 0.2951 0.0008 -7.50

2 τ3 = −0.0607 -0.0471 -0.0494, -0.0449 0.0011 -22.4
τ4 = 0.2817 0.2636 0.2621, 0.2650 0.0007 -6.43

3 τ3 = 0.0355 0.0301 0.0281, 0.0322 0.0010 -15.2
τ4 = 0.2538 0.2406 0.2393, 0.2419 0.0007 -5.20

4 τ3 = 0 0.0011 -0.0007, 0.0029 0.0009 - - - -
τ4 = 0.2202 0.2122 0.2109, 0.2134 0.0006 -3.63

B. n = 1000
Dist Parameter Estimate 95% Bootstrap C.I. St. Error RB%

1 τ3 = 0.0787 0.0780 0.0775, 0.0785 0.0003 -0.89
τ4 = 0.3174 0.3165 0.3162, 0.3168 0.0001 -0.28

2 τ3 = −0.0607 -0.0603 -0.0608, -0.0599 0.0002 -0.66
τ4 = 0.2817 0.2811 0.2809, 0.2814 0.0001 -0.21

3 τ3 = 0.0355 0.0352 0.0348, 0.0356 0.0002 -0.85
τ4 = 0.2538 0.2534 0.2532, 0.2536 0.0001 -0.16

4 τ3 = 0 -0.0001 -0.0004, 0.0003 0.0002 - - - -
τ4 = 0.2202 0.2200 0.2198, 0.2201 0.0001 -0.09

Table 11: L-skew (τ3) and L-kurtosis (τ4) results for the distributions in Figure 4.

A. n = 25
Parameter Estimate 95% Bootstrap C.I. St. Error RB%
ρ12 = 0.65 0.7041 0.7021, 0.7060 0.00198 8.32
ρ13 = 0.70 0.7503 0.7487, 0.7519 0.00183 7.19
ρ14 = 0.85 0.9017 0.9012, 0.9023 0.00154 6.08
ρ23 = 0.70 0.7336 0.7321, 0.7352 0.00172 4.80
ρ24 = 0.70 0.7345 0.7331, 0.7359 0.00154 4.93
ρ34 = 0.80 0.8191 0.8181, 0.8200 0.00152 2.39

B. n = 1000
Parameter Estimate 95% Bootstrap C.I. St. Error RB%
ρ12 = 0.65 0.6531 0.6527, 0.6536 0.00042 0.48
ρ13 = 0.70 0.7034 0.7030, 0.7037 0.00038 0.49
ρ14 = 0.85 0.8540 0.8537, 0.8541 0.00037 0.47
ρ23 = 0.70 0.7014 0.7011, 0.7017 0.00033 0.20
ρ24 = 0.70 0.7018 0.7015, 0.7021 0.00029 0.26
ρ34 = 0.80 0.8009 0.8008, 0.8012 0.00027 0.11

Table 12: Correlation results for the conventional moment-based procedure for the
double-SN PM distributions in Figure 3.
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A. n = 25
Parameter Estimate 95% Bootstrap C.I. St. Error RB%
η12 = 0.65 0.6559 0.6539, 0.6578 0.00171 0.91
η13 = 0.70 0.7051 0.7034, 0.7069 0.00173 0.73
η14 = 0.85 0.8530 0.8519, 0.8538 0.00171 0.35
η23 = 0.70 0.7046 0.7030, 0.7062 0.00159 0.66
η24 = 0.70 0.7044 0.7028, 0.7060 0.00157 0.63
η34 = 0.80 0.8048 0.8038, 0.8059 0.00150 0.60

B. n = 1000
Parameter Estimate 95% Bootstrap C.I. St. Error RB%
η12 = 0.65 0.6499 0.6496, 0.6502 0.00027 - - - -
η13 = 0.70 0.7001 0.6998, 0.7004 0.00027 - - - -
η14 = 0.85 0.8500 0.8498, 0.8501 0.00026 - - - -
η23 = 0.70 0.6998 0.6995, 0.7000 0.00024 - - - -
η24 = 0.70 0.6999 0.6997, 0.7001 0.00024 - - - -
η34 = 0.80 0.8001 0.7999, 0.8002 0.00022 - - - -

Table 13: Correlation results for the L-moment-based procedure for the double-SN
PM distributions in Figure 3.

A. n = 25
Parameter Estimate 95% Bootstrap C.I. St. Error RB%
ρ12 = 0.65 0.7180 0.7165, 0.7196 0.00165 10.46
ρ13 = 0.70 0.7512 0.7499, 0.7527 0.00168 7.31
ρ14 = 0.85 0.8923 0.8916, 0.8929 0.00161 4.98
ρ23 = 0.70 0.7460 0.7446, 0.7473 0.00157 6.57
ρ24 = 0.70 0.7387 0.7372, 0.7399 0.00153 5.53
ρ34 = 0.80 0.8240 0.8229, 0.8248 0.00152 3.00

B. n = 1000
Parameter Estimate 95% Bootstrap C.I. St. Error RB%
ρ12 = 0.65 0.6599 0.6594, 0.6604 0.00046 1.52
ρ13 = 0.70 0.7073 0.7069, 0.7078 0.00045 1.04
ρ14 = 0.85 0.8578 0.8574, 0.8580 0.00055 0.92
ρ23 = 0.70 0.7055 0.7051, 0.7059 0.00039 0.79
ρ24 = 0.70 0.7046 0.7042, 0.7049 0.00035 0.66
ρ34 = 0.80 0.8026 0.8023, 0.8028 0.00034 0.33

Table 14: Correlation results for the conventional moment-based procedure for the
double-SL PM distributions in Figure 4.
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A. n = 25
Parameter Estimate 95% Bootstrap C.I. St. Error RB%
η12 = 0.65 0.6540 0.6523, 0.6559 0.00159 0.62
η13 = 0.70 0.7035 0.7018, 0.7049 0.00158 0.50
η14 = 0.85 0.8524 0.8516, 0.8534 0.00161 0.28
η23 = 0.70 0.7042 0.7026, 0.7056 0.00153 0.60
η24 = 0.70 0.7044 0.7029, 0.7058 0.00152 0.63
η34 = 0.80 0.8051 0.8040, 0.8061 0.00151 0.64

B. n = 1000
Parameter Estimate 95% Bootstrap C.I. St. Error RB%
η12 = 0.65 0.6498 0.6496, 0.6501 0.00025 - - - -
η13 = 0.70 0.7001 0.6998, 0.7003 0.00025 - - - -
η14 = 0.85 0.8500 0.8499, 0.8501 0.00024 - - - -
η23 = 0.70 0.6997 0.6995, 0.7000 0.00023 - - - -
η24 = 0.70 0.6999 0.6997, 0.7001 0.00024 - - - -
η34 = 0.80 0.8001 0.7998, 0.8002 0.00023 - - - -

Table 15: Correlation results for the L-moment-based procedure for the double-SL
PM distributions in Figure 4.
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(* The subscripts   and   represent distributions 1 and 2 in Figure 3 *) 

                                  ; 

 eed  “M    v     eS       c `” ; 

        M                                                        ; 

 

(* Coefficients for distribution 1 in Figure 3 *) 

                      ; 

                      ; 

 

             
 ; 

             
 ; 

     ece   e                          ; 

 

(* Mean and the standardizing constant for distribution 1 in Figure 3 *) 

                  ; 

                  ; 

 

(* Intermediate correlation *) 

                     ; 

 

(* Computed value of the specified  -correlation *) 

            e    e                                           

0.65 

 

 

Figure 5: Mathematica [38] source code for computing intermediate correlations for 

the specified  -correlations. The example is for the specified  -correlation (   ) of 

distribution     toward distribution     in Figure 3. See also Table 3 and Table 5 

(matrix A). 
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(* The subscripts   and   represent distributions 1 and 2 in Figure 3 *) 

Needs[“MultivariateStatistics`”]; 

        Multi  r al istri uti                                    ; 

 

(* Solved values of coefficients for distributions 1 and 2 in Figure 3 *) 

                      ; 

                      ; 

                      ; 

                      ; 

 

             
 ; 

             
 ; 

             
 ; 

             
 ; 

    iecewise                           ; 

    iecewise                          ; 

 

(* Standardizing distributions 1 and 2 using   ,    from (56) and   ,    from (57) of the 

Appendix B *) 

              ; 

              ; 

 

(* Intermediate Correlation *) 

                      ; 

(* Computed value of the specified Pearson correlation *) 

    N  te rate                                  

0.65 

 

Figure 6: Mathematica [38] source code for computing intermediate correlations for 

specified Pearson correlations. The example is for the specified Pearson correlation 

(   ) between distributions     and     in Figure 3. See also Table 3 and Table 4 

(matrix A). 
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(* The subscripts   and   represent distributions 1 and 2 in Figure 4 *) 

                                  ; 

                                  ; 

                       ; 

                       ; 

                       ; 

 eed  “M    v     eS       c `” ; 

        M                                                        ; 

 

(* Coefficients for distribution 1 in Figure 4 *) 

                       ; 

                       ; 

             
 ; 

             
 ; 

     ece   e                          ; 

(* Mean and the standardizing constant for distribution 1 in Figure 4 *) 

                  e            ; 

                        ; 

 

(* Intermediate correlation *) 

                     ; 

 

(* Computed value of the specified  -correlation *) 

            e    e                                           

0.65 

 

Figure 7: Mathematica [38] source code for computing intermediate correlations for 

the specified  -correlations. The example is for the specified  -correlation (   ) of 

distribution     toward distribution     in Figure 4. See also Table 3 and Table 5 

(matrix B). 
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(* The subsripts   and   represent distributions 1 and 2 in Figure 4 *) 

                                    

                                    

                       ; 

                       ; 

 eed  “M    v     eS       c `”   

        M                                                        ; 

(* Solved values of coefficients for distributions 1 and 2 in Figure 4 *) 

                         

                         

                         

                         

             
 ; 

             
 ; 

             
 ; 

             
 ; 

     ece   e                           ; 

     ece   e                           ; 

(* Standardizing distributions 1 and 2 using   ,    from (61) and   ,    from (62) of the 

Appendix C *) 

              ; 

              ; 

(* Intermediate Correlation *) 

                      ; 

(* Computed value of the specified Pearson correlation *) 

        e    e                                      

0.65 

 

Figure 8: Mathematica [38] source code for computing intermediate correlations for 

specified Pearson correlations. The example is for the specified Pearson correlation 

(   ) between distributions     and     in Figure 4. See also Table 3 and Table 4 

(matrix B). 
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Appendices

A Evaluation of integrals in equation (12)

The integrals I1 and I3 in equation (12) can be evaluated using integration
by parts, where u = {Φ(z)}2 and dv = zφ(z)dz yield du = 2Φ(z)φ(z)dz and
v = −φ(z), as

I1 =
∫ 0

−∞
{Φ(z)}2d(−φ(z))

= −{Φ(z)}2φ(z)|0−∞ + 2
∫ 0

−∞
Φ(z){φ(z)}2dz

= − 1

4
√

2π
+

2√
2π

∫ 0

−∞
Φ(z)

1√
2π

exp
{
− (
√

2z)2

2

}
dz

= − 1

4
√

2π
+

2√
2π

∫ 0

−∞
Φ(z)φ(

√
2z)dz

= − 1

4
√

2π
+

2√
2π
I5 (44)

I3 =
∫ ∞
0
{Φ(z)}2d(−φ(z))

= −{Φ(z)}2φ(z)|∞0 + 2
∫ ∞
0

Φ(z){φ(z)}2dz

=
1

4
√

2π
+

2√
2π

∫ ∞
0

Φ(z)
1√
2π

exp
{
− (
√

2z)2

2

}
dz

=
1

4
√

2π
+

2√
2π

∫ ∞
0

Φ(z)φ(
√

2z)dz

=
1

4
√

2π
+

2√
2π
I6 (45)

If we let
√

2z = X ∼ N(0, 1/2) and z = Y ∼ N(0, 1), where X and Y
are independent such that (X/

√
2, Y ) jointly have standard bivariate normal

distribution, then the integrals I5 and I6 in (44) and (45) can be evaluated as

I5 =
∫ 0

−∞
Φ(z)φ(

√
2z)dz

= Pr{X < 0, Y < X}
= Pr{X/

√
2 < 0, Y <

√
2(X/

√
2)}

=
tan−1(

√
2)

2
√

2π
(46)
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I6 =
∫ ∞
0

Φ(z)φ(
√

2z)dz

= Pr{0 < X <∞, 0 < Y < X}
= Pr{0 < (X/

√
2) <∞, 0 < Y <

√
2(X/

√
2)}

=
π − tan−1(

√
2)

2
√

2π
(47)

The integrals I2 and I4 in equation (12) can be evaluated using integration
by parts, where u = {Φ(z)}2 and dv = z3φ(z)dz yield du = 2Φ(z)φ(z)dz and
v = −(2 + z2)φ(z), as

I2 =
∫ 0

−∞
z3{Φ(z)}2φ(z)dz

= −
∫ 0

−∞
{Φ(z)}2d((2 + z2)φ(z))

= −{Φ(z)}2(2 + z2)φ(z)|0−∞ + 2
∫ 0

−∞
Φ(z)(2 + z2){φ(z)}2dz

= − 1

2
√

2π
+

2√
2π

∫ 0

−∞
Φ(z)(

5

2
− 1

2
+ z2)

1√
2π

exp{−1

2
(
√

2z)2}dz

= − 1

2
√

2π
+

5√
2π

∫ 0

−∞
Φ(z)φ(

√
2z)dz +

2√
2π

∫ 0

−∞
Φ(z)(z2 − 1

2
)φ(
√

2z)dz

= − 1

2
√

2π
+

5√
2π
I5 +

2√
2π
I7 (48)

I4 =
∫ ∞
0

z3{Φ(z)}2φ(z)dz

= −
∫ ∞
0
{Φ(z)}2d((2 + z2)φ(z))

= −{Φ(z)}2(2 + z2)φ(z)|∞0 + 2
∫ ∞
0

Φ(z)(2 + z2){φ(z)}2dz

=
1

2
√

2π
+

2√
2π

∫ ∞
0

Φ(z)(
5

2
− 1

2
+ z2)

1√
2π

exp{−1

2
(
√

2z)2}dz

=
1

2
√

2π
+

5√
2π

∫ ∞
0

Φ(z)φ(
√

2z)dz +
2√
2π

∫ ∞
0

Φ(z)(z2 − 1

2
)φ(
√

2z)dz

=
1

2
√

2π
+

5√
2π
I6 +

2√
2π
I8 (49)

The integrals I7 and I8 in equations (48) and (49) are such that I7 = -I8 and
as such I7 can be evaluated using integration by parts, where u = Φ(z) and
dv = (z2 − 1/2)φ(

√
2z)dz yield du = φ(z)dz and v = (−z/2)φ(

√
2z), as

I7 =
∫ 0

−∞
Φ(z)(z2 − 1

2
)φ(
√

2z)dz
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= −
∫ 0

−∞
Φ(z)d(

z

2
φ(
√

2z))

= −z
2

Φ(z)φ(
√

2z)|0−∞ +
1

2

∫ 0

−∞
zφ(
√

2z)φ(z)dz

=
1

2

∫ 0

−∞

z√
2π

exp{−(
√

2z)2

2
} 1√

2π
exp{−z

2

2
}dz

=
1

4π

∫ 0

−∞
z × exp{−3z2

2
}dz

=
1

12π

∫ 0

−∞
exp{−3z2

2
}d(

3z2

2
)

= − 1

12π
(50)

= −I8.

Thus, substituting (46) into (44), (46) and (50) into (48), (47) into (45), and
(47) and (50) into (49), and simplifying gives the integrals I1, I2, I3, and I4 in
their simplified forms as:

I1 = − 1

4
√

2π
+

tan−1(
√

2)

2π
√
π

(51)

I2 =
15tan−1(

√
2)−

√
2− 3

√
2π

12π3/2
(52)

I3 =
1

4
√

2π
+
π − tan−1(

√
2)

2π
√
π

(53)

I4 =
15(π − tan−1(

√
2)) +

√
2(1 + 3π)

12π3/2
. (54)

B Conventional moment-based system of equa-

tions for the double-SN PM distributions.

The conventional moments (µr=1,...,4) associated with equation (2) can be ob-
tained from

µr =
∫ 0

−∞
(z + CLz

3)rφ(z)dz +
∫ ∞
0

(z + CRz
3)rφ(z)dz. (55)

The mean (µ), variance (σ2), skew (γ3), and kurtosis (γ4) are based on the
formulae given in Headrick et al. [13, equations (16)-(18)]

µ = −1 + 2CL√
2π

+
1 + 2CR√

2π
(56)
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σ2 =
A

2
=
−4(CL − CR)2 + (2 + 3CL(2 + 5CL) + 3CR(2 + 5CR))π

2π
(57)

γ3 = −2(CL − CR)[8(CL − CR)2 + 3{6 + 113CL
2

+2CL(21 + 64CR) + CR(42 + 113CR)}π]/(Aπ)3/2 (58)

γ4 = [3{−48(CL − CR)4 − 8(CL − CR)2{11 + 211C2
L

+CR(78 + 211CR) + CL(78 + 256CR)}π + {2304C3
L + 6705C4

L

−18C2
L(5CR(2 + 5CR)− 18)− 4CL(9CR(2 + 5CR)− 4)

+CR{16 + 9CR(36 + 5CR(52 + 149CR))}}π2}]/(Aπ)2 (59)

C Conventional moment-based system of equa-

tions for the double-SL PM distributions.

The conventional moments (µr=1,...,4) associated with equation (2) can be ob-
tained from

µr =
∫ 0

−∞
(w + CLw

3)rφ(w)dw +
∫ ∞
0

(w + CRw
3)rφ(w)dw. (60)

The mean (µ), variance (σ2), skew (γ3), and kurtosis (γ4) are based on the
formulae given in Headrick et al. [13, equations (16)-(18)]

µ =
27
√

3(CR − CL)Z[3]

2π3 (61)

σ2 = 1 +
3CL(98 + 465CL) + 3CR(98 + 465CR)

70

−2187(CL − CR)2Z[3]2

4π6
(62)

γ3 = [162
√

105(CL − CR){(70 + 3CL(98 + 465CL)

+3CR(98 + 465CR))π6Z[3]− 5250π4Z[5]

−694575(CL + CR)π2Z[7] + 8505{−3(CL − CR)2Z[3]3

−5950(CL
2 + CLCR + CR

2)Z[9]}}]/(140
√

140π9σ3) (63)

γ4 = {{−3(70 + 3CL(98 + 465CL) + 3CR(98 + 465CR))2/4900}
+{3{14014 + 3CL(88660 + 9CL(254254

+CL(4650100 + 46677741CL))) + 3CR(88660
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+9CR(254254 + CR(4650100 + 46677741CR)))}/10010}
+(70 + 3CL(98 + 465CL) + 3CR(98 + 465CR))

×{6561(CR − CL)2Z[3]2/(70π6)}
−{14348907(CR − CL)4Z[3]4/(8π12)}
−{98415(CR − CL)2Z[3]/(2π12)}
×{10π4Z[5] + 1323(CL + CR)π2Z[7] + 96390(CL

2

+CLCR + CR
2)Z[9]}}/σ4 (64)

where the notation Z[.] in equations (61)-(64) is the zeta function.

D Conventional moment-based procedure for

computing intermediate (Pearson) correla-

tion for the double-SN PM distributions.

Let p(Zj) and p(Zk) be two random variables of the form in equation (2) that
are correlated at the specified Pearson correlation level of ρjk. Let Zj and Zk
be correlated at the intermediate correlation level of rjk, with the joint pdf
given as in equation (37). The specified Pearson correlation ρjk between p(Zj)
and p(Zk) is given by

ρjk = Cov
(
p(Zj)− µj

σj
,
p(Zk)− µk

σk

)

=
∫ +∞

−∞

∫ +∞

−∞

(
p(zj)− µj

σj

)(
p(zk)− µk

σk

)
fjkdzjdzk. (65)

where µj and µk are the means, and σj and σk are the standard deviations
associated with p(Zj) and p(Zk), which can be obtained from equations (56)
and (57) of the Appendix B. Also, note that p(Zj) and p(Zk) can be expressed
as piecewise functions in Mathematica [37] source code as in Figure 6.

Substituting the value of specified correlation ρjk on the left-hand side
and solved values of CL and CR and equation (37) on the right-hand side of
equation (65) and then numerically integrate equation (65) for T (T − 1)/2
intermediate correlations rjk so that T specified double-SN PM distributions
also have a specified correlation structure.
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E Conventional moment-based procedure for

computing intermediate (Pearson) correla-

tion for the double-SL PM distributions.

Let p(Wj) and p(Wk) be two random variables of the form in equation (2) that
are correlated at the specified Pearson correlation level of ρjk. Let Wj = (

√
3/

π)ln{Φ(Zj)/(1−Φ(Zj))} and Wk = (
√

3/π)ln{Φ(Zk)/(1−Φ(Zk))} be two stan-
dard logistic random variables, where Φ(Zj) and Φ(Zk) are the cdfs associated
with standard normal variables Zj and Zk. Let Zj and Zk be correlated at the
intermediate correlation level of rjk, with the joint pdf given as in equation
(37). The specified Pearson correlation ρjk between p(Wj) and p(Wk) is given
by

ρjk = Cov
(
p(Wj)− µj

σj
,
p(Wk)− µk

σk

)

=
∫ +∞

−∞

∫ +∞

−∞

(
p(wj)− µj

σj

)(
p(wk)− µk

σk

)
fjkdzjdzk. (66)

where µj and µk are the means, and σj and σk are the standard deviations
associated with p(Wj) and p(Wk), which can be obtained from equations (61)
and (62) of the Appendix C. Also, note that p(Wj) and p(Wk) can be expressed
as piecewise functions in Mathematica [37] source code as in Figure 8.

Substituting the value of specified correlation ρjk on the left-hand side
and solved values of CL and CR and equation (37) on the right-hand side of
equation (66) and then numerically integrate equation (66) for T (T − 1)/2
intermediate correlations rjk so that T specified double-SL PM distributions
also have a specified correlation structure.
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