
 

  

 

Aalborg Universitet

Compressed Sensing with Linear Correlation Between Signal and Measurement Noise

Arildsen, Thomas; Larsen, Torben

Published in:
Signal Processing

DOI (link to publication from Publisher):
10.1016/j.sigpro.2013.10.021

Creative Commons License
Unspecified

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Arildsen, T., & Larsen, T. (2014). Compressed Sensing with Linear Correlation Between Signal and
Measurement Noise. Signal Processing, 98, 275-283. https://doi.org/10.1016/j.sigpro.2013.10.021

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 26, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60540787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.sigpro.2013.10.021
https://vbn.aau.dk/en/publications/2be59da1-b1f9-4620-a4f3-d5362de16db9
https://doi.org/10.1016/j.sigpro.2013.10.021


Compressed Sensing with Linear Correlation Between

Signal and Measurement Noise

Thomas Arildsena,∗ and Torben Larsenb

Aalborg University, Faculty of Engineering and Science
Department of Electronic Systems

Postal address:
Niels Jernes Vej 12, DK-9220 Aalborg, Denmark

—
ae-mail: tha@es.aau.dk be-mail: tl@es.aau.dk
phone: +45 99409844
ORCID: 0000-0003-3254-3790
∗(Corresponding author, EURASIP member)

Abstract

Existing convex relaxation-based approaches to reconstruction in compressed

sensing assume that noise in the measurements is independent of the signal

of interest. We consider the case of noise being linearly correlated with the

signal and introduce a simple technique for improving compressed sensing

reconstruction from such measurements. The technique is based on a linear

model of the correlation of additive noise with the signal. The modifica-

tion of the reconstruction algorithm based on this model is very simple and

has negligible additional computational cost compared to standard recon-

struction algorithms, but is not known in existing literature. The proposed

technique reduces reconstruction error considerably in the case of linearly

correlated measurements and noise. Numerical experiments confirm the ef-

ficacy of the technique. The technique is demonstrated with application to

low-rate quantization of compressed measurements, which is known to intro-
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duce correlated noise, and improvements in reconstruction error compared

to ordinary Basis Pursuit De-Noising of up to approximately 7 dB are ob-

served for 1 bit/sample quantization. Furthermore, the proposed method is

compared to Binary Iterative Hard Thresholding which it is demonstrated to

outperform in terms of reconstruction error for sparse signals with a number

of non-zero coefficients greater than approximately 1⁄10th of the number of

compressed measurements.

Keywords: compressed sensing, convex optimization, correlated noise,

quantization

1. Introduction

In the recently emerged field of compressed sensing, one considers linear

measurements y of a sparse vector x, possibly affected by noise as:

y = Ax + n, (1)

where the measurements y ∈ RM×1, the sparse vector x ∈ RN×1, the additive

noise n ∈ RM×1, the system matrix A ∈ RM×N , and M � N [1, 2, 3]. A

is generally the product of a measurement matrix and a dictionary matrix:

A = ΦΨ, where Φ ∈ CM×N , Ψ ∈ CN×N . For simplicity, we assume that

Ψ is an orthonormal basis although more general dictionaries are indeed

possible [4].

The essence of compressed sensing, as Donoho, Candès, Romberg, and

Tao show in [1, 2], is that the under-determined equation system (1) can be

solved provided that:
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1. The vector x is sparse; i.e., only few (K) elements in x are non-zero.

K = |{xi|xi 6= 0, i = 1, . . . , N}| (2)

x can also be approximated sparsely if it is compressible [3, Sec. 3.3],

meaning that its coefficients sorted by magnitude decay rapidly to zero.

2. The system matrix A obeys the Restricted Isometry Property (RIP)

with isometry constant δK > 0, defined as follows:

(1− δK) ‖x‖2
`2
≤ ‖Ax‖2

`2
≤ (1 + δK) ‖x‖2

`2
, (3)

for any at most K-sparse vector x such that [5]:

δK + δ2K + δ3K < 1. (4)

This holds with high probability when Φ is generated with zero-mean

independent identically distributed (i.i.d.) Gaussian entries with vari-

ance 1
M

. Note that (3) and (4) are sufficient but not necessary condi-

tions, and rather conservative conditions indeed, as shown in [6].

Conditions (3) and (4) lead to the following sufficient amount of mea-

surements M for Gaussian measurement matrices Φ [7]:

M ≥ CK log

(
N

M

)
, (5)

where C is a fairly small constant which can be calculated as a function

of M
N

[5].

Given the measurements y, the unknown sparse vector x can be recon-

structed by solving the following convex optimization problem [3, Sec. 4]:

x̂ = argmin
u: ‖y−Au‖2≤ε

‖u‖1, (6)
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where the fidelity constraint ‖y − Au‖2 ≤ ε ensures consistency with the

observed measurements to within some margin of error, ε, which is chosen

sufficiently large to accommodate the error n and/or approximation error in

the case of compressible signals. The form of the optimization problem in (6)

is known as Least Absolute Shrinkage and Selection Operator (LASSO) [8] or

Basis Pursuit De-Noising (BPDN) [9] and also comes in other variants such

as the Dantzig selector [10]. In addition to the convex optimization approach

to reconstruction in compressed sensing, there exist several iterative/greedy

algorithms such as Iterative Hard Thresholding (IHT) [11], or Subspace Pur-

suit (SP) [12] and Compressive Sampling Matching Pursuit (CoSaMP) [13] as

well as the more generalized incarnation of the two latter, Two-Stage Thresh-

olding (TST) [14]. We generally refer to such convex or greedy approaches as

reconstruction algorithms. The reconstruction algorithms generally assume

the noise to be white and independent of the measurements before noise

ȳ = Ax. In particular, to the best of the authors’ knowledge, the case of

measurement noise being linearly correlated with the measurements has not

been treated in the existing literature. Such correlation arises in for example

the case of low-resolution quantization. As we demonstrate in Section 2, this

case poses a problem for the accuracy of the found solution x̂. More special

cases of correlated noise arising from Poisson measurements or quantisation

of measurements has, however, been treated in for example [15, 16, 17].

In this paper, we propose a simple yet efficient approach to alleviating

the problem of linear correlation between the measurements before noise

ȳ and the noise n. Our proposal boils down to a simple scaling of the

solution x̂. Through numerical experiments we demonstrate how linearly
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correlated measurements and noise adversely affect the reconstruction error

and demonstrate how our proposal improves the estimates considerably.

As an application example, we demonstrate the proposed approach in

the case of low-rate scalar quantization of the measurements ȳ which can be

observed to introduce the mentioned linearly correlated measurement noise.

We demonstrate how a well-known linear model used for modeling such cor-

relation in scalar quantization is equivalent to the model of correlated mea-

surement noise considered in this work.

The article is structured as follows: Section 2 introduces the considered

model of linear correlation between compressed measurements and noise and

proposes a solution to enhance reconstruction under these conditions, Sec-

tion 3 describes simulations conducted to evaluate the performance of the

proposed approach compared to a traditional approach, Section 4 presents

the results of these numerical simulations, Section 5 provides discussions of

some of the presented results, and Section 6 concludes the article.

2. Methodology

2.1. Correlated Measurements and Noise

We consider additive measurement noise n which is correlated with the

measurements before noise ȳ. We model the correlation by the linear model:

y = αAx + w, (7)

where w is assumed an additive white noise uncorrelated with x and 0 <

α ≤ 1 where α = 1 covers the ordinary case of uncorrelated measurement

noise. A is the product of a measurement matrix Φ with i.i.d. Gaussian
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entries ∼ N
(
0, 1

M

)
and an orthonormal dictionary matrix Ψ. The model (7)

results in the following additive noise term:

n = y − ȳ = αAx + w −Ax = (α− 1)Ax + w (8)

We define ȳ = Ax to signify the measurements before introduction of addi-

tive noise. It is readily seen from (8) that n is correlated with x. The noise

variance is

σ2
n =

1

M
E
[
nTn

]
=

1

M

(
(α− 1)2 E

[
ȳTȳ

]
+ E

[
wTw

])
, (9)

which can be calculated by assuming that σ2
ȳ = 1

M
E
[
ȳTȳ

]
and σ2

w =

1
M

E
[
wTw

]
are known or can be estimated. For example, we show an exam-

ple for σ2
w in the case of quantization in Section 2.5, (21).

The specific problem caused by correlated measurements and noise as

modeled by (7) is that the noise itself is partly sparse in the same dictionary

as the signal of interest, x. Intuitively, this causes a solution x̂ as given by,

e.g., (6) to adapt to part of the noise as well as the signal of interest, unless

steps are taken to mitigate this effect.

2.2. Proposed Approach

Using the model in (7), we propose the following reconstruction of the

sparse vector x instead of the standard approach in (6). Equation (7) moti-

vates replacing the system matrix A by its scaled version αA. We exemplify

this approach by applying it in the BPDN reconstruction formulation as

below. Replacing A by αA in the standard approach (6), we arrive at

x̂1 = argmin
u: ‖y−αAu‖2≤ε

‖u‖1. (10)
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Since ε should be chosen to accommodate the level of noise in the mea-

surements y, we can see that, one choice could be to set

ε = ‖n‖2 (11)

ε = ‖w‖2 (12)

in (6) or (10), respectively. Since the noise terms n and w are assumed

unknown, (11) and (12) are not realistic choices of ε. The optimal choice of

ε is dependent on the true solution x, and is therefore difficult to obtain in

practice as exemplified for more general inverse problems in, e.g., [18]. For

this reason, various rules of thumb exist for the selection of ε. One such

choice is found in [19, Sec. 5.3]:

ε =

√
M + 2

√
2Mσ, (13)

where σ is the noise level (standard deviation) of the stochastic error n or w

in (1) or (7), respectively.

2.3. Additional Insight on the Proposed Approach

As outlined in Section 2.2, the model of the correlation between n and

ȳ suggests scaling A in the constraint of (10). In fact, as we show here, an

equivalent solution can be obtained simply by scaling the solution found by

the optimization formulation (6).

Proposition 1. The following optimization formulation is equivalent to the

formulation (10) in the sense that they produce solutions of comparable pre-

cision:

x̂2 =
1

α
argmin

v: ‖y−Av‖2≤ε
‖v‖1. (14)
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To see why (14) is equivalent to (10), consider the optimization problem

over the variable v, in which we introduce a change of variable v y u:

x̂2 ∈ X̂2 = Argmin
v: ‖y−Av‖2≤ε

∥∥∥∥ 1

α
v

∥∥∥∥
1

= Argmin
u: ‖y−αAu‖2≤ε

‖u‖1, v = αu

= X̂1 3 x̂1

(15)

In (15) we use the notation X̂ = Argmin . . . to denote the set of solutions

to the stated optimization problem since this is generally not one unique

solution [20, Ch. 5]. x̂ ∈ X̂ is used to emphasize that x̂ is any feasible

minimizer of the problem. It can generally not be guaranteed that algorithms

used to obtain solutions to the two optimization problems (10) and (15)

return the same solution, but they are subject to the same guarantees of

reconstruction accuracy (stability) as given by [20, Theorem 5.3].

According to the above, down-scaling the solution to the optimization in

(14) by α results in a solution x̂2 of comparable accuracy to the solution x̂1

to (10). Please note that all constraints in (10), (14) and (15) use the same

value of ε given by (13) with σ = σw, the standard deviation of the entries

in w in (7).

In short, Proposition 1 says that for compressed measurements with noise

correlated with the measurements according to the model (7), given the cor-

relation parameter α, when the signal x is reconstructed using BPDN, (6),

the obtained solution should be scaled by the factor 1
α

to account for the

effect of the correlation.
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2.4. Optimality of the Proposed Approach

In relation to the method proposed in Sections 2.2 and 2.3, it is of course

interesting to investigate whether the corrective scaling by α in the recon-

struction of x is indeed optimal. To investigate this, consider the following

optimization formulation:

x̂β =
1

β
argmin

u: ‖y−Au‖2≤ε
‖u‖1, (16)

where ε is given by (13) and the optimization problem is evaluated for a

number of values of β ∈ [α − β1, α + β2] for a given value of α used in the

correlated noise model (7) and a suitable choice of β1 and β2. The numerical

results of this investigation can be found in Section 4.3. β = α intuitively

seems a suitable choice, but numerical experiments indicate that it is in fact

not optimal. An explanation of this observation is offered in Section 5.

2.5. An Application: Quantization

As a practical example where the introduced measurement noise is cor-

related with the measurements, we investigate low-rate scalar quantization

of the individual compressed measurements in y. Quantization is usually

modeled by an additive noise model [21]:

y = Q(ȳ) = ȳ + q, (17)

where ȳ is the original value before quantization, which we consider as ȳ ∈ R.

Q(·) is the (non-linear) operation of scalar quantization, mapping ȳ to an

index i representing a quantized value y

Q : ȳ → yi, if ȳ ∈ Ri, i ∈ {1, . . . , L}, (18)
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where the range of input values is partitioned into L regionsRi, i ∈ {1, . . . , L}

and any value ȳ ∈ Ri is quantized to the point yi ∈ Ri. For input ȳ with

unbounded support, the regions Ri can be defined as follows:

Ri =

(pi−1, pi], for i = 1, . . . , L− 1

(pi−1, pi), for i = L,

(19)

where p0 = −∞∧ pL =∞. The additive noise q = y− ȳ represents the error

introduced by quantizing ȳ to the value y.

Various modeling assumptions are typically made about q. One type of

quantizers has centroid codebooks, i.e. quantizers where the reconstruction

points yi are calculated as the respective centroids of the distribution of the

input y in each of the regions Ri, e.g., Lloyd-Max quantizers [22, 23]. For

quantizers with centroid codebooks, q is correlated with the input x. A model

of this correlation used in the literature is the so-called gain-plus-additive-

noise model [24, Sec. II]:

y = Q(ȳ) = αȳ + r, (20)

where α ∈ [0, 1] and r is an additive noise, assumed uncorrelated with ȳ. The

variance of r is

σ2
r = α(1− α)σ2

ȳ. (21)

The variance of q is

σ2
q = (1− α)σ2

ȳ, (22)

which is easily seen by inserting (21) in σ2
q = (α− 1)2σȳ + σ2

r .

The parameter α can be computed for a specific quantizer. One way to

do this is to estimate it numerically by Monte-Carlo simulation. From [24,
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Eq. (8)] we have

α = 1−
σ2
q

σ2
ȳ

. (23)

The procedure is to generate a random test sequence ȳ, quantize it with the

given quantizer Q designed1 for the probability density function (p.d.f.) of

ȳ, estimate the variances σ2
q and σ2

ȳ from the realizations of ȳ and q = ȳ− y,

and use these to calculate (23).

The model (20) of the quantizer corresponds to the proposed model of

correlated measurements and noise described by (7), where r = w. Please

note that the model, (20), considers scalar quantization. In the case of

quantization of a vector v, we use Q(v) to signify scalar quantization of

the individual elements of the vector v.

We consider quantization of compressed measurements y of the signal x:

y = Q (Ax) (24)

= Ax + q (25)

≈ αAx + w, (26)

where

E
[
qqT

]
= σ2

qI, E
[
ȳȳT

]
= σ2

ȳI,

and I is the M ×M identity matrix.

Approximating the quantization operation by the noise model in (26), we

propose using the reconstruction technique (14) to improve reconstruction

1The quantizer can for example be trained on test data representing ȳ or calculated

based on the known or assumed probability density function (p.d.f.) of ȳ.
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with scalar quantized compressed measurements, (24), as an example of noise

correlated with the measurements.

Noise variance estimates given by (21) and (22) can be obtained from

a known σ2
ȳ . In hardware implementations, σ2

ȳ can be considered known

through the use of automatic gain control prior to quantization or by other

means of estimating signal variance prior to quantization.

3. Simulation Framework

In this section we present the numerical simulation set-up used to evaluate

the reconstruction method proposed in (14).

Donoho & Tanner have shown in [6] that compressed sensing problems

can be divided into two “phases” according to their probability of correct

recovery by the method (6). When evaluating the probability of correct

reconstruction of a sparse vector x over the parameter space defined by δ =

M
N
∈ [0, 1] and ρ = K

M
∈ [0, 1], a given problem can be proven to fall into one

of two phases where the probability of correct reconstruction is close to 1

(feasible) and 0 (infeasible), respectively. These two phases are divided by a

sharp phase transition around the correct reconstruction probability of 50%

as drawn in Fig. 1 (—). The feasible phase lies below the transition and the

infeasible phase lies above. Compressed sensing is utilized most efficiently

when operating close to the phase transition in the feasible phase since x can

be reconstructed with the highest possible number of non-zero elements K,

given N and M , here. This phase transition occurs in the case of noiseless

measurements, in the limit of N → ∞. The theory still holds for finite N ,

but the phase transition is shifted downwards with respect to ρ in the (δ, ρ)-
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parameter space, see Fig. 1 (- - -). It has also been shown that a similar

transition occurs at the same location in the noisy case, i.e. (1) [25]. In

the noisy case, mean squared reconstruction error, E [‖x̂ − x‖2
2/N ] relative

to the measurement noise variance σ2
n is bounded in the feasible region and

unbounded in the infeasible region.

[Figure 1 about here.]

In all simulations, we apply the proposed approach to test signals gener-

ated randomly according to the following specifications: size of x vector N =

1000; number of compressed measurementsM ∈ {200, 300, 400, 500, 600, 700, 800, 900, 1000}.

The non-zero elements of x are i.i.d. ∼ N (0, 1); the number of non-zero

elements K is selected for each value of M . This is done by calculat-

ing the largest possible K for each M according to the lower bound on

the 99% phase transition for finite N = 1000 by the formula given in [6,

Sec. IV, Theorem 2], drawn in Fig. 1 (- - -). The resulting values are

K ∈ {1, 17, 41, 73, 115, 167, 235, 330, 542}. The corresponding (δ, ρ)-points

are plotted in Fig. 1 (×).

The measurement matrix Φ has i.i.d. entries ∼ N (0, 1
M

) and we use the

dictionary Ψ = I, so that A = Φ. We repeat the experiment T = 1000

times for randomly generated x and Φ in each repetition and average the

reconstructed signal Normalized Mean Squared Error (NMSE), P , over all

solution instances x̂i, i ∈ {1, . . . , T}:

P =
1

T

T∑
i=1

‖x̂i − xi‖2
2

‖xi‖2
2

. (27)

To enable assessment of the quality of the obtained results, we plot the sim-

ulated figures with error bars signifying their 99% confidence intervals com-
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puted under the assumption of a Gaussian distributed mean of the NMSE,

see e.g. [26, Sec. 7.3.1]. The simulations were conducted for reconstruction

using regular BPDN (6) vs. our proposed approach (14) (denoted “BPDN-

scale” in result plots). The numerical optimization problems were solved

using the SPGL12 software package [27].

Regarding the choice of ε, for regular BPDN (6), we chose ε according

to (13), with σ =
√
σ2
q from (22). For our proposed approach (14), we

chose ε according to (13), with σ =
√
σ2
r from (21). For both compared

approaches, we consider σ2
ȳ known. As demonstrated in Section 4.3, ε could

be chosen better from empirical observations to provide smaller error in the

reconstruction, i.e. ‖x̂ − x‖. We chose the values (13) as practically useful

values for fairness of the evaluation of our proposed method.

As we have chosen low-rate scalar quantization to demonstrate the pro-

posed approach to noise correlated with the measurements, we additionally

performed simulations to compare the proposed method to a state-of-the-

art reconstruction algorithm for 1-bit compressed sensing, Binary Iterative

Hard Thresholding (BIHT) [17]. This simulation was performed by evaluat-

ing both our proposed method and BIHT over the phase space δ, ρ ∈ [0, 1]

where we discretized the range [0,1] in steps of 0.01 for both δ and ρ. In each

point (δ, ρ) we evaluated P according to (27) over T = 1000 repetitions with

different x and A in each instance. For each value δ ∈ {0.01, 0.02, . . . , 1} we

evaluate each of the methods from ρ = 0.01 until P > 1. For BIHT, we gen-

erated sparse signals x normalized to ‖x‖2 = 1 which is assumed by BIHT

2SPGL1: A solver for large-scale sparse reconstruction (http://www.cs.ubc.ca/labs/

scl/spgl1).
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and other 1-bit compressed sensing reconstruction algorithms in general. In

BIHT, estimates x̂ are re-normalised after reconstruction which is not the

case in our proposed method.

All scripts required to reproduce the simulation results are openly acces-

sible3.

4. Numerical Simulation Results

In this section we present results of the numerical simulations conducted

according to Section 3. Firstly, we evaluate the proposed method under

artificial correlated measurement noise generated according to (7). Secondly,

we evaluate the method under correlated measurement noise incurred by

scalar quantization of the compressed measurements. These results are shown

in Section 4.1. Furthermore, in Section 4.2 we present results of simulations

comparing the proposed method to BIHT. Finally, in Section 4.3 we present

results of simulations to shed light on how the choices of the parameters β

and ε in (16) affect the main results.

4.1. Main Results

In this section, noise variance and correlation parameters are first set

equal to the corresponding parameters estimated for the Lloyd-Max quantizer

used later in this section, for comparability. The parameter values for α are

listed in Table 1.

[Table 1 about here.]

3http://github.com/ThomasA/cs-correlated-noise
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The listed values of α (Lloyd-Max) are used together with σ2
r calculated from

(21) to generate correlated measurement noise according to (7). In the con-

ducted simulations, BPDN is used to reconstruct x̂2 from the compressed

measurements y. We compare the standard (correlation-unaware) recon-

struction, (6), of the signal (denoted “BPDN” in Fig. 2) to the reconstruction

obtained by our proposed method, (14), of scaling the reconstructed signal to

account for correlation (denoted “BPDN-scale” in Fig. 2). Selected results for

equivalent quantizer resolutions 1 bit/sample, 3 bit/sample, and 5 bit/sample

are shown in Fig. 2. The proposed method is observed to improve the re-

construction error P by 7.3 dB to 1.3 dB (for increasing ρ) at 1 bit/sample,

3.1 dB to 0.26 dB (for increasing ρ) at 3 bit/sample, and 0.86 dB to 0.059 dB

(for increasing ρ) at 5 bit/sample.

[Figure 2 about here.]

The experiments for quantized measurements are conducted exactly as

above, with the exception that the measurements y are quantized using a

Lloyd-Max quantizer [23, 22]. The Lloyd-Max quantizer is designed for the

Gaussian distribution of the entries of ȳ which results from the use of a mea-

surement matrix containing i.i.d. zero-mean Gaussian entries. The corre-

lated noise model uses the values of α (Lloyd-Max) for the selected quantizer

resolutions listed in Table 1.

Selected results for quantizer resolutions 1 bit/sample, 3 bit/sample, and

5 bit/sample with Lloyd-Max quantization are shown in Fig. 3. It can be

observed that the reconstruction error figures P agree well with those sim-

ulated with artificially generated correlated noise in Fig. 2. The observed
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improvements by the proposed method are almost identical to those ob-

served for artificial noise: 7.6 dB to 1.3 dB at 1 bit/sample, 3.1 dB to 0.26 dB

at 3 bit/sample, and 0.80 dB to 0.028 dB at 5 bit/sample.

[Figure 3 about here.]

To evaluate our proposed approach for a more practical quantization

scheme than the non-uniform Lloyd-Max quantizer, we additionally sim-

ulated results where the measurements y are quantized using a uniform

quantizer with mid-point quantization points, optimized for minimum mean

squared error (MMSE) of the quantized measurements. The uniform quan-

tizer is designed for the Gaussian distribution of the entries of ȳ. This serves

to evaluate how well the proposed approach performs for a more practical

quantizer type that does not theoretically obey the quantization noise model

(20) due to the fact that its reconstruction points are not the centroids of

the input signal’s p.d.f. in the quatizer’s input regions. The correlated noise

model uses the values of α (uniform) from Table 1.

Selected results for quantizer resolutions 1 bit/sample, 3 bit/sample, and

5 bit/sample with uniform quantization are shown in Fig. 4. The observed

improvements by the proposed method are close to those observed for artifi-

cial noise: 7.6 dB to 1.3 dB at 1 bit/sample, 3.2 dB to 0.28 dB at 3 bit/sample,

and 0.89 dB to 0.073 dB at 5 bit/sample.

[Figure 4 about here.]

The results in Fig. 3a and 4a are identical due to the fact that the 2-level

Lloyd-Max quantizer is a uniform 2-level quantizer optimized for MMSE of

the quantized values. It can also be observed that the uniform quantizer for
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3 bit/sample and 5 bit/sample results in slightly larger reconstruction error

while the improvement by our proposed method is preserved.

4.2. Comparison to Binary Iterative Hard Thresholding (BIHT)

In this section, we provide results comparing our proposed method to

BIHT. Results for our proposed method were computed in the same manner

as for the results regarding 1-bit quantization in Section 4.1. The simulated

NMSE of our proposed method and BIHT are shown in Fig. 5. The white

regions of the phase space are un-tested as they lie beyond P > 1; a threshold

we selected to define the region we wished to investigate. The bold contour

lines mark the boundary where the NMSEs of our proposed method and

BIHT are equal. As the numbered contour lines show, “BPDN-scale” exhibits

lower NMSE than BIHT in the majority (upper left region) of the phase

space, whereas the NMSE of BIHT is lower along the bottom of the phase

space – up to around ρ = 0.1 – and in the upper right-hand corner – towards

(δ, ρ) = (1, 1).

[Figure 5 about here.]

4.3. Empirical Investigation of Scaling Factors and Regularization Parame-

ters

In order to assess the optimality of the proposed approach as described

in Section 2.4, we conducted simulations for values of β in (16) using artifi-

cial pseudo-random noise generated according to the model (20). Since the

reconstruction error performance is also affected by the choice of ε in (16),

we similarly performed the simulations over different values ε. Preliminary

simulations indicated that P (see (27)) evolves in a quasi-convex manner

18



over β and ε. Based on this observation, we have used the Nelder-Mead sim-

plex algorithm [28] to find the (β, ε)-optimal error figures P for each of the

points (M,K) listed in Section 3. The results for all (M,K) with correlated

noise generated according to each of the values α (Lloyd-Max) in Table 1

are shown in tables 2 to 4. The optimal regularization parameter values for

ordinary BPDN are denoted ε1 – with resulting error figure P1, while the op-

timal scaling and regularization parameter values for the proposed method

are denoted β2 and ε2 – with resulting error figure P2. The error figures from

our proposed method as reported in Fig. 2 are included in tables 2 to 4 as

Pα to facilitate comparison.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

It was expected that α would be the optimal choice of β, i.e. β = α.

However, it turns out that the (empirically observed) optimal value of β2 is

typically slightly smaller than α with observed values β2 ∈ [0.74α, 0.98α], de-

pending on (M,K). An exception is seen in Table 2, where β2 ∈ [1.0α, 1.2α].

The optimal values of the regularization parameter ε are similarly found

to be lower than the values given by (13). For the baseline method (6),

the (empirically observed) optimal values are observed as ε1 ∈ [0.41ε, 0.84ε],

depending on (M,K), where ε denotes the values given by (13) as described

in Section 3. For our proposed method (14), the optimal values are generally

closer to the values given by (13) with observed values ε2 ∈ [0.37ε, 1.1ε],

depending on (M,K).
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It is important to note that the demonstrated advantage of our proposed

approach in Section 4.1 is not merely a result of a particularly lucky choice

of ε, as these experiments testify. The observed NMSE of our proposed

method, P2, consistently outperforms the baseline approach, P1. The im-

provement is consistent across different correlation parameters α as seen in

tables 2 to 4 where P2 is smaller than P1 by 13 dB, 11 dB and 8.4 dB in

tables 2 to 4, respectively, for (M,K) = (200, 1). At the other extreme of

(M,K) = (1000, 542), P2 is smaller than P1 by 0.12 dB, 0.090 dB and 0.20 dB,

respectively. Additionally, the observed NMSEs P2 are generally around an

order of magnitude lower than Pα arising from our proposed choices of β = α

and ε according to (13). However, note that β2 and ε2 optimized through

simulations are not practically useful.

5. Discussion

As seen from the experimental results in Section 4.3, the correlation pa-

rameter α from (7) may in fact not be the optimal choice of scaling parameter,

as expressed by β in (16). The generally smaller values found in Section 4.3

to be optimal for BPDN reconstruction according to (16) can be explained

by the fact that they scale the estimate x̂β larger. It is well-known in the

literature that the `1-norm minimization approach represented by, e.g., (6)

tends to penalize larger coefficients of x more than smaller coefficients [29],

thus estimating the former relatively too small. Therefore, it is possible to

choose a scaling parameter β < α in (16) that improves the estimate x̂β, i.e.

yields smaller ‖x̂β−x‖ compared to ‖x̂α−x‖. At this time, we cannot quan-

tify the optimal β analytically and it depends on the indeterminacy and/or
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measurement density of the performed compressed sensing.

Regarding the comparison of the proposed method to BIHT, the two

methods require two different kinds of prior information. BIHT requires

knowing that the sparse vector x is unit-norm: ‖x‖2 = 1. Our proposed

method requires knowing the variance of the unquantized measurements ȳ –

the elements of ȳ. It may depend on the specific application which quantity

is more realistic to know about the signal. At least, the variance assumed

known in our proposed method does not require any knowledge (such as

norm) of the sparse representation x of the observed signal.

6. Conclusion

We proposed a simple technique to model correlation between measure-

ments and an additive noise in compressed sensing signal reconstruction. The

technique is based on a linear model of the correlation between the measure-

ments and noise. It consists of scaling signals reconstructed by a well-known

`1-norm convex optimization method according to the model and comes at

negligible computational cost. We provided practical expressions for comput-

ing the scaling parameter and the reconstruction regularization parameter.

We performed numerical simulations to demonstrate the obtainable recon-

struction error improvement by the proposed method compared to ordinary

`1-norm convex optimization reconstruction for noise generated according to

the model. We further demonstrated as an example that the model applies

well to low-rate scalar quantization of the measurements; both Lloyd-Max

quantization that complies accurately with the correlation model, as well

as the more practical uniform quantization. For example, simulations indi-
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cated that the proposed method offers improvements on the order of 1 dB to

7 dB for 1 bit/sample quantization, depending on the indeterminacy of the

performed compressed sensing.

We compared the proposed approach to a state-of-the-art reconstruction

method, Binary Iterative Hard Thresholding (BIHT), for the special case

of 1 bit/sample quantization. This comparison showed that the proposed

approach reconstructs signals with smaller error than BIHT when the signals

contain more non-zero elements than an approximate fraction of 0.1 of the

number of measurements. This indicated that the proposed method is able

to reconstruct less sparse signals from 1-bit quantized measurements than

BIHT is capable of.

We conducted numerical simulations to evaluate the validity of our results

which confirmed that the improvements offered by the proposed method are

not merely a coincidental result of the suggested practical choices of scaling

and optimization regularization parameters. These results further indicated

that the proposed method is robust to the choice of scaling and optimiza-

tion regularization parameter in the sense that a suboptimal choice still leads

to considerable improvements over the ordinary convex optimization recon-

struction method.
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Figure 3: Simulated NMSE of reconstruction using BPDN vs. relative number of measure-
ments for parameters α and σ2

r equal to corresponding values for Lloyd-Max quantizers.
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Figure 4: Simulated NMSE of reconstruction using BPDN vs. relative number of mea-
surements for parameters α and σ2

r equal to corresponding values for uniform quantizers.
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Figure 5: Simulated NMSE of reconstruction from 1-bit quantized measurements. The
numbered (—0.1— etc.) contour lines trace equal NMSE levels. The bold contour lines
(—) mark the boundary where the NMSE levels of the proposed method and BIHT,
respectively, are equal. (“Wiggly” contour lines are caused by interpolation in Matlab).
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Table 1: Correlation parameter values used in Figs. 2–4.

Equiv. quantizer resolution α (Lloyd-Max) α (uniform)

1 bit/sample 0.6366 0.6366
3 bit/sample 0.9655 0.9626
5 bit/sample 0.9975 0.9965
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Table 2: Simulated NMSE at empirically optimal parameter values β and ε. Noise equiv-
alent to 1 bit/sample quantizer.

(M,K) ε1/ε P1 β2/α ε2/ε P2 Pα
(200, 1) 0.60 2.0 ·10−2 0.84 0.92 1.0 ·10−3 1.2 ·10−1

(300, 17) 0.50 3.3 ·10−2 0.74 0.93 1.4 ·10−2 2.2 ·10−1

(400, 41) 0.51 3.9 ·10−2 0.83 0.87 2.2 ·10−2 3.1 ·10−1

(500, 73) 0.46 4.3 ·10−2 0.77 0.93 2.9 ·10−2 3.7 ·10−1

(600, 115) 0.51 4.5 ·10−2 0.79 0.90 3.4 ·10−2 4.1 ·10−1

(700, 167) 0.47 4.6 ·10−2 0.88 0.84 3.8 ·10−2 4.5 ·10−1

(800, 235) 0.50 4.8 ·10−2 1.00 0.74 4.2 ·10−2 4.8 ·10−1

(900, 330) 0.46 4.9 ·10−2 1.0 0.73 4.5 ·10−2 5.2 ·10−1

(1000, 542) 0.46 5.3 ·10−2 1.2 0.65 5.1 ·10−2 6.0 ·10−1
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Table 3: Simulated NMSE at empirically optimal parameter values β and ε. Noise equiv-
alent to 3 bit/sample quantizer.

(M,K) ε1/ε P1 β2/α ε2/ε P2 Pα
(200, 1) 0.84 5.0 ·10−4 0.90 1.1 3.8 ·10−5 7.8 ·10−3

(300, 17) 0.75 2.0 ·10−3 0.91 0.93 8.9 ·10−4 1.9 ·10−2

(400, 41) 0.64 3.0 ·10−3 0.88 0.96 1.8 ·10−3 3.1 ·10−2

(500, 73) 0.65 3.9 ·10−3 0.87 0.93 2.7 ·10−3 4.3 ·10−2

(600, 115) 0.65 4.8 ·10−3 0.92 0.74 3.6 ·10−3 5.6 ·10−2

(700, 167) 0.61 5.6 ·10−3 0.90 0.73 4.5 ·10−3 6.9 ·10−2

(800, 235) 0.55 6.4 ·10−3 0.92 0.67 5.4 ·10−3 8.3 ·10−2

(900, 330) 0.50 7.4 ·10−3 0.93 0.63 6.8 ·10−3 1.0 ·10−1

(1000, 542) 0.49 1.0 ·10−2 0.98 0.51 1.0 ·10−2 1.6 ·10−1
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Table 4: Simulated NMSE at empirically optimal parameter values β and ε. Noise equiv-
alent to 5 bit/sample quantizer.

(M,K) ε1/ε P1 β2/α ε2/ε P2 Pα
(200, 1) 0.83 1.8 ·10−5 0.97 1.0 2.6 ·10−6 5.6 ·10−4

(300, 17) 0.70 1.2 ·10−4 0.97 0.94 6.3 ·10−5 1.4 ·10−3

(400, 41) 0.65 2.0 ·10−4 0.97 0.96 1.3 ·10−4 2.5 ·10−3

(500, 73) 0.68 2.8 ·10−4 0.97 0.85 1.9 ·10−4 3.6 ·10−3

(600, 115) 0.63 3.8 ·10−4 0.97 0.72 2.7 ·10−4 5.0 ·10−3

(700, 167) 0.50 4.8 ·10−4 0.96 0.72 3.6 ·10−4 6.6 ·10−3

(800, 235) 0.56 5.8 ·10−4 0.97 0.66 4.8 ·10−4 8.6 ·10−3

(900, 330) 0.45 7.3 ·10−4 0.96 0.58 6.4 ·10−4 1.2 ·10−2

(1000, 542) 0.41 1.3 ·10−3 0.98 0.37 1.3 ·10−3 2.7 ·10−2
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