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Preface

This PhD thesis is the result of work carried out at the Department of Mathe-
matical Sciences, Aalborg University, and during a visit to NuHAG, University
of Vienna, in the spring of 2011. It is presented mainly in the form of three
published journal papers:

K. N. Rasmussen. Orthonormal bases for anisotropic α-modulation spaces.
Collectanea Mathematica, vol. 63(1), pp. 109-121, 2012.

M. Nielsen and K. N. Rasmussen. Compactly supported frames for de-
composition spaces. Journal of Fourier Analysis and Applications, vol. 18(1),
pp. 87-117, 2012.

K. N. Rasmussen and M. Nielsen. Compactly supported curvelet-type
systems. Journal of Function Spaces and Applications, vol. 2012, 2012.

These can be found in Chapters 2-4 with an introduction in Chapter 1
and a further discussion in Chapter 5. The papers have been preserved
in their original journal form apart from some minor corrections and a con-
densation of the bibliographies to a single bibliography at the end of the thesis.

I am indebted to my supervisor Morten Nielsen for being the steady rock
I could always fall back on no matter how lost. Thanks for setting me on the
path and then keeping up with me for three years. I would also like to thank
Hans. G. Feichtinger for hosting my visit to NuHAG and showing me another
aspect of harmonic analysis.

Kenneth N. Rasmussen
Aalborg, February 2012
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IV PREFACE

Summary

The topic of this thesis is harmonic analysis more specifically generalized
wavelet systems. While wavelets have proven a very useful tool for repre-
senting images and sound signals, new generalized wavelet systems perform
even better in certain cases. This thesis focuses on the construction of flexible
generalized wavelet systems with a prescribed nature such as compact support.

In Chapter 1 we introduce the framework on which the following chap-
ters were build. We motivate the search for new representations by looking
at n-term nonlinear approximation and compress an image with wavelets to
show the advantage of flexibility.

In Chapter 2 we construct orthonormal bases for bivariate anisotropic α-
modulation spaces. The construction is based on generating a nice anisotropic
α-covering and using carefully selected tensor products of univariate brushlet
functions with regards to this covering. As an application, we show that
n-term nonlinear approximation with these orthonormal bases in certain
anisotropic α-modulation spaces can be completely characterized.

In Chapter 3 we study a construction of flexible representations for de-
composition spaces of Triebel-Lizorkin type and for the associated modulation
spaces. The new representations are constructed by extending the machinery
of almost diagonal matrices to Triebel-Lizorkin type spaces and the associated
modulation spaces. Furthermore, an already known representation for these
spaces is approximated by finite linear combinations of shifts and dilates of
a single function with sufficient decay in both the direct and the frequency
space to obtain the new representations.

In Chapter 4 we study a construction of flexible curvelet type representations.
These curvelet type systems have the same sparse representation properties as
curvelets for appropriate classes of smooth functions. We use the machinery
of almost diagonal matrices to show that a system of curvelet molecules which
is sufficiently close to curvelets constitutes a frame for curvelet type spaces.
Such a system of curvelet molecules can then be constructed using finite
linear combinations of shifts and dilates of a single function with sufficient
smoothness and decay.

In Chapter 5 we look at some of the open problems which present them-
selves in extension of the previous chapters.



DANISH SUMMARY V

Danish summary

Emnet for denne afhandling er harmonisk analyse mere specifikt generalis-
erede wavelet systemer. Wavelets har vist sig at være et meget nyttigt værktøj
til at repræsentere billeder og lydsignaler, men bedre resultater er i visse
tilfælde opnået med nye generaliserede wavelet systemer. Denne afhandling
fokuserer på konstruktionen af fleksible generaliserede wavelet systemer med
foreskrevne egenskaber såsom kompakt støtte.

I kapitel 1 introducerer vi den ramme hvorpå de efterfølgende kapitler
er baseret. Vi motiverer jagten på nye repræsentationer ved at se på n-led
ikke-lineær approksimation og komprimere et billede med wavelets for at vise
fordelen ved fleksibilitet.

I kapitel 2 konstruerer vi orthonormale baser for bivariate anisotrope α-
modulationsrum. Denne konstruktion er baseret på at danne en pæn
anisotrope α-overdækning og bruge omhyggeligt udvalgte tensor produk-
ter of univariate brushlet funktioner i forhold til denne overdækning. Som
anvendelsesmulighed viser vi at n-led ikke-linær approksimation med disse
orthonormale baser i visse anisotrope α-modulationsrum kan karakteriseres
fuldstændigt.

I kapitel 3 studerer vi konstruktionen af fleksible repræsentationer for dekom-
positionsrum af Triebel-Lizorkin typen og for de tilhørende modulationsrum.
De nye repræsentationer er konstrueret ved at udvide næsten diagonale
matricer maskineriet til Triebel-Lizorkin lignende rum og de tilhørende mod-
ulationsrum. Derudover bliver en allerede kendt repræsentation for disse
rum approksimeret med endelige linearkombinationer af translationer og
dilationer af en enkelt funktion med tilstrækkelig henfald i både det direkte
rum og frekvensrummet for at opnå de nye repræsentationer.

I kapitel 4 studerer vi konstruktionen af fleksible curvelet lignende repræsen-
tationer. Disse curvelet systemer har samme effektive repræsentationsegen-
skaber som curvelets for en passende klasse af glatte funktioner. Vi bruger
næsten diagonale matricer maskineriet til at vise at et system af curvelet
molekyler som er tilstrækkeligt tæt på curvelets danner en frame for curvelet
lignende rum. Sådan et system af curvelet molekyler kan så blive konstrueret
ved at bruge endelige linearkombinationer af translationer og dilationer af en
enkelt funktion med tilstrækkelig glathed og henfald.

I kapitel 5 ser vi på nogle af de åbne problemer som viser sig i forlæn-
gelse af de foregående kapitler.
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CHAPTER 1

Prologue

If I have seen further it is by standing on ye sholders of Giants.
Sir Isaac Newton

In this chapter we set the scene for the story to come by presenting the frame-
work on which the papers in Chapters 2-4 were built as well as placing them
in the context of harmonic analysis. The fundamental idea is to decompose a
function f in terms of basic functions (atoms) ψj so that we can simplify the
analysis of f and operators which act on it. This can be done by either a dis-
crete or continuous representation, and we will here restrict ourselves to the
discrete representation,

(1.1) f = ∑
j

cjψj,

with convergence in some suitable sense. We start out with the following
application to motivate expansions of the type (1.1).

Nonlinear approximation. In n-term nonlinear approximation we approxi-
mate a complicated function f with a linear combination of n simpler func-
tions from the family {ψj} (for an overview see e.g. [12, 15]). An approximant
which better resolves f can generally be constructed by increasing n. The un-
derstanding of this tradeoff between complexity and resolution is the main
goal of constructive approximation. More specifically, we have on one side f
with complexity typically measured by its membership in a certain smoothness
space, and on the other side we have an approximation space which includes
all functions which can be approximated at a certain rate asymptotically by
n-term approximation with {ψj}. A well-known example where this match-up
is possible is n-term wavelet approximation where, in certain cases, the ap-
proximation space is a Besov space [14]. The method used to prove this is
particularly interesting because it relies heavily on the machinery of n-term
nonlinear approximation and very little on wavelets specifically. Wavelets con-
stitute an unconditional basis for a Besov space, and furthermore the norm in
the Besov space can be characterized by an associated sequence norm applied
to the wavelet coefficients. The norm characterization gives a so-called Jack-
son inequality which can be used to show that the Besov space is included in

1



2 1. PROLOGUE

the approximation space, and the linear independence of the wavelets gives a
so-called Bernstein inequality which can be used to show that the Besov space
is not only included, but equal to the approximation space. So one possible
idea for finding an approximation space associated with a general smooth-
ness space is to construct an unconditional basis for the smoothness space or,
lacking linear independence, an atomic decomposition. Next, we will look at
smoothness spaces where this is possible.

Decomposition spaces. A very broad class of smoothness spaces can be
constructed by considering structured decompositions of the frequency space
Rd. This was done by Feichtinger and Gröbner with the introduction of
decomposition spaces [17, 19] (strictly speaking the smoothness spaces are
decomposition spaces on the Fourier side). With this perspective, Besov and
Triebel-Lizorkin spaces correspond to smoothness spaces with a dyadic de-
composition of the frequency space. Furthermore, Feichtinger introduced the
classical modulation spaces [18] which correspond to a uniform decomposition
of the frequency space. Gröbner then used the decomposition methods to
define α-modulation spaces [28] as a family of intermediate spaces between
modulation and Besov spaces with a polynomial type decomposition of the
frequency space. While classical modulation spaces are well understood
and have become a standard tool in time-frequency analysis (see e.g. [29]),
α-modulation spaces are still on the verge of a breakthrough. Atomic de-
compositions for α-modulation spaces were considered by Fornasier [23] and
later Nielsen constructed an orthonormal basis for bivariate α-modulation
spaces and used it to characterize n-term nonlinear approximation in [44].
The first main contribution of this thesis is the extension of the orthonormal
basis and characterization to anisotropic α-modulation spaces which can be
found in Chapter 2. This is done by simplifying the underlying decomposition
which then allows for a generalization to the anisotropic case. Feichtinger and
Gröchenig also introduced a more restrictive class of smoothness spaces called
coorbit spaces [20–22] which we will discuss further in Chapter 5.

In the perspective of decomposition spaces, anisotropic α-modulation
spaces are a prime example in a broad subclass of decomposition spaces
which we get by taking Besov spaces and extending the decomposition of the
frequency space to more general decompositions. This was done by Borup
and Nielsen in [4] where they constructed an atomic decomposition for these
modulation spaces and used it to derive Jackson inequalities. Later in [5] they
extended the atomic decomposition to similarly constructed Triebel-Lizorkin
(T-L) type spaces. Candès and Donoho introduced a fundamentally different
frame called curvelets with a decomposition of the frequency space which
is described by a parabolic scaling relation. Curvelets have proven quite
useful in providing sparse representations for certain natural images [9];
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moreover, curvelets provide an optimally sparse representation of Fourier
integral operators [7] and an optimally sparse and well organized solution
operator for a wide class of linear hyperbolic differential equations [8]. In [4]
Borup and Nielsen also showed that their general frame construction could be
adapted to a curvelet type frame. However, this general frame construction
lacks flexibility: the frame is compactly supported in the frequency space
which prohibits compact support in the direct space. Compact support will
be discussed further in the last section, but first we look at how to construct
flexible systems.

Perturbation principle. A well-known perturbation principle is that given a
basis {ηj} for some Banach space X, suppose the functions {ψj} approximate
{ηj} well enough, then {ψj} will also be a basis for X. A classical way of
doing this is by taking ‖ηj − ψj‖X small enough (see e.g. [39]). However, this
approach leaves little room when selecting {ψj}. Kyriazis and Petrushev in-
stead took a wavelet basis {ηj} for T-L and Besov spaces and approximated the
derivatives of ηj with functions ψj with sufficient vanishing moments [34, 45].
By using the machinery of almost diagonal matrices developed by Frazier and
Jawerth [25], they then showed that {ηj} is also a basis for T-L and Besov
spaces. The relatively simple requirements on ψj allowed a construction with
linear combinations of a fixed number of shifts and dilates of a single function g
with sufficient smoothness and decay. Prime examples of g being the Gaussian
or a spline with compact support. Later Kyriazis and Petrushev extended the
perturbation principle to atomic decompositions for T-L and Besov spaces [35]
and Bownik and Ho extended almost diagonal matrices to anisotropic T-L and
Besov spaces. The second main contribution of this thesis is the construction
of a compactly supported atomic decomposition for T-L type spaces and the
associated modulation spaces which can be found in Chapter 3. This is done
using the above mentioned perturbation principle on the atomic decomposition
in [4] with the twist that ψj instead approximates ηj sufficiently well in both
the direct and the frequency space. The last main contribution can be found in
Chapter 4 where we similarly construct a compactly supported curvelet type
frame. This case relies on work by Candès and Demanet on almost diagonal
matrices [8]. Shearlets are a directional representation system which resembles
curvelets and for them compactly supported frames were recently constructed
by Kittipoom, Kutyniok and Lim [33].

Compact support. To see why a flexible frame construction is important, let
us look at Meyer and Daubechies wavelets. Meyer wavelets [42] marked the
beginning of modern wavelet theory and their Fourier transforms are infinitely
smooth and compactly supported away from origo. Hence they decay faster
than the inverse of any polynomial, have vanishing moments of all orders, but
also cannot have exponential decay. Daubechies wavelets [11], on the other
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hand, are a family of wavelets with compact support and fixed smoothness
and vanishing moments depending on the size of the support. In Figure 1 we
compressed the image ”Cameraman” with Meyer and Daubechies wavelets by
decomposing the image and only keeping the 15% biggest coefficients. With
Meyer wavelets we see in Figure 1(a) that a lack of spatial localization causes
so-called ringing artifacts around the edge of the man which are far less promi-
nent with the Daubechies wavelet in Figure 1(b). Here we chose a Daubechies
wavelet with as much spatial localization as possible while still having suffi-
cient smoothness to represent the image well. We see that the asymptotical
behavior imposed by approximation spaces does not reveal everything and it
pays off to have a bit of flexibility. In general, compact support is important
for wavelets as it allows for efficient computation with the fast wavelet trans-
form by Mallat [40] (as Matlab uses this transform we actually used a discrete
approximation of the Meyer wavelet with compact support in Figure 1(a)).

(a) Using the wavelet ”dmey”. (b) Using the wavelet ”db10”.

Figure 1. Level 8 wavelet decomposition of the image ”Cameraman” with
15% non-zeroes with Matlab Wavelet Toolbox.



CHAPTER 2

Orthonormal bases for anisotropic α-modulation spaces

Publication details:
Published in Collectanea Mathematica, vol. 63(1), pp. 109-121, 2012.

Abstract: In this paper we construct orthonormal bases for bivariate anisotropic
α-modulation spaces. The construction is based on generating a nice
anisotropic α-covering and using carefully selected tensor products of univari-
ate brushlet functions with regards to this covering. As an application, we
show that n-term nonlinear approximation with these orthonormal bases in
certain anisotropic α-modulation spaces can be completely characterized.

2.1. Introduction

The construction of unconditional bases for a given smoothness space is im-
portant as it often leads to simple characterizations of the space. For example,
smoothness measured in a Besov space is equivalent to a certain sparseness
of a wavelet expansion [43]. More generally, norm characterizations allow us
to identify certain smoothness spaces as nonlinear approximation spaces (see
e.g. [27, 34]). As a consequence we gain better understanding of how suffi-
ciently smooth functions can be compressed by thresholding the expansion
coefficients for a sparse representation of the function [13, 14].

The α-modulation spaces Ms,α
p,q(R

2), α ∈ [0, 1], were introduced by Gröbner
[28] and include the Besov and modulation spaces as special cases correspond-
ing to α = 1 and α = 0, respectively. They are part of a much more gen-
eral construction introduced by Feichtinger and Gröbner called decomposition
spaces [17,19]. Decomposition spaces are based on structured coverings of the
frequency space Rd and in the case of the α-modulation spaces the α-parameter
determines the nature of the covering. The Besov spaces (α = 1) correspond
to a dyadic covering, the modulation spaces (α = 0) correspond to a uniform
covering and the intermediate cases correspond to ”polynomial type” cover-
ings of the frequency space. So far frames have been constructed for a broad
subclass of the decomposition spaces [4], but the author is not aware of any
general method for constructing bases for decomposition spaces. On the other
hand, a orthonormal basis for bivariate α-modulation spaces was constructed
in [44].

The goal of this paper is to construct an orthonormal basis for bivariate
5



6 2. ORTHONORMAL BASES FOR ANISOTROPIC α-MODULATION SPACES

anisotropic α-modulation spaces. Building on the work in [44] the orthonormal
basis is constructed by using carefully selected tensor products of univariate
brushlet functions. Brushlets are the image of a local trigonometric basis under
the Fourier transform, and such systems were introduced by Laeng [37]. Later
Coifman and Meyer used brushlets as a tool for image compression [41]. By
using the constructed orthonormal basis, we also identity certain anisotropic α-
modulation spaces as approximation spaces associated with nonlinear n-term
approximation.

The outline of the paper is as follows. In Section 2.2 univariate brushlets
are defined, and bivariate brushlet bases are constructed for a flexible cover-
ing of R2. In Section 2.3 anisotropic α-modulation spaces are defined, and
an anisotropic α-covering is constructed. Furthermore, by applying the con-
structed α-covering to the bivariate brushlet bases from Section 2.2, we show
that unconditional bases for the anisotropic α-modulation spaces are gener-
ated. In Section 2.4 we apply the constructed basis to nonlinear n-term ap-
proximation. Finally, there is an appendix where we prove that anisotropic
α-modulation spaces are independent of the α-covering used.

2.2. Brushlet bases

In this section we introduce orthonormal brushlet bases for L2(R), and use
them to construct bivariate brushlet bases associated with a flexible covering
of the frequency space R2 (see e.g. [2]). In the following section, by choosing a
covering that fits to the anisotropic α-modulation spaces, we will then be able
to show that the constructed bivariate brushlet bases form unconditional bases
for the α-modulation spaces.

Each univariate brushlet basis is associated with a partition of the fre-
quency axis. The partition can be chosen with almost no restrictions, but in
order to have good properties of the associated basis we need to impose some
growth conditions on the partition.

Definition 2.1.
A family of intervals I is called a disjoint covering of Ω = [ω, ω′) ⊆ R, ω < ω′, if
it consists of a countable set of pairwise disjoint half-open intervals I = [αI , α′I),
αI < α′I , such that ∪I∈I I = Ω. If, furthermore, each interval in I has a unique
adjacent interval in I to the left and to the right, and there exists a constant
A > 1 such that

(2.1) A−1 ≤ |I||I′| ≤ A, for all adjacent I, I′ ∈ I,

we call I a moderate disjoint covering of Ω. �
Given a moderate disjoint covering I of Ω, we can easily assign to each interval
I ∈ I a cutoff radius ε I > 0 at the left endpoint and a cutoff radius ε′I at the
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right endpoint, satisfying

(2.2)

ε′I = ε I′ , whenever α′I = αI′
ε I + ε′I ≤ |I|

ε I ≥ C|I|,
with C > 0 independent of I.

We are now ready to define the brushlet system. For each I ∈ I, we first
construct a smooth bell function localized in a neighborhood of I. Take a non-
negative ramp function ρ ∈ C∞(R) satisfying

ρ(ξ) =

{
0 for ξ ≤ −1
1 for ξ ≥ 1,

with the property that
ρ(ξ)2 + ρ(−ξ)2 ≡ 1.

Define for each I = [αI , α′I) ∈ I the bell function

bI(ξ) := ρ

(
ξ − αI

ε I

)
ρ

(
α′I − ξ

ε′I

)
.

Notice that supp(bI) ⊂ (αI − ε I , α′I + ε′I) and bI(ξ) = 1 for ξ ∈ [αI + ε I , α′I − ε′I ].
Let f̂ (ξ) := F ( f )(ξ) := (2π)−d/2

∫
Rd f (x)e−ix·ξ dx, f ∈ L2(R

d). Now if I is a
moderate disjoint covering of R then the set of local cosine functions

(2.3) ŵm,I(ξ) :=

√
2
|I|bI(ξ) cos

(
π(m + 1

2)
ξ − αI

|I|

)
, m ∈N0, I ∈ I,

constitute an orthonormal basis for L2(R), see e.g. [1]. We call the collection
{wm,I}m∈N0,I∈I a brushlet system. There is also a more explicit representation
of brushlets in the direct space. Define ĝI(ξ) := bI(|I|ξ + αI) and em,I :=
π(m + 1

2)|I|−1, we then have

(2.4) wm,I(x) =

√
|I|
2

eiαI x [gI
(
|I|(x + em,I)

)
+ gI

(
|I|(x− em,I)

)]
.

It can easily be verified that for r ≥ 1 there exists C > 0 such that

(2.5) |gI(x)| ≤ C(1 + |x|)−r

independent of I ∈ I.
To later generate bivariate brushlet bases, we define the operator PI :

L2(R)→ L2(R) as

P̂I f (ξ) := bI(ξ)[bI(ξ) f̂ (ξ) + bI(2αI − ξ) f̂ (2αI − ξ)− bI(2α′I − ξ) f̂ (2α′I − ξ)].

By straight forward calculations it can be verified that PI is an orthogonal pro-
jection, mapping L2(R) onto span({wm,I}m∈N0). We shall list some properties
of PI here and refer to [30, Chap. 1] for a more detailed discussion of local
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trigonometric bases.
If I and J are two adjacent intervals in I then for f ∈ L2(R),

(2.6) P̂I f (ξ) + P̂J f (ξ) = f̂ (ξ), ξ ∈ [αI + ε I , α′J − ε′J ].

Furthermore,

(2.7) PI + PJ = PI∪J

with the ε-values ε I and ε′J . It follows that {wm,I′}m∈N0,I′∈{I,J} is an orthonormal
basis for functions bandlimited to [αI + ε I , α′J − ε′J ] on L2(R

2), and by repeating
the argument, a basis for all functions in L2(R) can be constructed by using a
moderate disjoint covering of R. This will be the key idea for constructing nice
bivariate brushlet bases.

For later use, we introduce PQ := PI ⊗PJ , Q := I × J ⊂ R2. By using the
univariate case, we have that PQ is an orthogonal projection, mapping L2(R

2)
onto span({wm1,I ⊗ wm2,J}m1,m2∈N0).

Construction of bivariate brushlet bases. A simple way of constructing bi-
variate brushlet bases is to use the tensor product on a univariate brushlet
basis. Although this gives us a basis for L2(R

2), we lose the ability to gen-
erate a structured anisotropic covering of the frequency plane. An example
of this in the isometric case can be seen with tensor products of orthonormal
wavelets. Here we end up with hyperbolic bivariate wavelet systems which
offer no characterizations of isotropic smoothness spaces. Instead we take the
tensor product of two brushlet bases, extract the brushlets on the diagonal with
regards to the frequency index, and then repopulate this subsystem in a struc-
tured way.

We saw earlier that the univariate brushlet bases were constructed from
an moderate disjoint covering of R, and the operator PI could be seen as a
building block associated with the bandlimited functions on I. We shall use
the same idea here, and first construct a covering of R2.

Let {In}n∈Z and {Jl
n}n∈N−,kn≤l≤0 ∪ {J0

0} ∪ {Jl
n}n∈N+,0≤l≤kn be moderate

disjoint coverings of R such that n < n′ implies αIn < αIn′ and αJl
n
< αJl′

n′
,

and l < l′ implies αJl
n
< αJl′

n
. This gives us the diagonal part of our cov-

ering and works as a ”scaffold” for the rest of the covering, see Figure 1.
Next, let {In,i}1≤i≤mI

n
, n ≥ 1, be moderate disjoint coverings of ∪n

n′=−n In′

with the same constant A from (2.1) as the covering {In}n∈Z; furthermore,
we require that In,1 = I−n and In,mI

n
= In. Define {J0

n,j}1≤j≤mJ
n

similarly. We

introduce a covering of R2 with the help of the hollow rectangles ∪Q∈Pn Q,
Pn := Pb

n ∪Pt
n ∪Pl

n ∪Pr
n, n ≥ 1,

Pb
n =

{
In,i × Jl

−n|1 ≤ i ≤ mI
n, k−n ≤ l ≤ 0

}
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Pt
n =

{
In,i × Jl

n|1 ≤ i ≤ mI
n, 0 ≤ l ≤ kn

}
Pl

n =
{

I−n × J0
n,j|2 ≤ j ≤ mJ

n − 1
}

Pr
n =

{
In × J0

n,j|2 ≤ j ≤ mJ
n − 1

}
,

and the center rectangle P0,

P0 = {I0 × J0
0}.

It follows that ∪Q∈P Q = R2, P := ∪∞
n=0Pn and the sets in P are disjoint.

InI−n

J1
n

J0
n

J−1
−n

J0
−n

In+1I−n−1

J0
n+1

J0
−n−1

Figure 1. Covering of R2 by P. The shaded area is the sets in Pn.

With the covering P, we can now define our bivariate brushlet system
{wm,Q}m∈N2

0,Q∈P,

wm,Q(x, y) := wm1,I(x)wm2,J(y), m = (m1, m2), Q = I × J,

where wm1,I was defined in (2.3). With this notation, we have that PQ denotes
the orthogonal projection onto span({wm,Q}m∈N2

0
),

PQ f = ∑
m∈N2

0

〈 f , wm,Q〉wm,Q, f ∈ L2(R
2).

Next, we use the orthogonal projections PQ to prove that {wm,Q}m∈N2
0,Q∈P is

an orthonormal basis for L2(R
2).
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Proposition 2.2.
The system {wm,Q}m∈N2

0,Q∈P is an orthonormal basis for L2(R
2).

Proof:
To prove that the system is complete in L2(R

2), we first observe that only
adjacent rectangles in P overlap. It follows that there exists a family of open
sets {Un}n∈Z2 such that for f ∈ L2(R

2), ∑Q∈P P̂Q f (ξ), ξ ∈ Ūn, contains at most
four non-zero elements and ∪n∈Z2Ūn = R2. This can be used to show that
∑Q∈P PQ converges strongly to a bounded operator on L2(R

2), and it suffices
to prove pointwise that

(2.8) ∑
Q∈P

P̂Qs = ŝ

for functions s in a suitable dense subset of L2(R
2). Since finite linear combi-

nations of separable functions are dense in L2(R
2), we only need to verify (2.8)

for a separable function s(x, y) = g(x)h(y) with g, h ∈ L2(R).
We begin with the projections associated with P0 and P1. By using (2.7)

on the second coordinate, we sum up the projections associated with Pl
1 and

Pr
1,

∑
Q∈Pl

1

PQ = PI−1×J0
0

(2.9)

∑
Q∈Pr

1

PQ = PI1×J0
0
.(2.10)

Next, we use (2.7) on the first coordinate to sum (2.9) and (2.10) together with
the projection associated with the center rectangle I0 × J0

0 ,

∑
Q∈Pl

1∪P0∪Pr
1

PQ = P∪1
i=−1 Ii×J0

0
.

Finally, we add the projections associated with Pb
1 and Pt

1 to get

∑
Q∈∪1

n=0Pn

PQ = P∪1
i=−1 Ii×∪1

j=−1∪l Jl
j
.

By repeating the procedure N times we end up with

∑
Q∈∪N

n=0Pn

PQ = P∪N
i=−N Ii×∪N

j=−N∪l Jl
j
.

It then follows from (2.6) that as N goes to infinity,

∑
Q∈∪N

n=0Pn

P̂Qs
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converges pointwise to ŝ which proves (2.8). Hence, {wm,Q}m∈N2
0,Q∈P is com-

plete in L2(R
2).

That the system is orthonormal will follow from the fact that it consists
of carefully selected tensor products of univariate brushlets. One can check
that two distinct brushlets associated with the same hollow rectangle Pn are
orthogonal. If |n − m| ≥ 2 then two brushlets associated with Pn and Pm,
respectively, do not overlap in the frequency space. This leaves us with brush-
lets that are associated with Q ∈ Pn and P ∈ Pn+1, respectively. If we look
at the R+ ×R+ part of the frequency space, then the brushlets only overlap
if Q = In × Q2, P = In+1 × P2 or Q = Q1 × Jkn

n , P = P1 × J0
n+1 (see Figure

1). In which case we have from the univariate brushlets that the brushlets are
orthogonal. The rest of the frequency space follows similarly. �

2.3. Anisotropic α-modulation spaces

In this section we define the anisotropic α-modulation spaces and show that
our brushlet system {wm,Q}m∈N2

0,Q∈P can constitute bases for them. To define
the anisotropic α-modulation spaces, we need a nice partition of unity and this
partition is based on a covering of the frequency plane which again is based
on an anisotropic quasi-norm.

First we define an anisotropic quasi-norm | · |a,

|ξ|a := |ξ1|1/a1 + |ξ2|1/a2 , ξ = (ξ1, ξ2) ∈ R2,

where a = (a1, a2), a1, a2 > 0 and a1 + a2 = 2. We also define 〈ξ〉a := (1 +
|ξ|2a)1/2 and the balls

Ba(ξ, r) := {ζ ∈ R2 : |ξ − ζ|a < r}.
Notice that |Ba(ξ, r)| = r2λa, λa := |Ba(0, 1)|.

With such an quasi-norm | · |a, we can define anisotropic α-coverings.

Definition 2.3.
A countable setQ of measurable connected subsets Q ⊂ R2 is called a connected
admissible covering if R2 = ∪Q∈Q Q and there exists n0 < ∞ such that #{Q′ ∈
Q : Q̄ ∩ Q̄′ 6= ∅} ≤ n0 for all Q ∈ Q. Let

rQ = sup{r ∈ R : Ba(cr, r) ⊂ Q, cr ∈ R2},
RQ = inf{R ∈ R : Q ⊂ Ba(cR, R), cR ∈ R2}

denote the radius of the inscribed and circumscribed disc of Q ∈ Q, respec-
tively. A connected admissible covering Q is called an anisotropic α-covering of
R2, 0 ≤ α ≤ 1, if |Q| � 〈ξ〉2α

a for some ξ ∈ Q and all Q ∈ Q, and there exists
K < ∞ such that RQ/rQ ≤ K for all Q ∈ Q. �
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Remark 2.4.
Notice that |Q| � 〈ξ〉2α

a for some ξ ∈ Q implies the same for all ξ ∈ Q with
constants independent of ξ and Q. Also we have restricted ourself to con-
nected sets to later use the general theory of decomposition spaces to show
that anisotropic α-modulation spaces are well-defined (see [4]). However, by
generalizing [3, Theorem 3.1] one can drop the requirement that the sets need
to be connected. ◦
For technical reasons we shall require our partitions of unity to satisfy the
following.

Definition 2.5.
Given 0 ≤ α ≤ 1, letQ be an anisotropic α-covering. A corresponding bounded
admissible partition of unity (BAPU) is a family of functions {ψQ}Q∈Q ⊂
S(R2) satisfying:
• supp(ψQ) ⊆ Q
• ∑Q∈Q ψQ ≡ 1
• supQ∈Q |Q|1/p−1‖F−1ψQ‖Lp(R2) < ∞, p ∈ (0, 1].

�
It was proven in [4, Section 6] that an anisotropic α-covering with a corre-
sponding BAPU exists for every α ∈ [0, 1]. We define the multiplier ψQ(D) f :=
F−1(ψQF f ), f ∈ L2(R

2). A standard result on band-limited multipliers [51,
Proposition 1.5.1] ensures that if {ψQ}Q∈Q is a BAPU, then ψQ(D) extends to a
bounded operator on band-limited functions in Lp(R2), 0 < p ≤ ∞, uniformly
in Q ∈ Q.

We are now ready to define anisotropic α-modulation spaces.

Definition 2.6.
Given 0 ≤ α ≤ 1, letQ be an anisotropic α-covering of R2 with a corresponding
BAPU {ψQ}Q∈Q. For s ∈ R, 0 < p ≤ ∞ and 0 < q < ∞, we define the
anisotropic α-modulation space, Ms,α

p,q(R
2), as the set of distributions f ∈ S ′(R2)

satisfying

‖ f ‖Ms,α
p,q(R2) :=

(
∑

Q∈Q
〈ξQ〉qs

a ‖ψQ(D) f ‖q
Lp

)1/q
< ∞,

where ξQ ∈ Q. �
We show in the Appendix that anisotropic α-modulation spaces are indepen-
dent of which α-covering is used. Furthermore, it can be shown that Ms,α

p,q(R
2)

is a quasi-Banach space (Banach space for p, q ≥ 1), and S(R2) is dense in
Ms,α

p,q(R
2) [4, 19]. For more information on quasi-Banach spaces, we refer the

reader to [31, 32].
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Orthonormal bases for anisotropic α-modulation spaces. With the anisotropic
α-modulation spaces in place, we need to adapt the covering P such that the
associated brushlet system {wm,Q}m∈N2

0,Q∈P constitutes bases for them. The
natural choice would be to make P an α-covering, and as we shall see, this will
suffice.

First we need to make P an α-covering. We will focus on α ∈ [0, 1)
since α = 1 corresponds to a dyadic covering, and we use a polynomial type
covering. Without loss of generality we will also assume that a2 ≥ a1. Let
I0 := [−1, 1), In := [nβa1 , (n + 1)βa1), and I−n := −In, n ≥ 1, β ≥ 1. Next,
we introduce the sequence {ym}m∈N, y0 := 1, ym := ym−1 + nβa2−a2/a1 , where
n ∈ N is chosen such that nβa2 ≤ ym−1 < (n + 1)βa2 . We can then define
Jl
n := [ym−1, ym), m := n + l + ∑n−1

i=1 ki, 0 ≤ l ≤ kn, where kn ∈ N0 are chosen
such that |Jl

n| = nβa2−a2/a1 , see figure 2. Furthermore, let J0
0 := [−1, 1) and

J−l
−n := −Jl

n. To make sure that Jl
n is defined for all n ∈N, we notice that

ym − ym−1 = nβa2−a2/a1 ≤ nβa2−1 < (n + 2)βa2 − (n + 1)βa2 .

In fact, we have kn + 1 � na2/a1−1.

In × J0
n

In × J1
n

In+1 × J0
n+1

In+1 × J1
n+1

In+1 × J2
n+1

nβa1 (n + 1)βa1 (n + 2)βa1

nβa2

(n + 1)βa2

(n + 2)βa2

Figure 2. Choosing In × Jl
n such that P is an α-covering.

One can check that {In} and {Jl
n} are moderate disjoint coverings of R. To

generate P, we choose {In,i} and {J0
n,j} such that |In,i| � |In| and |J0

n,j| � |J0
n|.

As the sets in P are disjoint it follows easily that P is a connected admissible
covering of R2.
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Next, to show that P is a an anisotropic α-covering, we notice that P is
constructed such that we only need to check the requirements for In × Jl

n. We
have

|In|1/a1 � n(βa1−1)/a1 = n(βa2−a2/a1)/a2 = |Jl
n|1/a2 .

For Q = In× Jl
n it follows that rQ ≥ C|In|1/a1 and RQ ≤ |In|1/a1 + |Jl

n|1/a2 which
gives RQ/rQ ≤ K < ∞, Q ∈ P. Finally, given α ∈ [0, 1) we need to define β

such that |Q| � 〈ξ〉2α
a for some ξ ∈ Q, Q ∈ P. By choosing

(2.11) β :=
1 + a2

a1

2(1− α)
,

we get 2αβ = 2β− 1− a2/a1, and it follows that

|In × Jl
n| � nβa1−1+βa2−a2/a1 = n2β−1−a2/a1 = n2αβ � 〈ξ〉2α

a ,

where ξ is the corner of In × Jl
n closest to origo.

We now have that P is an anisotropic α-covering, and from Proposition 2.2
we know that {wm,Q}m∈N2

0,Q∈P is an orthonormal basis for L2(R
2). Next, we

show that these conditions are sufficient to prove that {wm,Q}m∈N2
0,Q∈P is an

unconditional basis for the corresponding anisotropic α-modulation space.
First we need the following definition and lemma.

Definition 2.7.
Let Q be a covering of R2 and G a subset of R2. We define

AQG := {Q ∈ Q : Q̄ ∩ Ḡ 6= ∅}
and the sets

(2.12) Q̃ :=
⋃

Q′∈AQQ

Q̄′, Q ∈ Q.

�
Notice that a connected admissible covering Q fulfills #AQQ ≤ n0, Q ∈ Q. One

can also check that if Q is an anisotropic α-covering then {Q̃}Q∈P is also an
anisotropic α-covering.

Lemma 2.8.
Given f ∈ L2(R

2), 0 ≤ α < 1 and 0 < p ≤ ∞. If {ψ̃Q}Q∈P is a partition of
unity for {Q̃}Q∈P which satisfies

ψ̃Q(x) = 1, x ∈ supp(ŵ0,Q),
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and {ψQ}Q∈P is a partition of unity for {supp(ŵ0,Q)}Q∈P, then there exists
C, C′ > 0, independent of Q ∈ P, such that(

∑
m∈N2

0

|〈 f , wm,Q〉|p
)1/p

≤ C|Q|
1
p− 1

2‖ψ̃Q(D) f ‖Lp , and

‖ψQ(D) f ‖Lp ≤ C′|Q|
1
2− 1

p ∑
Q′∈AP

Q

(
∑

m∈N2
0

|〈 f , wm,Q′〉|p
)1/p

.

When p = ∞ the sum over m ∈N2
0 is changed to sup.

Proof:
Notice that (2.4) together with (2.5) yield the following estimates,

(2.13) sup
x∈R2

∑
m∈N2

0

|wm,Q(x)|p ≤ Cp|Q|
p
2 and sup

m∈N2
0

‖wm,Q‖p
Lp
≤ C′p|Q|

p
2−1.

Take f ∈ L2(R
2) and let us first assume that p ≤ 1. We then have (see, e.g. [51,

p. 18])

∑
m∈N2

0

|〈 f , wm,Q〉|p = ∑
m∈N2

0

|〈ψ̃Q(D) f , wm,Q〉|p ≤ ∑
m∈N2

0

‖(ψ̃Q(D) f )wm,Q‖p
L1

≤ C|Q|1−p ∑
m∈N2

0

‖(ψ̃Q(D) f )wm,Q‖p
Lp
≤ C|Q|1− p

2 ‖ψ̃Q(D) f ‖p
Lp

.

By using that ψQ(D) is bounded on band-limited functions in Lp, we have the
second inequality in the lemma,

‖ψQ(D) f ‖p
Lp
≤ C′ ∑

Q′∈AP
Q

∑
m∈N2

0

|〈 f , wm,Q′〉|p‖wm,Q′‖p
Lp

≤ C′|Q| p2−1 ∑
Q′∈AP

Q

∑
m∈N2

0

|〈 f , wm,Q′〉|p.

For 1 < p < ∞ the lemma follows by using the two estimates in (2.13) with
p = 1 together with Hölder’s inequality (see e.g. [43, §2.5]). The case p = ∞
follows similar to p ≤ 1. �

By taking the lq-norm in Lemma 2.8, we can derive our main result.

Theorem 2.9.
Given 0 < p ≤ ∞, 0 < q < ∞, s ∈ R, and 0 ≤ α < 1. With the system
{wm,Q}m∈N2

0,Q∈P, we have the following characterization

‖ f ‖Ms,α
p,q(R2) �

( ∞

∑
n=0

nqβ(s+α− 2α
p ) ∑

Q∈Pn

(
∑

m∈N2
0

|〈 f , wm,Q〉|p
)q/p)1/q

,
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where β was defined in (2.11). Furthermore, {wm,Q}m∈N2
0,Q∈P constitutes an

unconditional basis for Ms,α
p,q(R

2).

Proof:
The norm characterization follows by taking the lq-norm in Lemma 2.8 and
using that |Q| = n2αβ � 〈ξQ〉2α

a , ξQ ∈ Q, Q ∈ Pn. That {wm,Q}m∈N2
0,Q∈P con-

stitutes a unconditional basis for Ms,α
p,q(R

2), follows by standard results using
the norm characterization, that Ms,α

p,q(R
2) is a quasi-Banach space in which

S(R2) is dense and that {wm,Q}m∈N2
0,Q∈P is an orthonormal basis for L2(R

2). �

Remark 2.10.
By Remark 3.21, one can use {wm,Q}m∈N2

0,Q∈P to construct a compactly

supported basis for Ms,α
p,q(R

2) with the same norm characterization as
{wm,Q}m∈N2

0,Q∈P. ◦
Theorem 2.9 also shows that {wm,Q}m∈N2

0,Q∈P induces a natural isomorphism

between Ms,α
p,q(R

2) and the sequence space ms,α
p,q defined by:

Definition 2.11.
Given 0 < p ≤ ∞, 0 < q < ∞, s ∈ R, 0 ≤ α < 1, we define the sequence space
ms,α

p,q as the set of sequences c := {cm,Q}m∈N2
0,Q∈P ⊂ C satisfying

‖c‖ms,α
p,q

:=
( ∞

∑
n=0

nqβ(s+α− 2α
p ) ∑

Q∈Pn

(
∑

m∈N2
0

|cm,Q|p
)q/p)1/q

< ∞,

where β was defined in (2.11). �
2.4. An application to nonlinear approximation

We finish this paper with applying {wm,Q}m∈N2
0,Q∈P to n-term nonlinear ap-

proximation in certain anisotropic α-modulation spaces.
First, we need some notation regarding nonlinear approximation. Let

D := {gk}k∈N be a Schauder basis in a quasi-Banach space X. We consider
the collection of all possible n-term expansions with elements from D:

Σn(D) :=
{

∑
i∈Λ

cigi

∣∣∣ci ∈ C, #Λ ≤ n
}

.

The error of the best n-term approximation to an element f ∈ X is then

σn( f ,D)X := inf
fn∈Σn(D)

‖ f − fn‖X.

Next, we introduce the approximation spaces Aγ
q (X,D) which essentially con-

sists of the elements f for which σn( f ,D)X = O(n−γ).
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Definition 2.12.
Let 0 < γ, q < ∞. We define the approximation space Aγ

q (X,D) as the set of
distributions f ∈ X satisfying

| f |Aγ
q (X,D) :=

( ∞

∑
n=1

(nγσn( f ,D)X)
q 1

n

)1/q
< ∞,

and quasi-norm it with ‖ f ‖Aγ
q (X,D) := ‖ f ‖X + | f |Aγ

q (X,D). �

As Theorem 2.9 showed that {wm,Q}m∈N2
0,Q∈P induces an isomorphism be-

tween Ms,α
p,q(R

2) and ms,α
p,q, we can apply [26] to get a complete characteriza-

tion of certain nonlinear approximation spaces associated with anisotropic α-
modulation spaces:

Theorem 2.13.
Let 0 < γ, p < ∞, 0 ≤ α < 1, s ∈ R, τ−1 := γ + p−1 and ρ := 2αγ + s. If
D is the system {wm,Q}m∈N2

0,Q∈P normalized in Ms,α
p,p(R

2), then we have the
characterization

Aγ
τ (Ms,α

p,p(R
2),D) = Mρ,α

τ,τ(R
2)

with equivalent norms. �

Remark 2.14.
By using Remark 2.10, we can also get the characterization in Theorem 2.13 for
a compactly supported basis for Ms,α

p,p(R
2). ◦

Appendix

In this appendix we show that Ms,α
p,q(R

2) only depends on the α-covering up to
equivalence of the norms. First we extend Definition 2.7.

Definition 2.15.

Let Q̃(0) := Q̄, and define inductively Q̃(k+1) := ˜̃Q(k), k ≥ 0. Finally let Q̃(k) :=
{Q̃(k)}Q∈Q. P is called almost subordinate to Q (written P ≤ Q) if there exists
k ∈N such that for all P ∈ P , we have P ⊆ Q̃(k) for some Q ∈ Q. �
Let Q and P be two anisotropic α-coverings. If Q̄ ∩ P̄ 6= ∅, Q ∈ Q, P ∈ P ,
then Definition 2.3 implies that RQ � RP. This can be used to prove that there
exists d0 < ∞ such that

#AQP ≤ d0, P ∈ P .
Lemma 2.16 below then gives that P is almost subordinate toQ. By interchang-
ing Q and P , we also have that Q is almost subordinate to P . From [4, The-
orem 1] it then follows that Ms,α

p,q(R
2) only depends on the α-covering up to

equivalence of the norms.
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Lemma 2.16.
Let Q and P be connected admissible coverings. Then P is almost subordinate
to Q if and only if there exists d0 < ∞ such that

(2.14) #AQP ≤ d0, P ∈ P .

Proof:
Let us first assume that P is almost subordinate to Q, and choose P ∈ P . Then
there exists Q ∈ Q such that P ⊆ Q̃(k). One can easily prove that Q̃(k) is a
connected admissible covering so it follows that

#AQP ≤ #AQ
Q̃(k) ≤ #AQ̃

(k)

Q̃(k) ≤ d0.

To prove the opposite way, let us assume that (2.14) is satisfied. Choose P ∈ P
and Q ∈ AQP . If AQP \{Q} = ∅, then P ⊆ Q, and we are done. If instead
AQP \{Q} 6= ∅ and Q̄ ∩ Q̄′ = ∅ for all Q′ ∈ AQP \{Q}, then

P\Q̄ =
⋃

Q′∈AQP \{Q}
Q̄′ ∩ P.

However, this proves that P\Q̄ is both open and closed on P which contradicts
that P is a connected set. It follows that Q′ ⊂ Q̃ for some Q′ ∈ AQP \{Q}.
Next, we use the same argument with Q̃, and either P ⊆ Q̃ or there exists
Q′′ ∈ AQP \{Q̃} such that Q̄′′ ∩ Q̃ 6= ∅. As AQP contains at most d0 elements, we
can repeat the argument d0 − 1 times to get

P ⊆
⋃

Q′∈AQP

Q̄′ ⊆ Q̃(d0−1)

which proves that P is almost subordinate to Q. �
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Abstract: In this paper we study a construction of compactly supported frame
expansions for decomposition spaces of Triebel-Lizorkin type and for the asso-
ciated modulation spaces. This is done by showing that finite linear combina-
tions of shifts and dilates of a single function with sufficient decay in both the
direct and the frequency space can constitute a frame for Triebel-Lizorkin type
spaces and the associated modulation spaces. First, we extend the machinery
of almost diagonal matrices to Triebel-Lizorkin type spaces and the associated
modulation spaces. Next, we prove that two function systems which are suf-
ficiently close have an almost diagonal ”change of frame coefficient” matrix.
Finally, we approximate to an arbitrary degree an already known frame for
Triebel-Lizorkin type spaces and the associated modulation spaces with a sin-
gle function with sufficient decay in both the direct and the frequency space.

3.1. Introduction

Smoothness spaces such as the Triebel-Lizorkin (T-L) and Besov spaces play
an important role in approximation theory and harmonic analysis. Often they
are characterized by (or at least imply) some decay or sparseness of an as-
sociated discrete expansion. For example, a certain sparseness of a wavelet
expansion is equivalent to smoothness measured in a Besov space [43]. A con-
sequence of this is that a sufficiently smooth function can be compressed by
thresholding the expansion coefficients of a sparse representation of the func-
tion [13, 14]. More generally in nonlinear approximation, the coefficient norm
characterization leads to better understanding of the approximation spaces (see
e.g. [27, 34]).

The T-L and Besov spaces are special cases of T-L type spaces and the
associated modulation spaces which again form a broad subclass of the de-
composition spaces defined on Rd. Decomposition spaces were introduced

19
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by Feichtinger and Gröbner [19] and Feichtinger [17], and are based on struc-
tured coverings of the frequency space Rd. Here the classical T-L and Besov
spaces correspond to dyadic coverings [51]. Many authors have used modu-
lation spaces to study pseudodifferential operators see e.g. [46] and references
therein.

In this paper we study a flexible method of generating frames for T-L
type spaces and the associated modulation spaces. Frames are redundant de-
composition systems with extra structure between the expansion coefficients
and the function being represented which make them useful for nonlinear ap-
proximation. The advantage of redundant decomposition systems is that they
provide extra flexibility compared to bases as we have more than one way of
representing the function. Recently this has lead to sparser representations of
certain natural images than with wavelets; two examples of this are curvelet
frames [48] and bandlets [38].

Frames for T-L type spaces and the associated modulation spaces have
been considered earlier: Banach frames for α-modulation spaces in [10, 23]
and Banach frames for T-L type spaces and the associated modulation spaces
in [4,5]. However, these frames were constructed using band-limited functions
which rules out compact support in direct space.

The goal of this paper is to construct frames with compact support for
inhomogeneous T-L type spaces and the associated modulation spaces. An ob-
vious modification produces frames for homogeneous spaces as well. The idea
we employ is a perturbation principle which was first introduced in [45], fur-
ther generalized in [34] and refined for frames in [35]. With this perturbation
principle, finite linear combinations of shifts and dilates of a single function
with sufficient decay in both the direct and the frequency space can be used
to construct frame expansions with a prescribed nature such as compact sup-
port. These frame expansions are constructed from the atomic decomposition
in [4,5]; thereby, generating frame expansions which share the same sparseness
properties as the already known representation.

Next, we discuss frames in more detail. Suppose that X is a quasi-Banach
space and Y the associated sequence space. We say that a countable family
of functions Ψ in the dual X∗ of X is a frame for X if there exists constants
C1, C2 > 0 such that for all f ∈ X,

C1‖ f ‖X ≤ ‖{〈 f , ψ〉}ψ∈Ψ‖Y ≤ C2‖ f ‖X,

where 〈 f , ψ〉 := ψ( f ). In the L2(R
d) case, frames have the expansion

(3.1) f = ∑
ψ∈Ψ
〈 f , S−1ψ〉ψ,

where S is the frame operator S f = ∑ψ∈Ψ〈 f , ψ〉ψ, f ∈ X. In the general case,
(3.1) is not a byproduct of the theory, but we show that the frame condition is
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the key to proving that (3.1) holds and that {S−1ψ}ψ∈Ψ is a frame. This also
proves that {ψ}ψ∈Ψ is an atomic decomposition.

As the general setup requires a great deal of notation, we give an example
of what is proven for α-modulation spaces, Ms,α

p,q(R
d).

Theorem 3.1.
Choose s ∈ R, 0 < p ≤ ∞, 0 < q < ∞, 0 ≤ α < 1, and δ > 0. Let Ms,α

p,q(R
d)

be the α-modulation spaces, r := min(1, p, q), and 1/β := α/(1− α). If g ∈
C1(Rd) ∩ L2(R

d), ĝ(0) 6= 0, satisfies

|g(κ)(x)| ≤ C(1 + |x|)−2( d
r +δ)−1, |κ| ≤ 1,

|ĝ(ξ)| ≤ C(1 + |x|)−2( d
r +δ)− 2

β(|s|+ 2d
r + 3δ

2 )−1,

then there exists K ∈ N and ψk,n(x) := eix·dk ∑K
i=1 ak,ig(ckx + bk,n,i), ak,i ∈

C, bk,n,i, dk ∈ Rd, ck ∈ R, such that {S−1ψk,n}k,n∈Zd constitutes a frame for
Ms,α

p,q(R
d) and

f = ∑
k,n∈Zd

〈 f , S−1ψk,n〉ψk,n

for all f ∈ Ms,α
p,q(R

d) with convergence in Ms,α
p,q(R

d).
�

The outline of the paper is as follows. In Section 3.2 we introduce homo-
geneous type spaces on Rd which are used to generate admissible coverings of
the frequency space. These coverings are then used to define T-L type spaces
and to construct associated frames. In Section 3.3 almost diagonal matrices
are introduced, and we derive conditions under which the ”change of frame
coefficient” matrix is almost diagonal. Next, we use the machinery of almost
diagonal matrices to construct new frames from old frames in Section 3.4 by
using function systems which are sufficiently close to the frame from Section
3.2. Finally, in Section 3.5 we show that a system which consists of finite lin-
ear combinations of shifts and dilates of a single function with sufficient decay
in both the direct and the frequency space can approximate another system
with similar decay to an arbitrary degree. Thereby, creating systems which are
sufficiently close to the frame from Section 3.2 and by using Section 3.4 consti-
tuting frames themselves which is our main result. We end the paper with a
small discussion in Section 3.6 of the possible functions which can be used to
construct the frames.

Throughout the paper we will make use of some standard notation. We
let f̂ (ξ) := F ( f )(ξ) := (2π)−d/2

∫
Rd f (x)e−ix·ξ dx, f ∈ L1(R

d), and by duality
extend it uniquely from Schwartz functions, S := S(Rd), to tempered distri-
butions, S ′ := S ′(Rd). Similarly, we use 〈 f , η〉 for the standard inner product
of two functions

∫
f η̄, and the same notation is employed for the action of a
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distribution f ∈ S ′ on η̄ ∈ S . By F � G we mean that there exists two con-
stants 0 < C1 ≤ C2 < ∞, depending only on ”allowable” parameters, such that
C1F ≤ G ≤ C2F. In general the constants C, C1 and C2 will change through-
out the paper. For the sake of convenience, we write ‖ fk‖ instead of ‖{ fk}k∈K‖
when the index set is well-known. Finally, for κ ∈Nd

0 we let |κ| := κ1 + · · ·+ κd,

and for suitably differentiable functions we define f (κ) := ∂|κ| f
∂

κ1
ξ1
···∂κd

ξd

.

3.2. Triebel-Lizorkin type spaces

In this section we give a brief description of T-L type spaces and the associated
modulation spaces. To define T-L type spaces and the associated modulation
spaces, we need a suitable resolution of the identity on Rd in the sense that we
need a countable collection of functions {ϕk} with ∑k ϕk = 1. To construct the
resolution of the identity, we use a suitable covering of the frequency space.
For a much more detailed discussion of the T-L type spaces see [5], and for the
associated modulation spaces see [4].

Homogeneous type spaces on Rd. Here we define homogeneous type spaces
on Rd which will be used later to construct a suitable covering of the frequency
space. These spaces are created with a quasi-norm induced by a one-parameter
group of dilations.
Let | · | denote the Euclidean norm on Rd induced by the inner product 〈·, ·〉.
We assume that A is a real d× d matrix with eigenvalues having positive real
parts. For t > 0 define the group of dilations δt : Rd → Rd by δt := exp(A ln t)
and let ν := trace(A). The matrix A will be kept fixed throughout the paper.
Some well-known properties of δt are (see [50]),
• δts = δtδs.
• δ1 = Id (identity on Rd).
• δtξ is jointly continuous in t and ξ, and δtξ → 0 as t→ 0+.
• |δt| := det(δt) = tν.

According to [50, Proposition 1.7] there exists a strictly positive symmetric
matrix P such that for all ξ ∈ Rd,

[δtξ]P := 〈Pδtξ, δtξ〉
1
2

is a strictly increasing function of t. This helps use introduce a quasi-norm | · |A
associated with A.

Definition 3.2.
We define the function | · |A : Rd → R+ by |0|A := 0 and for ξ ∈ Rd\{0} by
letting |ξ|A be the unique solution t to the equation [δ1/tξ]P = 1. �
It can be shown that:
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• | · |A ∈ C∞(Rd\{0}).
• There exists a constant CA > 0 such that

(3.2) |ξ + ζ|A ≤ CA(|ξ|A + |ζ|A), ξ, ζ ∈ Rd.

• |δtξ|A = t|ξ|A.
• There exists constants C1, C2, α1, α2 > 0 such that

(3.3) C1 min(|ξ|α1
A , |ξ|α2

A ) ≤ |ξ| ≤ C2 max(|ξ|α1
A , |ξ|α2

A ), ξ ∈ Rd.

Example 3.3.
For A = diag(β1, β2, . . . , βd), βi > 0, we have δt = diag(tβ1 , tβ2 , . . . , tβd), and
one can verify that

|ξ|A �
d

∑
j=1
|ξ j|

1
β j , ξ ∈ Rd.

?

Finally, we define the balls BA(ξ, r) := {ζ ∈ Rd : |ξ − ζ|A < r}. It can be
verified that |BA(ξ, r)| = rνωA

d where ωA
d := |BA(0, 1)| so (Rd, | · |A, dξ) is a

space of homogeneous type with homogeneous dimension ν.
The transpose of A with respect to 〈·, ·〉, B := A>, will be useful for

generating coverings of the direct space Rd. Since the eigenvalues of B have
positive real parts we can repeat the above construction for the group δ>t :=
exp(B ln t), t > 0. We let | · |B denote the quasi-norm induced by δ>t , BB(x, r)
the balls associated with | · |B, and CB the equivalent of CA in (3.2). Fur-
thermore, we have that the constants α1 and α2 in (3.3) also hold with B
and trace(B) = ν. Notice that if gm(x) := mνg(δ>m x), g ∈ L2(R

d), then
ĝm(ξ) = ĝ(δ 1

m
ξ). We use the convention that δt acts on the frequency space

while δ>t acts on the direct space.
The following adaption of the Fefferman-Stein maximal inequality to the

quasi-norm | · |B will be essential for showing the boundedness of almost di-
agonal matrices. For 0 < r < ∞, the parabolic maximal function of Hardy-
Littlewood type is defined by

(3.4) MB
r u(x) := sup

t>0

(
1

ωB
d · tν

∫
BB(x,t)

|u(y)|r dy
)1

r
, u ∈ Lr,loc(R

d),

where ωB
d := |BB(0, 1)|. There exists C > 0 so that the following vector-valued

Fefferman-Stein maximal inequality holds for r < q ≤ ∞ and r < p < ∞
(see [49, Chapters I&II]),

(3.5)
∥∥∥( ∑

k∈Zd

|MB
r fk|q

)1/q∥∥∥
Lp
≤ C

∥∥∥( ∑
k∈Zd

| fk|q
)1/q∥∥∥

Lp
.

If q = ∞, then the inner lq-norm is replaced by the l∞-norm.
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Construction of frames. Here we first introduce admissible coverings and how
to generate them (see e.g. [17]). These coverings are then used to construct
a suitable resolution of unity and next define the T-L type spaces and the
associated modulation spaces. Finally, we construct a frame which will be used
in the following sections to generate compactly supported frame expansions.

Definition 3.4.
A set Q := {Qk}k∈Zd of measurable subsets Qk ⊂ Rd is called an admissible
covering if Rd = ∪k∈Zd Qk and there exists n0 < ∞ such that #{j ∈ Zd :
Qk ∩Qj 6= ∅} ≤ n0 for all k ∈ Zd. �
To generate an admissible covering we will use a suitable collection of | · |A-
balls, where the radius of a given ball is a so-called moderate function of its
center.

Definition 3.5.
A function h : Rd → [ε0, ∞) for ε0 > 0 is called moderate if there exists
constants ρ0, R0 > 0 such that |ξ − ζ|A ≤ ρ0h(ξ) implies R−1

0 ≤ h(ζ)/h(ξ) ≤
R0. �
Example 3.6.
Let 0 ≤ α ≤ 1. Then

h(ξ) := (1 + |ξ|A)α

is moderate. ?

With a moderate function h it is then possible to construct an admissible cov-
ering by using balls (see [17, Lemma 4.7] and [5, Lemma 5]):

Lemma 3.7.
Given a moderate function h with constants ρ0, R0 > 0, there exists a countable
admissible covering C := {BA(ξk, ρh(ξk))}k∈Zd for ρ < ρ0/2, and there exists a
constant 0 < ρ′ < ρ such that the sets in C are pairwise disjoint.

�

By using that BA(ξk, ρ′h(ξk)) are disjoint it can be shown that BA(ξk, 2ρh(ξk))
also give an admissible covering. Notice that the covering C from Lemma 3.7 is
generated by a family of invertible affine transformations applied to BA(0, ρ)
in the sense that

BA(ξk, ρh(ξk)) = TkBA(0, ρ), Tk := δh(ξk)
·+ξk.

We are now in a position to generate a suitable resolution of unity which ad-
ditionally due to technical reasons has to satisfy the following conditions.

Definition 3.8.
Let C := {TkBA(0, ρ)}k∈Zd be an admissible covering of Rd from Lemma 3.7.
A corresponding bounded admissible partition of unity (BAPU) is a family of
functions {ϕk}k∈Zd ⊂ S satisfying:
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• supp(ϕk) ⊆ TkBA(0, 2ρ), k ∈ Zd.
• ∑k∈Zd ϕk(ξ) = 1, ξ ∈ Rd.
• supk∈Zd ‖ϕk(Tk·)‖Hs

2
< ∞, s > 0,

where ‖ f ‖Hs
2

:=
(∫
|F−1 f (x)|2(1 + |x|B)2s dx

)1/2. �

A standard trick for generating a BAPU for C is to pick Φ ∈ C∞(Rd) non-
negative with supp(Φ) ⊆ BA(0, 2ρ) and Φ(ξ) = 1 for ξ ∈ BA(0, ρ). One can
then show that

ϕk(ξ) :=
Φ(T−1

k ξ)

∑j∈Zd Φ(T−1
j ξ)

defines a BAPU for C. For later use, we also introduce

(3.6) φk(ξ) :=
Φ(T−1

k ξ)√
∑j∈Zd Φ(T−1

j ξ)2
,

which in a sense defines a square root of the BAPU.
With a BAPU in hand we can now define the T-L type spaces and the

associated modulation spaces.

Definition 3.9.
Let h be a moderate function satisfying

(3.7) C1(1 + |ξ|A)γ1 ≤ h(ξ) ≤ C2(1 + |ξ|A)γ2 , ξ ∈ Rd,

for some 0 < γ1 ≤ γ2 < ∞. Let C be an admissible covering of Rd from Lemma
3.7, {ϕk}k∈Zd a corresponding BAPU and ϕk(D) f := F−1(ϕkF f ).
• For s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞, we define Fs

p,q(h) as the set of
distributions f ∈ S ′ satisfying

‖ f ‖Fs
p,q(h) :=

∥∥∥( ∑
k∈Zd

|h(ξk)
s ϕk(D) f |q

)1/q∥∥∥
Lp

< ∞.

• For s ∈ R, 0 < p ≤ ∞, and 0 < q < ∞, we define Ms
p,q(h) as the set of

distributions f ∈ S ′ satisfying

‖ f ‖Ms
p,q(h) :=

(
∑

k∈Zd

∥∥h(ξk)
s ϕk(D) f

∥∥q
Lp

)1/q
< ∞.

If q = ∞, then the lq-norm is replaced by the l∞-norm. �
It can be shown that Fs

p,q(h) depends only on h up to equivalence of the norms
(see [5, Proposition 5.3]), so the T-L type spaces are well-defined. Similar for
the modulation spaces. Furthermore, they both constitute quasi-Banach spaces,
and for p, q < ∞, S is dense in both (see [5, Proposition 5.2]).

Next, we construct a frame for the T-L type spaces and the associated
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modulation spaces. Consider the system {φk}k∈Zd from (3.6) which in a sense
is a square root of a BAPU. Let Ka be a cube in Rd which is aligned with the
coordinate axes and has side-length 2a satisfying BA(0, 2ρ) ⊆ Ka. For the sake
of convenience, put

(3.8) tk := h(ξk).

We then define

ek,n(ξ) := (2a)−
d
2 t−

ν
2

k χKa(T
−1
k ξ)e−i π

a n·T−1
k ξ , n, k ∈ Zd,

and

(3.9) η̂k,n := φkek,n, n, k ∈ Zd.

One can verify that {ηk,n}k,n∈Zd is a tight frame for L2(R
d). By defining

µ̂k(ξ) := φk(Tkξ), we get an explicit representation of ηk,n in the direct space

(3.10) ηk,n(x) = (2a)−
d
2 t

ν
2
k µk(δ

>
tk

x− π

a
n)eix·ξk ,

and for κ ∈Nd
0, N ∈N there exists C > 0 such that

(3.11) |µk(x)(κ)| ≤ C(1 + |x|B)−N

independent of k ∈ Zd. To show that {ηk,n}k,n∈Zd constitutes a frame for Fs
p,q(h)

and Ms
p,q(h), we need associated sequence spaces. The following point sets will

be useful for that,

(3.12) Q(k, n) =
{

y ∈ Rd : δ>tk
y− π

a
n ∈ BB(0, 1)

}
.

It can easily be verified that there exists n0 < ∞ such that uniformly in x and k,
∑n∈Zd χQ(k,n)(x) ≤ n0. With this property in hand, we can define the associated
sequence spaces.

Definition 3.10.
Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. We then define the sequence space
f s
p,q(h) as the set of sequences {sk,n}k,n∈Zd ⊂ C satisfying

‖sk,n‖ f s
p,q(h) :=

∥∥∥( ∑
k,n∈Zd

(
ts+ ν

2
k |sk,n|

)q
χQ(k,n)

)1/q∥∥∥
Lp

< ∞.

Let s ∈ R, 0 < p ≤ ∞, and 0 < q < ∞. We then define the sequence space
ms

p,q(h) as the set of sequences {sk,n}k,n∈Zd ⊂ C satisfying

‖sk,n‖ms
p,q(h) :=

∥∥∥t
s+ ν

2− ν
p

k

(
∑

n∈Zd

|sk,n|p
)1/p∥∥∥

lq
< ∞.

If p = ∞ or q = ∞, then the lp-norm or lq-norm, respectively, is replaced by the
l∞-norm. �
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Finally, we have that {ηk,n}k,n∈Zd (3.9) constitutes a frame for Fs
p,q(h) and

Ms
p,q(h) (see [4, Theorem 2] and [5, Theorem 6.4]):

Proposition 3.11.
Assume that s ∈ R, 0 < p, q ≤ ∞, p < ∞ for Fs

p,q(h), and q < ∞ for Ms
p,q(h).

For any finite sequence {sk,n}k,n∈Zd ⊂ C, we have∥∥∥ ∑
k,n∈Zd

sk,nηk,n

∥∥∥
Fs

p,q(h)
≤ C‖sk,n‖ f s

p,q(h).

Furthermore, {ηk,n}k,n∈Zd is a frame for Fs
p,q(h),

‖ f ‖Fs
p,q(h) � ‖〈 f , ηk,n〉‖ f s

p,q(h), f ∈ Fs
p,q(h).

Similar results hold for Ms
p,q(h) and ms

p,q(h).
�

3.3. Almost diagonal matrices

To later generate new frame expansions for Fs
p,q(h) and Ms

p,q(h) from the al-
ready known frames, we introduce an associated notion of almost diagonal
matrices in this section. The machinery of almost diagonal matrices was used
in [24,25] for the Triebel-Lizorkin and Besov spaces respectively. The goal is to
find a new definition for almost diagonal matrices for Fs

p,q(h) and Ms
p,q(h), and

then show that they are bounded on the associated sequence spaces f s
p,q(h) and

ms
p,q(h), and closed under composition.

From here on we shall add some further restrictions to the moderate func-
tion h used to generate admissible coverings:

(3.13)
{

There exists β, R1, ρ1 > 0 such that h1+β is moderate and
|ξ − ζ|A ≤ ah(ξ) for a ≥ ρ1 implies h(ζ) ≤ R1ah(ξ).

An abundance of functions h satisfying these conditions can be generated by
using functions s : R+ → R+ which satisfy s(2b) ≤ Cs(b), b ∈ R+, and

(1 + b)γ ≤ s(b) ≤ (1 + b)
1

1+β

for some γ > 0. We assign h = s(| · |A) and use that s is weakly sub-additive to
get the results (see [17]). Notice that s(b) = (1 + b)α, 0 ≤ α < 1, gives Example
3.6 and fulfills the mentioned conditions.

To motivate the definition of almost diagonal matrices, we let {ηk,n}k,n∈Zd

be the frame defined in (3.10). By using (3.11) it can be verified that for fixed
N, M, L > 0, ηk,n has the following decay in the direct and the frequency space,

|ηk,n(x)| ≤ Ct
ν
2
k (1 + tk|xk,n − x|B)−2N,(3.14)

|η̂k,n(ξ)| ≤ Ct−
ν
2

k (1 + t−1
k |ξk − ξ|A)−2M−2 L

β ,(3.15)
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where

(3.16) xk,n = δ>t−1
k

π

a
n, k, n ∈ Zd

and tk was defined in (3.8). Let {ψk,n}k,n∈Zd ⊂ L2(R
d) be a system with similar

decay,

|ψj,m(x)| ≤ Ct
ν
2
j (1 + tj|xj,m − x|B)−2N,(3.17)

|ψ̂j,m(ξ)| ≤ Ct−
ν
2

j (1 + t−1
j |ξ j − ξ|A)−2M−2 L

β .(3.18)

By examining 〈ηk,n, ψj,m〉 we then get the following lemma.

Lemma 3.12.
Choose N, M, L > 0 such that 2N > ν and 2M+ 2 L

β > ν. If {ηk,n}k,n∈Zd satisfies
(3.14) and (3.15), and {ψj,m}j,m∈Zd satisfies (3.17) and (3.18), we have

|〈ηk,n, ψj,m〉| ≤C min
(

tk
tj

,
tj

tk

) ν
2+L

(1 + max(tk, tj)
−1|ξk − ξ j|A)−M

× (1 + min(tk, tj)|xk,n − xj,m|B)−N.

Proof:
From Lemma 3.23 we have

|〈ηk,n, ψj,m〉| ≤ C min
(

tk
tj

,
tj

tk

) ν
2

(1 + min(tk, tj)|xk,n − xj,m|B)−2N.(3.19)

Using Lemma 3.23 for 〈η̂k,n, ψ̂j,m〉 gives

(3.20) |〈η̂k,n, ψ̂j,m〉| ≤ C min
(

tk
tj

,
tj

tk

) ν
2

(1 + max(tk, tj)
−1|ξk − ξ j|A)−2M−2 L

β .

Next we raise the power of the first term in (3.20) at the expense of the second
term. Without loss of generality assume that tk ≤ tj. We first consider the case

|ξk − ξ j|A ≤ ρ0t1+β
j , and use that h1+β is moderate (3.13) to get

1
1 + t−1

j |ξk − ξ j|A
≤ 1 ≤ R

β
1+β

0

(
tk
tj

)β

.

In the other case, |ξk − ξ j|A > ρ0t1+β
j , and it follows by using tk ≥ ε0 that

1
1 + t−1

j |ξk − ξ j|A
≤ 1

ρ0ε
β
0

(
tk
tj

)β

.
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Hence we have

|〈η̂k,n, ψ̂j,m〉| ≤ C min
(

tk
tj

,
tj

tk

) ν
2+2L

(1 + max(tk, tj)
−1|ξk − ξ j|A)−2M.(3.21)

The lemma follows by combining (3.19) and (3.21), and using

|〈ηk,n, ψj,m〉| = |〈ηk,n, ψj,m〉|
1
2 |〈η̂k,n, ψ̂j,m〉|

1
2 .

�

We are now ready to define almost diagonal matrices for the T-L type spaces
and show that they act boundedly on the T-L type spaces. A similar result also
follows for the associated modulation spaces.

Definition 3.13.
Assume that s ∈ R, 0 < p, q ≤ ∞, p < ∞ for f s

p,q(h), and q < ∞ for ms
p,q(h). Let

r := min(1, p, q). A matrix A := {a(j,m)(k,n)}j,m,k,n∈Zd is called almost diagonal
on f s

p,q(h) and ms
p,q(h) if there exists C, δ > 0 such that

|a(j,m)(k,n)| ≤C
(

tk
tj

)s+ ν
2

min
((

tj

tk

) ν
r +

δ
2

,
(

tk
tj

) δ
2
)

cδ
jk

× (1 + min(tk, tj)|xk,n − xj,m|B)−
ν
r−δ,

where

cδ
jk := min

((
tj

tk

) ν
r +δ

,
(

tk
tj

)δ)
(1 + max(tk, tj)

−1|ξk − ξ j|A)−
ν
r−δ

with tk defined in (3.8) and xk,n in (3.16). We denote the set of almost diagonal
matrices on f s

p,q(h) and ms
p,q(h) by ads

p,q(h). �
The fact that almost diagonal matrices are bounded will be essential for gener-
ating compactly supported frame expansions.

Proposition 3.14.
Suppose that A ∈ ads

p,q(h). Then A is bounded on f s
p,q(h) and ms

p,q(h).

Proof:
We only prove the result for f s

p,q(h) when q < ∞ as q = ∞ follows in a similar
way with lq replaced by l∞, and the proof for ms

p,q(h) is similar to the one for
f s
p,q(h). Let s := {sk,n}k,n∈Zd ∈ f s

p,q(h) and assume for now that p, q > 1. We
write A := A0 + A1 such that

(A0s)(j,m)= ∑
k:tk≥tj

∑
n∈Zd

a(j,m)(k,n)sk,n and (A1s)(j,m)= ∑
k:tk<tj

∑
n∈Zd

a(j,m)(k,n)sk,n.
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By using Lemma 3.24 we have

|(A0s)(j,m)| ≤ C ∑
k:tk≥tj

(
tk
tj

)s+ ν
2− ν

r− δ
2

cδ
jk ∑

n∈Zd

|sk,n|(
1 + tj

∣∣xk,n − xj,m
∣∣
B

) ν
r +δ

≤ C ∑
k:tk≥tj

(
tk
tj

)s+ ν
2− δ

2

cδ
jk MB

r

(
∑

n∈Zd

|sk,n|χQ(k,n)

)
(x),

for x ∈ Q(j, m). It then follows by Hölder’s inequality and Lemma 3.25 that

∑
m∈Zd

|(A0s)(j,m)χQ(j,m)|q ≤ C
(

∑
k:tk≥tj

(
tk
tj

)s+ ν
2

cδ
jk MB

r

(
∑

n∈Zd

|sk,n|χQ(k,n)

))q

≤ C ∑
k:tk≥tj

cδ
jk

((
tk
tj

)s+ ν
2

MB
r

(
∑

n∈Zd

|sk,n|χQ(k,n)

))q(
∑

i:ti≥tj

cδ
ji

)q−1

≤ C ∑
k:tk≥tj

cδ
jk

((
tk
tj

)s+ ν
2

MB
r

(
∑

n∈Zd

|sk,n|χQ(k,n)

))q

.

We obtain

‖A0s‖ f s
p,q(h) ≤ C

∥∥∥∥( ∑
j∈Zd

∑
k:tk≥tj

cδ
jk

(
ts+ ν

2
k MB

r

(
∑

n∈Zd

|sk,n|χQ(k,n)

))q)1/q∥∥∥∥
Lp

≤ C
∥∥∥∥( ∑

k∈Zd

(
ts+ ν

2
k MB

r

(
∑

n∈Zd

|sk,n|χQ(k,n)

))q)1/q∥∥∥∥
Lp

.

Using the vector-valued Fefferman-Stein maximal inequality (3.5), we arrive at

‖A0s‖ f s
p,q(h) ≤ C

∥∥∥( ∑
k,n∈Zd

(ts+ ν
2

k |sk,n|)qχQ(k,n)

)1/q∥∥∥
Lp

= C ‖s‖ f s
p,q(h) .

The corresponding estimate for A1 follows from the same type of arguments
resulting in both A0 and A1 being bounded on f s

p,q(h) and thereby A. For the
cases q = 1 and p ≤ 1, q > 1 choose 0 < r̃ < r and 0 < δ̃ < δ such that
ν/r + δ/2 ≥ ν/r̃ + δ̃/2 and repeat the argument with r := r̃, and δ := δ̃. The
case q < 1 follows from first observing that

Ã := {ã(j,m)(k,n)} :=
{
|a(j,m)(k,n)|q

(
tk
tj

) ν
2−

νq
2 }
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is almost diagonal on f sq
p
q ,1
(h). Furthermore, if v := {vk,n} := {|sk,n|qt

νq
2 − ν

2
k } we

have

‖v‖
1
q

f sq
p
q ,1

(h)
=
∥∥∥( ∑

k,n∈Zd

(
ts+ ν

2
k |sk,n|

)q
χQ(k,n)

)1/q∥∥∥
Lp

= ‖s‖ f s
p,q(h).

Before we can put these two observations into use we need that

|(As)(j,m)|q ≤∑
k

∑
n∈Zd

|a(j,m)(k,n)|q|sk,n|q = t
ν
2−

νq
2

j ∑
k

∑
n∈Zd

ã(j,m)(k,n)vk,n.

We then have

‖As‖ f s
p,q(h) ≤ ‖Ãv‖

1
q

f sq
p
q ,1

(h)
≤ C‖v‖

1
q

f sq
p
q ,1

(h)
= C‖s‖ f s

p,q(h).

�

The following shows that almost diagonal matrices are closed under composi-
tion. First, we simplify the notation by defining

ws,δ
(j,m)(k,n) :=

(
tk
tj

)s+ ν
2

min
((

tj

tk

) ν
r +

δ
2

,
(

tk
tj

) δ
2
)

cδ
jk

× (1 + min(tk, tj)|xk,n − xj,m|B)−
ν
r−δ,

where we have used the notation from Definition 3.13.

Proposition 3.15.
Let s ∈ R, 0 < r ≤ 1 and δ > 0. We then have

∑
i,l∈Zd

ws,δ
(j,m)(i,l)w

s,δ
(i,l)(k,n) ≤ Cws,δ/2

(j,m)(k,n),

Proof:

Notice that the factors ts+ ν
2

i in the first terms of ws,δ
(j,m)(i,l) and ws,δ

(i,l)(k,n) can-

cel leaving (tk/tj)
s+ ν

2 which can be moved outside the sums. Therefore we
only need to deal with the last three terms in ws,δ

(j,m)(i,l) and ws,δ
(i,l)(k,n). First we

consider the case tj ≤ tk and split the sum over i into three parts,

∑
i,l∈Zd

ws,δ
(j,m)(i,l)w

s,δ
(i,l)(k,n) =

(
tk
tj

)s+ ν
2
 ∑

i:ti>tk

+ ∑
i:tj≤ti≤tk

+ ∑
i:ti<tj

 ∑
l∈Zd

. . .

=

(
tk
tj

)s+ ν
2

(I + II + III) .
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For I, by using Lemma 3.26 and Lemma 3.27, we have

I = ∑
i:ti>tk

∑
l∈Zd

(
tj

ti

) ν
r +

δ
2
(

tk
ti

) δ
2

cδ
jic

δ
ik

× 1
(1 + tj|xj,m − xi,l|B)

ν
r +δ

1
(1 + tk|xk,n − xi,l|B)

ν
r +δ

≤ C
(1 + tj|xj,m − xk,n|B)

ν
r +δ ∑

i:ti>tk

(
tj

ti

) ν
r +

δ
2
(

tk
ti

) δ
2−ν

cδ
jic

δ
ik

≤C
(

tj

tk

) ν
r +

δ
2

cδ/2
jk

1
(1 + tj|xj,m − xk,n|B)

ν
r +δ

.

Similarly for II we get

II = ∑
i:tj≤ti≤tk

∑
l∈Zd

(
tj

ti

) ν
r +

δ
2
(

ti

tk

) ν
r +

δ
2

cδ
jic

δ
ki

× 1
(1 + tj|xj,m − xi,l|B)

ν
r +δ

1
(1 + ti|xk,n − xi,l|B)

ν
r +δ

≤C
(

tj

tk

) ν
r +

δ
2

cδ/2
jk

1
(1 + tj|xj,m − xk,n|)

ν
r +δ

.

For III we get

III = ∑
i:ti<tj

∑
l∈Zd

(
ti

tj

) δ
2 ( ti

tk

) ν
r +

δ
2

cδ
jic

δ
ik

× 1
(1 + ti|xj,m − xi,l|B)

ν
r +δ

1
(1 + ti|xk,n − xi,l|B)

ν
r +δ

≤ ∑
i:ti<tj

C

(
ti

tj

) δ
2 ( ti

tk

) ν
r +

δ
2

cδ
jic

δ
ik

1
(1 + ti|xj,m − xk,n|B)

ν
r +δ

≤ C
(1 + tj|xj,m − xk,n|B)

ν
r +δ ∑

i:ti<tj

C

(
ti

tj

) δ
2− ν

r−δ (
ti

tk

) ν
r +

δ
2

cδ
jic

δ
ik

≤C
(

tj

tk

) ν
r +

δ
2

cδ/2
jk

1
(1 + tj|xj,m − xk,n|B)

ν
r +δ

.
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In the case tj > tk, we observe that ws,δ
(j,m)(k,n) = w2ν/r−s−ν,δ

(k,n)(j,m)
so applying the first

case to w2ν/r−s−ν,δ
(k,n)(j,m)

proves the proposition for tj > tk.
�

It follows from Proposition 3.15 that for δ1, δ2 > 0 we have

(3.22) ∑
i,l∈Zd

ws,δ1
(j,m)(i,l)w

s,δ2
(i,l)(k,n) ≤ Cws,min(δ1,δ2)/2

(j,m)(k,n)

which proves that ads
p,q(h) is closed under composition.

3.4. New frames from old frames

In this section we study a system {ψk,n}k,n∈Zd which is a small perturbation of
the frame {ηk,n}k,n∈Zd constructed in (3.10). The goal is first to show that a sys-
tem {ψk,n}k,n∈Zd which is close enough to {ηk,n}k,n∈Zd is also a frame for Fs

p,q(h)
and Ms

p,q(h). Next, to get a frame expansion, we show that {S−1ψk,n}k,n∈Zd is
also a frame, where S is the frame operator

S f = ∑
k,n∈Zd

〈 f , ψk,n〉ψk,n.

The results are inspired by [35] where perturbations of frames were studied in
classical Triebel-Lizorkin and Besov spaces.
Let {ψk,n}k,n∈Zd ⊂ L2(R

d) be a system that is close to {ηk,n}k,n∈Zd in the sense
that there exists ε, δ > 0 such that

|ηk,n(x)− ψk,n(x)| ≤ εt
ν
2
k (1 + tk|xk,n − x|B)−2( ν

r +δ),(3.23)

|η̂k,n(ξ)− ψ̂k,n(ξ)| ≤ εt−
ν
2

k (1 + t−1
k |ξk − ξ|A)−2( ν

r +δ)− 2
β(|s|+ 2ν

r + 3δ
2 ),(3.24)

where we have used the notation from Definition 3.13. Motivated by the fact
that {ηk,n}k,n∈Zd is a tight frame for L2(R

d), we formally define 〈 f , ψj,m〉 as

〈 f , ψj,m〉 := ∑
k,n∈Zd

〈ηk,n, ψj,m〉〈 f , ηk,n〉, f ∈ Fs
p,q(h).

It follows from Lemma 3.12 and Proposition 3.14 that 〈·, ψj,m〉 is a bounded
linear functional on Fs

p,q(h); in fact we have

∑
k,n∈Zd

|〈ηk,n, ψj,m〉||〈 f , ηk,n〉| ≤
∥∥∥{ ∑

k,n∈Zd

|〈ηk,n, ψj,m〉||〈 f , ηk,n〉|
}

j,m∈Zd

∥∥∥
f s
p,q(h)

≤ C‖〈 f , ηk,n〉‖ f s
p,q(h) ≤ C‖ f ‖Fs

p,q(h).(3.25)

Furthermore, {ψk,n}k,n∈Zd is a norming family for Fs
p,q(h) as it satisfies

‖〈 f , ψk,n〉‖ f s
p,q(h) ≤ C‖ f ‖Fs

p,q(h). This can be used to show that S is a bounded
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operator on Fs
p,q(h), and for small enough ε, this will be the key to showing

that {ψk,n}k,n∈Zd is a frame for Fs
p,q(h).

Theorem 3.16.
There exists ε0, C1, C2 > 0 such that if {ψk,n}k,n∈Zd satisfies (3.23) and (3.24) for
some 0 < ε ≤ ε0 and f ∈ Fs

p,q(h), then we have

C1‖ f ‖Fs
p,q(h) ≤ ‖〈 f , ψk,n〉‖ f s

p,q(h) ≤ C2‖ f ‖Fs
p,q(h).

Similarly for Ms
p,q(h) and ms

p,q(h).

Proof:
The proof will only be given for Fs

p,q(h) as it follows the same way for
Ms

p,q(h). That {ψk,n}k,n∈Zd is a norming family gives the upper bound,
thus we only need to establish the lower bound. For this we notice that
{ε−1(ηk,n − ψk,n)}k,n∈Zd is also a norming family so we have

‖〈 f , ηk,n − ψk,n〉‖ f s
p,q(h) ≤ Cε‖ f ‖Fs

p,q(h).

It then follows that

‖ f ‖Fs
p,q(h) ≤ C‖〈 f , ηk,n〉‖ f s

p,q(h)

≤ C(‖〈 f , ψk,n〉‖ f s
p,q(h) + ‖〈 f , ηk,n − ψk,n〉‖ f s

p,q(h))

≤ C(‖〈 f , ψk,n〉‖ f s
p,q(h) + ε‖ f ‖Fs

p,q(h)).

By choosing ε < 1/C we get the lower bound.
�

As one might guess from Theorem 3.16, the boundedness of the matrix
{〈ηk,n, S−1ψj,m〉}k,n,j,m∈Zd on f s

p,q(h) is the key to showing that {S−1ψk,n}k,n∈Zd

is also a frame.

Proposition 3.17.
There exists ε0 > 0 such that if {ψk,n}k,n∈Zd is a frame for F0

22(h) = L2(R
d) and

satisfies (3.23) and (3.24) for some 0 < ε ≤ ε0, then {〈ηk,n, S−1ψj,m〉}k,n,j,m∈Zd is
bounded on f s

p,q(h) and ms
p,q(h).

Proof:
The proof will only be given for f s

p,q(h) as it follows similarly for ms
p,q(h).

The fact that {ψk,n}k,n∈Zd is a frame for L2(R
d) ensures that S−1 is a bounded

operator on L2(R
d). We first show that S−1 is bounded on Fs

p,q(h). This will
follow from showing that

(3.26) ‖(I − S) f ‖Fs
p,q(h) ≤ Cε‖ f ‖Fs

p,q(h), f ∈ Fs
p,q(h),
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choosing ε small enough and using the Neumann series. Assume for the mo-
ment that D := {d(j,m)(k,n)} := {〈(I − S)ηk,n, ηj,m〉} satisfies

(3.27) ‖Ds‖ f s
p,q(h) ≤ Cε‖s‖ f s

p,q(h)

By using that {ψk,n}k,n∈Zd is a frame for L2(R
d), we have that S is self-adjoint

which leads to

‖(I − S) f ‖Fs
p,q(h) ≤ C‖〈(I − S) f , ηj,m〉‖ f s

p,q(h) = C‖D{〈 f , ηk,n〉}k,n∈Zd‖ f s
p,q(h)

≤ Cε‖〈 f , ηj,m〉‖ f s
p,q(h) ≤ Cε‖ f ‖Fs

p,q(h).

So to show (3.26) it suffices to prove (3.27). Note that

〈(I − S)ηk,n, ηj,m〉 = ∑
i,l∈Zd

〈ηk,n, ηi,l〉〈ηi,l, ηj,m〉 − ∑
i,l∈Zd

〈ηk,n, ψi,l〉〈ψi,l, ηj,m〉

= ∑
i,l∈Zd

〈ηk,n, ηi,l〉〈ηi,l − ψi,l, ηj,m〉+ ∑
i,l∈Zd

〈ηk,n, ηi,l − ψi,l〉〈ψi,l, ηj,m〉.

By setting

D1 := {d1(j,m)(i,l)} := {〈ηi,l − ψi,l, ηj,m〉},
D2 := {d2(i,l)(k,n)} := {〈ηk,n, ηi,l〉},
D3 := {d3(j,m)(i,l)} := {〈ψi,l, ηj,m〉},
D4 := {d4(i,l)(k,n)} := {〈ηk,n, ηi,l − ψi,l〉},

we have the decomposition

D = D1D2 +D3D4.

Since {ψk,n}k,n∈Zd satisfies (3.23) and (3.24), we have from Lemma 3.12 that
ε−1D1,D2,D3, ε−1D4 ∈ ads

p,q(h). Next, we use that ads
p,q(h) is closed under

composition (3.22), and by Proposition 3.14,

‖Ds‖ f s
p,q(h) ≤ Cε‖s‖ f s

p,q(h).

Consequently, (3.26) holds, and for sufficiently small ε, the operator S−1

is bounded on Fs
p,q(h). Finally, let s := {sk,n}k,n∈Zd ∈ f s

p,q(h) and g :=
∑k,n∈Zd sk,nηk,n. By using Proposition 3.11 we have that g ∈ Fs

p,q(h), and as
{ψk,n}k,n∈Zd is a frame for L2(R

d), we have that S−1 is self-adjoint which gives

∑
k,n∈Zd

〈ηk,n, S−1ψj,m〉sk,n = ∑
k,n∈Zd

〈S−1ηk,n, ψj,m〉sk,n = 〈S−1g, ψj,m〉.

If we combine this with {ψk,n}k,n∈Zd being a norming family for Fs
p,q(h), see

(3.25), we get∥∥∥ ∑
k,n∈Zd

〈ηk,n, S−1ψj,m〉sk,n

∥∥∥
f s
p,q(h)

= ‖〈S−1g, ψj,m〉‖ f s
p,q(h) ≤ C‖S−1g‖Fs

p,q(h)
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≤ C‖g‖Fs
p,q(h) ≤ C‖s‖ f s

p,q(h)

which proves that {〈ηk,n, S−1ψj,m〉}k,n,j,m∈Zd is bounded on f s
p,q(h).

�

That {S−1ψk,n}k,n∈Zd is a frame for Fs
p,q(h) and Ms

p,q(h) now follows as a conse-
quence of {〈ηk,n, S−1ψj,m〉}k,n,j,m∈Zd being bounded on f s

p,q(h) and ms
p,q(h). We

state the following results without proofs as they follow directly in the same
way as in the classical Triebel-Lizorkin and Besov spaces. The proofs can be
found in [35]. First, we have the frame expansion.

Lemma 3.18.
Assume that {ψk,n}k,n∈Zd is a frame for L2(R

d) and satisfies

|ψk,n(x)| ≤ Ct
ν
2
k (1 + tk|xk,n − x|B)−2( ν

r +δ),(3.28)

|ψ̂k,n(ξ)| ≤ Ct−
ν
2

k (1 + t−1
k |ξk − ξ|A)−2( ν

r +δ)− 2
β(|s|+ 2ν

r + 3δ
2 ),(3.29)

where we have used the notation from Definition 3.13. If
{〈ηk,n, S−1ψj,m〉}k,n,j,m∈Zd is bounded on f s

p,q(h), then for f ∈ Fs
p,q(h) we have

f = ∑
k,n∈Zd

〈 f , S−1ψk,n〉ψk,n

in the sense of S ′. Similarly for Ms
p,q(h) and ms

p,q(h).
�

Moreover, we have that {S−1ψk,n}k,n∈Zd is a frame.

Theorem 3.19.
Assume that {ψk,n}k,n∈Zd is a frame for L2(R

d) and satisfies (3.28) and (3.29).
Then {S−1ψk,n}k,n∈Zd is a frame for Fs

p,q(h) if and only if {〈ηk,n, S−1ψj,m〉}k,n,j,m∈Zd

is bounded on f s
p,q(h). Similarly for Ms

p,q(h) and ms
p,q(h).

�

It is worth noting that Proposition 3.17, Lemma 3.18 and Theorem 3.19 imply
that {ψk,n}k,n∈Zd is an atomic decomposition if it satisfies (3.23) and (3.24) with
sufficiently small ε and p, q ≥ 1. Furthermore, we also have a frame expansion
with {S−1ψk,n}k,n∈Zd .

Lemma 3.20.
Assume that {ψk,n}k,n∈Zd is a frame for L2(R

d) and satisfies (3.28) and (3.29).
If the transpose of {〈ηk,n, S−1ψj,m〉}k,n,j,m∈Zd is bounded on f s

p,q(h), then for
f ∈ Fs

p,q(h) we have
f = ∑

k,n∈Zd

〈 f , ψk,n〉S−1ψk,n
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in the sense of S ′. Similarly for Ms
p,q(h) and ms

p,q(h).
�

Remark 3.21.
If we have that {ηk,n}k,n∈Zd is normalized in L2(R

d), then {ηk,n}k,n∈Zd is
an orthonormal basis for L2(R

d) as a consequence of {ηk,n}k,n∈Zd being a
tight frame for L2(R

d) with constant 1. With arguments similar to the ones
used in the proof of Proposition 3.17, it can be shown that there exists ε0
such that if {ψk,n}k,n∈Zd satisfies (3.23) and (3.24) for some ε ≤ ε0, then
{〈ηk,n, ψj,m〉}k,n,j,m∈Zd has a bounded inverse on f s

p,q(h) and ms
p,q(h), and con-

sequently {ψk,n}k,n∈Zd is an unconditional basis for Fs
p,q(h) and Ms

p,q(h).
For example, by using the unconditional basis for anisotropic α-

modulation spaces constructed in Chapter 2, one can generate a compactly
supported basis for the anisotropic α-modulation spaces. ◦

3.5. Construction of new frames

In this section we generate compactly supported frame expansions for Fs
p,q(h)

and Ms
p,q(h). More precisely, we show that finite linear combinations,

{ψk,n}k,n∈Zd , of shifts and dilates of a function g with sufficient decay in
both the direct and the frequency space can fulfill (3.23) and (3.24). As a
consequence of the previous section, {ψk,n}k,n∈Zd will then constitute frames
for Fs

p,q(h) and Ms
p,q(h). In particular, by using a generating function g with

compact support one can construct a compactly supported frame expansion.
This is, as far as the authors are aware, a new approach. Earlier work, as
in [34], used finite linear combinations of a function with sufficient smooth-
ness and decay in the direct space and vanishing moments.

It suffices to prove that there exists a system of functions {τk}k∈Zd ⊂
L2(R

d) which is close enough to {µk}k∈Zd (3.10):

|µk(x)− τk(x)| ≤ ε(1 + |x|B)−2( ν
r +δ),

|µ̂k(ξ)− τ̂k(ξ)| ≤ ε(1 + |ξ|A)−2( ν
r +δ)− 2

β(|s|+ 2ν
r + 3δ

2 ).

The system

{ψk,n}k,n∈Zd :=
{

tν/2
k τk

(
δ>tk

x− π

a
n
)

eix·ξk
}

k,n∈Zd

will then satisfy (3.23) and (3.24). First, we take g ∈ C1(Rd)∩ L2(R
d), ĝ(0) 6= 0,

which for fixed N, M > 0 satisfies

|g(κ)(x)| ≤ C(1 + |x|B)−N−α1 , |κ| ≤ 1,(3.30)

|ĝ(ξ)| ≤ C(1 + |ξ|A)−M−α2 .(3.31)
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Next for m ≥ 1, we define gm(x) := Cgmνg(δ>m x), where Cg := ĝ(0)−1. It then
follows that

|g(κ)m (x)| ≤ Cmν+α2|κ|(1 + m|x|B)−N−α1 , |κ| ≤ 1,∫
R

gm(x)dx = 1,(3.32)

|ĝm(ξ)| ≤ CmM+α2(1 + |ξ|A)−M−α2 .

To construct τk we also need a set of finite linear combinations,

ΘK,m = {ψ : ψ(·) =
K

∑
i=1

aigm(·+ bi), ai ∈ C, bi ∈ Rd}.

We are now ready to show that any function with sufficient decay in the direct
and the frequency space can be approximated to an arbitrary degree by a finite
linear combination of another function with similar decay.

Proposition 3.22.
Let N′ > N > ν and M′ > M > ν. If g ∈ C1(Rd) ∩ L2(R

d), ĝ(0) 6= 0, fulfills
(3.30) and (3.31) and µk ∈ C1(Rd) ∩ L2(R

d) fulfills

|µk(x)| ≤ C(1 + |x|B)−N′ ,

|µ(κ)
k (x)| ≤ C, |κ| ≤ 1,

|µ̂k(ξ)| ≤ C(1 + |ξ|A)−M′ ,

then for any ε > 0 there exists K, m ≥ 1 and τk ∈ ΘK,m such that

|µk(x)− τk(x)| ≤ ε(1 + |x|B)−N,(3.33)

|µ̂k(ξ)− τ̂k(ξ)| ≤ ε(1 + |ξ|A)−M.(3.34)

Proof:
We construct the approximation of µk in the direct space in three steps. First,
by a convolution operator ωm = µk ∗ gm, then, by θq,m which is the integral in
ωm taken over a region Q, and finally, by a discretization over dyadic cubes
τl,q,m. From (3.32) we have

(3.35) µk(x)−ωm(x) =
∫

Rd
(µk(x)− µk(x− y))gm(y)dy.

Define U := mλ/2N, where λ := min(α1, N′ − N). For |x|B ≤ U, we use the
mean value theorem to get

|µk(x)− µk(x− y)| ≤ C min(1, |y|).
Inserting this in (3.35) we have

|µk(x)−ωm(x)| ≤ C
∫

Rd

min(1, |y|α1
B )mν

(1 + m|y|B)N+α1
dy
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≤ Cm−α1 ≤ Cm−λ/2

UN ≤ Cm−λ/2

(1 + |x|B)N .(3.36)

For |x|B > U, we split the integral over Ω := {y : |y|B ≤ |x|B/2CB} and Ωc. If
y ∈ Ω, then |x− y|B ≥ |x|B/2CB, and we have∫

Ω
|µk(x)− µk(x− y)||gm(y)|dy ≤ C(1 + |x|B)−N′

≤ C
(1 + U)λ(1 + |x|B)N ≤

Cm−λ2/2N

(1 + |x|B)N .(3.37)

Integrating over Ωc with |x|B > U gives∫
Ωc
|µk(x)− µk(x−y)||gm(y)|dy

≤ C
(1 + |x|B)N′ +

∫
Ωc

Cmν

(1 + |x− y|B)N′(1 + m|y|B)N+α1
dy

≤ C
(1 + |x|B)N′ +

Cm−λ

(1 + |x|B)N ≤
C(m−λ2/2N + m−λ)

(1 + |x|B)N .(3.38)

So by choosing m sufficiently large in (3.36)-(3.38), we get

(3.39) |µk(x)−ωm(x)| ≤ ε

3
(1 + |x|B)−N.

For the next step we fix m and choose q ∈ N. Let Hl,q denote the smallest set
of dyadic cubes aligned with the coordinate axes and sidelength 2−l, l ∈ N,
that covers BB(0, 2q). We then approximate ωm with θq,m defined as

θq,m(·) =
∫

Q
µk(y)gm(· − y)dy,

where Q = ∪I∈Hl,q I. In which case we have

ωm(x)− θq,m(x) =
∫

Qc
µk(y)gm(x− y)dy,

and it follows that

|ωm(x)− θq,m(x)| ≤
∫
|y|B≥2q

Cmν

(1 + |y|B)N′(1 + m|x− y|B)N+α1
dy := L.

We first estimate the integral for |x|B ≤ 2q−1/CB which gives |y|B ≥ |x|B and
|x− y|B ≥ 2q−1/CB. Hence we obtain

L ≤ C
(1 + |x|B)N′

∫
|u|≥ 2q−1

CB

mν

(1 + m|u|B)N+α1
du ≤ Cm−λ2−λq

(1 + |x|B)N′ .(3.40)
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For |x|B > 2q−1/CB, we split the integral over Ω := {y : |y|B ≥ 2q} ∩ {y :
|y|B ≤ |x|B/2CB} and Ω′ := {y : |y|B ≥ 2q} ∩ {y : |y|B > |x|B/2CB}. If y ∈ Ω,
then |x− y|B ≥ |x|B/2CB, and we get∫

Ω

mν

(1 + |y|B)N′(1 + m|x− y|B)N+α1
dy ≤ Cmν

(1 + m|x|B)N+α1

∫
|y|B≥2q

1
(1 + |y|B)N′ dy

≤ Cm−λ2−λq

(1 + |x|B)N .(3.41)

Similar for Ω′ we have∫
Ω′

mν

(1 + |y|B)N′(1 + m|x− y|B)N+α1
dy ≤ C

(1 + |x|B)N′

∫
Rd

mν

(1 + m|x− y|B)N+α1
dy

≤ C
(1 + |x|B)N′ ≤

C2−λq

(1 + |x|B)N .(3.42)

By choosing q sufficiently large in (3.40)-(3.42), we obtain

(3.43) |ωm(x)− θq,m(x)| ≤ ε

3
(1 + |x|B)−N.

For the final step, we fix q and approximate θq,m by a discretization τl,q,m,

τl,q,m(·) = ∑
I∈Hl,q

|I|µk(xI)gm(· − xI),

where xI is the center of the dyadic cube I. Now choose q′ > q such that
Q ⊂ BB(0, 2q′), and note that τl,q,m ∈ ΘK,m, K < 2dl+νq′ . We introduce F(·) :=
µk(·)gm(x− ·) which gives

|θq,m(x)− τl,q,m(x)| ≤ ∑
I∈Hl,q

∫
I
|µk(y)gm(x− y)− µk(xI)gm(x− xI)|dy

≤ ∑
I∈Hl,q

∫
I
|F(y)− F(xI)|dy.

By using the mean value theorem, we then get

|θq,m(x)− τl,q,m(x)| ≤ ∑
I∈Hl,q

∫
I
|y− xI | max

z∈l(xI ,y)
|κ|≤1

|F(κ)(z)|dy

≤ C2νq′−l max
z∈BB(0,2q′ )
|κ|≤1

|g(κ)m (x− z)|,(3.44)
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where l(xI , y) is the line-segment between xI and y. If |x|B ≤ 2q′+1CB and
|κ| ≤ 1, then we have

(3.45) |g(κ)m (x− z)| ≤ Cmν+α2 ≤ Cmν+α22q′N

(1 + |x|B)N .

For |x|B > 2q′+1CB and z ∈ BB(0, 2q′), we have |x− z|B ≥ |x|B/2CB, and hence
for |κ| ≤ 1, it follows that

(3.46) |g(κ)m (x− z)| ≤ Cmν+α2

(1 + m|x|B)N+α1
≤ Cmα2−α1

(1 + |x|B)N+α1
.

By choosing l sufficiently large, and combining (3.44)-(3.46), we have

(3.47) |θq,m(x)− τl,q,m(x)| ≤ ε

3
(1 + |x|B)−N.

Finally by combining (3.39), (3.43) and (3.47), we get

(3.48) |µk(x)− τl,q,m(x)| ≤ ε(1 + |x|B)−N.

To approximate µk in the frequency space we use three steps similar to the
approximation in the direct space. Note that τl,q,m still fulfills (3.48) if we
choose l, q, m even larger. First, we use ω̂m to approximate µ̂k in which case we
have

|µ̂k(ξ)− ω̂m(ξ)| = |µ̂k(ξ)(1− Cg ĝ(δ 1
m

ξ))|

≤ C(1 + |ξ|A)−M(1 + |ξ|A)M−M′ |1− Cg ĝ(δ 1
m

ξ)|.

By choosing a > 0 such that C(1 + a)M−M′ |1− Cg ĝ(δ 1
m

ξ)| ≤ ε/3 and m such
that C|1− Cg ĝ(δ 1

m
ξ)| ≤ ε/3 for |ξ|A < a, we get

(3.49) |µ̂k(ξ)− ω̂m(ξ)| ≤
ε

3
(1 + |ξ|A)−M.

Next, we fix m, choose q and limit the Fourier integral of µk to Q from the
approximation in the direct space,

θ′q,m(ξ) = ĝm(ξ)
∫

Q
µk(x)eix·ξ dx.

This gives

|ω̂m(ξ)− θ′q,m(ξ)| ≤ |ĝm(ξ)|
∫
|x|B≥2q

|µk(x)eix·ξ |dx ≤ CmM2−λq

(1 + |ξ|A)M .(3.50)

In the last step, we fix q and approximate θ′q,m by τ̂l,q,m. We introduce G(x) :=
µk(x)eix·ξ and reuse q′ from the approximation in the direct space to get

|θ′q,m(ξ)− τ̂l,q,m(ξ)| ≤ |ĝm(ξ)|
∣∣∣ ∫

Q
µk(x)eix·ξ dx− ∑

I∈Hl,q

|I|µk(xI)eixI ·ξ
∣∣∣
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≤ |ĝm(ξ)| ∑
I∈Hl,q

∫
I
|G(x)− G(xI)|dx

≤ CmM+α22νq′−l

(1 + |ξ|A)M+α2
max
x∈Rd

|κ|≤1

|G(κ)(x)| ≤ CmM+α22νq′−l

(1 + |ξ|A)M .(3.51)

By combining (3.49)-(3.51) with sufficiently large l, q, m, we get

|µ̂k(ξ)− τ̂l,q,m(ξ)| ≤ ε(1 + |ξ|A)−M.

It follows that by choosing l, q, m large enough, τl,q,m fulfills both (3.33) and
(3.34). Furthermore, we have τl,q,m ∈ ΘK,m, K < 2dl+νq′ .

�

3.6. Discussion and further examples

In this paper we studied a flexible method of generating frames for T-L type
spaces and the associated modulation spaces. With Proposition 3.17, Lemma
3.18 and Theorem 3.19, we proved that a system, which is sufficiently close
to a frame for certain types of T-L type spaces and the associated modulation
spaces, also constitutes a frame for these spaces. Furthermore, with Proposi-
tion 3.22 we construct such a system from finite linear combinations of shifts
and dilates of a single function with sufficient decay in both the direct and the
frequency space.

Examples of functions with sufficient decay in both the direct and the fre-
quency space are e−|·|B and (1 + | · |B)−N with N sufficiently large. By using
(3.3), we can simplify this even further and use the exponential function e−|·|

2

or the rational functions (1 + | · |2)−N/2α1 . An example with compact support
can be constructed by using a spline with compact support. Furthermore, as
the system is constructed using finite linear combinations of splines, we get a
system consisting of modulated compactly supported splines.

As a last remark, we draw attention to the fact that the methods used in
Section 3.4 and 3.5 do not depend on the assumptions made on the function h
in the beginning of Section 3.3. These assumptions are only needed to prove
that the ”change of frame coefficient” matrices are bounded and closed under
compositions. For the anisotropic α-modulation spaces, spaces with 0 ≤ α < 1
satisfy the assumptions in Section 3.3, but the case α = 1 does not. To deal
with the case α = 1, we mention that one can use a definition of almost di-
agonal matrices closer to the one for the classical Triebel-Lizorkin and Besov
spaces which does not require these assumptions. These almost diagonal ma-
trices were introduced in [6] and proven to be bounded. Furthermore, they
can be used to show that the ”change of frame coefficient” matrices are also
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bounded and closed under compositions in the case α = 1. It follows that the
methods in Sections 3.4 and 3.5 can be used to construct frames for a variety of
decomposition spaces given the right definition of almost diagonal matrices.

Appendix

In this appendix we prove five technical lemmas which we used in Section
3.3. We use the same notation as in Sections 3.2 and 3.3. First, we used the
following lemma to prove Lemma 3.12.

Lemma 3.23.
Let N > ν and suppose {ηk,n}k,n∈Zd satisfies (3.14), and {ψk,n}k,nZd satisfies
(3.17). We then have

|〈ηk,n, ψj,m〉| ≤ C min
(

tk
tj

,
tj

tk

) ν
2

(1 + min(tk, tj)|xk,n − xj,m|B)−N,(3.52)

with tk defined in (3.8) and xk,n in (3.16).

Proof:
Without loss of generality assume that tk ≤ tj. First we consider the case
tk|xk,m − xj,m|B ≤ 1. It then follows that

(3.53)
t

ν
2
k

(1 + tk|xk,n − x|B)N ≤ t
ν
2
k ≤

2Nt
ν
2
k

(1 + tk|xk,n − xj,m|B)N ,

and we have

|〈ηk,n, ψj,m〉| ≤
Ct

ν
2
k

(1 + tk|xk,n − xj,m|B)N

∫
Rd

t
ν
2
j

(1 + tj|xj,m − x|B)N dx

=
Ct

ν
2
k

(1 + tk|xk,n − xj,m|B)N

∫
Rd

t−
ν
2

j

(1 + |x|B)N dx

≤ C
(

tk
tj

) ν
2

(1 + tk|xk,n − xj,m|B)−N(3.54)

since the space associated with | · |B has homogeneous dimension ν. For the
other case, tk|xk,m − xj,m|B > 1, we consider two additional cases. In the first
case, we assume that |xk,n − x|B ≥ 1

2CB
|xk,n − xj,m|B. Similar to above we then

get (3.53) which leads to (3.54). In the last case, we have |xk,n− x|B < 1
2CB
|xk,n−

xj,m|B which gives |xj,m − x|B > 1
2CB
|xk,n − xj,m|B. It then follows that

1
(1 + tj|xj,m − x|B)N ≤

C1

(1 + tj|xk,n − xj,m|B)N ≤
C2(tk/tj)

N

(1 + tk|xk,n − xj,m|B)N ,
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and we have

|〈ηk,n, ψj,m〉| ≤
C(tk/tj)

ν
2

(1 + tk|xk,n − xj,m|B)N

∫
Rd

tν
k

(1 + tk|xk,n − x|B)N dx

≤ C
(

tk
tj

) ν
2

(1 + tk|xk,n − xj,m|B)−N.

�

The following estimate in the direct space was used to prove Proposition 3.14.

Lemma 3.24.
Suppose that 0 < r ≤ 1 and N > ν/r. Then for any sequence {sk,n}k,n∈Zd ⊂ C,
and for x ∈ Q(j, m), we have

∑
n∈Zd

|sk,n|
(1 + min(tk, tj)|xk,n − xj,m|B)N ≤C max

(
tk
tj

, 1

) ν
r

×MB
r

(
∑

n∈Zd

|sk,n|χQ(k,n)

)
(x),(3.55)

with tk defined in (3.8), xk,n in (3.16), Q(j, m) in (3.12) and MB
r in (3.4).

Proof:
Without loss of generality we may assume xj,m = 0 and begin by considering
the case tk ≤ tj. We define the sets,

A0 = {n ∈ Zd : tk|xk,n|B ≤ 1},
Ai = {n ∈ Zd : 2i−1 < tk|xk,n|B ≤ 2i}, i ≥ 1.

Choose x ∈ Q(j, m). There exists C1 > 0 such that ∪n∈Ai Q(k, n) ⊂
BB(x, C12it−1

k ), and by using
∫

χQ(k,n) = ωB
d t−ν

k , we get

∑
n∈Ai

|sk,n|
(1 + tk|xk,n|)N ≤ C2−iN ∑

n∈Ai

|sk,n| ≤ C2−iN
(

∑
n∈Ai

|sk,n|r
) 1

r

≤ C2−iN
(

tν
k

ωB
d

∫
BB(x,C12it−1

k )
∑

n∈Ai

|sk,n|rχQ(k,n)

) 1
r

.

Hence by the definition of the maximal operator (3.4) we have

∑
n∈Ai

|sk,n|
(1 + tk|xk,n|)N ≤ C2i( ν

r−N)

(
tν
k

2iνωB
d

∫
BB(x,C12it−1

k )
∑

n∈Ai

|sk,n|rχQ(k,n)

) 1
r

≤ C2i( ν
r−N)MB

r

(
∑

n∈Zd

|sk,n|χQ(k,n)

)
(x)
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by using ∑n∈Zd χQ(k,n) ≤ n0. Summing over i ≥ 0 and using N > ν/r gives
(3.55). For the second case, tk > tj, we redefine the sets,

A0 = {n ∈ Zd : tj|xk,n|B ≤ 1}
Ai = {n ∈ Zd : 2i−1 < tj|xk,n|B ≤ 2i}, i ≥ 1.

As before we have

∑
n∈Ai

|sk,n|
(1 + tj|xk,n|)M ≤C2−iN

(
tν
k

ωB
d

∫
BB(x,C12it−1

j )
∑

n∈Ai

|sk,n|rχQ(k,n)

) 1
r

≤C2i( ν
r−N)

(
tk
tj

) ν
r

MB
r

(
∑

n∈Zd

|sk,n|χQ(k,n)

)
(x).

Summing over i ≥ 0 again gives (3.55).
�

To prove Proposition 3.14 we also used the following estimate in the frequency
space.

Lemma 3.25.
Let δ > 0. There exists C > 0 independent of k such that

∑
j∈Zd

min
((

tj

tk

)ν

,
(

tk
tj

)δ)
(1 + max(tk, tj)

−1|ξ j − ξk|A)−ν−δ ≤ C,

with tk defined in (3.8) and ξk in Lemma 3.7.

Proof:
We begin by dividing the indices into sets,

A0 = {j ∈ Zd : |ξ j − ξk|A ≤ ρ1tk}
Ai = {j ∈ Zd : 2i−1ρ1tk < |ξ j − ξk|A ≤ 2iρ1tk}, i ≥ 1,

with ρ1 defined in (3.13). For j ∈ Ai, we have BA(ξ j, tj) ⊂ BA(ξk, C12itk) which
follows from using (3.13):

|ξk − ξ|A ≤ CA(|ξk − ξ j|A + |ξ j − ξ|A) ≤CA(2iρ1tk + tj)

≤CA(2iρ1tk + R12itk)

=C12itk,
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for ξ ∈ BA(ξ j, tj). Next, we divide the sum even further by first looking at
tk ≥ tj, and by using that the covering {BA(ξ j, tj)}j is admissible, we get

∑
j∈Ai

j:tj≤tk

(
tj

tk

)ν

(1 + t−1
k |ξ j − ξk|A)−ν−δ

≤C2−i(ν+δ) ∑
j∈Ai

j:tj≤tk

(
tj

tk

)ν 1
ωA

d tν
j

∫
BA(ξ j,tj)

χBA(ξ j,tj)
(ξ)dξ

≤C2−i(ν+δ) 1
ωA

d tν
k

∫
BA(ξk,C12itk)

∑
j∈Ai

j:tj≤tk

χBA(ξ j,tj)
(ξ)dξ

≤C2−iδ.

Summing over i gives the lemma for the tk ≥ tj part of the sum. In a similar
way, the result for tk < tj follows by using

∑
j∈Ai

j:tj>tk

(
tk
tj

)δ

(1 + t−1
j |ξ j − ξk|A)−ν−δ ≤ ∑

j∈Ai
j:tj>tk

(
tj

tk

)ν

(1 + t−1
k |ξ j − ξk|A)−ν−δ.

�

The following estimate in the direct space was used to prove Proposition 3.15.

Lemma 3.26.
Assume that tj ≤ tk, N > ν and

g := ∑
l∈Zd

1
(1 + min(tj, ti)|xj,m − xi,l|B)N

1
(1 + min(tk, ti)|xk,n − xi,l|B)N ,

with tk defined in (3.8) and xk,n in (3.16). We then have

g ≤ C
(1 + min(tj, ti)|xj,m − xk,n|B)N max

(
ti

tk
, 1
)ν

.

Proof:
Note that from Lemma 3.24 with r = 1 and sk,n = 1, it follows that

∑
l∈Zd

1
(1 + min(tk, ti)|xk,n − xi,l|B)N ≤ C max

(
ti

tk
, 1
)ν

.(3.56)
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We first consider the case min(tj, ti)|xj,m − xk,n|B ≤ 1 which gives

g ≤ ∑
l∈Zd

1
(1 + min(tk, ti)|xk,n − xi,l|B)N

≤ C max
(

ti

tk
, 1
)ν

≤ C
(1 + min(tj, ti)|xj,m − xk,n|B)N max

(
ti

tk
, 1
)ν

.

For the case min(tj, ti)|xj,m − xk,n|B > 1 we split the sum into

A =
{

l ∈ Zd : |xj,m − xi,l|B < 1
2CB
|xj,m − xk,n|B

}
and its complement. For Ac we have

1
(1 + min(tj, ti)|xj,m − xi,l|B)N ≤

(2CB)
N

(1 + min(tj, ti)|xj,m − xk,n|B)N ,

and by using (3.56), the desired estimate follows. For l ∈ A, we notice that
|xk,n − xi,l|B > 1

2CB
|xj,m − xk,n|B and get

(1 + min(tk, ti)|xk,n − xi,l|B)−N

≤
(

1 + 1
2CB

min(tj, ti)|xj,m − xk,n|B
min(tk, ti)

min(tj, ti)

)−N

≤ C
(1 + min(tj, ti)|xj,m − xk,n|B)N

(
min(tj, ti)

min(tk, ti)

)ν

.(3.57)

Next, by using (3.56) with j instead of k we get

∑
l∈Zd

1
(1 + min(tj, ti)|xj,m − xi,l|B)N ≤ C max

(
ti

tj
, 1

)ν

.(3.58)

The lemma follows by combining (3.57) and (3.58).
�

Finally, we also used the following estimate in the frequency space to prove
Proposition 3.15.

Lemma 3.27.
Let δ > 0 and 0 < r ≤ 1. We then have

h := ∑
i∈Zd

cδ
jic

δ
ik ≤ Ccδ/2

jk ,
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where

cδ
jk := min

((
tj

tk

) ν
r +δ

,
(

tk
tj

)δ)
(1 + max(tk, tj)

−1|ξk − ξ j|A)−
ν
r−δ,

with tk defined in (3.8) and ξk in Lemma 3.7.

Proof:
Without loss of generality assume that r = 1. We will begin with assuming
that tj ≤ tk. Furthermore, if t−1

k |ξ j − ξk|A ≤ ρ0 we have tk/tj ≤ R0 by using
that h is moderate (see Definition 3.5). Combining this with Lemma 3.25 gives

h ≤ ∑
i∈Zd

cδ
ik ≤ C1 ≤ C2cδ

jk.

In the other case, t−1
k |ξ j − ξk|A > ρ0, we split the sum into

A = {i : |ξ j − ξi|A < 1
2CA
|ξ j − ξk|A}

and its complement. For i ∈ Ac and ti ≥ tk ≥ tj we have

h ≤C ∑
i∈Ac

i:ti≥tk

(
tj

ti

)ν+δ

(1 + t−1
i |ξ j − ξk|A)−ν−δcδ

ik

≤C
(

tj

tk

)ν+δ

(1 + t−1
k |ξ j − ξk|A)−ν−δ ∑

i∈Ac

i:ti≥tk

cδ
ik

≤Ccδ
jk

and similarly for tk > ti ≥ tj. For tk ≥ tj > ti we get

h ≤C ∑
i∈Ac

i:ti<tj

(
ti

tj

)δ

(1 + t−1
j |ξ j − ξk|A)−ν−δcδ

ik

≤C
(

tj

tk

)ν+δ

(1 + t−1
k |ξ j − ξk|A)−ν−δ ∑

i∈Ac

i:ti<tj

cδ
ik

≤Ccδ
jk.

Finally, when i ∈ A we have |ξi − ξk|A > 1
2CA
|ξ j − ξk|A which for ti ≥ tk ≥ tj

gives

h ≤C ∑
i∈A

i:ti≥tk

(
tk
ti

)δ( tj

ti

)ν+δ

(1 + t−1
i |ξ j − ξi|A)−ν− δ

2 (1 + t−1
i |ξ j − ξk|A)−ν− δ

2
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≤C
(

tj

tk

)ν+ δ
2

(1 + t−1
k |ξ j − ξk|A)−ν− δ

2 ∑
i∈A

i:ti≥tk

(
tj

ti

) δ
2

(1 + t−1
i |ξ j − ξi|A)−ν− δ

2

≤Ccδ/2
jk .

For tk > ti ≥ tj and tk ≥ tj > ti the argument can be repeated in a similar
way which proves the lemma when tk ≥ tj. For tk < tj, it suffices to use that
cδ

jk = (tj/tk)
νcδ

kj, and we get

h = ∑
i∈Zd

(
tj

ti

)ν

cδ
ij

(
ti

tk

)ν

cδ
ki ≤ C

(
tj

tk

)ν

cδ/2
kj = cδ/2

jk .

�
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Abstract: In this paper we study a flexible method for constructing curvelet
type frames. These curvelet type systems have the same sparse representation
properties as curvelets for appropriate classes of smooth functions, and the
flexibility of the method allows us to give a constructive description of how
to construct curvelet type systems with a prescribed nature such as compact
support in the direct space. The method consists of using the machinery of
almost diagonal matrices to show that a system of curvelet molecules which is
sufficiently close to curvelets constitutes a frame for curvelet type spaces. Such
a system of curvelet molecules can then be constructed using finite linear com-
binations of shifts and dilates of a single function with sufficient smoothness
and decay.

4.1. Introduction

Second generation curvelets were introduced by Candès and Donoho, who
also proved that curvelets give an essentially optimal sparse representation of
images (functions) that are C2 except for discontinuities along piecewise C2-
curves [9]. It follows that efficient compression of such images can be achieved
by thresholding their curvelet expansions. Curvelets form a multiscale system
with effective support that follows a parabolic scaling relation width ≈ length2.
Moreover, they also provide an essentially optimal sparse representation of
Fourier integral operators [7] and an optimal sparse and well organized so-
lution operator for a wide class of linear hyperbolic differential equations [8].
However, curvelets are band-limited, and contrary to wavelets it is an open
question whether compactly supported curvelet type systems exist.

In this paper we study a flexible method for generating curvelet type
systems with the same sparse representation properties as curvelets (when
sparseness is measured in curvelet type sequence spaces). The method uses a
perturbation principle which was first introduced in [45], further generalized
in [34] and refined for frames in [35]. We give a constructive description of

51
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how to construct curvelet type systems consisting of finite linear combinations
of shifts and dilates of a single function with sufficient smoothness and decay.
This gives the flexibility to construct curvelet type systems with a prescribed
nature (see Section 4.6) such as compact support in the direct space. For the
sake of convenience the construction will only be done in R2, but it can easily
be extended to Rd. The main results can be found in Sections 4.4 and 4.5.

The curvelet type sequence spaces we use are associated with curvelet
type spaces Gs

p,q which were introduced in [4]. Here Gs
p,q was constructed by

applying a curvelet type splitting of the frequency space to a general construc-
tion of decomposition spaces; thereby obtaining a natural family of smooth-
ness spaces for which curvelets constitute frames (see Section 4.2). Originally,
this construction of decomposition spaces based on structured coverings of
the frequency space was introduced by Feichtinger and Gröbner [19] and Fe-
ichtinger [17]. For example, the classical Triebel-Lizorkin and Besov spaces
correspond to dyadic coverings of the frequency space [51].

The outline of the paper is as follows. In Section 4.2 we define second
generation curvelets and curvelet type spaces. Furthermore, we introduce
curvelet molecules which will be the building blocks for our compactly sup-
ported curvelet type frames. Next, in Section 4.3 we use the properties of
curvelet molecules to show that the ”change of frame coefficient” matrix is
almost diagonal if the curvelet molecules have sufficient regularity. With the
machinery of almost diagonal matrices, we can then in Section 4.4 show that
curvelet molecules which are close enough to curvelets constitute frames for
the curvelet type spaces. Finally, in Section 4.5 we give a constructive descrip-
tion of how to construct these curvelet molecules from finite linear combina-
tions of shifts and dilates of a single function with sufficient smoothness and
decay. We conclude the paper with a short discussion in Section 4.6 of the
possible functions which can used to construct the curvelet molecules.

4.2. Second generation curvelets

We begin this section with a brief definition of curvelets and curvelet molecules
which will later be used to construct curvelet type frames. Furthermore, we
define the curvelet type spaces for which curvelets constitute frames. For a
much more detailed discussion of the curvelet construction, we refer the reader
to [8, 9], and for decomposition spaces, of which the curvelet type spaces are a
subclass, we refer to [4, 19].

Let ν be an even C∞(R) window that is supported on [−π, π] such that its
2π-periodic extension obeys

(4.1) |ν(θ)|2 + |ν(θ − π)|2 = 1, θ ∈ [0, 2π).
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Define νj,l(θ) := ν(2bj/2cθ−πl) for j ≥ 2 and l = 0, 1, . . . , 2bj/2c− 1. Next, with
the angular window in place, let w ∈ C∞

c (R) obey

(4.2) |w0(t)|2 + ∑
j≥2
|w(2−jt)|2 = 1, t ∈ R,

with w0 ∈ C∞
c (R) supported in a neighborhood of the origin. We then define

(4.3) φj,l(ξ) := w(2−j|ξ|)(νj,l(θ) + νj,l(θ + π)), ξ = |ξ|(cos θ, sin θ) ∈ R2.

Notice that the support of w(2−j|ξ|)νj,0(θ) is contained in a rectangle Rj =
I1j × I2j given by

I1j := {ξ1, tj ≤ ξ1 ≤ tj + Lj}, I2j := {ξ2, 2|ξ2| ≤ lj},
where tj is determined uniquely for a minimal Lj, Lj := δ1π2j and lj :=
δ22π2j/2 (δ1 depends weakly on j, see [9, Section 2.2]). With Ĩ1j := ±I1j and
R̃j = Ĩ1j × I2j the system

ej,k(ξ) :=
2−3j/4

2π
√

δ1δ2
ei (k1+1/2)2−jξ1

δ1 ei k22−j/2ξ2
δ2 , k ∈ Z2,

is an orthonormal basis for L2(R̃j).
We let f̂ (ξ) := F ( f )(ξ) := (2π)−1

∫
R2 f (x)e−ix·ξ dx, f ∈ L1(R

2), and by duality
extend it uniquely from S(R2) to S ′(R2). Finally, we define

(4.4) η̂µ(ξ) := φj,l(ξ)ej,k(R>θµ
ξ), µ = (j, l, k),

where Rθµ
is rotation by the angle θµ := π2−bj/2cl, and as coarse-scale elements

we define η̂1,0,k(ξ) := δ−1
0 φ1,0(ξ)eik·ξ/δ0 , where φ1,0(ξ) := ω0(|ξ|) and δ0 > 0 is

sufficiently small. The system {ηµ}µ∈J×Z2 is called curvelets, J := {(j, l)|j ≥
1, l = 0, 1, . . . , 2bj/2c− 1}. It can be shown that curvelets constitute a tight frame
for L2(R

2) (see [9, Section 2.2]).
To later construct curvelet type frames, we need a system of functions

which share the essential properties of curvelets. As we shall see, curvelet
molecules, which were introduced in [8] and used there to study hyperbolic
differential equations, have all the properties we need. For κ ∈ N2

0, we define

|κ| := κ1 + κ2, and for suitably differentiable functions we define f (κ) := ∂|κ| f
∂

κ1
ξ1

∂
κ2
ξ2

.

Definition 4.1.
A family of functions {ψµ}µ∈J×Z2 is said to be a family of curvelet molecules with
regularity R, R ∈N, if for j ≥ 2 they may be expressed as

ψµ(x) = 2
3j
4 aµ(D2−j Rθµ

x− (k1/δ1, k2/δ2)),
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where D2−j x = (2jx1, 2j/2x2), δ1, δ2 > 0 and all functions aµ satisfy the follow-
ing:
• For |κ| ≤ R there exists constants C > 0 independent of µ such that

(4.5) |a(κ)µ (x)| ≤ C(1 + |x|)−2R.

• There exists constants C > 0 independent of µ such that

(4.6) |âµ(ξ)| ≤ C min(1, 2−j + |ξ1|+ 2−
j
2 |ξ2|)R.

The coarse-scale molecules, j = 1, must take the form ψµ(x) = aµ(x − k/δ0),
δ0 > 0, where aµ satisfies (4.5). �
It can be shown that curvelets constitute a family of curvelet molecules with
regularity R for any R ∈N (see [8, p. 1489]).

To define the curvelet type spaces which together with the associated
sequence spaces will characterize the sparse representation properties of
curvelets we need a suitable partition of unity.

Definition 4.2.
Let Qj,l := supp(φj,l) for (j, l) ∈ J , where φj,l was defined in (4.3). A bounded
admissible partition of unity (BAPU) is a family of functions {Ψj,l}(j,l)∈J ⊂
S := S(R2) satisfying:
• supp(Ψj,l) ⊆ Qj,l, (j, l) ∈ J .
• ∑(j,l)∈J Ψj,l(ξ) = 1, ξ ∈ R2.
• sup(j,l)∈J |Qj,l|1/p−1‖F−1Ψj,l‖Lp(R2) < ∞, p ∈ (0, 1].

�
An example of a BAPU is {|φj,l|2}(j,l)∈J which follows from the construction of
φj,l (see (4.1) and (4.2)) and curvelets being curvelet molecules with regularity
R for any R ∈N. We are now ready to define curvelet type spaces.

Definition 4.3.
Let {Ψj,l}(j,l)∈J be a BAPU and Ψj,l(D) f := F−1(Ψj,lF f ). For s ∈ R, 0 <

q < ∞ and 0 < p ≤ ∞, we define Gs
p,q := Gs

p,q(R
2) as the set of distributions

f ∈ S ′ := S ′(R2) satisfying

‖ f ‖Gs
p,q :=

(
∑

(j,l)∈J

∥∥2jsΨj,l(D) f
∥∥q

Lp

)1/q
< ∞.

�
It can be shown that Gs

p,q is a quasi-Banach space (Banach space for p, q ≥ 1),
and S is dense in Gs

p,q [4, 19]. Furthermore, Gs
p,q is independent of the choice

of BAPU.
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We also need the sequence spaces associated with the curvelet type spaces.
For the sake of convenience, we write ‖ fk‖ instead of ‖{ fk}k∈K‖when the index
set is clear from the context.

Definition 4.4.
For s ∈ R, 0 < q < ∞ and 0 < p ≤ ∞, we define the sequence space gs

p,q as the
set of sequences {zµ}µ∈J×Z2 ⊂ C satisfying

‖zµ‖gs
p,q :=

∥∥∥2
j
(

s+3
2 (

1
2−

1
p )
)(

∑
k∈Z2

|zµ|p
)1/p∥∥∥

lq
< ∞,

where the lp-norm is replaced with the l∞-norm if p = ∞. �
Notice that the sequence spaces lq are special cases of gs

p,q as we have

g
− 3

2 (
1
2− 1

q )
q,q = lq.

Next, we introduce frames for Gs
p,q and use the notation F � G when

there exists two constants 0 < C1 ≤ C2 < ∞, depending only on ”allowable”
parameters, such that C1F ≤ G ≤ C2F.

Definition 4.5.
We say that a family of functions {ψµ}µ∈J×Z2 in the dual of Gs

p,q is a frame for
Gs

p,q if for all f ∈ Gs
p,q we have

‖ f ‖Gs
p,q � ‖〈 f , ψµ〉‖gs

p,q .

The following is called the frame expansion of {ψµ}µ∈J×Z2 when it exists,

(4.7) f = ∑
µ∈J×Z2

〈 f , S−1ψµ〉ψµ

in the sense of S ′, where S is the frame operator S f = ∑µ∈J×Z2〈 f , ψµ〉ψµ,
f ∈ Gs

p,q. �
From [4, Lemma 4 and Section 7.3] we have that curvelets (4.4) constitute a
frame for the curvelet type spaces with a frame operator S that is equal to the
identity, S = I:

Proposition 4.6.
Assume that s ∈ R, 0 < q < ∞ and 0 < p ≤ ∞. For any finite sequence
{zµ}µ∈J×Z2 ⊂ C, we have∥∥∥ ∑

µ∈J×Z2

zµηµ

∥∥∥
Gs

p,q
≤ C‖zµ‖gs

p,q .

Furthermore, {ηµ}µ∈J×Z2 is a frame for Gs
p,q with frame operator S = I,

‖ f ‖Gs
p,q � ‖〈 f , ηµ〉‖gs

p,q , f ∈ Gs
p,q.

�
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Notice that frame expansions for two frames {ψµ}µ∈J×Z2 and {ηµ}µ∈J×Z2

have the same sparseness when measured in the associated sequence space
gs

p,q if {S−1ψµ}µ∈J×Z2 and {S−1ηµ}µ∈J×Z2 also constitute frames for Gs
p,q,

‖〈 f , S−1ψµ〉‖gs
p,q � ‖ f ‖Gs

p,q(R2) � ‖〈 f , S−1ηµ〉‖gs
p,q .

Hence, to get a curvelet type system {ψµ}µ∈J×Z2 with the same sparse
representation properties as curvelets {ηµ}µ∈J×Z2 , it suffices to prove that
{S−1ψµ}µ∈J×Z2 constitutes a frame for Gs

p,q.

4.3. Almost diagonal matrices

To generate curvelet type frames in the following sections we introduce the
machinery of almost diagonal matrices in this section. Almost diagonal matri-
ces where used in [24] on Besov spaces, and here we find an associated notion
of almost diagonal matrices on gs

p,q. The goal is to find a definition so that
the composition of two almost diagonal matrices gives a new almost diagonal
matrix and almost diagonal matrices are bounded on gs

p,q.
To help us define almost diagonal matrices we use a slight variation of the

pseudodistance introduced in [47] which was constructed in [8]. For this we
need the center of ηµ in the direct space, xµ := Rθµ

(k12−j/δ1, k22−j/2δ2), and
the ”direction” of ηµ, ρµ := (cos θµ, sin θµ).

Definition 4.7.
Given a pair of indices µ = (j, l, k) and µ′ = (j′, l′, k′), we define the dyadic-
parabolic pseudodistance as

ω(µ, µ′) := 2|j−j′|(1 + min(2j, 2j′)d(µ, µ′)),

where
d(µ, µ′) := |θµ − θµ′ |2 + |xµ − xµ′ |2 + |〈ρµ, xµ − xµ′〉|.

�
The dyadic-parabolic pseudodistance was studied in detail in [8], and from
there we can deduce the following properties:
• For δ > 0 there exists C > 0 such that

(4.8) ∑
k∈Z2

ω(µ, µ′)−
3
2−δ ≤ C.

• For δ > 0 there exists C > 0 such that

(4.9) ∑
(j,l)∈J

ω(µ, µ′)−
1
2−δ ≤ C.
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• For N ≥ 2 and δ > 0 there exists C > 0 such that

(4.10) ∑
µ′′∈J×Z2

ω(µ, µ′′)−N−δω(µ′′, µ′)−N−δ ≤ Cω(µ, µ′)−N− δ
2 .

• Let {ψµ}µ∈J×Z2 and {ηµ}µ∈J×Z2 be two families of curvelet molecules
with regularity 4R, R ∈N. Then there exists C > 0 such that

(4.11) |〈ψµ, ηµ′〉| ≤ Cω(µ, µ′)−R.

These properties lead us to the following definition of almost diagonal matrices
on gs

p,q.

Definition 4.8.
Assume that s ∈ R, 0 < q < ∞ and 0 < p ≤ ∞. Let r := min(1, p, q) and
t := s + 3

2(
1
2 − 1

p ). A matrix A = {aµµ′}µ,µ′∈J×Z2 is called almost diagonal on
gs

p,q if there exists C, δ > 0 such that

|aµµ′ | ≤ C2(j′−j)tω(µ, µ′)−
2
r−δ.

�
Remark 4.9.
Note that by using (4.10), we get that the composition of two almost diagonal
matrices on gs

p,q gives a new almost diagonal matrix on gs
p,q. ◦

We are now ready to show the most important property of almost diagonal
matrices; they act boundedly on the curvelet type spaces.

Proposition 4.10.
If A is almost diagonal on gs

p,q, then A is bounded on gs
p,q.

Proof:
We only prove the result for p < ∞ as the result for p = ∞ follows in a
similar way with lp replaced by l∞. Let ω0(µ, µ′) := ω(j, l, 0, j′, l′, 0), z :=
{zµ}µ∈J×Z2 ∈ gs

p,q, and assume for now that p ≥ 1. We begin with looking at
the lp-norm of ‖Az‖gs

p,q . By using Minkowski’s inequality, Hölder’s inequality
and (4.8) we get(

∑
k∈Z2

|(Az)µ|p
)1/p

≤C
(

∑
k∈Z2

(
∑

(j′,l′)∈J
2(j′−j)tω0(µ, µ′)−

1
2r−

δ
2 ∑

k′∈Z2

|zµ′ |ω(µ, µ′)−
3
2r−

δ
2

)p)1/p

≤C ∑
(j′,l′)∈J

2(j′−j)tω0(µ, µ′)−
1
2r−

δ
2

(
∑

k∈Z2

(
∑

k′∈Z2

|zµ′ |ω(µ, µ′)−
3
2r−

δ
2

)p)1/p
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≤C ∑
(j′,l′)∈J

2(j′−j)tω0(µ, µ′)−
1
2r−

δ
2

×
(

∑
k∈Z2

∑
k′∈Z2

|zµ′ |pω(µ, µ′)−
3
2r−

δ
2
(

∑
k′∈Z2

ω(µ, µ′)−
3
2r−

δ
2
)p−1

)1/p

≤C ∑
(j′,l′)∈J

2(j′−j)tω0(µ, µ′)−
1
2r−

δ
2
(

∑
k′∈Z2

|zµ′ |p
)1/p

.

We then have

‖Az‖gs
p,q ≤ C

(
∑

(j,l)∈J

(
∑

(j′,l′)∈J
2j′tω0(µ, µ′)−

1
2r−

δ
2
(

∑
k′∈Z2

|zµ′ |p
)1/p

)q)1/q

.

For q ≥ 1 we use Hölder’s inequality and (4.9) to get

‖Az‖gs
p,q ≤C

(
∑

(j,l)∈J
∑

(j′,l′)∈J
2j′qtω0(µ, µ′)−

1
2r−

δ
2

×
(

∑
k′∈Z2

|zµ′ |p
)q/p(

∑
(j′,l′)∈J

ω0(µ, µ′)−
1
2r−

δ
2
)q−1

)1/q

≤C‖z‖gs
p,q .

For q < 1 the result follows by a direct estimate. The case p < 1 remains, and
here we first observe that

Ã := {ãµµ′}µ,µ′∈J×Z2 =
{
|aµµ′ |p2(j′−j)(t−tp)}

µ,µ′∈J×Z2

is almost diagonal on gs
1, q

p
. Furthermore, if we let

v := {vµ}µ∈J×Z2 := {|zµ|p2−j(t−tp)}µ∈J×Z2 we have

‖v‖1/p
gs

1, q
p

=

(
∑

(j,l)∈J

(
∑

k∈Z2

2jtp|zµ|p
)q/p)1/q

= ‖z‖gs
p,q .

Before we can put these two observations into use, we need that

|(Az)µ|p ≤ ∑
(j′,l′)∈J

∑
k′∈Z2

|aµµ′ |p|zµ′ |p = 2j(t−tp) ∑
(j′,l′)∈J

∑
k′∈Z2

ãµµ′vµ.

We then have

‖Az‖gs
p,q ≤ ‖Ãv‖1/p

gs
1, q

p

≤ C‖v‖1/p
gs

1, q
p

= C‖z‖gs
p,q .

�
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4.4. Curvelet type frames

In this section we study a family of curvelet molecules {ψµ}µ∈J×Z2 which is
a small perturbation of curvelets {ηµ}µ∈J×Z2 . The goal is first to show that if
{ψµ}µ∈J×Z2 is close enough to {ηµ}µ∈J×Z2 , then {ψµ}µ∈J×Z2 is a frame for
Gs

p,q. Next to get a frame expansion, we show that {S−1ψµ}µ∈J×Z2 is also a
frame. The results are inspired by [35] where perturbations of frames were
studied in Triebel-Lizorkin and Besov spaces.

Let {ψµ}µ∈J×Z2 ⊂ L2(R
2) be a system that is close to {ηµ}µ∈J×Z2 in the

sense that there exists ε, δ > 0 such that for j ≥ 2

(4.12) ηµ(x)− ψµ(x) = 2
3j
4 cµ(D2−j Rθµ

x− (k1/δ1, k2/δ2)),

where D2−j x = (2jx1, 2j/2x2), δ1, δ2 > 0 and all functions cµ satisfy the follow-
ing:
• For |κ| ≤ 4d|t|+ 2

r + δe we need

(4.13) |c(κ)µ (x)| ≤ ε(1 + |x|)−8d|t|+2
r +δe.

• Furthermore we need

(4.14) |ĉµ(ξ)| ≤ ε min(1, 2−j + |ξ1|+ 2−
j
2 |ξ2|)4d|t|+2

r +δe.

We have used the notation from Definition 4.8. The coarse-scale molecules,
j = 1, must take the form ηµ(x) − ψµ(x) = cµ(x − k/δ0), δ0 > 0, where cµ

satisfies (4.13).
Then {ψµ}µ∈J×Z2 is a family of curvelet molecules with regularity 4d|t|+

2
r + δe, and motivated by {ηµ}µ∈J×Z2 being a tight frame for L2(R

2), we for-
mally define 〈 f , ψµ′〉 as

〈 f , ψµ′〉 := ∑
µ∈J×Z2

〈ηµ, ψµ′〉〈 f , ηµ〉, f ∈ Gs
p,q.

It follows from (4.11) and Proposition 4.10 that 〈·, ψµ′〉 is a bounded linear
functional on Gs

p,q; in fact we have

∑
µ∈J×Z2

|〈ηµ, ψµ′〉||〈 f , ηµ〉| ≤
∥∥∥{ ∑

µ∈J×Z2

|〈ηµ, ψµ′〉||〈 f , ηµ〉|
}

µ′∈J×Z2

∥∥∥
gs

p,q

≤ C‖〈 f , ηµ〉‖gs
p,q ≤ C‖ f ‖Gs

p,q .(4.15)

Furthermore, {ψµ}µ∈J×Z2 is a norming family for Gs
p,q as it satisfies

‖〈 f , ψµ〉‖gs
p,q ≤ C‖ f ‖Gs

p,q . This can be used to show that S is a bounded
operator on Gs

p,q, and for small enough ε this will be the key to showing that
{ψµ} is a frame for Gs

p,q.
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Theorem 4.11.
There exists ε0, C1, C2 > 0 such that if {ψµ}µ∈J×Z2 satisfies (4.12) for some
0 < ε ≤ ε0, then we have

C1‖ f ‖Gs
p,q ≤ ‖〈 f , ψµ〉‖gs

p,q ≤ C2‖ f ‖Gs
p,q f ∈ Gs

p,q.

Proof:
That {ψµ}µ∈J×Z2 is a norming family gives the upper bound, thus we only
need to establish the lower bound. For this we use that {ε−1(ηµ − ψµ)}µ∈J×Z2

is also a norming family so we have

‖〈 f , ηµ − ψµ〉‖gs
p,q ≤ Cε‖ f ‖Gs

p,q .

It then follows that

‖ f ‖Gs
p,q ≤ C‖〈 f , ηµ〉‖gs

p,q

≤ C
(
‖〈 f , ψµ〉‖gs

µ
+ ‖〈 f , ηµ − ψµ〉‖gs

p,q

)
≤ C

(
‖〈 f , ψµ〉‖gs

p,q + ε‖ f ‖Gs
p,q

)
.

By choosing ε < 1/C we get the lower bound.
�

As one might guess from Theorem 4.11, the boundedness of the matrix

{〈ηµ, S−1ψµ′〉}µ,µ′∈J×Z2 on gs
p,q is the key to showing that {S−1ψµ}µ∈J×Z2 is

also a frame for Gs
p,q.

Proposition 4.12.
There exists ε0 > 0 such that if {ψµ}µ∈J×Z2 satisfies (4.12) for some 0 < ε ≤ ε0

and furthermore is a frame for G0
22 = L2(R

2), then {〈ηµ, S−1ψµ′〉}µ µ′∈J×Z2 is
bounded on gs

p,q.

Proof:
The fact that {ψµ}µ∈J×Z2 is a frame for L2(R

2) ensures that S−1 is a bounded
operator on L2(R

2). We first show that S−1 is bounded on Gs
p,q. This will

follow from showing that

(4.16) ‖(I − S) f ‖Gs
p,q ≤ Cε‖ f ‖Gs

p,q , f ∈ Gs
p,q,

choosing ε small enough and using the Neumann series. Assume for a moment
that
D := {dµ′µ}µ′,µ∈J×Z2 := {〈(I − S)ηµ, ηµ′〉}µ′,µ∈J×Z2 satisfies

(4.17) ‖Dz‖gs
p,q ≤ Cε‖z‖gs

p,q .

By using that S is self-adjoint, we then have

‖(I − S) f ‖Gs
p,q ≤ C‖{〈(I − S) f , ηµ′〉}‖gs

p,q = C‖D{〈 f , ηµ〉}‖gs
p,q
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≤ Cε‖{〈 f , ηµ〉}‖gs
p,q ≤ Cε‖ f ‖Gs

p,q .

So to show (4.16) it suffices to prove (4.17). Note that

〈(I − S)ηµ, ηµ′〉 = ∑
µ′′∈J×Z2

〈ηµ, ηµ′′〉〈ηµ′′ , ηµ′〉 − ∑
µ′′∈J×Z2

〈ηµ, ψµ′′〉〈ψµ′′ , ηµ′〉

= ∑
µ′′∈J×Z2

〈ηµ, ηµ′′〉〈ηµ′′ − ψµ′′ , ηµ′〉+ ∑
µ′′∈J×Z2

〈ηµ, ηµ′′ − ψµ′′〉〈ψµ′′ , ηµ′〉.

By setting

D1 := {d1(µ′)(µ′′)} := {〈ηµ′′ − ψµ′′ , ηµ′〉},
D2 := {d2(µ′′)(µ)} := {〈ηµ, ηµ′′〉},
D3 := {d3(µ′)(µ′′)} := {〈ψµ′′ , ηµ′〉},
D4 := {d4(µ′′)(µ)} := {〈ηµ, ηµ′′ − ψµ′′〉},

we have the decomposition

D = D1D2 +D3D4.

Since {ε−1(ηµ − ψµ)}µ∈J×Z2 is a family of curvelet molecules with regularity
4d|t|+ 2

r + δe, we have from (4.11) that ε−1D1,D2,D3, ε−1D4 are almost diago-
nal on gs

p,q. Next, we use Remark 4.9, and by Proposition 4.10,

‖Dz‖gs
p,q ≤ Cε‖z‖gs

p,q .

Consequently, (4.16) holds, and for sufficiently small ε the operator S−1 is
bounded on Gs

p,q. Finally, let z := {zµ}µ∈J×Z2 ∈ gs
p,q and h =: ∑µ zµηµ. By

using Proposition 4.6 we have that h ∈ Gs
p,q, and as {ψµ}µ∈J×Z2 is a frame for

L2(R
2), we have that S−1 is self-adjoint which gives

∑
µ∈J×Z2

〈ηµ, S−1ψµ′〉zµ = ∑
µ∈J×Z2

〈S−1ηµ, ψµ′〉zµ = 〈S−1h, ψµ′〉.

If we combine this with {ψµ}µ∈J×Z2 being a norming family (4.15), we get∥∥∥ ∑
µ∈J×Z2

〈ηµ, S−1ψµ′〉zµ

∥∥∥
gs

p,q
= ‖〈S−1h, ψµ′〉‖gs

p,q ≤ C‖S−1h‖Gs
p,q

≤ C‖h‖Gs
p,q ≤ C‖z‖gs

p,q

which proves that {〈ηµ, S−1ψµ′〉}µ,µ′∈J×Z2 is bounded on gs
p,q.

�

That {S−1ψµ}µ∈J×Z2 is a frame for Gs
p,q now follows as a consequence of

{〈ηµ, S−1ψµ′〉}µ,µ′∈J×Z2 being bounded on gs
p,q. We state the following results
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without proofs as they follow directly in the same way as in the Besov space
case. The proofs can be found in [35]. First, we have the frame expansion.

Lemma 4.13.
Assume that {ψµ}µ∈J×Z2 is a family of curvelet molecules with regularity
4d|t|+ 2

r + δe and a frame for L2(R
2). If {〈ηµ, S−1ψµ′〉}µ,µ′∈J×Z2 is bounded

on gs
p,q, then for f ∈ Gs

p,q we have

f = ∑
µ∈J×Z2

〈 f , S−1ψµ〉ψµ

in the sense of S ′.
�

Next, we have that {S−1ψµ}µ∈J×Z2 is a frame for Gs
p,q

Theorem 4.14.
Assume that {ψµ}µ∈J×Z2 is a family of curvelet molecules with regularity
4d|t|+ 2

r + δe and a frame for L2(R
2). Then {S−1ψµ}µ∈J×Z2 is a frame for Gs

p,q

if and only if {〈ηµ, S−1ψµ′〉}µ,µ′∈J×Z2 is bounded on gs
p,q.

�

It follows from Proposition 4.12, Lemma 4.13 and Theorem 4.14 that if
{ψµ}µ∈J×Z2 is a family of curvelet molecules which is close enough to
curvelets, then the representation ∑µ∈J×Z2〈 f , S−1ψµ〉ψµ, f ∈ Gs

p,q, has the
same sparse representation properties as curvelets when measured in gs

p,q. As
a final result we also have a frame expansion with {S−1ψµ}µ∈J×Z2 .

Lemma 4.15.
Assume that {ψµ}µ∈J×Z2 is a family of curvelet molecules with regularity
4d|t|+ 2

r + δe and a frame for L2(R
2). If the transpose of {〈ηµ, S−1ψµ′〉}µ,µ′∈J×Z2

is bounded on gs
p,q, then for f ∈ Gs

p,q we have

f = ∑
µ∈J×Z2

〈 f , ψµ〉S−1ψµ

in the sense of S ′.
�

All that remains now is to construct a flexible family of curvelet molecules
which is close enough to curvelets in the sense of (4.12).

4.5. Construction of curvelet type systems

In this section we construct a flexible curvelet type system. We do this by show-
ing that finite linear combinations of shifts and dilates of a function g with suf-
ficient smoothness and decay can be used to construct a system {ψµ}µ∈J×Z2
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that satisfies (4.12). From the previous section, we then have that the repre-
sentation ∑µ∈J×Z2〈 f , S−1ψµ〉ψµ, f ∈ Gs

p,q, has the same sparse representation
properties as curvelets when measured in gs

p,q.
First we take g ∈ CM+1(R2), ĝ(0) 6= 0, which for fixed N′ > 2, M > 0

satisfies

|g(κ)(x)| ≤ C(1 + |x|)−N′ , |κ| ≤ M + 1,(4.18)

Next, for m ≥ 1 we define gm(x) := Cgm2g(mx), where Cg =: ĝ(0)−1. It then
follows that

|g(κ)m (x)| ≤ Cm2+|κ|(1 + m|x|)−N′ , |κ| ≤ M + 1,∫
R2

gm(x)dx = 1.(4.19)

We recall that curvelets (4.4) are a family of curvelet molecules for any regu-
larity R ∈N. From the definition of a family of curvelet molecules (Definition
4.1), we have that for j ≥ 2 curvelet molecules can be expressed as

ηµ(x) = 2
3j
4 aµ(D2−j Rθµ

x− (k1/δ1, k2/δ2)),

where aµ must satisfy (4.5) and (4.6). So to construct a family of curvelet
molecules {ψµ}µ∈J×Z2 which satisfy (4.12), we need to construct a family of
functions {bµ}µ∈J×Z2 such that aµ − bµ satisfy (4.13) and (4.14). We define
{ψµ}µ∈J×Z2 as

ψµ(x) := 2
3j
4 bµ(D2−j Rθµ

x− (k1/δ1, k2/δ2))

for j ≥ 2 and to construct {bµ}µ∈J×Z2 we also need the following set of finite
linear combinations,

ΘK,m := {bµ : bµ(·) =
K

∑
i=1

cigm(·+ di), ci ∈ C, di ∈ R2}.

We have omitted the construction of ψµ for j = 1 as it follow in a similar way.

Proposition 4.16.
Let N′ > N > 2, M > 0 and j > 0. If g ∈ CM+1(R2), ĝ(0) 6= 0, fulfills (4.18)
and aµ ∈ L2(R

2) ∩ CM+1(R2) fulfills

|a(κ)µ (x)| ≤ C(1 + |x|)−N′ , |κ| ≤ M + 1

|âµ(ξ)| ≤ C min(1, 2−j + |ξ1|+ 2−
j
2 |ξ2|)M+1,
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then for any ε > 0 there exists K, m ≥ 1 (m independent of j) and bµ ∈ ΘK,m
such that

|a(κ)µ (x)− b(κ)µ (x)| ≤ ε(1 + |x|)−N, |κ| ≤ M(4.20)

|âµ(ξ)− b̂µ(ξ)| ≤ ε min(1, 2−j + |ξ1|+ 2−
j
2 |ξ2|)M.(4.21)

Proof:
Let ε > 0 and κ, |κ| ≤ M, be given. We construct the approximation of aµ in
the direct space in three steps. First by a convolution operator ωm = aµ ∗ gm,
then by θq,m which is the integral in ωm taken over a dyadic cube Q, and finally
by a discretization over smaller dyadic cubes bl,q,m. From (4.19) we have

(4.22) a(κ)µ (x)−ω
(κ)
m (x) =

∫
R2

(
a(κ)µ (x)− a(κ)µ (x− y)

)
gm(y)dy.

Define U := mλ/2N, where λ := min(1, N′ − N). For |x| ≤ U, we use the mean
value theorem to get

|a(κ)µ (x)− a(κ)µ (x− y)| ≤ C min(1, |y|).
Inserting this in (4.22) we have

|a(κ)µ (x)−ω
(κ)
m (x)| ≤ C

∫
R2

min(1, |y|)m2

(1 + m|y|)N′ dy

≤ Cm−λ ≤ Cm−λ/2

UN ≤ Cm−λ/2

(1 + |x|)N .(4.23)

For |x| > U, we split the integral over Ω := {y : |y| ≤ |x|/2} and Ωc. If y ∈ Ω,
then |x− y| ≥ |x|/2, and we have∫

Ω
|a(κ)µ (x)− a(κ)µ (x− y)||gm(y)|dy ≤ C(1 + |x|)−N′

≤ C
(1 + U)λ(1 + |x|)N ≤

Cm−λ2/2N

(1 + |x|)N .(4.24)

Integrating over Ωc with |x| > U gives∫
Ωc
|a(κ)µ (x)− a(κ)µ (x−y)||gm(y)|dy

≤ C
(1 + |x|)N′ +

∫
Ωc

Cm2

(1 + |x− y|)N′(1 + m|y|)N′ dy

≤ C
(1 + |x|)N′ +

Cm−λ

(1 + |x|)N ≤
C(m−λ2/2N + m−λ)

(1 + |x|)N .(4.25)
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So by choosing m sufficiently large in (4.23)-(4.25), we get

(4.26) |a(κ)µ (x)−ω
(κ)
m (x)| ≤ ε

3
(1 + |x|)−N.

For the next step we fix m and choose q ∈ N. Let Q denote the dyadic cube
with sidelength 2q+1, sides parallel with the axes and centered at the origin.
We then approximate ωm with θq,m defined as

θq,m(·) =
∫

Q
aµ(y)gm(· − y)dy.

In which case we have

ω
(κ)
m (x)− θ

(κ)
q,m(x) =

∫
Qc

aµ(y)g(κ)m (x− y)dy,

and it follows that,

|ω(κ)
m (x)− θ

(κ)
q,m(x)| ≤

∫
|y|≥2q

Cm2+|κ|

(1 + |y|)N′(1 + m|x− y|B)N′ dy := L.

We first estimate the integral for |x| ≤ 2q−1 which gives |y| > |x| and |x− y| ≥
2q−1. Hence we obtain

L ≤ Cm2+|κ|

(1 + |x|)N′

∫
|u|≥2q−1

1
(1 + m|u|)N′ du ≤ Cm|κ|−λ2−λq

(1 + |x|)N′ .(4.27)

For |x| > 2q−1, we split the integral over Ω := {y : |y| ≥ 2q} ∩ {y : |y| ≤ |x|/2}
and Ω′ := {y : |y| ≥ 2q} ∩ {y : |y| > |x|/2}. If y ∈ Ω, then |x− y| ≥ |x|/2, and
we get∫

Ω

m2+|κ|

(1 + |y|)N′(1 + m|x− y|)N′ dy ≤ Cm2+|κ|

(1 + m|x|)N′

∫
|y|≥2q

1
(1 + |y|)N′ dy

≤ Cm|κ|−λ2−λq

(1 + |x|)N .(4.28)

Similar for Ω′ we have∫
Ω′

m2+|κ|

(1 + |y|)N′(1 + m|x− y|)N′ dy ≤ C
(1 + |x|)N′

∫
R2

m2+|κ|

(1 + m|x− y|)N′ dy

≤ Cm|κ|

(1 + |x|)N′ ≤
m|κ|2−λq

(1 + |x|)N .(4.29)

By choosing q sufficiently large in (4.27)-(4.29), we obtain

(4.30) |ω(κ)
m (x)− θ

(κ)
q,m(x)| ≤ ε

3
(1 + |x|)−N.
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For the final step we fix q, choose l ∈ N and approximate θq,m by a discretiza-
tion

bl,q,m(·) = ∑
I∈Hl,q

|I|aµ(xI)gm(· − xI),

where xI is the center of the dyadic cube I and Hl,q is the set of dyadic cubes
with sidelength 2−l which together give Q. Note that bl,q,m ∈ ΘK,m, K = 2q+l+1.

We introduce F(·) := aµ(·)g(κ)m (x− ·) which gives

|θ(κ)q,m(x)− b(κ)l,q,m(x)| ≤ ∑
I∈Hl,q

∫
I
|aµ(y)g(κ)m (x− y)− aµ(xI)g(κ)m (x− xI)|dy

≤ ∑
I∈Hl,q

∫
I
|F(y)− F(xI)|dy.

By using the mean value theorem, we then get

|θ(κ)q,m(x)− b(κ)l,q,m(x)| ≤ ∑
I∈Hl,q

∫
I
|y− xI | max

z∈l(xI ,y)
|κ′|≤1

|F(κ′)(z)|dy

≤ C22q−l max
|z|≤2q+1

|κ′|≤|κ|+1

|g(κ
′)

m (x− z)|,(4.31)

where l(xI , y) is the line-segment between xI and y. If |x| ≤ 2q+2 and |κ′| ≤
|κ|+ 1, then we have

(4.32) |g(κ
′)

m (x− z)| ≤ Cm3+|κ| ≤ Cm3+|κ|2qN

(1 + |x|)N .

For |x| > 2q+2 and |z| ≤ 2q+1, we have |x − z| ≥ |x|/2, and hence for |κ′| ≤
|κ|+ 1, it follows that

(4.33) |g(κ
′)

m (x− z)| ≤ Cm3+|κ|

(1 + m|x|)N′ ≤
Cm3+|κ|

(1 + |x|)N′ .

By choosing l sufficiently large, we obtain by combining (4.31)-(4.33) that

(4.34) |θ(κ)q,m(x)− b(κ)l,q,m(x)| ≤ ε

3
(1 + |x|)−N.

Finally by combining (4.26), (4.30) and (4.34), we get

(4.35) |a(κ)µ (x)− b(κ)l,q,m(x)| ≤ ε(1 + |x|)−N.

To approximate aµ in the frequency space we use three steps similar to the
approximation in the direct space. Note that bl,q,m still fulfills (4.35) if we



4.5. CONSTRUCTION OF CURVELET TYPE SYSTEMS 67

choose l, q, m even larger. First we use ω̂m to approximate âµ in which case we
have

|âµ(ξ)− ω̂m(ξ)| = |âµ(ξ)
M

1+M âµ(ξ)
1

1+M (1− Cg ĝ(ξ/m))|

≤ C min(1, 2−j + |ξ1|+ 2−
j
2 |ξ2|)M(1 + |ξ|)−1|1− Cg ĝ(ξ/m)|.

By choosing ξg > 0 such that C(1 + ξg)−1|1− Cg ĝ(ξ/m)| ≤ ε/3 and m such
that C|1− Cg ĝ(ξ/m)| ≤ ε/3 for |ξ| < ξg, we get

(4.36) |âµ(ξ)− ω̂m(ξ)| ≤
ε

3
min(1, 2−j + |ξ1|+ 2−

j
2 |ξ2|)M.

Next, we fix m, choose q and limit the Fourier integral of aµ to Q from the
approximation in the direct space,

θ′q,m(ξ) = ĝm(ξ)
∫

Q
aµ(x)eix·ξ dx.

This gives

|ω̂m(ξ)− θ′q,m(ξ)| ≤ |ĝm(ξ)|
∫
|x|>2q

|aµ(x)eix·ξ |dx ≤ C2−λq.(4.37)

In the last step, we fix q and approximate θ′q,m by b̂l,q,m. We introduce G(x) :=
aµ(x)eix·ξ which gives

|θ′q,m(ξ)− b̂l,q,m(ξ)| ≤|ĝm(ξ)|
∣∣∣ ∫

Q
aµ(x)eix·ξ dx− ∑

I∈Hl,q

|I|aµ(xI)eixI ·ξ
∣∣∣

≤|ĝm(ξ)| ∑
I∈Hl,q

∫
I
|G(x)− G(xI)|dx

≤ C22q−l

1 + |ξ/m| max
x∈R2

|κ′|≤1

|G(κ′)(x)| ≤ Cm22q−l.(4.38)

By combining (4.36)-(4.38) for sufficiently large l, q, m, we get

|âµ(ξ)− b̂l,q,m(ξ)| ≤ ε min(1, 2−j + |ξ1|+ 2−
j
2 |ξ2|)M.

It follows that by choosing l, q, m large enough bl,q,m fulfills both (4.20) and
(4.21). Furthermore, we have bl,q,m ∈ ΘK,m, K = 2q+l+1.

�
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4.6. Discussion

In this paper we studied a flexible method for generation curvelet type systems
with the same sparse representation properties as curvelets when measured in
gs

p,q. With Proposition 4.12, Lemma 4.13 and Theorem 4.14 we proved that
a system of curvelet molecules which is close enough to curvelets has these
sparse representation properties. Furthermore, with Proposition 4.16 we gave
a constructive description of how such a system of curvelet molecules can be
constructed from finite linear combinations of shifts and dilates for a single
function with sufficient smoothness and decay.

Examples of functions with sufficient smoothness and decay are the ex-
ponential function e−|·|

2
and the rational functions (1 + | · |2)−N with N suffi-

ciently large. An example with compact support can be constructed by using a
spline with compact support. Furthermore as the system is constructed using
finite linear combinations of splines, we get a system consisting of modulated
compactly supported splines.



CHAPTER 5

Epilogue

The case for my life, then, or for that of any one else who has been a mathematician in
the same sense which I have been one, is this: that I have added something to knowledge,
and helped others to add more; and that these somethings have a value which differs in
degree only, and not in kind, from that of the creations of the great mathematicians, or
of any of the other artists, great or small, who have left some kind of memorial behind
them.

G.H. Hardy, A Mathematician’s Apology

In this chapter we discuss some of the open problems which present them-
selves in extension of the papers in Chapters 2-4.

Curvelet type bases. Curvelets belong to a collection of directional representa-
tion systems of which Shearlets [36] and Contourlets [16] are the other promi-
nent members. As far as the author is aware a basis which shares the properties
of these systems has yet to be constructed. In the same way as in Chapter 2 it is
possible to construct a brushlet basis for L2(R

2) with a curvelet type decompo-
sition of the frequency space. However, the norm characterization of curvelet
type spaces proves difficult especially estimates like (2.13). So the construction
of a curvelet type basis is an interesting problem which would give a full char-
acterization of curvelet type spaces in terms of nonlinear approximation. More
generally, there is the open challenge of constructing an unconditional basis
for T-L type spaces, the associated modulation spaces and beyond.

Group representations. Coorbit spaces were introduced by Feichtinger and
Gröchenig in [20–22] and are a more structured class of smoothness spaces
than decomposition spaces. They are build on group representations and here
Besov spaces are associated with the Weyl-Heisenberg group and the classical
modulation spaces are associated with the affine group. The additional struc-
ture gives an atomic decomposition for all coorbit spaces, but also excludes
α-modulation spaces. This was remedied by Dahlke, Fornasier, Rauhut, Steidl
and Teschke who generalized coorbit spaces to also include α-modulation
spaces by using group representations modulo quotients [10]. The construc-
tion of a basis for α-modulation spaces with a group representation is an open
question which would help the construction of more efficient algorithms for
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α-modulation spaces. However, there is no obvious modification of the basis
in Chapter 2 which would solve this problem or at least give a tight frame.

Flexible frame construction. We saw in Chapter 1 that Daubechies wavelets
can provide better compressed images than Meyer wavelets. Similarly one
would expect that a discrete curvelet transform built on the curvelet type frame
in Chapter 4 would preform better than the classical curvelet transform. The
open question is how to make such a transform feasible in a practical setting
especially computation of the coefficients in the frame expansion. The general
frame construction in Chapters 3 and 4 could also prove useful in the study of
integral and pseudodifferential operators with the right choice of generating
function g.
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BIBLIOGRAPHY 73

[43] Y. Meyer. Wavelets and operators, volume 37 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 1992.

[44] M. Nielsen. Orthonormal bases for α-modulationspaces. Collectanea Mathematica,
61(2):173–190, 2010.

[45] P. Petrushev. Bases consisting of rational functions of uniformly bounded degrees or more
general functions. J. Funct. Anal., 174(1):18–75, 2000.
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