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EXECUTIVE SUMMARY

This Federal Aid Project consists of 2 studies that are distinct enough to warrant reporting

in separate volumes, hence the organization of this Final Performance Report.  This volume (1)

reports on the findings of Study R-1 (Upland Wildlife/Habitat Relationships).  Study R-2

(Population Dynamics and Status of the Swamp Rabbit in Illinois) is reported in Volume 2. 

Following is a summary of findings of the 2 jobs in Study R-1.

Job R-1.1: Conservation Reserve Program 

The objective of this job was to inventory CRP practices (amount, type, distribution) in

southern and west-central Illinois and evaluate their contribution to upland wildlife habitat.  Data

collection entailed digital mapping of geographic locations and acquisition of associated attribute

data (sign-up period, contract year, acreage enrolled, status of contract, and cover practice [CP])

of active individual CRP fields within the boundaries of study counties through Sign-up 19. 

Spatial and statistical analyses were conducted to determine the type of landscape in which CRP

fields were located and their influence on landscape composition and structure.



Farmland enrolled in CRP tended to be located in areas with proportionately less row

crop, but more grassland and woodland, than non-CRP landscapes.  Patch size and core areas of

row crop, grassland, and woodland patches were consistently smaller within CRP landscapes,

and consequently, edge density was greater in CRP landscapes.  Landscapes surrounding CRP

fields were less contiguous and more diverse than were non-CRP landscapes.

Landscapes surrounding CRP following Sign-up 14 (“new” CRP) contained larger mean

patch sizes of grassland and correspondingly lower edge and path densities, and greater core

areas than did CRP fields that entered the program prior to Sign-up 14 (“old” CRP).  This

suggests that the “new” CRP (71.2% of the CRP within the study area) has a greater potential to

benefit area sensitive grassland birds than did the “old” CRP.  Inclusion of CRP in the landscape

resulted in even greater proportions of grassland and woodland than were previously present,

while proportions of row crop decreased further.  Thus, CRP contributed to greater overall size of

grassland and woodland patches while row crop patch size decreased.  Edge density decreased

overall and within row crop patches, but increased in grassland and woodland patches.  Neither

contagion nor evenness were influenced by CRP enrollment.

Conversion of lands from row crop production to semi-permanent grass or tree plantings

in effect added grasslands and woodlands to those areas already containing relatively more of

these land cover types than the county landscape in general.  If increasing grassland patch sizes

for area-sensitive grassland bird species is the main objective of habitat improvement efforts,

then CRP as currently located may achieve the goal if sufficient acreage can be added to the

landscape.  If however, the goal is to add grassland acreage to areas lacking this cover type,

constraints as to where CRP may be placed (e.g., eligible lands and landowner desire to

participate) must be overcome.  Unfortunately, freedom of CRP placement is the ideal rather than

reality, so the alternative to maximize benefits is to consider what CP will provide the most

wildlife benefits in a given landscape.  Then, every effort must be made to maintain fields to

maximize desired wildlife habitat benefits.
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Job R-1.2: Landscape/Site Level Bobwhite Habitat

Objectives were to (1) investigate relationships between bobwhite distribution/abundance

and habitat at the landscape and site level;  (2) identify limiting components in unoccupied or

sparsely populated areas and evaluate the feasibility of restoring them; and (3) examine

relationships between population parameters, observed population decline, and seasonal

climatological conditions.  Three models were created to address this job’s first objective.  The

first model of extant bobwhite distribution accounted for historical effects of weather in a

multiple logistic regression with other landscape environmental variables.  The second logistic

model consisted only of the environmental variables, and demonstrated land that could be

potentially occupied.  The difference of these 2 maps defined areas of Illinois devoid of

bobwhite, but which were suitable for occupancy.  The third model, the spatial linear model,

described extant abundance in Illinois.    Whether bobwhite occupied an area was determined by

increasing amounts of small grain agriculture and woods, an intermediate degree of evenness of

available land classes, and lower elevation.  Historical effects of the late-1970s winters on

current bobwhite distribution were significant.  Based on NABBS count data, mean probability

of occupation was 0.55 ± 0.01.  The mean model at HSI = 0.50 predicted 71,294 km2 (48.9% of

the state) of potentially suitable habitat for bobwhite.  The suitability of habitat dropped off

quickly, with little habitat at HSI > 0.80 and virtually none at HSI > 0.90.  Bobwhite presence

increased with increasing amounts of small grain and forest land use, and decreased with less

landscape evenness and greater severity of winter weather.  Bobwhite occurred more frequently

in landscapes with 40% more small grain agriculture and 7% more woods than mean conditions;

compared to landscapes devoid of bobwhite, landscapes with bobwhite had 118% more small

grain agriculture and 54% more woodland.

Projections of potential fall bobwhite population size were undoubtedly too high when

estimates of birds/ha were applied to the 71,294 km2 predicted suitable landscape.  Clearly

adequate site-level habitat exists only as patches with the predicted suitable landscape; we

3



hypothesize this may amount to only 37.5% of suitable landscape acreage.  Also, another model

of bobwhite habitat suitability (Roseberry and Sudkamp 1998) with a more patchy configuration

predicted less (35,000 vs 71,294 km2) suitable landscape throughout the state which further

illustrates the importance of site-level habitat quality within a suitable landscape.

The second objective was addressed with models that incorporated documented bobwhite

dispersal movements and related these to habitat distribution and colonization/extinction

probability.  We hypothesized the bobwhite in Illinois dispersed a median distance of 1.5 km and

a maximum distance of 35.3 km.   Bobwhite habitat in Illinois consisted of 416 patches >4 ha

occurring in 52 networks.  Available habitat was dominated by 1 patch that included 91% of all

habitat.  Minus this “mainland” patch, mean patch size was 1,851 ha (SE = 97 ha); the median,

however, was 32 ha.  Patches $1,000 ha (n = 56) comprised 647,409 ha, or 8% of potential

habitat.  Analysis suggested virtually no patch in Illinois was >17 km from another suitable patch

of optimal habitat.  However, given the configuration of the mechanistic model, no individual or

meta-populations were predicted to persist beyond a century (0 = 21.0 ± 1.8 yrs, range = 3-56

yrs).

It may be that the rather sedentary nature of bobwhite allow extinctions to occur at greater

than historical frequencies (and at a greater rate than colonizations) due to anthropogenic causes. 

Large grassland patches that lacked sufficient woody cover increased probability of bobwhite

extirpation in a landscape.  The amount of landscape devoted to human habitation also was a

factor associated with bobwhite extirpation.  Colonization was a function of total core area in the

landscape across all land use practices, mean core area per woods patch, mean nearest neighbor

of row crop agriculture, mean proximity of all land use practices, and amount of woods.  As

proximity of row crop fields decreased, colonization of suitable habitat was increased.  As all

land uses became less isolated, probability of colonization increased.

Areas with potential for restoration were identified.  The top 2 patches for possibly

translocating northern bobwhite based on ecological criteria were in Tazewell County adjacent to

4



the large contiguous patch of occupied habitat (“mainland”) occurring throughout western and

southern Illinois .  A large number of candidate patches occurred in Mercer County;

translocations here and in eastern Stephenson County have the effect of spreading risk of

extirpation across a larger area since these populations may have unique population trajectories. 

Each of the top choices are associated with nearby occupied habitats.  Thus, an important reason

for a depauperate patch may either be the lack of suitable site-level habitat, or the lack of

dispersal corridors between occupied and unoccupied habitat.

The third objective entailed analyses of a 50-year sample (n = 183,264) of bobwhite

wings collected by hunters in the 34 southernmost Illinois counties.  We used these wing-derived

data to examine potential relationships between age- and sex-structure and temporal patterns in

abundance.  We then discerned relationships between biological response parameters (intrinsic

factors), and climatological information and historical agricultural data (extrinsic factors).  There

were no obvious, long-term trends in sex ratios among juveniles or adults; annual fluctuations

were minor and seemingly unrelated to climatological or habitat conditions, and may therefore

have simply reflected random variation.  Sex ratios seemed unrelated to other population

parameters except for a weak tendency for declining populations to contain slightly more males

among juveniles.

Hatching chronology, as indexed by the relative proportion of late-hatched juveniles in

the fall population, increased from 1950 through the 1970's then stabilized.  Because late clutches

are generally smaller, reliance on renesting to compensate for failure of initial attempts could

theoretically reduce productivity.  Indeed, late hatches were often associated with annual

population declines, and vice versa.

The ratio of juveniles per adult in fall populations declined from 1950 to about 1970, then

stabilized over the remainder of the study.  This trend was statistically associated with changes in

gross amounts of agricultural grasslands (i.e., nesting cover) throughout the state and thus

appeared habitat related.  The fact that populations declined over the last 30 years of study
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whereas juveniles per adult (JPA) was relatively stable suggests habitat loss rather than

deterioration.  In contrast, declining JPA during the first 20 years of study may have reflected

habitat deterioration prior to complete elimination.  Annual variation in this parameter was

weather related with above-average summer precipitation and harsh winters leading to higher

ratios.  The latter relationship, which initially seems illogical, probably reflects the density-

dependent nature of JPA and the fact that severe winters often were followed by very low

breeding densities.  Because JPA was strongly density-dependent, and integrated a variety of

biological variables, the parameter was not a particularly good indicator of relative or absolute

productivity or subsequent population size.

Literature Cited

Roseberry, J. L.,  and S. D. Sudkamp.  1998.  Assessing the suitability of landscapes for northern
bobwhite.  Journal of Wildlife Management 62:895-902.
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STUDY  R-1.  UPLAND WILDLIFE/HABITAT RELATIONSHIPS

Problem: Certain conservation provisions of the 1996 Farm Bill provide opportunity to create

and enhance upland wildlife habitat in Illinois.  To better exploit these opportunities, information

is needed regarding the amount, distribution, and cover practices associated with new and re-

enrolled Conservation Reserve Program (CRP) areas. It would also be desirable to obtain similar

information about acres that have been removed from the program.  In addition, better

understanding of the relationship between site and landscape conditions is necessary to

intelligently recommend specific site practices to maximize potential benefits for species such as

the northern bobwhite. 

Objectives:

1. To inventory CRP practices (amount, type, distribution)  in southern and west-
central Illinois and evaluate their contribution to upland wildlife habitat.

2. To investigate relationships between bobwhite distribution/abundance and habitat
at the landscape and site level.

3. To identify limiting habitat components and landscape features in areas
unoccupied or sparsely populated by bobwhite and evaluate the feasibility of
restoring them.

JOB R-1.1 CONSERVATION RESERVE PROGRAM

Objective:  To inventory CRP practices (amount, type, distribution) in southern and west-central
Illinois and evaluate their contribution to upland wildlife habitat.

A thesis by Weber (2000) is attached in lieu of a final report for this job.  In addition to

data presented in the thesis, we calculated total CRP acreage within Illinois (Table 1) from  

Sign-up 15 (accepted plus remaining acres beginning FY 1998) and including cumulative acreage

as of October 2000.   Continuous, CREP (Conservation Reserve Enhancement Program),

Appeals, and Waivers (Sign-ups 14, 17, and 19) are not included in the total.

Following is the abstract of Weber’s (2000) thesis:

The Conservation Reserve Program (CRP) has been converting environmentally

sensitive acreage from agricultural production to semi-permanent vegetative cover since
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1986.  Agriculture comprises > 80% of overall land use in Illinois and CRP could have a

profound impact on both landscape composition and structure.  I recorded geographic

locations and associated attribute data for all CRP fields within 11 selected counties in

west-central and southern Illinois.  Locations of CRP fields recorded on 1:12,000 scale

black and white aerial photographs were used to create digitized land cover images on

county maps, and in the calculation of landscape metrics.  Land enrolled in CRP tended to

be situated in landscapes characterized by small patches, greater edge density and

diversity, and consequently greater fragmentation than the general county landscape.  The

results indicate conversion of lands from row crop production to semi-permanent grass or

tree plantings is in effect adding grass- and woodlands to areas already containing

relatively more of these landcover types than the county landscape in general.  By

replacing cropland with CRP, a decrease in the proportion, patch size, and edge density of

row crop was affected, concurrent with an increase in the proportion, patch size, and edge

density of grassland and woodland.    If CRP is to positively impact wildlife, land

managers and wildlife biologists must collaborate to determine which wildlife benefits to

concentrate efforts on, and where CRP should be located to maximize desired landscape

effects.  If increasing grassland patch sizes for area-sensitive grassland bird species is the

main objective of habitat improvement efforts, then CRP as currently located may

achieve this goal if sufficient CRP is added to the landscape.  However, if the goal is to

create new habitat by adding grassland acreage to areas that lack this cover type, then

greater forethought must go into the placement of CRP fields.
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Table 1.  Conservation Reserve Program (CRP) acreage within Illinois beginning FY1998
through October 2000 (excluding Continuous, CREP, Appeals, and Waivers).

COUNTY Signup 15a Signup 16b Signup 18c Signup 20d

ADAMS     9,443   14,768   15,731   17,382
ALEXANDER        263        294        294     1,019
BOND     8,741     8,125     9,555   12,159
BOONE        653        997        850        847
BROWN     8,712     9,411   10,901   14,292
BUREAU     2,321     3,666     4,462     6,078
CALHOUN     6,494     7,001     8,048     8,981
CARROLL     6,804     7,505     7,880     9,087
CASS     3,724     4,261     5,967   10,491
CHAMPAIGN     3,359     4,609     5,018     6,495
CHRISTIAN     1,853     1,979     2,317     3,602
CLARK     1,142     4,658     5,108     5,683
CLAY     9,597     9,817   10,979   12,454
CLINTON     1,842     1,994     2,700     4,820
COLES     2,356     2,551     2,840     3,760
CRAWFORD     1,230     5,862     5,992     8,672
CUMBERLAND     1,831     2,698     3,006     4,436
DEKALB        369        884     1,233     2,073
DEWITT        389        830        795     1,231
DOUGLAS        929     2,217     2,986     3,618
EDGAR     5,590     4,372     3,530     4,627
EDWARDS     5,440     5,029     5,198     6,363
EFFINGHAM     2,603     4,002     4,653     6,209
FAYETTE   15,819   12,627   13,402   14,708
FORD     1,732     2,866     3,605     4,568
FRANKLIN   20,228   22,707   23,435   24,200
FULTON     3,103     3,406     3,784     6,774
GALLATIN     1,332     2,421     2,857     3,392
GREENE     6,508     7,442     7,140     7,496
GRUNDY          25        579        739        918
HAMILTON   25,217   27,247   28,654   31,512
HANCOCK   10,289   12,888   13,510   17,143
HARDIN     2,898     2,865     2,413     2,687
HENDERSON        904        848        736        974
HENRY     8,979     9,567   10,571   12,728
IROQUOIS     4,385     7,178     6,799   12,175
JACKSON     7,495     9,114     9,976   11,654
JASPER     2,457     3,531     4,506     6,117
JEFFERSON   31,232   31,702   32,242   33,999
JERSEY     5,338     5,736     5,402     5,670
JO DAVIESS   25,345   25,039   25,083   27,121
JOHNSON   15,237   15,652   16,736   17,983
KANE          87        150        115        137
KANKAKEE        638     1,129     1,196     1,520
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Table 1.  Continued.

COUNTY Signup 15a Signup 16b Signup 18c Signup 20d

KENDALL        451        339        347        366
KNOX     4,592     4,965     5,287     9,144
LAKE     4,676          33            0
LA SALLE     5,214     4,281     5,117
LAWRENCE     5,714     4,983     5,025      5,827
LEE        688     1,253     1,704     2,712
LIVINGSTON     4,218     4,119     3,332     6,597
LOGAN        984     1,570     1,847     3,866
MCDONOUGH     1,846     3,095     3,012     4,548
MCHENRY     1,724     2,432     2,101     2,227
MASON     6,111     4,932     8,154     6,714
MACON        781     1,028     1,008     1,145
MACOUPIN     8,400     8,576     8,915   10,672
MADISON     4,005     3,655     3,425     3,521
MARION   22,247   23,222   26,874   30,707
MARSHALL        571        879     1,044     1,225
MASSAC     7,985     8,077     8,006   10,110
MCLEAN     6,553     7,769     5,452     9,336
MENARD     2,043     2,747     3,363     3,917
MERCER     8,115     8,782     8,588   10,005
MONROE     5,200     4,557     4,570     4,341
MONTGOMERY     7,823     8,387     9,628   11,736
MORGAN     2,993     3,250     4,127     5,629
MOULTRIE        426     1,119     1,060     1,553
OGLE     7,897     9,013     9,337   10,674
PEORIA     1,421     1,564     1,776     2,806
PERRY     8,042     8,275     7,755     9,117
PIATT        875     1,161     1,098     1,709
PIKE   30,886   33,697   34,099   36,886
POPE     9,714     9,232     9,798   10,134
PULASKI     7,827     7,541     7,949     9,452
PUTNAM        292        478        475        868
RANDOLPH     9,061     7,664     7,225     8,944
RICHLAND     4,121     3,134     3,428     5,541
ROCK ISLAND     4,208     4,497     4,678     5,392
ST CLAIR     2,801     2,173     2,311     2,526
SALINE     6,778     6,999     7,808     8,818
SANGAMON     3,991     3,950     4,782     5,803
SCHUYLER     4,428     6,332     6,464   13,146
SCOTT     3,966     3,645     3,098     3,326
SHELBY     8,823   10,166     9,960   12,198
STARK     1,546     1,282     1,176     2,012
STEPHENSON     7,378     7,489     7,147     8,017
TAZEWELL     1,876     3,103     3,278     5,041
UNION   19,091   19,848   19,671   20,310
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Table 1.  Continued.

COUNTY Signup 15a Signup 16b Signup 18c Signup 20d

VERMILION     2,900     4,280     4,267     5,053
WABASH     2,436     2,501     3,043     3,693
WARREN     1,178     1,348     1,604     1,782
WASHINGTON     6,447     6,262     6,207     6,521
WAYNE   31,710   34,981   39,370   45,213
WHITE     8,888     9,266     9,688   11,478
WHITESIDE     7,583     8,495     9,378   11,744
WILL     1,923     1,504     1,478     1,468
WILLIAMSON     7,851     8,020     8,791   10,938
WINNEBAGO     3,116     3,632     3,871     4,445
WOODFORD     2,470     3,369     3,485     4,998

Total Acreage 605,141 661,537 698,622 838,923

aBeginning FY 1998: Accepted plus remaining (acres)
bBeginning FY 1999: Accepted plus remaining (acres)
cCumulative acreage as of October 1999
dCumulative acreage as of October 2000 
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JOB R-1.2: LANDSCAPE/SITE LEVEL BOBWHITE HABITAT

Objective 1:  Investigate relationships between bobwhite distribution/abundance and habitat at
the landscape and site level.

Identifying factors limiting abundance and distribution of wildlife is essential to

understanding their population dynamics.  Spatially-explicit wildlife-habitat models formalize

our understanding of the relationship between wildlife species and the environment, leading to a

greater understanding of which environmental factors affect wildlife distribution and abundance

(Morrison et al. 1998).  Once these environmental factors have been identified, and their relative

contribution to population and community dynamics are known, predictions may be made

regarding wildlife distribution and abundance.  For birds, the typical means of assessing a

response by a species to an environmental factor is through the use of point counts.  

Robbins and Van Velzen (1967:2) stated point counts, North American Breeding Bird

Survey (NABBS) locations in particular, do “not pretend to measure the number of birds present

in an area”, but rather, provide “an index of abundance that can be used for detecting changes

from year to year.”  However, a positive relationship is assumed between the number counted

and the number actually in an area.  Therefore, it follows that a relationship between this number

and habitat in an area locally about the survey station must occur as well, especially if density

and habitat quality are positively related.  

Point counts at individual road-side stations (stops) have rarely been examined in relation

to local habitat.  Emlen and Wiens (1965, Wiens and Emlen 1966) related relative coverage of

general vegetation types at road-side point counts to the distribution and abundance of dickcissel

(Spiza americana) in Wisconsin.  Baker (1977) related habitat to the abundance of 115 bird

species at NABBS points in northern California.  Wiens and Rotenberry (1981:524) noted

limitations in the accuracy of road-side point counts made “detailed and precise habitat

measurements” impractical, but suggested patterns of general habitat affinities are discernible

from remotely-sensed data.
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Numerous statistical models have been developed to predict suitability of habitat for

wildlife over large areas based on limited counts.  These methods include, but are not limited to,

linear regression (Morrison et al. 1987, Ward et al. 1991, Rice et al. 1993, Puttock et al. 1996, Li

et al. 1998, Penhollow and Stauffer 2000) and logistic regression (Nadeau et al. 1995, Pausas et

al. 1995, St. Georges et al. 1995, Pearce and Ferrier 2000, Penhollow and Stauffer 2000).  These

models, however, typically fail to account for one of the assumptions of linear modeling. 

The traditional independence assumption in linear and logistic regression holds that the

error terms corresponding to different survey points are not correlated in time or space (Neter et

al. 1989).  When the error terms are serially correlated (autocorrelated), ordinary least squares

produces biased estimates of the standard errors of the regression coefficients (Choudhury et al.

1999).  These biased standard errors lead to confidence intervals which are too narrow,

increasing the likelihood of spurious relationships (Legendre 1993).  Numerous authors have

found that disregarding the effects of autocorrelation leads to over-estimation of the importance

of habitat variables due to a bias in the slope parameter (Robertson 1987, Anselin 1989, Klute et

al. 2002).  Ignoring autocorrelation also may lead to inclusion of unimportant model covariates

(Legendre 1993, Wu and Huffer 1997). 

A few ecologists are beginning to account for spatial dependencies in their data when

modeling the distribution or presence/absence of a species.  Researchers accounting for spatial

autocorrelation have sometimes removed the spatial structure prior to model building, whereas

others have exploited the underlying spatial autocorrelation with geostatistics to improve fit of

predictive models (Le Duc et al. 1992, Liebhold et al. 1993).  The former strategy generally

produces a general model translatable to portions of the species’ range outside of the immediate

area of interest, whereas the latter strategy generally produces more accurate predictions of

species occurrence.  

Examples of the latter strategy are becoming common.  Autologistic regression has

previously been used to model presence of American woodcock (Scolopax minor) in
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Pennsylvania (Klute et al. 2002) and plant species distribution in Florida (Wu and Huffer 1997). 

Beard et al. (1999) took a similar approach in modeling breeding bird distribution in Idaho. 

Augustin et al. (1996) incorporated autocorrelation effects in logistic regression models of deer

distribution in England.  This approach explicitly accounts for spatial autocorrelation by

modeling the log odds of the categorical response as a linear combination of both ecological

covariates and responses at neighboring sites (Cressie 1993).  A large amount of information is

lost, however, when analyzing presence/absence in logistic regression analyses when abundance

data are available.  Few ecological studies, however, have accounted for correlated errors in

linear models of species abundance; Stralberg and Bao (1999) are a notable exception.

Thogmartin (2002) interpolated bobwhite abundance based on the assessed

autocorrelation structure from >2,600 survey sites located across Illinois.  These interpolations of

abundance, however, did not account for local-area and landscape-level habitat, which may

potentially exert greater influence over abundance than would neighborhood effects alone.  In

this job the influence of environmental parameters were assessed within a spatial linear modeling

framework.  Given a linear regression model y = Xâ + e, small-scale spatial autocorrelation was

incorporated by fitting an autoregressive covariance model to the errors.  The spatial and

regression parameter estimates interacted, and the model was fitted iteratively (MathSoft 2000).

METHODS

Data

The models of bobwhite presence and abundance were parameterized with NABBS

counts.  Wildlife managers have used roadside counts of whistling bobwhites such as these as an

estimate of relative abundance for >50 yrs (Bennitt 1951, Elder 1956, Rosene 1957, Norton et al.

1961).  These count indices indicate relative rather than absolute abundance (Baxter and Wolfe

1972), with the assumption that the indices are directly proportional to population size (Skalski

and Robson 1992; however, see Burnham 1981, Boonstra 1985, and Nichols 1986 for criticisms

of the use of simple counts as indices of abundance). 
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The call count data covered the period 1985-98, a 14-year span which bounds by several

years the period in which satellite imagery was taken (1989-92) of the Illinois landscape.  The

NABBS, annually administered in June by the U.S. Fish and Wildlife Service, consisted of 81

39.4-km routes along secondary roads in Illinois (Fig. 1).  Each route possessed 50 evenly spaced

stops at which skilled volunteer observers counted all bobwhite (in addition to other bird species)

seen within a distance of 400 m and all heard at any distance during 3-min intervals (Droege

1990).  Surveys began 0.5 hr before official sunrise and were conducted only during acceptable

weather (good visibility and little or no precipitation or wind).  Dependent young in bobwhite

broods were not counted when seen.  Counts were collected from 1966-98 (n = 87,200 stop

counts).  Data collected prior to 1998 were manually entered for each stop from microfiche of

data sheets.  Stop-specific count data for 1998 were transferred from the NABBS home page

(USGS Patuxent Wildlife Research Center 1999) and incorporated into the data set.  Greater

detail for the NABBS methodology is provided by Robbins et al. (1986) and greater detail

regarding Illinois NABBS call count locations and data are available in Thogmartin (2002).

Habitat Variables

Bobwhite habitat was assessed at multiple spatial scales (Wiens et al. 1987).  Land

use/land cover (Illinois Department of Natural Resources 1996), elevation, slope, aspect, soil

type, and distance to watercourse were examined at each NABBS survey site (-0.08 ha).  Digital

data files of elevation and soil are available from the Illinois Geospatial Data Clearinghouse

(http://www.isgs.uiuc.edu/nsdihome/webdocs/browse.html).  These variables and others also

were calculated for 5-, 50-, 500-, and 5,000-ha buffers around the survey location (Table 2). 

Configuration metrics for land use/land cover class and landscape were calculated with the grid

version of PATCH ANALYST (Grid 2.1; Carr et al. 2000), an ArcView extension implementing

FRAGSTATS (McGarigal and Marks 1995) in a menu-driven manner; the particular script used

for these calculations was originally written by Gary Mohr (Cooperative Wildlife Research

Laboratory, Southern Illinois University, Carbondale).
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Determining Distribution

Logistic regression was used to assess the influence of environmental parameters on

bobwhite distribution.  Given that ecological theory generally prescribes a sigmoid curve for

species tolerance over part of an occupied gradient, it is reasonable to operate on the assumption

that species occurrence relates to an environmental gradient in a logistic rather than linear

manner (Osborne and Tigar 1992). 

For any logistic regression, the odds of an event (or no event) given a set of conditions

can be determined by calculating:

odds = eá + â1x1 + â2x2 + ... + ânxn.

Probability of an event occurring is calculated as:  Habitat Suitability Index (HSI) = Probability

of Occupation = odds/(1 + odds).  Weather parameters from 1977-79 were used to account for

the influence of severe winters of the late 1970s on current distribution (Thogmartin 2002).

Model goodness-of-fit was assessed in 2 ways, with the Brier score (Brier 1950, Epstein

1988, Murphy 1993, Margolis et al. 1998), and the leCessie-vanHouwelingen-Copas-Hosmer (C-

H-C-H) goodness-of-fit test (Hosmer et al. 1997).  The Brier score is the mean of the mean

squared error between the predicted and observed events.  Scores vary between 0 and 1, with a

more accurate model closer to 0.  A model agreeing with the known outcome 50% of the time

has a score of 0.25.  The C-H-C-H goodness of fit test is an improvement on the Hosmer and

Lemeshow goodness-of-fit test.  Classification accuracy was assessed with 3 independent data

sets, Illinois Department of Natural Resources (IDNR) bobwhite call count sites for 1990,

Christmas Bird Count (CBC), and IDNR pheasant call counts.  Only presence was validated with

CBC and IDNR pheasant call counts and not areas where bobwhite were predicted to be absent.

Determining Abundance

The hypothesis that relative bobwhite abundance varies across sites as the sites vary in

their habitat was tested with spatial linear models, accounting for a known correlation between 
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counts at adjacent survey sites (Thogmartin 2002).  Mean abundance (log10-transformed mean1985-

1998) calculated for the 14-year period around when imagery was taken for the digital land

use/land cover of Illinois was used.  To remove the north-south trend in bobwhite abundance, I

obtained residuals from a model relating historical climatological and land use variables

(Thogmartin 2002).  These detrended residuals were used in spatial linear models accounting for

relative bobwhite abundance with environmental variables and the effects of neighboring survey

locations.    

A linear model, in its most general form, is comprised of a systematic or predictable

component (signal) and an irregular or unpredictable component (noise).  A spatial linear model

decomposes the predictable component into regional trends (large-scale spatial autocorrelation),

local variability (local spatial autocorrelation), and predictor covariates.  The spatial linear model

(Cressie 1993:406; Eqn. 6.3.9) is written as:

where Zi is the random process at site i, ä are the errors at site i, and ìi is the mean at site i

described as a linear model with covariates:

  ìi = â1x1 + â2x2 + ... âixi.

The large-scale trend was accomplished through the preliminary logistic regression delineating

occupied habitat.

Determining the proper spatial neighborhood within the occupied habitat is crucial in a

properly-performing spatial linear model (Kaluzny et al. 1998).  I iteratively fit null spatial

models for each neighborhood size between 25 and 65 neighbors.  The null model with the

lowest residual variance was selected as the appropriate spatial structure in which to evaluate

ecological covariates.  The spatial and regression parameter estimates interacted and the models

were fitted iteratively (MathSoft 2000).  Spatial linear models were generated with S-PLUS 2000

(MathSoft 1999), S+SpatialStats (MathSoft 2000), and S-PLUS for ArcView GIS (MathSoft

1998).
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Model Selection

Brady et al. (1993, 1998), Schairer (1999), Roseberry and Sudkamp (1998), Michener et

al. (2000), and L. W. Burger, Jr. (personal communication) examined bobwhite population

response to landscape characteristics.  I used the variables employed in these studies as a starting

point in variable selection.  Because it was unclear which suite of variables these authors

examined in formulating their final models of presence and abundance, I considered >200

variables in building predictive models of bobwhite presence and abundance.  To winnow the

variables into a manageable suite of candidate variables useful for further modeling, I modeled

each variable separately in a univariate spatial linear model.  Meents et al. (1983) suggested avian

habitat use may be non-linear; I specifically considered non-linear responses by including the

square of each variable in my preliminary variable selection procedure.   

Aikike’s Information Criterion (AIC) was used to rank each variable (Burnham and

Anderson 1998), with the most informative variable possessing the minimum AIC.  The AIC was

corrected for small sample sizes even though n exceeded 1,600 in all analyses.  Quasi-likelihood

methods were unnecessary since the mean, after removal of the state-wide trend, was normally

and continuously distributed, with the mean exceeding the variance.  Where terms were different

measures of the same effect, and/or highly correlated, I retained the more significant term for

further models. 

An information theoretic approach was followed to determine the most informative suite

of multivariate models, with the candidate models ranked by their AIC score (Burnham and

Anderson 1998).  Candidate models within 2 units AIC were examined in concert (Burnham and

Anderson 1998).  Where necessary, model averaging was used to define a final model.

Three final models were created.  The first model of extant bobwhite distribution

accounted for historical effects of weather in a multiple logistic regression with other landscape

environmental variables.  The second logistic model consisted only of the environmental

variables, and demonstrated potentially occupiable land in Illinois.  The former model modeled
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the “true” distribution and bobwhite in Illinois, whereas the second modeled habitat appropriate

for bobwhite, regardless of the actual current occurrence of bobwhite.  The difference of these 2

maps defined areas of Illinois devoid of bobwhite, but which were suitable for occupancy.  The

third model, the spatial linear model, described extant abundance in Illinois. 

Mapping Model Results

Two approaches were used to depict model output for maps of habitat suitability.  In the

Grid module of ArcInfo 8.0 (Environmental Systems Research Institute, Redlands, California,

USA) the focalsum and focalmean commands were used to evaluate, on a pixel-by-pixel basis,

the amount of a composition variable within a specified radius of the focal cell (e.g., woodssum

= focalsum(woods, circle, 70, data)).  Using the original 28.5-m cell initially led to estimated

processing times >1 month; thus, I resampled the digital Illinois land use/land cover data to 57-m

pixels, a pixel 4 times the original cell size (analysis of the resampled land cover took <30 hrs). 

To evaluate the composition map in conjunction with the configuration maps (described below),

the composition map was resampled to the original 28.5-m cell size.

I calculated with PatchAnalyst the identified configuration variable for a set of circular

areas (>9,000) placed across the digital coverage of Illinois; these circular areas equaled in size

the scale of interest (e.g., 500 or 5,000 ha).  The configuration variables identified for the survey

locations were then interpolated with ordinary kriging after identification of the underlying

spatial autocorrelation by semivariance analysis (Thogmartin [2002] provided details of similar

analyses).

RESULTS

Presence/Absence

Composition variables were important in determining presence of bobwhite in the Illinois

landscape, whereas configuration variables were important in determining abundance.  Whether

bobwhite occupied an area was determined by increasing amounts of small grain agriculture and

woods, an intermediate degree of evenness of available land classes, and lower elevation. 
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Historical effects of the late-1970s winters on current bobwhite distribution were significant  

(Thogmartin 2002), but in all cases reduced model goodness-of-fit, resulting in their exclusion

from the final model.  

Because there is a north-south gradient in elevation in Illinois, I assessed the correlation

of elevation to mean climate conditions in an effort to discern whether elevation may act as a

surrogate for climate.  I correlated elevation against mean and departure from mean conditions

for each of the regional climate variables examined in Thogmartin (2002) and found mean snow

days (SNWDY) was highly correlated with elevation (r = 0.84).  Based on this finding, I re-

conducted the analyses substituting elevation with mean SNWDY (Table 2).  Because of the high

correlation, differences between the models were negligible, both in model fit and spatial

expression.  

The model with mean SNWDY rather than elevation described a significant portion of

the variance in probability of presence (L.R. ÷2
4 = 967.2, n = 2,460, P < 0.0001) and was well-

fitted (Brier = 0.16; C-H-C-H goodness of fit Z = -0.54, P = 0.59).  General model performance

was good (Nagelkerke R2 = 0.435, C = 0.837, Tau-a = 0.334).  All 3 diagnostics (R2, C, Tau-a),

along with the odds ratios, indicated a model performing considerably better than chance. 

Margolis et al. (1998) indicated a C > 0.8 provided good predictive ability; a C = 0.837 indicates

a randomly selected site will be assigned the correct classification by the logistic regression

model 84 times out of 100.  Tau-a, a non-parametric correlation statistic, indicated moderate

correlation (0.334) between predicted and observed observations, which is about as good as can

be expected given the nature of the binary response.    

Bobwhite occupied areas with a lower mean elevation (172.8 ± 0.5 m) than was available

(188 m; SD = 42.6) and considerably lower than non-habitat (204.6 ± 0.6 m).  This elevational

difference was likely not the causative agent separating habitat from non-habitat; instead

elevation probably masked the influence of the mean number of days of snow >2.5 cm due to a

north-south elevational gradient in Illinois.  Snow >2.5 cm persisted 10 days less in occupied
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habitat (28.1 ± 0.3 days) compared to unoccupied habitat (38.2 ± 0.4 days) (Fig. 1).  Unoccupied

habitat experienced 36% more days of snow than occupied habitat.  Probability of occupancy was

<50% for landscapes typically experiencing $50 days of snow cover, whereas it was >65% for

areas experiencing #30 days.

Within a 5,000-ha landscape, there was twice as much small grain agriculture (375.4 ±

3.8 ha vs 172.1 ± 3.0 ha) and 50% more woods (871.7 ± 11.5 ha vs 564.4 ± 11.4 ha) in areas

occupied by bobwhites.  Probability of occupancy by bobwhite in 5,000 ha landscapes was

virtually 0 when small grain agriculture comprised <100 ha; alternatively, landscapes with

$1,000 ha had -50% probability of occupancy.  

Shannon’s J’ was 20% greater in occupied landscapes (0.61 ± <0.01 vs 0.49 ± <0.01). 

The index approaches 1 as the distribution of different land use classes in the landscape becomes

increasingly even, indicating bobwhite occupied landscapes where land use classes were more

equitably distributed. 

Based on NABBS count data, mean probability of occupation was 0.55 ± 0.01.  The mean

HSI at unoccupied NABBS sites for the reference year 1990 was 0.457 (LCL = 0.448, UCL =

0.466), whereas the lowest limit for occupied sites was 0.521, a difference of 0.064.  There was

some overlap of HSI though between occupied and unoccupied sites, as the maximum observed

HSI at unoccupied sites was 0.873 and the lowest HSI at an occupied sites was 0.126.  Given the

apparent break between HSI at occupied and unoccupied NABBS sites, I identified an HSI = 0.50

as the level at which to define patches of suitable bobwhite habitat.

The mean model at HSI = 0.50 predicted 71,294 km2 (48.9% of the state) of potentially

suitable habitat for bobwhite (Fig. 2).  Because of the curvilinear nature of the logistic regression,

considerably less habitat was available at the lower confidence level than at the mean or upper

confidence levels.  The mean and upper confidence levels differed little in total area.  The

suitability of habitat dropped off quickly, with little habitat at HSI > 0.80 and virtually none at

HSI > 0.90 (Fig. 3). 
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Model Validation.—Within the historical quail range, 0HSI at unoccupied IDNR call count

sites was 0.605 ± 0.014 versus 0.666 ± 0.122 at occupied IDNR sites.  Because CBC and IDNR

pheasant call count routes are more reliable in assessing bobwhite presence rather than their

absence, I only compared observations indicating bobwhite presence to the model results. 

Winter assessments of bobwhite presence (CBC data) indicated a correct-classification rate of

0.783 (n = 23); approximate median distance to suitable habitat for those mis-classified CBC

locations indicated bobwhite presence was 8.2 km away, generally within the area (12.1-km

radius circle) typically surveyed by CBC volunteers.  Thus, correct-classification based on CBC

data may be as high as 0.913.  The IDNR pheasant call counts possessed a correct-classification

rate of only 0.335 (n = 158).

Abundance

Log-likelihood was maximized for a neighborhood of 62 survey locations (Fig. 4; log(£)

= -2,650.6).  Based on this neighborhood of 62, abundance was described as a complex function

incorporating  polynomials of small grain field shape, sedimentary soil, mean core area of woods,

and single variables of the number of woods patches and variability in core area of row crop

(Table 3; AICc = 5,062.3, adj-R2 = 0.366).  In occupied landscapes, small grain edge and

proportion of the landscape in sedimentary soils were curvilinearly associated with greater

relative abundance of bobwhite (Fig. 5).  Bobwhite abundance also was positively associated

with greater variation in the core area of row crop fields and negatively associated with number

of woods patches and mean core area in woods.

Reduction of the model was not necessary as a smaller nested model containing each of

the variables, except for number of wood patches and the square term for mean core area of

woods, was less explanatory (AICc = 5,073.3, U2 = 10.9, P = 0.0009). Residuals from the spatial

linear model were homogenous and largely normal except for some (not significant) large

positive values. 
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Importance of Small Grain Agriculture to Bobwhite

Small grain agriculture was important in both models of presence and abundance,

prompting a closer examination of this relationship.  I calculated mean and coefficient of

variation in call counts for each NABBS survey stop from 1985-98.  I also calculated the

proportion of occurrence and whether a stop was “at-risk” of extirpation.  Proportion of

occurrence was calculated as the number of years bobwhite were seen at a survey location in the

14 years of the study period, divided by 14.  Areas of greater variability in population abundance

relative to the mean are more likely to proceed to extirpation than those exhibiting greater

consistency.  Thus, an at-risk site was defined as a stop where variance in bobwhite abundance

exceeded mean abundance (s2/0 > 1).  Each of these metrics (mean, coefficient of variation,

proportion of occurrence, and whether at-risk), because of their complementary nature, are useful

population-level indicators of biological response.  Areas with a high abundance of bobwhite in 1

year would be more likely to exhibit higher abundance of bobwhite in subsequent years, lowering

the coefficient of variation and probability of extirpation, and increasing proportion of

occurrence.  Sites with low abundance would exhibit the opposite pattern, a lower proportion of

occurrence, a potentially higher variation in number, and a greater risk of extirpation.           

For NABBS call counts, I found bobwhite occurred at a lower frequency, in lower

numbers, and with greater count variability when in wood habitats, whereas they occurred at the

greatest frequency, at the highest numbers, and with less variability in small grain habitats (Fig.

6).  Grassland and row crop habitats provided intermediate degrees of suitability in the local area

about the survey location.

DISCUSSION

The wide geographic extent of regional bird monitoring programs usually makes avian-

habitat use studies resulting from them largely non-experimental and exploratory in nature

(Young and Hutto 2002).  One goal of avian-habitat relationship studies is to identify

environmental conditions controlling presence and abundance of a species.  The final model of
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bobwhite presence included variables associated with landscape diversity, small grain

agriculture, forest lands, and winter severity, whereas the final model of bobwhite abundance

included indices of agriculture shape and size, soil characteristics, and forest land.  The

predominant scale at which quail were associated with landscape variables was 5,000 ha, the

largest scale examined.  Roseberry and Sudkamp (1998) reported significant associations

between indices of bobwhite abundance and environmental variables at route and county scales. 

Their models, however, did not account for effects of spatial autocorrelation and did not consider

environmental variables at small scales.  Therefore, it is unclear as to which scale is ultimately

most appropriate for measuring influences of landscape characters on bobwhite.  Regardless, it

does appear evident large scales produced the tightest associations with quail presence and

abundance.

Presence

Model Results.—Bobwhite presence increased with increasing amounts of small grain

and forest land use, and decreased with less landscape evenness and greater severity of winter

weather.  Bobwhite occurred more frequently in landscapes with 40% more small grain

agriculture and 7% more woods than mean conditions; compared to landscapes devoid of

bobwhite, landscapes with bobwhite had 118% more small grain agriculture and 54% more

woodland.  

Bobwhite presence increased as evenness approached the landscape mean.  Landscape

cover-type evenness increases with increasing landscape diversity and is described as the

observed level of cover-type diversity divided by the maximum possible diversity (varying

between 0 and 1).  In Illinois, bobwhite were most highly related to intermediate values of

evenness.  Low levels of evenness would index landscapes with a lower amount of woods and

small grain agriculture, reducing likelihood of occupancy.  Conversely, high evenness suggests

equal amounts of all cover types, including urban and suburban human habitation.  Roseberry

and Sudkamp (1998) concluded bobwhite were more highly associated with lower contagion in
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their Pattern-Recognition Model of Illinois bobwhite habitat; Riitters et al. (1995) reported a

highly significant negative relationship (r = -0.9) between contagion (a configuration measure)

and Shannon’s J’ (a composition measure), indicating the results of Roseberry and Sudkamp

(1998) and this job concur.

Model Improvement.—Augustin et al. (1996) found autologistic regression, which

accounts for spatial autocorrelation in a logit regression framework, produced a tighter fit to a

known distribution than logistic regression alone.  Given that model fit was high, correctly

predicting >80% of validation data, little improvement may be made by accounting for spatial

autocorrelation in distribution.  There were, however, obvious deficiencies in model adequacy

outside of the historical quail range.  Therefore, additional model improvement may better

resolve suitable habitat in those areas where bobwhite are sparsely distributed.  My concern,

though, is that landscape factors important in determining quail presence and abundance outside

the historical quail range may differ substantially from those I identified based on threshold

responses not accounted for in the linear approaches I utilized.  Thus, further modeling,

examining only those survey locations located in northern and eastern Illinois, may identify these

different variables should they exist.  Given that many of the mis-classified sites occurred along

the northern periphery of the historical quail range, further modeling may benefit by including

distance from the historical quail range as a covariate.  

Additional model improvement may be possible if the cumulative effects of the late-

1970s winters are incorporated in the model; as it was, I assessed only individual effects of

climate.  Some of the cumulative effects of weather were included by allowing the weather

variables to be collinear, but this likely caused lower model goodness-of-fit.  By the frequentist

paradigm, variables reducing model goodness-of-fit should be excluded.  Conversely, the

Information Theoretic approach suggests assessments of final model goodness-of-fit are

unnecessary given that the global model is properly fitted (Burnham and Anderson 1998:306). 

Burnham and Anderson (1998) indicated for models derived from large samples, goodness-of-fit
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for an AIC-defined final model is of little concern and that it is acceptable to use this model for

inference.  I appended the poorer-fitting model for those confident that Information Theory can

more properly define the arena of inference; regardless, â’s for the landscape variables varied

little between the 2 models.

Comparison to Other Landscape Models.—Schairer (1999) found bobwhite habitat

suitability increased with the proportion of the landscape devoted to row crop and decreased as

deciduous forest patch size increased.   L. W. Burger, Jr. (personal communication) found similar

results in that suitability increased with row crop shape index and density of woods edge.  Since

edge density is typically, though not always, negatively related to patch size, the authors of these

2 studies were generally in agreement.   L. W. Burger, Jr. (personal communication) also

reported a significant influence of CRP edge, which was not studied by Schairer (1999).  Like my

study, Schairer (1999) found very little of the Virginia landscape was highly suitable. 

Abundance

Proportion of the landscape in sedimentary soils1 negatively affected bobwhite

abundance.  These soils were thin (<100 cm) loess generally occurring on loam, Wisconsinan till,

or lacustrine sediments.  They were most abundant in the northeastern portion of the state, but

were also commonly found scattered throughout southern Illinois.  Guthery (2000:17) suggested

loamy soils over limestone bedrock generally support high densities of bobwhite in north-central

Texas; Guthery admitted, however, that the relationship between soil type, food abundance and

diversity, and quail abundance has never been established.  In Illinois, the negative effect of these

loamy sedimentary soils on bobwhite abundance cannot be simply due to their agricultural

importance since correlations between sedimentary soils and agriculture were generally small or

negative.  Rather, since sedimentary soils generally promote plant growth and the rate of

1Soils identified as sedimentary included classes 6, 7, 8, and 9 of the parent soil material,
as identified by Fehrenbacher (1982) and mapped by the Illinois State Geological Survey
(1984).
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succession due to their high nutrient content, these areas may lack sufficient open ground for

bobwhite movement, constraining bobwhite abundance.  

Moderate to high values of landscape shape index for small grain agriculture were

associated with higher numbers of bobwhite.  This index is highly correlated with indices of edge

abundance, indicating high amounts of small grain field edge in the landscape are important

predictors of bobwhite abundance in Illinois.  

Variation in row crop field size had a small, but positive effect; uniform field size, which

would reduce this variation, was probably associated with modern (“clean”) agricultural

practices.  These clean agricultural practices, primarily occurring in the agricultural plains of

east-central Illinois, are associated with extremely large field size, negating their importance to

bobwhite (Thogmartin 2002).

As forest land increased in both abundance and number of patches, bobwhite declined in

abundance, whereas moderate amounts of widely-distributed forest favored greater abundance. 

This finding concurs with that of Roseberry and Sudkamp (1998) and Guthery et al. (2001), and

disagrees with that of Brady et al. (1993).  These contradictory findings may indicate a non-linear

response of bobwhite to woods.  In landscapes with little woods (e.g., Kansas), bobwhite seem to

respond to increases in woody cover.  In heavily wooded landscapes (e.g., western and southern

Illinois), however, they respond negatively to further increases.  This negative response of

bobwhite abundance to woods amount should be tempered by the observation that increasing

amounts of woods do promote bobwhite occurrence.  Thus, clearly, while woody cover is

necessary, (near) continuous woods act to depress bobwhite abundance.  This negative response

to continuous forest cover is likely due to a lack of openness at ground level.  While dense forest

understories are essential for winter cover (Roseberry and Klimstra 1984), too much likely

precludes high abundance.  For instance, Dixon et al. (1996) suggested bobwhite avoided pine

woods in their South Carolina study area because a lack of the traditional grassy understory and
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invasion by midstory hardwoods reduced available food and cover.  Bobwhites neither scratch

strongly in leaf litter nor maneuver easily through thick brush.    

Guthery et al. (2001) claims to have disproven Leopold’s Law of Interspersion (Leopold

1933), the positive association of bobwhite with land cover edge, by reporting an instance in

which bobwhite were not positively associated with edge; they suggested 1 instance is all that is

necessary to invalidate an ecological theorem.  However, only 2 paragraphs earlier in their paper

they indicated associations between bobwhite and habitat were context dependent.  It seems in

the context of the Illinois landscape, bobwhite do respond favorably to the amount of 1 type of

edge, that of small grains.  Thus, I disagree with Guthery et al. (2001) and suggest previous

counter instances in which bobwhite were either not associated or negatively associated with

edge must also be interpreted within the context of the particular landscape in which the study

was conducted.  In some contexts, bobwhite do respond to landscape edge and, therefore, it is

premature to suggest Leopold was entirely wrong.

This context-dependent association of bobwhite to landscape features needs better

understanding.  The form of the relationship between bobwhite response and varying amounts of

land use practices is not clear.  I offer a graphical model as a starting point for defining the slope,

shape, and range of the relationships of bobwhite to various land use practices (Fig. 7).

Potential Bobwhite Population Size in Illinois

Brennan (1999) suggested fall quail densities on high-quality habitat ranged between 2.2

and 4.4 birds @ ha-1 whereas Leopold (1933) reported bobwhite density rarely exceeded 2.5 birds @

ha-1 in the agro-environs of the Midwest.  For 71,294 km2 of suitable habitat in Illinois, these

density estimates translate to 15,684,680 quail at 2.2 birds @ ha-1, 23,527,020 quail at 3.3 birds @

ha-1, and 31,369,360 quail at 4.4 birds @ ha-1.  These estimates are undoubtedly too high.  Figure 2

suggests little, if any, high-quality landscape-scale habitat exists in Illinois.  Thus, based on

Preno and Labisky’s (1971) late winter estimate of 0.2 birds @ ha-1, measured when bobwhite

were at their apex of abundance in Illinois, the number of bobwhite in Illinois may only be
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-1,425,880.  This is a pre-breeding estimate, which is often only about 35% of the fall

population size.  If this ratio is reasonable, fall population may number 4 million.  Current

estimates of annual harvest are -500,000 birds @ yr-1, or about 1/8 of this estimated total

population size.  Both the pre-breeding and fall estimates of population size exceed the

population goal (921,600) set forth by the Northern Bobwhite Conservation Initiative (NBCI;

Southeast Quail Study Group Technical Committee 2001).  These estimates of population size

are probably upper limits to the true population size, given that land within suitable landscapes

differs in their site-level suitability.  Given that annual harvest is currently -500,000, >15% of

each landscape must comprise suitable sites.  The NBCI assumed 1/3 of the fall pre-hunt

population was removed by harvest, which would indicate the true fall population is 1.5 million. 

This translates to a hypothesis that 37.5% of each suitable landscape is adequate site-level

bobwhite habitat.

Small Grain Agriculture

Even though small grain agriculture comprised <6% of the Illinois landscape, it was very

important in determining both bobwhite presence and abundance.  Because bobwhite occurred at

their highest abundance, varied least in abundance, probability of occupancy was greatest, and

risk of extirpation was lowest in areas of small grain agriculture, it is doubtful the association of

bobwhite with small grain agriculture is spurious.  In Illinois, small grain agriculture included

winter and spring wheat, winter rye, winter and spring oats, triticale, and winter and spring barley

(Nafziger 2001).  By far, the most common small grain crop was soft red winter wheat, a low

protein and gluten variety useful in baking and gum production (Nafziger 2001).

Robel et al. (1979) reported both corn and soybean (row crops) and western ragweed

(found in grasslands) provided -25% more usable energy than wheat.  Thus, it is doubtful the

importance of small grain agriculture to bobwhite is due solely to the value of small grain seeds

to bobwhite energetics.  However, small grain waste, unlike the more energy-packed row crops,

is readily available at a time of the year when corn and soybeans are not, during spring and early
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summer.  Winter wheat is planted in late September and October.  After initial growth, the wheat

is dormant through winter until growth resumes in late winter (March).  Wheat begins to head in

early May and harvest occurs in June and July.  Nearly 14%, or 80,000 ha, of the annual Illinois

small grain crop is left unharvested (Nafziger 2001).  This growth pattern may make waste grain

more accessible to bobwhites, especially early in the nesting period.  Small grain cultivation may

also produce heavy stands of native annuals such as ragweed (Ambrosia spp.), Croton spp., and

wild legumes (Stanford 1980) and abundant insects (Palmer et al. 1992) which also rate high as

quail food. 

Wheat fields probably undergo less disturbance during the early breeding period than

fields planted in corn or soybeans.  While application of fertilizers and herbicides to wheat fields

typically occurs in late winter (March), there is a 10-week period afterwards where the fields are

left to grow.  Concurrently, soybean and corn fields planted in late April and early May produce a

tremendous disturbance when bobwhite begin breeding.  This combination of timely seed

availability and lack of human disturbance may account for the positive response of bobwhite in

areas of small grain agriculture in Illinois.

Small grain fields may also provide important nesting or brood-rearing area (Southeast

Quail Study Group Technical Committee 2001).  Gray partridge (Perdix perdix) have been found

to nest in oat fields (Allen 1984) and Warner (1984) reported that ring-necked pheasant

(Phasianus colchicus) broods in Illinois used oats, hayfields, and cultivated rowcrops.  Although

oats and hayfields constituted only 6.4% of their study area (similar to the percentage across the

state), Warner (1979, 1984) noted -½ of all radiotelemetry locations for broods #4 weeks old

were in those 2 cover types.  Either an oat field or a hayfield served as the primary focus of

activity for all broods.  Broods from hatch to 9 weeks of age occupied 17.8 ha in oat- and

hayfield-dominated landscapes and 22.3 ha in rowcrop-dominated landscapes, suggesting the

former were of higher quality (Warner 1984).  Corn and soybeans were considered of little value
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to pheasant chicks as foraging habitat because of their low insect abundance and biomass

(Warner 1979, 1984).

Finally, it might be reasonable to presume that small grain agriculture may provide

important additional winter cover not available in areas dominated by row crop agriculture. 

Wheat begins to tiller (shoots sprouting from the base of a grass) 3-4 weeks after initial growth

and subsequently prior to dormancy in November.  Graber and Graber (1963) described winter

wheat in Illinois as relatively short (7-13 cm, versus a bobwhite standing 20 cm) and dense with

bare soil only between rows.  Early formation of shoots and the overhead cover that fall growth

provides may produce accessible winter foraging areas2.  Gray partridge are often seen having

pushed through a light covering of snow atop winter grains to expose the waste grain below

(Allen 1984); bobwhite may exhibit similar behavior.  Previous studies by Graber and Graber

(1963), however, suggest winter use by quail has been limited historically.  Graber and Graber

(1963) reported avian use of agricultural habitat in the early- and mid-1900s.  They found winter

quail densities in small grain stubble fields varied between 0.05 birdsA ha-1 in the north and 0.50

birdsA ha-1 in the south, but only in 1906-07, not 1956-58.  In no years did they observe quail in

soybean stubble fields, plowed fields, or harvested wheat fields, but they did observe use of corn

fields harvested by hand in 1906.  It appears agricultural fields provide little in the way of usable

space in winter, but when agricultural fields are used, they are generally in small grain

production. 

That small grain agriculture is important to bobwhite in Illinois is contrary to the results

of Brady et al. (1993) for Kansas.  They reported a negative association of bobwhite with both

oats and wheat.  Wheat, however, was the predominant agricultural practice in Kansas, indicating

the relationship of bobwhite with small grains may be curvilinear.  Where this possible apex

2 Many winter wheat varieties are prostrate or “creeping” prior to dormancy, so the value
of winter wheat to overhead cover may be questionable, at least depending upon the
variety under cultivation.
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occurs is unknown, but must lay between the 6% of the landscape in Illinois and the -58% in

Kansas devoted to small grain agriculture.

Roseberry and Sudkamp (1998) 

The Roseberry and Sudkamp (1998) model of bobwhite suitability predicted suitable

landscapes after accounting for inclement weather; they approximated the risk of annual winter

severity through their use of latitude.  My initial model of landscape suitability did not

incorporate this winter severity in defining suitable landscapes; subsequent models, however,

incorporated historical winter severity.  

My model of bobwhite suitability predicted 64% more available habitat than the model of

Roseberry and Sudkamp (1998) (72,261 km2 vs 35,000 km2), principally due to a more patchy

configuration in the Roseberry and Sudkamp (1998) map.  Suitable habitat in both models was

distributed throughout the west-central and southern portions of the state, in the traditional quail

range (81% agreement between models).  My model also predicted a greater amount of suitable

habitat in the Wisconsin Driftless section in the northwest portion of the state and in the

Kankakee Plain south of Chicago.  

I believe the means by which Roseberry and Sudkamp (1998) mapped suitable habitat

may have been inappropriate.  My approach predicted more suitable habitat because variables

found to be important were generally measured and mapped at the largest scale, 5,000 ha.  The

Roseberry and Sudkamp approach, however, while measuring suitability based on route (area

range = 173-270 km2) and county (area range = 430-2,965 km2) scales, mapped these variables

for 9 0.09-ha pixels based on calculations conducted for 2.6-km circles (~2,100 ha) around the

focal cell.  Mapping of significant large-scale associations at small scales undoubtedly leads to a

patchier distribution of suitable habitat.  This would be safe to do if their results were scale

invariant, but as I have demonstrated, this lack of variance across scales was unlikely (Wiens

1981).  
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The map I developed defines the landscape-level conditions within which bobwhite occur

as viable populations.  Outside of these defined areas, bobwhite are likely occurring as remnant

populations with only short times to extinction.  Site-level conditions will play an immense role

in determining the particular presence and abundance of northern bobwhite, skewed by the

influence of larger scale landscape processes that I have identified.  Higher-scale models cannot

correctly determine if bobwhite will occur in suitable landscapes unless landscape variables are

correlated with site characters.
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Table 2.  Influence of environmental parameters on presence/absence of northern bobwhite in
Illinois, as determined from North American Breeding Bird Survey data.  Non-transformed
median is provided for occupied (with range) and unoccupied habitat. 

Parameter â SE Wald Z P Occupied (Range) Unoccupied

Intercept -12.245 1.269 -9.65 <0.0001

log10(Small Grain5,000 ha)    1.822 0.164 11.12 <0.0001
332 ha 

(10-1,361 ha)
132 ha

log10(Shannon’s

Evenness Index)
   6.221 2.071   3.00   0.0027 0.62 (0-1) 0.51

0SNWDY(1967-1998)   -0.045 0.005 -9.72 <0.0001
27.1 days 

(12-59 days)
36.6 days

log10(Woods5,000 ha)    0.215 0.126   1.71 <0.0879
906 ha 

(100-2,817 ha)
746 ha
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Table 3.  Influence of environmental parameters on relative northern bobwhite abundance in
Illinois, as determined by North American Breeding Bird Survey data.

Parameter â SE t P

Intercept  0.7108   0.0205 34.66 <0.0001

Landscape Shape 
IndexSmall Grain, 5,000 ha

 0.9013   0.1382   6.52 <0.0001

Landscape Shape 
Index2

Small Grain, 5,000 ha
-0.4875   0.1032 -4.72 <0.0001

Proportion Sedimentary Soil5,000 ha -0.1959   0.0794 -2.47   0.0137

Proportion2 Sedimentary Soil5,000 ha -0.4089   0.0693 -5.90 <0.0001

Row Crop Core Area 
Coefficient of Variation500 ha

 0.0001 <0.0001   5.24 <0.0001

Number of Woods Patches5 ha -0.2750   0.0769 -3.58   0.0004

Mean Core Area/Woods Patch50 ha -0.4302   0.0794 -5.42 <0.0001

Mean Core Area/Woods Patch2
50 ha -0.1129   0.0648 -3.58   0.08    
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Figure 1.  Probability plots, with 95% confidence intervals, for each predictor variable in a logistic regression of northern bobwhite
presence in Illinois, 1985-98.  SEI is Shannon’s Evenness Index, J’.
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Figure 2.  Potentially-occupied landscapes for northern bobwhite (with lower and upper confidence intervals) in Illinois, as derived
from North American Breeding Bird Survey data.  The outline delineates mean condition in all 3 plots.
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Figure 3.  Amount of potentially suitable northern bobwhite habitat in Illinois at various levels of the habitat suitability index, based
on the mean model condition.  HSI = 0.50 is the mean condition defining lower limit of suitable habitat.  Circles highlight habitat at
HSI = 0.90.



 

Figure 4.  Log-likelihoods for null spatial linear models.  The appropriate neighborhood
accounting for spatial autocorrelation in bobwhite abundance was the neighborhood (in this case,
n = 62) resulting in maximization of the log-likelihood. 
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Figure 5.  Partial regression plots demonstrating relative influence of environmental variables
(see Table 3) on northern bobwhite relative abundance in Illinois, 1985-98.
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Figure 6.  Proportion of occurrence, mean count per stop, proportion of sites with northern
bobwhite at risk of extirpation, and coefficient of variation in bobwhite counts by land use/land
cover class.  Data are from the Illinois portion of the North American Breeding Bird Survey for
1985-98.
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Figure 7.  Theoretical relationships of northern bobwhite to various land use/land cover classes. 
The relative positions, range, and slope of the relationships are currently unknown.  The gray
parallelogram represents a theoretical optimal configuration of the land cover classes for
bobwhite in Illinois.
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Objective 2:  Identify limiting components in unoccupied or sparsely populated areas and
evaluate the feasibility of restoring them.

Patches of seemingly suitable habitat may not be occupied if they are too distant from

occupied patches.  Distant patches would likely experience less immigration from neighboring

patches, which may be important for population persistence.  These ideas of population

persistence aided by dispersal from neighboring populations are embodied in the emerging

metapopulation paradigm.

Wells and Richmond (1995:461) provided the following criteria to identify a

metapopulation:

“If individuals breed in >1 spatially disjunct group during a breeding

season, the groups should be considered a single population spread over a

patchy habitat.  If individuals breed within a single spatially disjunct group

during a breeding season, but some breed in a different spatially disjunct

group in another breeding season, the groups should be considered a set of

populations making up a population.”

In a metapopulation, small populations are prone to extirpation, with recolonization

occurring only by dispersal of individuals from adjacent populations (Hanski and Gilpin 1997,

Hanski 1999).  Populations occurring within habitat patches within the dispersal distance of a

bobwhite likely exist as a metapopulation.  Those patches not accessible through dispersal likely

act as distinct and separate populations.  

There are numerous means by which to evaluate metapopulation dynamics.  Hanski

(1994a,b; 1999) developed the Incidence Function Method (IFM) to model persistence and

extirpation of populations within metapopulations.  The simplicity of this approach is appealing

in that all it requires to fully parameterize the model is information regarding patch size and

location and occupancy status of patches.  A single census of available patches is usually

sufficient to parameterize the model. 
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Unfortunately, my data precluded use of this method because patterns of individual patch

occupancy were unknown.  However, I did have information regarding patterns in population

extirpation and recolonization (Thogmartin 2002).  Sjögren-Gulve and Ray (1996) outlined a

procedure whereby it is possible to model metapopulation dynamics with information regarding

population state transitions.  I used this approach to discern environmental factors associated

with population state transitions.  Because my use of the approach of Sjögren-Gulve and Ray

(1996) was not completely successful, I also implemented a mechanistic model incorporating

aspects of bobwhite demography to predict state transitions.  My hope was that these approaches

would provide insight into the among-population dynamics of bobwhite and thus reveal factors

limiting occupation in areas where bobwhite were absent or only sparsely abundant.  The

questions I asked were: what habitat variables govern population-state transitions?  Do empirical

data indicate a metapopulation approach is valid for management purposes?       

Increasing abundance of bobwhite may lead to re-occupation of extirpated habitat if the

habitat is within the dispersal distance of the species.  For habitat that is isolated, either because

habitat is too far removed or barriers to dispersal intervene between nearby habitat, alternatives

to natural recolonization must be considered to counter current declines in the state. 

Translocation of bobwhite to properly-identified habitat offers one such alternative (Wolf et al.

1996).  I prioritized previously identified quail population networks for management action, with

the prioritization focusing on identifying habitat suitable for recolonization.

METHODS

Connectivity Between Populations 

To determine likelihood of movement by bobwhite between patches, I reviewed and

summarized all available studies documenting bobwhite dispersal movements.  The proportion of

and distances moved by bobwhite were summarized and plotted.  A 3rd-order polynomial was

fitted to log10-transformed distance (log(DISTANCE[m])).  
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As a check against the hypothesized dispersal function, I calculated median and

maximum dispersal distances based on taxa-specific scaling equations provided by Sutherland et

al. (2000).  These equations are:

 2.1 (± 1.76) @ M0.18 (±0.18) 

for median dispersal, and

 36.4 (± 1.55) @ M0.14 (±0.15) 

for maximum dispersal.  Body mass (M) was set to 0.1782 kg (Roseberry and Klimstra 1971).

Delineating Population Structure  

Optimal habitat was defined as a combination of small grain agriculture, woods,

elevation, and landscape evenness (Thogmartin 2002).  This raster model was dichotomized at an

HSI = 0.5, with an HSI $ 0.5 identified as potentially suitable habitat and an HSI < 0.5 identified

as matrix (inhospitable) habitat.  Based on this discretization of habitat, habitat patches were

delineated with the region group command in PatchGrid.  The buffer command in ArcGIS 8.0

was used to buffer each habitat patch by the typical maximum dispersal distance for bobwhite. 

Patches within the coalesced buffer were identified as forming a single network of habitat. 

Individual networks were identified, and the number and size of patches per network calculated. 

Patches <4 ha were deleted from the networks as this was the approximate lower limit of habitat

necessary to sustain a covey of bobwhite at this latitude (Kansas, Robinson 1957; Illinois,

Bartholomew 1967; Iowa, Crim and Seitz 1972; Illinois, Urban 1972; Tennessee, Yoho and

Dimmick 1972).

Modeling Patch-State Transitions

Logistic regression was used to relate environmental variables to a dichotomous response. 

The responses examined were a transition from occupied to extirpated (extinction), and from

unoccupied to occupied (colonization) (Sjögren-Gulve and Ray 1996).  The data used were

IDNR call counts because they offered a robust measure of turnover probability (Thogmartin

2002).
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Identifying Candidate Variables.—Candidate variables were identified with Somers’ D

rank correlation and the C statistic.  Somers’ D is an ordinal measure of association where x

predicts y, varying between -1 and 1.  The C statistic is a summary measure for the Receiver

Operating Characteristic (ROC) curve (Hanley and McNeil 1982), which evaluates model

discrimination.  This ratio has a value from 0-1, with 1 being perfect predictive value, 0.5 being

no predictive value, and 0 being perfect negative predictive value.  A C >0.7 is acceptable, >0.8

is good, and >0.9 is excellent (Margolis et al. 1998).    

Model Determination.—A full model was created at each of 3 scales (50-, 500-, and

5,000-ha), containing variables with D > 0.12 and C > 0.55.  Multicollinearity was assessed and

the less explanatory of the collinear variables were removed.  The new full model was then

subjected to a stepwise procedure whereby variables were removed and added and evaluated at

each step by their Aikike’s Information Criterion score.  

Variables from the final scale-specific models were included in a new final model and the

process of variable reduction was continued.  Significance of the variable to stay was set at P <

0.10.   

Goodness-of-Fit.—Goodness-of-fit was assessed with the Brier score and the C-H-C-H

goodness-of-fit test.  The Brier score is the mean of the mean squared error between the predicted

and observed events.  Scores vary between 0 and 1, with a more accurate model closer to 0.  A

model agreeing with the known outcome 50% of the time has a score of 0.25.

Patch Turnover Probabilities: Modeling Metapopulation Dynamics

Environmental variables defined by logistic regression as important in determining patch

extinction and colonization were used to calculate turnover probabilities based on the mean

condition of observed patches.  Since final model results were statistically sound, but did not

attain the goodness-of-fit suggested by Sjögren-Gulve and Ray (1996) (P > 0.9), I assessed a

third approach.  Sachot (2000) developed a spatially-explicit population viability analysis

program (TetrasPool 1.0.2) specifically for galliforms.  The model has been used to predict
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Capercaillie (Tetrao urogallus) and hazel grouse (Bonasa bonasia) metapopulation persistence. 

The model integrates demographic characteristics, dispersal behavior, and spatial characteristics

of individuals within populations to determine individual- and meta-population persistence. 

Since population-specific parameters were not available, mean or typical demographic conditions

derived from a review of the literature (Table 4) were altered to reflect the slight downward trend

in abundance observed since 1981 (Thogmartin 2002).  

Population settings included geographical position (Easting and Northing), initial

population abundance, and carrying capacity.  Initial population abundance was established as

0.2 birds @ ha-1, whereas carrying capacity was set at twice as high (0.4 birds @ ha-1; equivalent to 1

bird @ ac-1) (Preno and Labisky 1971).  Female home range size and overlap, which determines

habitat packing and whether dispersal occurs between populations rather than within populations,

were set to 12 ha and 45%, respectively.  Dispersal was allowed to proceed in random directions. 

Migration rate was set to 0.1, based on migration rates observed for rock partridge (Alectoris

graeca saxatilis; Cattadori et al. 2000).

Both environmental and demographic stochasticity were allowed to occur. 

Environmental stochasticity affected the proportion of females producing chicks, juvenile and

adult survival rates, and clutch size.  Demographic stochasticity influenced individual

reproductive, survival, and fecundity statuses.  Simulations were conducted for 100 time steps,

and replicated 1,000 times. 

Prioritizing Populations for Translocation

I ranked subpopulations based upon the number of subpopulations within its

metapopulation network (NHBR), mean landscape suitability of subpopulations (LHSI), total

area encompassed by the subpopulation (AREA), latitude of the subpopulation (NRTH), and the

proportion of neighbor subpopulations predicted to be unoccupied or sparsely occupied (UNOC). 

Predictions as to whether certain habitat was occupied or unoccupied was based on subtracting

patch probabilities from the suitability models defined in Thogmartin (2002).  I assessed various
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weightings of each criteria to determine the sensitivity of rankings to changing emphasis, but

found that rankings varied little.  I concluded with only a simple ranking based upon the sum of

equally-weighted ranks across the 5 criteria.

RESULTS

Dispersal Probability Function  

Fifteen studies reported movement distances (Table 5); 7 studies reported data regarding

the number of bobwhite and their associated dispersal distance.  Most studies suggested mean

dispersal was rarely >0.5 km, and maximum dispersal typically <2.0 km.  Three studies reported

a few lone bobwhite dispersing 14-17 km; Duck (1943) reported a single bobwhite moving

nearly 42 km across Oklahoma until it came to rest at the first tree it spotted.

A residual plot of the dispersal probability function suggested an unexplained pattern in

the data, so splines, using a smoothing parameter ë = 0.01, were fitted to the plot to increase

descriptive ability.  Bobwhite dispersal movements suggested 95% of bobwhite disperse <2 km

and 98% disperse <3 km (Fig. 8).  From Sutherland et al.’s (2000) equations, bobwhite in Illinois

were hypothesized to disperse a median distance of 1.5 km (range = 0.34–2.07 km) and a

maximum distance of 35.3 km. 

State-Transitions

Calculation of Somers’ D (Table 6) indicated extinction and colonization transitions were

most highly correlated with configuration variables measured at the 5,000-ha scale, such as Mean

Core Area per Patch (MCA1) in the landscape and Mean Area per Disjunct Core (MCA2) of

woods habitat.  However, no variable alone adequately (C  > 0.70) described differences in either

colonization or extinction transitions.

The final model describing colonization transition probabilities incorporated Total Core

Area Index and Mean Core Area Index of Woods, both at 5,000 ha, and Core Area of Woods at

the 50-ha scale (Table 7).  While the colonization model described a significant portion of the

variance in colonization probability (L.R. ÷2
5 = 100.7, n = 1,048, P < 0.0001) and was sufficiently
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well-fitted (Brier = 0.225; C-H-C-H goodness of fit Z = -0.593, P = 0.55), general model

performance was relatively poor (Nagelkerke R2 = 0.123, C = 0.664, Tau-a = 0.162).  All 3

diagnostics (R2, C, Tau-a), along with the odds ratios, indicated a model performing somewhat

better than chance.  Interpretation of R2 is straightforward.  A C = 0.664 indicated a randomly

selected colonization event will be assigned a higher predicted probability by the logistic

regression model than an event of continued absence nearly 66 times of 100.  Tau-a = 0.162

indicated a poor correlation between predicted and observed observations.

Partial residual plots indicated a great degree of overlap between colonization (1) and

continued absence (0), but at the high end of the distributions (e.g., a TCAI > -60, an MCAI >

-10, and a CLAND > 20) colonization was highly favored.  Odds ratios indicated a 1 unit change

in TCAI would affect a 4% change in probability, whereas a 1 unit change in MCAI would affect

a 6% change.  A change of 1 unit, log-transformed, in MNN would affect the largest change,

nearly 526%; however, the transformation confounds interpretation of the true odds. 

Models of extinction fared little better (Table 8).  This time, however, 2 candidate models

were resolved with nearly equal discriminatory ability.  Model 1 included terms for interspersion

and juxtaposition of small grain agriculture, mean area per disjunct core of grassland, a landscape

measure of core area, and human influence in the landscape (Table 8).  Human habitation in a

500-ha area was highly related to the amount of core woods in a 50-ha area (r = 0.96).  Thus,

Model 2 differed from Model 1 in that it replaced Human500 ha with CLANDWoods, 50 ha.  The core

area index for the landscape was not significant in this second model and was dropped.  Aikike’s

Information Criterion was similar for the 2 models (Model 1: 43.02, Model 2: 44.11, ÄAIC =

1.09).  AIC weights indicated Model 1 was favored as the model closest to truth (0.633 vs 0.367). 

While both models were well-fitted (C-H-C-H Z’s < -0.68, P’s > 0.39), they discriminated poorly

between transitions to extinction and continued persistence (C’s = 0.621, Tau-a = 0.121, R2 =

0.06).  The Brier score, a measure of both fit and discrimination, was 0.237 for each model,

indicating the models performed barely better than chance.  This poor model fit precludes
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successful implementation of the Sjögren-Gulve and Ray (1996) approach to modeling

metapopulation dynamics; they suggested model fit must be very good to successfully proceed.

Population Structure  

An ArcView shapefile created from the limiting habitat grid layer revealed 416 patches of

habitat >4 ha occurring in 52 networks (Fig. 9).  Available habitat was dominated by 1 patch

equaling 6,998,666 ha, 91% of all habitat.  Minus this “mainland” patch, mean patch size was

1,851 ha (SE = 97 ha); the median, however, was 32 ha. Patches $1,000 ha (n = 56) comprised

647,409 ha, or 8% of potential habitat (Fig. 10a). 

   A contour surface depicting distance between patches of optimal landscape habitat was

created.  This analysis suggested virtually no patch in Illinois was >17 km from another suitable

patch of optimal habitat, the approximate maximum dispersal distance for bobwhite (Fig. 8). 

Only when contours of 2 km were established were significant numbers of patches isolated from

one another.  In general, population networks possessed #5 patches (Fig. 10b).  Only 1, the

network containing the “mainland”, consisted of >100 patches.

Metapopulation Persistence

Given the configuration of the mechanistic model, no individual or meta-populations

were predicted to persist beyond a century (0 = 21.0 ± 1.8 yrs, range = 3-56 yrs).  Not

surprisingly, metapopulation persistence was most highly related to initial population size of the

metapopulation (Table 9, F2, 44 = 1,367, R2 = 0.98, P < 0.0001), indicating larger initial

populations lasted longer.  Number of neighbors in a metapopulation contributed a small, but

significant, positive amount to the explained variance.

DISCUSSION

Dispersal

My review of literature published since Leopold’s writing of Game Management largely

agrees with his findings and supports the use of a 2-km buffer around islands of optimal habitat. 

Conventional wisdom suggests bobwhite, except in rare circumstances, are rather sedentary in
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their dispersal movements.  Leopold (1933), recounting Stoddard’s studies of the middle 1920s,

suggested three-quarters of bobwhite moved no more than 0.6 km in a year.  Only 9% moved as

much as 1.6 km, a proportion slightly higher than predicted by the dispersal function.  Most of

the longer movements reported by Leopold were by solitary individuals; only 1 covey moved as

much as 1.6 km.  Errington and Hamerstrom (1936) reported even more conservative movement,

as only a few coveys out of >11,000 quail moved >1.6 km; if we assume a few coveys is -45

individuals (4 coveys × 11 birdsAcovey-1; C. K. Williams, personal communication), this

translates to -0.4% moved >1.6 km.  Certainly this is enough to maintain panmictic genetic

structure, but it is doubtful that this is sufficient movement to maintain metapopulation

dynamics, especially if current population extirpations occur at a rate greater than historical

frequencies due to anthropogenic causes.  

Leopold (1933:74) offered a caveat that throws a potential wrench into any conjecture on

dispersal in bobwhite; he wrote, “in quail, there is reason to suspect that annual mobility

increases toward the edges of the geographic range.”  Thus, in Illinois, a 2-km buffer may be too

conservative.  This points to the need for additional information regarding the dispersal behavior

of this species.  Clearly, too little information regarding dispersal behavior is known to

conjecture with confidence as to whether disjunct populations of bobwhite may function as

metapopulations in Illinois.

Landscape Correlates of Colonization and Extirpation

Extirpation.—Both competing models of extinction probability included MCA2Grass, 5,000 ha

and IJISmall Grains, 5,000 ha.  One model contained MCAI5,000 ha and Human500 ha, whereas the other

contained CLANDWoods, 50 ha.  MCA2Grass, 5,000 ha is the mean area of disjunct core grassland; I

interpret the negative effect of increasing disjunct grassland core size as core size increased,

grassland edge became relatively rarer in the landscape.  This suggests large grassland patches

may be, to a large degree, unusable probably because the core areas of grass patches do not

possess sufficient woody cover for bobwhite.  As interspersion and juxtaposition of small grain
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agriculture increased, that is, small grain fields approached equal adjacency with all other land

uses, probability of extirpation increased.  Thus, bobwhite are more likely to persist in areas

where small grain agriculture is distributed in a somewhat aggregated manner.  This may be

intuitive in 1 instance, and counter-intuitive in another, in that bobwhite presence increases with

increasing amounts of small grain in the landscape whereas abundance increases with the

availability of small grain edge (Thogmartin 2002).  It seems Illinois landscapes with large

amounts of small grain agriculture, situated in relatively small fields, in close proximity to each

other would offer the best situation for bobwhite.

Another factor associated with bobwhite extirpation was human habitation.  The amount

of the landscape devoted to human land use (urban and suburban communities) negatively

affected bobwhite persistence.  The U.S. Department of Agriculture Natural Resources

Conservation Service indicated >6.5 million ha of land were developed in the United States

between 1992 and 1997, increasing total land area devoted to human habitation from 4.6% to

5.4%; in Illinois, urbanization increased from 7.8% of the total land surface in 1982 to 9.4% in

1997.  Clearly, as urbanization increases, bobwhite are at increased risk of population extirpation. 

Colonization.—Colonization was a function of total core area in the landscape across all

land use practices, mean core area per woods patch, mean nearest neighbor of row crop

agriculture, mean proximity of all land use practices, and amount of woods.  As proximity of row

crop fields decreased, colonization of suitable habitat was increased.  As all land uses became

less isolated (with row crops as a notable exception given the previous interpretation), probability

of colonization increased.  Bobwhite require woody cover and, based on these results, appear to

require woody cover for colonization as well.  Probability of colonization increased as both the

amount of woods in a 50 ha area and the size of forest cores in a 5,000 ha landscape increased. 

However, as was noted earlier, too much woody cover in the landscape depresses rates of

population occupancy and abundance (Thogmartin 2002).
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Habitat/Population Structure

Landscape-level habitat optimal for bobwhite appears patchily-distributed in northern and

east-central Illinois with much of this habitat appearing as islands within a matrix of varying (but

less than optimal) suitability.  This patchy distribution does not by itself conform to the

requirements of a metapopulation (Hanski 1999).  However, local-area and site-level conditions,

bobwhite response to dispersal corridors, predator distribution, weather, and other factors may

further limit habitat suitable for bobwhite, creating the potential for metapopulation dynamics

within this patchy landscape.

A continuous grouping, or network, of optimal habitat effectively constitutes a

metapopulation.  Levins (1969) defined a metapopulation as a “population of populations”.  For

Illinois, the islands of optimal habitat are the populations, with some islands being occupied by

bobwhite and others being vacant.

Results of the mechanistic model were, in general, more pessimistic than those for the

stochastic Markov Chain implemented earlier (Thogmartin 2002).  This is surprising in that a

major prediction of metapopulation dynamics is that even in a network of subpopulations

characterized by local instability, the metapopulation as a whole may be regionally stable (Hanski

and Gilpin 1997, Hanski 1999).  Without synchronization of dynamics, some populations are

usually stationary or increasing when others are in decline.  Ostensibly, these declining

populations are rescued from extirpation or the habitat re-occupied by dispersers from these

neighboring habitats.  

I demonstrated that a degree of synchronous dynamics existed in some regions of Illinois

(Thogmartin 2002).  This synchrony would have the effect of precluding rescue since all of the

populations within a region would exhibit a declining abundance if the population in danger also

exhibited a declining abundance.    

The model was not, however, parameterized to account for the observed synchrony. 

Thus, the model probably should have predicted longer times to extinction than did the stochastic

53



Markov Chain.  Even though this model has been successfully used for various European

galliforms, it may be that this simple mechanistic model was poorly configured for bobwhite. 

The parameter values implemented in the mechanistic model were in each case optimistic.  This

was necessary to achieve a realistic growth rate (ë), a growth rate similar to the observed

stationary or slightly declining abundance.  The parameter values used in the model by

themselves were not extreme, but in concert should have evoked a positive growth rate.  That

they did not suggests that this approach was likely flawed.  Furthermore, to obtain positive

growth rates would have required seemingly unrealistic parameter values (e.g., mean clutch size

>16).  Thus, the true benefits of this approach is likely the ranking of population networks rather

than any predicted times to extinction.  If predicted time to extinction is linearly related to true

time to extinction, which seems reasonable, then the model results are useful in prioritizing areas

for management consideration.

These analyses represent tests of an initial hypothesis that large-scale habitat features

interact with local-level considerations to influence the distribution and relative abundance of

bobwhite.  Results indicated the potential usefulness of considering historical effects, spatially-

autocorrelated data, and large-scale landscape factors when developing models of animal

abundance.  The models generated represent spatially-explicit hypotheses as to how bobwhite are

associated with their environment.  Clearly, the next logical step is to select areas to test the

models to evaluate their accuracy and applicability.

Prioritizing Populations for Translocation

One-hundred-seventy-one patches (1,944 km2) were predicted to be either unoccupied or

sparsely occupied (Fig. 11).  Mean landscape suitability in these patches was 0.517 ± 0.001,

below the lowest observed occupied habitat suitability index value (Thogmartin 2002).  Twelve

entire networks of suitable habitat were predicted to be devoid of functioning bobwhite

populations.  
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The top 2 patches for possibly translocating northern bobwhite based on ecological

criteria were situated in Tazewell County, and were adjacent to the large contiguous patch of

occupied habitat occurring throughout western and southern Illinois (“mainland”) (Fig. 12).  A

large number of candidate patches occurred in Mercer County; translocations here and in eastern

Stephenson County have the effect of spreading risk of extirpation across a larger area since these

populations may have unique population trajectories.  Patches of unoccupied habitat closest to

Chicago were situated in Kankakee County, and translocations here have the dual benefit of

spreading extinction risk and possibly increasing hunting and viewing opportunities for Chicago

residents.  Each of these top choices appears to be associated with nearby occupied habitat. 

Thus, the reason for the depauperate state of the patch may either be due to the lack of suitable

site-level habitat or the lack of dispersal corridors between occupied and unoccupied habitat. 

Only field validation of these models will provide sufficient information to distinguish these

potential causes.
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Table 4.  Demographic conditions used in simulations of population performance and resultant
fundamental net reproductive rate (ë). The implemented conditions were the particular parameter
values used in the mechanistic metapopulation model.
  

Demographic Parameter Typical Observed Condition Implemented Condition

Proportion of females producing chicks 0.401 0.52

Clutch size              122 13

Sex ratio 0.403 0.42

Annual adult survival rate 0.204 0.27

Annual juvenile survival rate 0.204 0.25

0dispersal for a juvenile female (m) NA  1,5405

Migration rate ä 0.1 0.1

ë 0.584 0.980

1Burger et al. (1995b)
2Stoddard (1931:39), Klimstra and Roseberry (1975:19)
3Roseberry and Klimstra (1984)
4Pollock et al. (1989), Burger et al. (1995a)
5From this study
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Table 5.  Mean and maximum movements (km) observed in bobwhite.

Distance Traveled (km)
Location Mean Maximum Study

Iowa   2.4   Errington (1933)

northwestern Oklahoma 15.6 41.8   Duck (1943)

Oklahoma 0.2-2.6 14.1   Baumgartner (1944)

southwestern Texas 0-10.6 16.9   Lehmann (1946)

central Missouri   0.5   0.8   Murphy and Baskett (1952)

Iowa   5.6   Boehnke (1954)

central Missouri   0.8   Lewis (1954)

central Missouri 0.1-0.6   2.0   Agee (1957)

Florida 15.3   Loveless (1958)

southern Illinois   0.2   0.6   Roseberry (1964)

Indiana   8.2   Hoekstra and Kirkpatrick (1972)

southern Illinois   2.0   Urban (1972)

Oklahoma   0.4   Yoho and Dimmick (1972)

Florida/Georgia   0.2   1.5   Smith et al. (1982)

southern Illinois   1.0   Roseberry and Klimstra (1984)
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Table 6.  Somers’ D rank correlation (D) between colonization or extirpation event and selected
scale-specific environmental variables.  The value for C is the proportion of times a randomly
selected positive event (1) has a test value greater than that for a randomly chosen null event (0);
proportions equal to 0.5 indicate no difference between positive and null events.  Sample size
was large (824 $ n $ 1,048) in all cases.  
   

Environmental Variable Scale (ha) Colonization/
Extirpation D C

MCA1 (Landscape)# 5,000 Colonization 0.2464 0.6232

MCA2 (Woods) 5,000 Colonization 0.2416 0.6208

TCAI (Landscape) 5,000 Colonization 0.2334 0.6167

Woods Area      50 Colonization 0.1801 0.5900

MCAI (Woods) 5,000 Colonization 0.1693 0.5846

MNN (Landscape) 5,000 Colonization 0.1625 0.5812

MCAI (Grass) 5,000 Extinction 0.1974 0.5987

Mean Grass Patch 5,000 Extinction 0.1422 0.5711

IJI (Row Crop)# 5,000 Extinction 0.1350 0.5675

#Also, correlated with extirpation and colonization. 
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Table 7.  Results of logistic regression of colonization probabilities and environmental variables. 
TCAI is Total Core Area Index, MCAI is Mean Core Area per Patch, MNN is Mean Nearest
Neighbor, and MPI is Mean Proximity Index. 
   

Variable â SE Wald Z P Odds Ratio (CI)

Intercept -5.595 1.141 -4.90 <0.0001

TCAI5,000 ha  0.035 0.006  5.66 <0.0001 1.036 (1.023-1.048)

MCAIWoods, 5,000 ha  0.060 0.026  2.30   0.0214 1.061 (1.009-1.116)

log(MNN
Row Crops, 5,000 ha+1)  1.661 0.566  2.94   0.0033   5.264 (1.737-15.950)

log(Woods 
Area50 ha+1)  0.536 0.159  3.36   0.0008 1.709 (1.250-2.335)

log(MPI
50 ha+1)  0.385 0.228  1.69   0.0907 1.469 (0.941-2.295)
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Table 8.  Competing logistic regressions of extirpation probabilities and environmental variables. 
MCA2 is Mean Core Area per Disjunct Patch, IJI is Interspersion and Juxtaposition Index, MCAI
is Mean Core Area per Patch, and CLAND is Amount of Core Area.  All variables were
transformed except for IJI.  Transformation was log10 except for CLAND, which was arcsin-
square root transformed.  

Variable â SE Wald Z P Odds Ratio (CI)

Intercepta -2.319 0.448 -5.17 <0.0001

MCA2Grass, 5,000 ha   1.582 0.358  4.42 <0.0001 4.867 (2.412-9.820)

IJISmall Grains, 5,000 ha   0.017 0.007  2.48   0.0132 1.017 (1.004-1.031)

MCAI5,000 ha   0.561 0.336  1.67   0.0944 1.753 (0.908-3.385)

Human500 ha 11.058 4.506  2.45   0.0141 63,475 (9.3->4 million)

Interceptb -2.142 0.428 -5.00 <0.0001

MCA2Grass, 5,000 ha   1.708 0.348  4.90 <0.0001   5.519 (2.789-10.924)

IJISmall Grains, 5,000 ha   0.019 0.007  2.79   0.0053 1.019 (1.006-1.033)

CLANDWoods, 50 ha   1.638 0.548  2.99   0.0028   5.142 (1.758-15.039)

aModel 1
bModel 2
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Table 9.  Time to extirpation for northern bobwhite metapopulations in Illinois regressed against
population size (nee habitat area) and number of populations in metapopulation.
 

Parameter â SE t P Type I Sums of
Squares

Intercept  -7.43 0.59  -12.58  <0.0001

Log(n) 11.28 0.27 42.22 <0.0001 5,770.2 

Neighbors   0.17 0.08   2.19   0.0338     10.2
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Figure 8.  Dispersal probability function derived from reported bobwhite dispersal movements.  The black line is a polynomial (95%
CI) fitted to the observed values.
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Figure 9.  Potentially suitable northern bobwhite habitat in Illinois delineated into unique metapopulations by a 2-km buffer
representing the typical maximum dispersal distance of the species.



A

B

Figure 10.  A) Frequency distribution of suitable habitat patch sizes and B) patches per
metapopulation for northern bobwhite in Illinois, as determined from a model of landscape-level
habitat suitability.
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Figure 11.  Suitable northern bobwhite habitat in Illinois predicted to be unoccupied or sparsely
populated (in black) based on effects of historical winter weather of the late-1970s.
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Figure 12.  Habitat most suitable for translocation of northern bobwhite.  The top 20 choices are
numbered and are a darker gray.
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Objective 3:  Examine relationships between population parameters, observed population
decline, and seasonal climatological conditions.

For the past 50 years, wings from bobwhite have been submitted by southern Illinois

hunters to monitor sex- and age-structure of Illinois quail.  This wing collection represents the

longest running monitoring effort for bobwhite, and one of the longest for all wildlife species. 

Over this same period, bobwhite have experienced an unprecedented decline in abundance

(Brennan 1991); for instance, analyses of NABBS (Droege and Sauer 1990, Church et al. 1993)

and CBC (Brennan 1991) data indicated bobwhite have declined in 77% of the states in their

range since the late-1960s.  This decline was approximately 2.8%@yr-1 in Illinois since 1966

(Sauer et al. 2000), primarily because of intensified agricultural land use (Klimstra 1982,

Brennan 1991).  

Future predictions of population abundance in response to intrinsic and extrinsic factors

will be aided by discerning functional relationships between environmental parameters and

subsequent biological responses.  We used these wing-derived data to examine potential

relationships between age- and sex-structure and temporal patterns in abundance.  Our first

concern was whether biological response parameters derived from wing data corresponded with

surveys of relative abundance (e.g., NABBS) collected at various times of the year.  We also

discerned relationships between biological response parameters (intrinsic factors), and

climatological information and historical state agriculture data (extrinsic factors).  There is

extensive documentation of the effects of weather on bobwhite (e.g., Roseberry 1962, 1989;

Roseberry et al. 1979; Thogmartin 2002), and because >80% of Illinois’ 14.4 million hectares is

currently farmed (Illinois State Geological Survey 1994), we hypothesized significant changes in

bobwhite biological response over time would be due to changes in these 2 factors.      

METHODS

We annually collected bobwhite wings from hunters in the 34 southernmost counties of

Illinois between 1950 and 2001 along with information relating to location, sex, and date of
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harvest.  Age of each bird was determined by feather replacement and molt pattern (Leopold

1939, Petrides and Nestler 1952).  From the age of individual birds we derived the ratio of

juveniles per adult (JPA), a commonly used index of productivity in this species (Roseberry and

Klimstra 1984).  Within adult and juvenile age classes, we derived the ratio of males to females

(MA and MJ, respectively).  We determined the number of adult females in the previous year

surviving to the year of harvest (PREFAD); since nearly 100% of female bobwhite reproduce

each year (Brennan 1999), this metric indexes the proportion of experienced female breeders in

the population.  Based on age and date of harvest, we determined the proportion of juveniles

hatched after 29 July (H29) and 12 August (H12).  We determined the number of birds killed per

hunter trip (KILL) from hunter questionnaires and calculated an annual percent change in kill per

trip (CKILL).  Because effects in a parameter in any 1 year may not be evident until future years,

we also created 4 lagged parameters, offsetting JPA, MA, MJ, and KILL by 1 year (PREJPA,

PREMA, PREMJ, and PKILL, respectively).  These metrics of population response were used as

dependent variables in our statistical models.  To differentiate long-term trends from annual

variation in parameters we applied a locally-weighted regression (loess) which applies a

nonparametric smooth response surface model to the annual estimates.  The fit of this model

described the long-term trend in the biological response parameter; residuals from the fit

described annual variation about the long-term trend.  

Daily and seasonal historical climate data were collected from 28 southern Illinois

weather stations (U.S. Department of Commerce 1950-2001).  Data were then combined for each

month and biological season (Table 10). These data included mean, minimum, and maximum

temperature, mean precipitation, number of days in winter with snow $2.54 cm, Thornthwaite’s

index of potential evapotranspiration (Thornthwaite 1948), and modified Palmer drought severity

index (Palmer 1965, Bridges et al. 2001).  Thornthwaite’s index of evapotranspiration integrates

maximum daily temperature, soil moisture, and precipitation into a measure accounting for

moisture gains, losses, and the consequent changes in water storage occurring over successive
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time periods.  The modified Palmer drought severity index (MPDSI) is based on precipitation

and temperature data, as well as local available water content of the soil (Alley 1984,

Heddinghaus and Sabol 1991).  Annual agricultural data included number of farms, farm size,

area devoted to corn, winter wheat, oats, sorghum, barley, and rye, and several measures of cattle

production (National Agriculture Statistics Service, http://www.nass.usda.gov:81/ipedb/).  An

estimate of agricultural grassland was derived by differencing hectares of corn and soybean from

the total hectares in agricultural production.

We used non-parametric correlation to relate annual indices of biological response to

estimates of relative bobwhite abundance as derived from the NABBS (1967-98), Illinois

Department of Natural Resources bobwhite call count surveys and harvest data (1975-98), and

CBC surveys (1967-98).  Temporal autocorrelation in response parameters was assessed with

autocorrelation and partial autocorrelation function plots.  Both linear models and autoregressive

models (i.e., models incorporating potential temporal autocorrelation) were evaluated, with the

final suite of models used for inference determined by Aikike’s Information Criterion (Aikike

1973, Burnham and Anderson 2000).  Only models performing better than the null model are

reported.  

RESULTS

A total of 183,264 wings was examined between 1950 and 2001, annually averaging

3,524 wings (range = 1,332–5,913).  The mean ratio of juveniles to adults was 4.93 (SD = 1.13),

and ranged from 2.39 to 8.42 (Fig. 13, Table 11).  Indices of abundance were most consistently

related to JPA, KILL, and PKILL (Table 12).  Higher abundance was related to a lowered ratio of

juveniles to adults, whereas kill/effort was positively related to abundance, at least after 1967.  

The number of juveniles per adult fluctuated considerably over the period of study (Fig.

13).  However, within this interannual fluctuation, mean JPA declined across the period 1950 to

1970; thereafter mean JPA was stationary.  This long-term trend in JPA was associated with

amount of land devoted to agricultural grassland in Illinois (Table 13; adj-R2 = 0.892, F1,49 =
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406.2, P < 0.0001).  Annual variation in JPA was associated with precipitation during hatching,

temperatures in winter, and the previous year’s harvest (Table 14; adj-R2 = 0.518, F3,37 = 13.27, P

< 0.0001). 

The proportion of adult males in the adult age group (MA) consistently exceeded 55%,

and in only 1 year, 1957, was the proportion of adult males <53% (Fig. 14).  The proportion of

males in the juvenile age group (MJ) did not differ from 50% (95% CI: 49.9-50.8).  It should be

noted that when MA was <50% in 1957, production by bobwhite, as measured by JPA, was the

second highest (7.26 juveniles@adult-1) observed over the 50-yr period; this appears to be an

anomaly, however, as this pattern was not repeated when JPA again peaked in 1980.  Neither

MA nor MJ indicated the presence of a long-term trend; therefore, only annual variation in the

actual time series was examined.  Visual inspection of MJ plotted over time suggested the

possibility of serial correlation within the time series, but neither a runs test (ts = -0.9, P > 0.05)

nor a plot of the autocorrelation function indicated the presence of significant serial correlation. 

As noted previously by Roseberry and Klimstra (1984), there was a weak but significant

tendency (r = -0.32) for MJ to be slightly higher during years of population decline; MA showed

no such relationship.  Neither annual variation in MA and MJ nor the variables themselves were

associated with the environmental covariates we examined.  MA was only slightly correlated

with MJ the previous year, (r = 0.19).  If environment rather than simple random variation

influences within-age group sex ratios, then we likely were precluded from elucidating

environmental influences on MA and MJ because of very little year-to-year variation around the

mean condition (CVs < 7.2%) and coarseness of the explanatory variables we examined.  

Mean percent of bobwhite hatched after 29 July (H29) was 27.6% (range = 13.6-40.6%)

(Fig. 15); mean percent of bobwhite hatched after 12 August (H12) was 8.2% (range = 3.9-

28.7%).  Both H29 and H12 led to similar models, so we report only those for H29, the earlier

estimate of proportion hatched.  The long-term trend in H29 was a curvilinear function of annual

hay production (Table 13; adj-R2 = 0.952, F2,45 = 465.4, P < 0.0001).  A weaker model indicated
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the long-term trend in H29 was a curvilinear function of agricultural grassland (Table 13; adj-R2

= 0.906, F2,46 = 225.5, P < 0.0001).  Though each parameter explained nearly all of the long-term

variation in the proportion of late-hatch juveniles, based on the difference in Aikike’s

Information Criterion, the most parsimonious explanation included only hay production (ÄAIC =

92).  Limiting explanatory variables to those derived for late winter, spring, and summer (i.e.,

excluding autumn weather variables) led to models of annual variation in H29 performing little

better than the null model (Table 15).  The best performing model combined elements of August

and January evapotranspiration (Table 14; adj-R2 = 0.171, F2,47 = 4.9, P = 0.012).

Since 1960, the number of birds killed per trip varied between 2.33 and 4.94, with a mean

of 3.57 (Fig. 16), whereas the annual percent change in birds killed per trip varied between -33

and +50%.  The long-term trend in KILL was closely associated with a decline in agricultural

grassland and changes in precipitation during the hatching period (10 June through August)

(Table 13; adj-R2 = 0.930, F3,46 = 215.6, P < 0.0001).  Models with hay and oats instead of total

grassland were >30 AIC units removed.  Annual variation in KILL was associated with a

complex function of KILL in the previous year, number of days of snow >2.54 cm, minimum

temperature in June, mean temperature in July, and evapotranspiration in August and November

(Table 14; adj-R2 = 0.431, F6,33 = 4.2, P = 0.003).  Models dropping evapotranspiration in

November and another also deleting evapotranspiration in August were similarly weighted as the

full model (ÄAICs < 2.4); thus, inference can be made on the smaller model or on the entire suite

of nested models.  No models for CKILL performed better than the null model.

DISCUSSION  

Annual Variation

Juvenile Per Adult Ratio.— JPA is a complex index of production integrating 10

demographic variables (Guthery and Kuvlesky 1998).  These demographic parameters are (1)

proportion of females in the breeding population, (2) proportion of females participating in

reproduction, (3) potential number of nesting attempts per individual female, (4) probability of
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nesting success for any individual attempt, (5) number of eggs hatching, (6) daily juvenile

survival rate, (7) daily adult survival rate, (8) length of the laying period, (9) time committed to

laying and incubation, and (10) the proportional distribution of successful breeding starts per hen

in time (Guthery and Kuvlesky 1998:540-541).  As Guthery et al. (2002) suggested, there are

many combinations of these demographic parameters leading to the same age ratio.  For instance,

high JPA can actually reflect high production, as we observed for 1957, or it may reflect high

summer losses (e.g., possibly the late-1970s), variation in chick survival, or simply a density-

dependent response to low breeding populations (e.g., late-1970s).  Thus, high JPA may be

correlated with both high and low autumn populations.  Correlation between JPA and KILL over

the 40-year study period was negligible despite a negative correlation of JPA and abundance data

since 1967; there was, however, a positive correlation (r = 0.42) between JPA and CKILL, the

percent change in kill from 1 year to the next, agreeing with Roseberry (1974).     

Guthery et al. (2002) modeled the relationship between a 35-year, intermittent time series

of JPA and climatological parameters in south Texas and found age ratios increased with June

temperature and seasonal precipitation, most notably that occurring in spring; August

temperature and temperature in July below 36 EC did not influence JPA.  We found for Illinois

populations of bobwhite that annual variation in JPA was attributed to precipitation during

hatching (Jun to Aug, i.e., summer), temperatures the previous winter, and the previous year’s

kill per trip.  High precipitation during hatching has been shown to increase chick mortality

(Baker and Robinson 1952, Speake and Haugen 1960, Stanford 1972) and cold winter conditions

reduce recruitment of breeders into the subsequent spring (Roseberry and Klimstra 1972,

Stanford 1972).  However, the most parsimonious model possessed coefficients opposite of the

expected direction (Fig. 17); greater precipitation during the hatching period was associated with

an increase in the ratio of juveniles to adults, whereas increased winter temperature and kill per

trip in the previous year were related to a reduction in this ratio.  Decreases dues to increasing

winter temperature and kill per trip may reflect density-dependent responses by bobwhite to
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favorable conditions.  The negative effects on chick survival by increased precipitation during the

hatch may be outweighed by the positive benefits precipitation has on vegetative growth and

insect production.    

In south Texas, where rainfall is limiting, timing and amount of precipitation may explain

>70% of the variation in bobwhite abundance (Rice et al. 1993), where, for instance, <10 cm of

rainfall results in #3 juveniles per adult.  However, drought is only rarely associated with

variation in bobwhite abundance in the midwestern U.S. (Roseberry 1989).  Thus, if this model

correctly explains bobwhite JPA, lower bounds apparently exist in summer precipitation in the

Midwest which influence bobwhite productivity.  Effects of the long-term trend in JPA may have

obfuscated these effects previously. 

Proportion of Late-hatched Juveniles.—Similar to JPA, the late hatch indices H29 and

H12 may reflect variation in nest success relative to some combination of timing of nest

initiation, termination of nesting, and extent of renesting.  Thus, these late-hatch indices may be

related to spring conditions, summer conditions, or, possibly, neither.  After excluding autumn

weather variables, which should have no effect on hatch chronology, we were unable to infer

strong relationships between climate and annual variability in the proportion of late-hatched

juveniles; we derived marginal relationships of potential evapotranspiration in January and

August to H29.  Higher evapotranspiration, which is a dynamic combination of temperature, soil

moisture, and humidity, was associated with a lower proportion of chicks hatched after 29 July,

probably because conditions earlier in the year were conducive to earlier initiation of nesting

season; warmer, wetter Januaries likely led to earlier green-up.  Conversely, high

evapotranspiration in August was likely associated with the termination of nesting activity.   

Theoretically, a high proportion of late-hatched juveniles could be positive if it

represented multiple brood production by individual hens, or negative if it reflected poor success

of initial nesting attempts.  Our data suggest the latter is more likely.  Over the entire range of

data, H29 demonstrated a modest negative correlation (r = -0.37) with KILL.  Since 1967, a

73



higher percentage of late-hatched also was associated with lower IDNR harvest estimates        

(r = -0.43).

Long-term Trends

Juvenile Per Adult Ratio.—The decline in mean JPA from 5.8 in the 1950s to 4.4

between 1967 and 1972 was 24%; assuming equal survivorship between periods, this is

equivalent to a decline in clutch size from 14 to 11 eggs@clutch-1.  We associated this long-term

trend in the number of juveniles per adult with amount of farmed land devoted to herbaceous

grassland.  What we defined as agricultural grassland consisted of all lands devoted to pasture,

hay, small grains (i.e., winter wheat), fallowed cropland, set aside, and grain sorghum.  The bias

associated with including sorghum, a row crop, in our estimate of agricultural grassland was

small given annual production never exceeded 106,000 ha.  Agricultural grasslands may act as an

ecological surrogate to native prairie, given that remnant prairie is <0.01% of its former

occurrence (Taft 1995).  Thogmartin (2002) found significant associations between land in

Illinois devoted to small grain production and bobwhite presence, abundance, and population

extirpation; grassland, too, influenced bobwhite population extirpation probability.

Proportion of Late-hatched Juveniles.—The proportion of juveniles hatched late in the

summer (H29 and H12) increased throughout the 1950s, 1960s, and early 1970s, peaking in the

mid-1970s.  Thereafter, the proportion of late-hatched juveniles declined to some extent,

especially for the hatch after 12 August.  Given the high correlation between the long-term trend

in JPA and proportion of late-hatched juveniles (rJPA,H29 = 0.94) it is not surprising that the

proportion of late-hatched juveniles was also associated with the amount of herbaceous grassland

in production.  However, a component of agricultural grassland, hay production, actually fit the

data better, as 95% of the variation in hatch matched temporal patterns in amount of the Illinois

landscape devoted to haying.  Over this 50-year period, agricultural grasslands have declined

tremendously in central and southern Illinois, though the proportion devoted to hay production

has concomitantly increased (J. Cole, Illinois Department of Natural Resources, unpublished
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report).  In the Kaskaskia Watershed, for instance, the percentage of agricultural grasslands

devoted to hay increased from 21% in the 1960s to 32% in the late 1990s whilst the proportion of

agricultural grassland in the landscape declined from 16% to 7% in this same period. 

Concurrently, changes in species composition and management activities in hay and pasture

lands have occurred as well, moving from diverse assemblages of grasses and forbs to

monocultures of tall fescue (Festuca arundinacea) and alfalfa (Medicago sativa).

The gradual change in both number of juveniles per adult and the proportion of juveniles

hatched late in summer may signal the degradation, rather than absolute loss, of bobwhite habitat

in the 1950s, 1960s, and early 1970s.  We offer this hypothesis based on the following rationale. 

Over the course of the 50-year study, hunter numbers in Illinois have plummeted whilst the age

of bobwhite hunters (and, thus, their experience) has increased (Burger et al. 1999, Enck et al.

2000).  Undoubtedly, some hunters were lost due to the loss of suitable habitat for hunting. 

However, if the increasingly experienced, remaining hunters hunted land less affected by habitat

degradation then we should not expect to see changes in the measures of biological response

available from hunter-contributed wings.  This is because climate parameters contributed little to

explaining long-term trends in response parameters as opposed to land use parameters. 

The means by which bobwhite habitat may have degraded, leading to the observed

patterns in hatch proportion and juveniles produced per adult, are offered by Riley and Riley

(1999) for ring-necked pheasant (Phasianus colchicus).  They attributed lowering of pheasant

brood size over time to gradual reductions in the availability of suitable nesting and brood-

rearing habitat, causing increased loss of initial nesting and brooding attempts (T. Z. Riley,

Director of Conservation, Wildlife Management Institute, personal communication).  Clutch

sizes of initial nests by bobwhites maybe >20% larger than subsequent nesting attempts

(Roseberry and Klimstra 1984).  Thus, if initial nesting success declines relative to subsequent

renests, then the proportion of juveniles hatched later in the summer will necessarily increase. 

Unfortunately, there are little data to confirm this supposition for bobwhite in Illinois.  Results in
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Roseberry and Klimstra (1984) are not supportive, probably because their nesting success studies

were largely conducted on very good habitat for the length of their study.

The consequences of a rise in the proportion of late-hatched juveniles are several.  Once a

population is reliant on subsequent nesting attempts to offset adult mortality, there is little chance

for the population to maintain itself.  This is because the annual breeding pulse does not benefit

from the increased clutch sizes of early nests and late-hatched individuals potentially enter winter

with a reduced body mass and thus a reduced chance of survival.

Usable Space

There are 2 competing hypotheses in bobwhite management.  The traditional approach

has been to manage bobwhite on the basis of bobwhite density as a function of habitat quality,

where quality exists in a continuum from poor to good.  Conversely, Guthery (1997) offered the

alternative hypothesis whereby mean bobwhite density increases as usability of space within a

defined area increases.  

If the use of habitat by bobwhite is a dichotomous response, with bobwhite entirely

absent or present only at some density randomly fluctuating around a long-term mean, as Guthery

(1997:294, 301) has suggested, declining regional abundance of bobwhite must be due to

absolute loss rather than degradation of bobwhite habitat.  Our analyses suggest an alternative

possibility, largely because there is no reason to believe absolute loss of habitat should lead to

any long-term changes in mean JPA.  If bobwhite only occur in habitat attaining some threshold

of suitability, as the hypothesis by Guthery et al. (2002) suggests, JPA should vary randomly

around some non-varying mean.  We however, observed long-term trends in this mean JPA.  The

gradual change in JPA that we observed suggests bobwhite abundance may begin to decline

within continuously degraded habitat prior to their patch-level extirpation.  To assess this

observation more closely, we examined trends in mean abundance at occupied sites.  After the

effect of serial correlation was removed, NABBS counts at occupied survey sites demonstrated a

within-site decline of -1.48%@yr-1 (SE = 0.47%) (W. Thogmartin, unpublished data).  A
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significant portion of the serial correlation within the time series was due to annual abundance

prior to 1971, but even after censoring these data the decline was a nontrivial -1.71%@yr-1 (SE =

0.33%).  These declines are coincident with declining quality of habitat (Roseberry and Klimstra

1984, Brennan 1991, Warner 1994).

There is room, however, for accommodation of both the idea of habitat loss by Guthery et

al. (2002) and our idea of habitat degradation as contributing to declining bobwhite populations. 

For instance, resumption of hatch proportion by the late 1990s to levels last seen in the 1960s

may be due to hunters only hunting bobwhite in largely suitable, non-degraded habitat, the only

huntable habitat remaining in Illinois.  Roseberry and Sudkamp (1998) and Thogmartin (2002)

reported significant associations of bobwhite presence and abundance to landscape scales. 

Thogmartin (2002:175) further theorized only 1/3 of suitable landscapes need be occupied to

yield hypothesized state-wide population sizes.  If habitat loss is a dynamic process within

suitable landscapes, as it should be in a natural situation with land cover occurring in various

successional states, then bobwhite may occur within landscapes as a metapopulation, moving

from one patch to another as patches become available and then subsequently lost due to

succession.  However, in Illinois, a state with >80% of its land used for agricultural purposes, the

natural situation hardly occurs.  Rather, land is held at specific successional states, and thus

gradual loss of habitat to succession does not occur over large scales.  When habitat is lost, it is

irrevocably lost.  Prior to this loss, however, has been a degradation of agricultural habitat for

bobwhite in the Midwest (Roseberry and Klimstra 1984, Warner 1994).   Suitability of

agricultural habitat for bobwhite has declined tremendously over the last several decades as

agricultural practices have become increasingly efficient and fully implemented.  Resumption of

JPA to former levels may be an artifact of bobwhite only occurring in very restricted portions of

their former range, in habitats having undergone less modification than the general agricultural

landscape.
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There were no obvious, long-term trends in sex ratios among juveniles or adults. 

Additionally, annual fluctuations were minor and seemingly unrelated to climatological or habitat

conditions, and may therefore have simply reflected random variation.  Furthermore, sex ratios

seemed unrelated to other population parameters except for a weak tendency for declining

populations to contain slightly more males among juveniles.

Hatching chronology, as indexed by the relative proportion of late-hatched juveniles in

the fall population, increased from 1950 through the 1970's then stabilized.  This shift toward

later hatching dates appeared to coincide with a reduction in agricultural grasslands, especially

hay.  Because late clutches are generally smaller, reliance on renesting to compensate for failure

of initial attempts could theoretically reduce productivity.  Indeed, late hatches were often

associated with annual population declines, and vice versa.

The ratio of juveniles per adult in fall populations declined from 1950 to about 1970, then

stabilized over the remainder of the study.  This trend was statistically associated with changes in

gross amounts of agricultural grasslands (i.e., nesting cover) throughout the State and thus was

apparently habitat related.  The fact that populations declined over the last 30 years of study

whereas JPA was relatively stable suggests habitat loss rather than deterioration.  In contrast,

declining JPA during the first 20 years of study may have reflected habitat deterioration prior to

complete elimination.  Short-term (annual) variation in this parameter was weather related with

above-average summer precipitation and harsh winters leading to higher ratios.  The latter

relationship, which initially seems illogical, probably reflects the density-dependent nature of

JPA and the fact that severe winters often were followed by very low breeding densities. 

Because JPA was strongly density-dependent, and integrated a variety of biological variables, the

parameter was not a particularly good indicator of relative or absolute productivity or subsequent

population size.

78



Table 10.  Seasonal climate periods evaluated in multivariate regressions of demographic,
harvest, and environmental parameters.

Period Description

1 December-28 February Winter

1 December-21 March Winter

1 January-28 February Late-winter

1 January-30 April Winter-spring

22 March-20 April Prenesting

1 May-19 July Peak egg laying

21 April-18 August Egg laying

20 June-18 August Peak hatching

10 June-28 August Hatching

30 June-28 August Summer

1 June-28 August Summer
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Table 11.  Summary statistics for northern bobwhite population data derived from wings
collected from southern Illinois hunters, 1950-2001.

JPA1 MA2 MJ3 KILL4 CKILL5 PREFAD6 H297 H128

Years 51 50 50 41 40 49 48 48

Mean 4.93 59.74 50.33 3.57 0.77 14.53 27.65 18.31

Median 4.77 59.61 50.47 3.62 -0.77 14.47 27.57 18.74

Minimum 2.82 45.98 46.01 2.33 -32.94 8.56 13.14 3.77

Maximum 7.95 67.76 53.47 4.94 49.93 22.39 40.58 28.74

SD 1.13 3.83 1.71 0.65 17.56 3.08 6.22 5.60

1 Juveniles@adult-1

2 Percentage of males in the adult population
3 Percentage of males in the juvenile population
4 Number of bobwhite harvested@hunter trip-1

5 Percent change in KILL from the previous year
6 Percentage of females that were adults in the previous year 
7 Percentage of hatch occurring after 29 July 
8 Percentage of hatch occurring after 12 August
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Table 12.  Spearman rank correlations between 4 indices of northern bobwhite abundance and 11 demographic parameters derived
from harvested wings in Illinois (PREMA and PREMJ not shown).  See Table 11 for definitions of response variable acronyms.

Abundance 
(n years) JPA MA MJ INDEX KILL CKILL PRE

JPA
PRE
FAD H29 H12 PRE

KILL

NABBS
(32) -0.431* -0.125 0.363* -0.070 0.547** -0.184 -0.199 0.298 -0.215 -0.217 0.659***

IDNR
Counts (24) -0.699*** -0.270 0.234 0.054 0.506* -0.178 -0.330 0.287 -0.509* -0.477* 0.557**

IDNR
Harvest

(24)
-0.431* -0.110 0.226 0.290 0.737*** 0.114 -0.147 0.124 -0.503* -0.428* 0.400

CBC (32) -0.317 0.185 0.445* -0.198 0.295 -0.258 -0.039 0.037 0.034 -0.001 0.469**

* P < 0.05, ** P < 0.01, *** P < 0.001



Table 13.  Environmental correlates to long-term trends in biological response parameters
derived for northern bobwhite in Illinois, 1950-2001.  JPA is the number of juveniles per adult,
H29 is the proportion of juveniles hatched after 29 July, and KILL is number of birds killed per
hunter trip, as derived from interviews and hunter-contributed northern bobwhite wings. 

Response Parameter Estimate Standard
Error t P

 JPA Intercept 3.91 0.05 71.28 <0.0001

Agricultural 
Grassland (ha) × 1000 0.0002 0.0000 20.15 <0.0001

H29: 
Model 1 Intercept 36.57 1.50 24.30 <0.0001

Hay (ha) × 1000 -0.04 <0.01 -7.64 <0.0001

Hay (ha)2 × 1000 <0.01 <0.01 13.38 <0.0001

H29: 
Model 2 Intercept 50.24 3.32 15.13 <0.0001

Agricultural Grassland
(ha) × 1000 -0.01 <0.01 -7.90 <0.0001

Agricultural Grassland
(ha)2 × 1000 <0.01 <0.01 10.35 <0.0001

KILL Intercept 9.80 0.92 10.62 <0.0001

Agricultural Grassland
(ha) × 1000 <-0.01 <0.01 -9.02 <0.0001
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Table 13.  Continued.

Response Parameter Estimate Standard
Error t P

Agricultural Grassland
(ha)2 × 1000 <0.01 <0.01 11.89 <0.0001

Precipitation (cm)
During Hatch -0.05 0.03 -1.80 0.0783
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Table 14.  Environmental correlates to annual variation in biological response parameters derived
for northern bobwhite in Illinois, 1950-2001.

Response Parameter Estimate Standard
Error t P

 JPA Intercept 5.91 1.41 4.20 0.0002

Precipitation During
Peak Hatch 0.11 0.06 2.03 0.0496

Mean Winter
Temperature -0.13 0.03 -3.99 0.0003

Kill Per Trip in 
Year(t-1) -0.74 0.20 -3.68 0.0007

H29 Intercept -12.61 9.03 -1.40 0.1694

Potential
Evapotranspiration in

January 
-23.04 11.07 -2.08 0.0429

Potential
Evapotranspiration in   

August 
4.57 2.31 1.98 0.0539
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Table 14.  Continued.

Response Parameter Estimate Standard
Error t P

KILL Intercept -14.1665 4.5448 -3.1171 0.0038

Kill Per Trip in 
Year(t-1) 0.3869 0.1404 2.7544 0.0095

Number of days of
snow > 2.5 cm -0.0113 0.0050 -2.2781 0.0293

Minimum Temperature
in June (EC) 0.0652 0.0346 1.8837 0.0684

Mean Temperature in
July (EC) 0.0967 0.0414 2.3324 0.0259

Potential
Evapotranspiration in

August@
0.2291 0.1462 1.5667 0.1267

Potential
Evapotranspiration in

November#
0.8089 0.3578 2.2606 0.0305

# Exclusion of this variable resulted in a model with an AICc 0.16 units from the full
model.

@ Exclusion of this variable and Evapotranspiration in November resulted in a model with
an AICc 2.33 units from the full model.
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Table 15.  Ranking of informative models relating effects of climate on annual variation in the
proportion of late-hatched northern bobwhite juveniles in Illinois, 1950-2001.  Models were
ranked by AICc and normalized AICc weights (ëi).

Model Parameters Ka AICc ÄAICc ëi

August
Evapotranspiration +
January
Evapotranspiration

2 227.42 0 0.518

January
Evapotranspiration 1 229.25 1.83 0.207

August
Evapotranspiration 1 229.67 2.25 0.168

August Mean
Temperature 1 231.47 4.05 0.068

Null 0 232.63 5.21 0.038

a Number of estimable parameters.  
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Figure 13.  Temporal trend in juveniles@adult-1 between 1950 and 2002.  Line is a locally-
weighted regression fitted to the trend.
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Figure 14.  Temporal trends in within age-group sex ratio between 1950 and 2002.  Line is a
locally-weighted regression fitted to the trend.
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Figure 15.  Proportion of juveniles hatched late in the nesting season between 1952 and 2001. 
Line is a locally-weighted regression fitted to the trend in each time series.
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Figure 16.  Temporal patterns in kill per trip and percent annual change in kill per trip between
1960 and 2002.  Curves are locally-weighted regressions fitted to the trends; horizontal straight
line denotes 0% change in annual kill.
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Figure 17.  Partial regression plots for relationship between environmental correlates and number
of northern bobwhite juveniles per adult in Illinois between 1950 and 2001.
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JOB R-1.3: ANALYZE AND REPORT

Objectives: (1) To analyze results and prepare reports for Jobs 1.1 and 1.2 and report; and (2) to
report and discuss findings in a timely manner.

Requirements for this job have been met with findings and recommendations in Annual

Performance Reports and the Final Project Report for Job R-1.2.  In addition, Illinois Department

of Natural Resources, Division of Wildlife Resources program staff have been advised of interim

findings in a timely manner by means of both formal meetings and informal discussions.  The

following list identifies theses, manuscripts, and professional papers presented on research

conducted under the auspices of this Federal Aid project:

Roseberry, J. L., and W. L. Weber.  2000.  The Conservation Reserve Program and northern
bobwhites in Illinois.  Farm Bill Briefing Session, North American Wildlife and Natural
Resources Conference, Chicago, Illinois, USA.

Thogmartin, W. E.  2002.  Spatio-temporal dynamics of northern bobwhite (Colinus virginianus)
in Illinois.  Dissertation, Southern Illinois University, Carbondale, Illinois, USA. 

_____, J. L. Roseberry, and A. Woolf.  2002.  Cyclicity in northern bobwhite: a time-analytic
review of the evidence.  Proceedings of the National Quail Symposium 5:192–200.

Weber, W. L.  2000.  Contribution of the Conservation Reserve Program to upland wildlife
habitat and general landscape structure in Illinois.  Thesis, Southern Illinois University,
Carbondale, Illinois, USA.

_____, J. L. Roseberry, and A. Woolf.  Influence of the Conservation Reserve Program on
landscape structure and upland wildlife habitat.  Journal of Wildlife Management
(submitted).

_____, and _____.  2000.  Contribution of CRP to Illinois bobwhite habitat at the landscape
level.  Midwest Fish and Wildlife Conference, Minneapolis, Minnesota, USA.

_____, _____, and A. Woolf.  2000.  Contribution of the Conservation Reserve Program to
general landscape structure in Illinois.  Midwest Fish and Wildlife Conference,
Minneapolis, Minnesota, USA.

_____, _____, and _____.  2000.  Contribution of the Conservation Reserve Program to general
landscape structure in Illinois.  Annual Symposium of the U.S. Chapter of International
Association of Landscape Ecology, Tempe, Arizona, USA.
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Appendix 1.  Location (Universal Transverse Mercator coordinates of the patch centroid), network identifier, number of neighbors
within network, proportion of those neighbors predicted to be unoccupied or sparsely occupied, patch size, and mean landscape
suitability (HSI) for patches potentially suited for translocation.   Variable-specific rankings are provided parenthetically for
the first 26 patches.  

Rank Easting Northing       Network ID No. of Neighbors Proportion 
Unoccupied Patch Size (ha) HSI      

1 281034.2 4496541.7    (6) 25        254     (1)      0.286 (115) 1,497.6 (24) 0.545   (7)
2 288617.2 4504734.4   (14) 25        254     (1)      0.286 (115) 2,319.7 (19) 0.538 (15)
3 176300.0 4563604.7   (44) 25        254     (1)      0.286 (115) 9483.1   (7) 0.554   (4)
4 285119.0 4480718.9     (2) 25        254     (1)      0.286 (115) 877.4 (32) 0.532 (23)
5 331079.6 4580595.0   (72) 25        254     (1)      0.286 (115) 32,508.1   (1) 0.611   (1)
6 164404.4 4564798.6   (45) 25        254     (1)      0.286 (115) 694.0 (34) 0.534 (19)
7 160362.6 4571367.1   (58) 25        254     (1)      0.286 (115) 2,589.8 (16) 0.530 (25)
8 291605.9 4588150.9   (79) 25        254     (1)      0.286 (115) 3,753.8 (11) 0.540 (14)
9 281405.1 4529871.6   (18) 25        254     (1)      0.286 (115) 66.5 (72) 0.533 (21)
10 246622.2 4501170.1     (9) 25        254     (1)      0.286 (115) 87.9 (64) 0.520 (39)
11 169346.0 4550438.1   (26) 25        254     (1)      0.286 (115) 160.7 (53) 0.520 (37)
12 281177.5 4493919.1     (5) 25        254     (1)      0.286 (115) 62.2 (75) 0.520 (41)
13 288846.5 4541395.7   (20) 25        254     (1)      0.286 (115) 158.0 (55) 0.518 (46)
14 352335.8 4589719.1   (80) 24        4 (149)      1.000     (1) 2,663.3 (15) 0.545   (8)
15 177993.2 4570281.3   (54) 25        254     (1)      0.286 (115) 248.3 (43) 0.520 (42)
16 298828.3 4695139.8 (153) 3        11   (90)      1.000     (1) 15,746.6   (4) 0.541 (11)
17 420675.6 4548722.4   (22) 36        28   (74)      0.379 (102) 1,081.8 (29) 0.521 (34)
18 270567.2 4571536.0   (59) 25        254     (1)      0.286 (115) 402.2 (36) 0.517 (52)
19 408511.5 4555708.5   (33) 36        28   (74)      0.379 (102) 3,262.3 (14) 0.520 (40)
20 238008.5 4550745.3   (27) 39        1 (179)      1.000     (1) 1,420.4 (26) 0.522 (33)
21 288122.4 4512746.5   (15) 25        254     (1)      0.286 (115) 35.6 (93) 0.519 (45)
22 273683.2 4527267.9   (17) 25        254     (1)      0.286 (115) 73.6 (71) 0.513 (69)
23 279142.7 4699492.8 (162) 2        10 (102)      1.000     (1) 11,175.8   (5) 0.537 (17)
24 262064.1 4620710.9 (113) 15        4 (149)      1.000     (1) 3,558.9 (13) 0.541 (12)
25 209875.9 4561029.6   (39) 37        0 (191)      1.000     (1) 972.8 (31) 0.529 (26)
26 304282.8 4580075.2   (70) 25        254     (1)      0.286 (115) 56.4 (78) 0.523 (30)
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Appendix 1.  Continued. 

Rank Easting Northing Network ID No. of Neighbors Proportion 
Unoccupied Patch Size (ha) HSI

27 361665.9 4599981.4 24        4          1.000     1,723.4     0.529
28 228095.8 4593413.4 8        8          0.889     6,402.7     0.552
29 240257.1 4587402.4 27        8          0.889     2,386.1     0.545
30 355506.1 4539208.7 40        1          0.500     10,860.4     0.545
31 287336.0 4542037.8 25        254          0.286     31.3     0.512
32 173744.9 4570081.8 25        254          0.286     79.6     0.512
33 277302.0 4639646.5 9        4          1.000     3,875.4     0.528
34 169244.5 4578451.1 30        8          0.778     1,033.9     0.535
35 342604.1 4602633.6 22        0          1.000     2,218.2     0.542
36 167557.7 4586358.4 30        8          0.778     1,458.1     0.538
37 358780.3 4592518.7 24        4          1.000     294.8     0.518
38 350862.5 4596970.4 24        4          1.000     242.4     0.519
39 416099.5 4550118.4 36        28          0.379     85.1     0.515
40 372242.2 4609751.9 19        0          1.000     2,496.6     0.534
41 276221.0 4514833.4 25        254          0.286     22.2     0.510
42 270457.5 4633290.8 9        4          1.000     845.2     0.523
43 305891.5 4663224.4 6        10          0.636     16,481.0     0.563
44 247863.5 4499474.9 25        254          0.286     25.6     0.509
45 173334.5 4567108.4 25        254          0.286     91.5     0.509
46 282462.5 4698414.5 2        10          1.000     379.7     0.519
47 303230.6 4638989.5 6        10          0.636     3,935.9     0.541
48 227029.9 4573468.1 32        0          1.000     379.5     0.516
49 313213.7 4622146.3 14        0          1.000     1,792.9     0.532
50 411613.6 4559882.2 36        28          0.379     93.9     0.512
51 294542.1 4490868.2 49        5          0.333     380.6     0.517
52 244894.5 4626508.9 13        7          1.000     196.1     0.517
53 304590.9 4576291.5 25        254          0.286     7.3     0.521
54 309680.0 4647977.9 6        10          0.636     3,632.8     0.532
55 248548.9 4613805.9 18        0          1.000     2,146.0     0.518
56 221882.9 4591668.9 27        8          0.889     160.4     0.521
57 302173.2 4598651.9 26        4          1.000     183.2     0.512
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Appendix 1.  Continued.

Rank Easting Northing Network ID No. of Neighbors Proportion 
Unoccupied Patch Size (ha) HSI 

58 305807.3 4598396.2 26        4          1.000     341.8     0.512
59 269277.9 4697983.5 2        10          1.000     191.3     0.515
60 292944.6 4548887.3 25        254          0.286     8.1     0.511
61 217549.1 4570234.9 25        254          0.286     24.7     0.510
62 253791.5 4577775.8 25        254          0.286     27.6     0.511
63 287527.6 4480118.1 25        254          0.286     8.8     0.509
64 300063.4 4693033.1 3        11          1.000     62.0     0.513
65 291171.9 4504423.4 25        254          0.286     5.3     0.511
66 339415.5 4574362.8 25        254          0.286     21.4     0.511
67 181251.8 4570128.0 25        254          0.286     29.7     0.509
68 310062.1 4693496.2 4        1          1.000     1,216.5     0.523
69 251327.0 4602909.4 23        0          1.000     181.0     0.518
70 303130.4 4549720.3 25        254          0.286     7.8     0.510
71 297026.0 4577282.2 25        254          0.286     11.9     0.511
72 188905.0 4561184.2 25        254          0.286     47.8     0.507
73 163858.8 4584318.6 30        8          0.778     162.8     0.514
74 337511.3 4573173.5 25        254          0.286     5.2     0.514
75 247064.0 4503373.3 25        254          0.286     4.3     0.510
76 316214.4 4571317.6 25        254          0.286     6.0     0.512
77 322915.5 4655585.1 8        1          1.000     229.2     0.518
78 250779.5 4503560.3 25        254          0.286     11.4     0.507
79 237495.7 4580180.2 27        8          0.889     85.0     0.513
80 385264.0 4609059.1 21        2          1.000     221.7     0.511
81 296557.3 4704585.9 3        11          1.000     82.1     0.512
82 339348.8 4575290.4 25        254          0.286     11.6     0.510
83 308023.3 4704184.0 3        11          1.000     42.4     0.514
84 280979.3 4663131.5 7        1          1.000     201.3     0.518
85 258275.4 4616106.3 15        4          1.000     65.8     0.512
86 223987.6 4699371.5 1        21          0.227     27,895.8     0.601
87 302893.3 4699871.7 3        11          1.000     43.9     0.512
88 231508.0 4613727.9 17        1          1.000     52.9        0.516
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Appendix 1.  Continued.

Rank Easting Northing Network ID No. of Neighbors Proportion 
Unoccupied Patch Size (ha) HSI 

89 217020.1 4571327.3 25        254          0.286     7.6     0.510
90 172521.9 4577805.3 30        8          0.778     46.2     0.513
91 265953.3 4562577.8 33        3          0.250     1,314.6     0.528
92 169453.8 4592477.6 30        8          0.778     102.1     0.512
93 245049.5 4628449.8 13        7          1.000     86.6     0.510
94 174606.5 4570570.0 25        254          0.286     11.9     0.507
95 245024.9 4630857.5 13        7          1.000     37.5     0.512
96 257159.0 4617380.7 15        4          1.000     89.5     0.509
97 276403.9 4700012.6 2        10          1.000     17.7     0.515
98 245355.5 4625195.4 13        7          1.000     13.8     0.513
99 182789.8 4570094.4 25        254          0.286     11.5     0.507
100 302245.4 4684766.4 3        11          1.000     40.7     0.509
101 308897.8 4703588.4 3        11          1.000     32.5     0.511
102 408620.4 4559270.0 36        28          0.379     21.8     0.508
103 314685.6 4646018.0 6        10          0.636     89.5     0.516
104 416073.1 4551971.8 36        28          0.379     16.5     0.508
105 304232.5 4670800.8 6        10          0.636     157.2     0.515
106 164415.5 4586440.2 30        8          0.778     13.8     0.517
107 241654.5 4498388.2 25        254          0.286     4.7     0.506
108 291421.1 4583335.1 25        254          0.286     5.8     0.510
109 187073.2 4504223.3 25        254          0.286     4.4     0.506
110 243556.9 4624376.5 13        7          1.000     58.6           0.508
111 275754.7 4693217.8 2        10          1.000     48.6     0.508
112 238077.1 4594326.4 27        8          0.889     47.3     0.510
113 244256.7 4625127.5 13        7          1.000     53.8     0.508
114 265976.4 4567415.4 33        3          0.250     136.4     0.520
115 232674.9 4616757.6 17        1          1.000     29.4     0.511
116 296960.9 4705906.6 3        11          1.000     33.0     0.509
117 412088.8 4561533.7 36        28          0.379     19.2     0.507
118 237733.0 4579470.7 27        8          0.889     41.3     0.508
119 243036.1 4567101.7 35        0          1.000     11.8     0.509
120 235330.7 4593214.1 27        8          0.889     32.5         0.510
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Appendix 1.  Continued.

Rank Easting Northing Network ID No. of Neighbors Proportion 
Unoccupied Patch Size (ha) HSI 

121 179622.8 4593763.9 29        0          1.000     9.6     0.513
122 323372.1 4601630.5 25        254          0.286     10.4     0.508
123 326066.9 4622236.8 16        0          1.000     26.1     0.512
124 290992.1 4681887.3 3        11          1.000     14.1     0.508
125 306522.4 4597853.4 26        4          1.000     14.5     0.508
126 415529.0 4554860.0 36        28          0.379     9.7     0.507
127 186677.2 4562714.0 25        254          0.286     4.2     0.507
128 236339.9 4589900.9 27        8          0.889     14.3     0.511
129 381667.5 4610699.1 21        2          1.000     50.1     0.508
130 269804.3 4560775.2 33        3          0.250     125.4     0.515
131 303687.5 4699941.2 3        11          1.000     8.9     0.511
132 158259.5 4570219.3 25        254          0.286     5.5     0.506
133 320367.5 4657714.0 8        1          1.000     45.2     0.511
134 256498.2 4618808.1 15        4          1.000     16.3     0.509
135 302925.5 4692954.0 3        11          1.000     8.3     0.509
136 417068.0 4552297.8 36        28          0.379     8.4     0.507
137 269620.4 4681374.5 1        21          0.227     415.6     0.513
138 354290.7 4674917.9 5        0          1.000     86.6     0.510
139 303622.7 4597977.9 26        4          1.000     17.2     0.507
140 415215.5 4554216.2 36        28          0.379     9.0     0.506
141 313079.8 4695290.7 4        1          1.000     50.0     0.511
142 289410.2 4633791.7 12        2          0.667     288.9     0.513
143 243321.1 4625409.0 13        7          1.000     32.9     0.506
144 235283.4 4551179.5 39        1          1.000     7.3     0.506
145 244135.4 4623695.4 13        7          1.000     4.1     0.511
146 412367.0 4560412.1 36        28          0.379     5.6     0.507
147 274709.1 4705581.6 2        10          1.000     6.1     0.510
148 357514.6 4590235.4 24        4          1.000     4.3     0.508
149 269979.5 4695738.3 2        10          1.000     11.5     0.507
150 265317.2 4619574.6 15        4          1.000     18.7     0.507
151 273187.6 4694598.2 2        10          1.000     8.1     0.508
152 266953.9 4611965.5 20        0          1.000     24.5     0.508
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Appendix 1.  Continued. 

Rank Easting Northing Network ID No. of Neighbors Proportion 
Unoccupied Patch Size (ha) HSI 

153 323600.2 4600958.9 25        254          0.286     4.6     0.506
154 303202.0 4597470.0 26        4          1.000     6.0     0.507
155 269621.5 4695339.3 2        10          1.000     5.2     0.508
156 293520.5 4487973.3 49        5          0.333     6.3     0.507
157 165118.9 4583309.9 30        8          0.778     4.1     0.509
158 294268.9 4697647.0 3        11          1.000     7.0     0.506
159 266607.0 4630010.4 9        4          1.000     10.6     0.506
160 268132.5 4699794.2 2        10          1.000     5.4     0.507
161 279017.0 4646444.1 9        4          1.000     8.5     0.507
162 286695.8 4632705.9 12        2          0.667     64.2     0.510
163 269360.7 4635253.6 9        4          1.000     7.4     0.507
164 280724.5 4660312.8 7        1          1.000     15.9     0.507
165 267648.0 4697687.6 2        10          1.000     7.2     0.506
166 220423.3 4689441.3 1        21          0.227     12.4     0.515
167 381222.4 4610369.1 21        2          1.000     4.6     0.508
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