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Abstract: The heart pulsation sends out the blood throughout the body. The rate in which the heart performs this vital 

task, heartbeat rate, is of curial importance to the body. Therefore, measuring heartbeat rate, a.k.a. pulse 

detection, is very important in many applications, especially the medical ones. To measure it, physicians 

traditionally, either sense the pulsations of some blood vessels or install some sensors on the body. In either 

case, there is a need for a physical contact between the sensor and the body to obtain the heartbeat rate. This 

might not be always feasible, for example, for applications like remote patient monitoring. In such cases, 

contactless sensors, mostly based on computer vision techniques, are emerging as interesting alternatives. 

This paper proposes such a system, in which the heartbeats (pulses) are detected by subtle motions that 

appear on the face due to blood circulation. The proposed system has been tested in different facial 

expressions. The experimental results show that the proposed system is correct and robust and outperforms 

state-of-the-art.          

1 INTRODUCTION 

Heartbeat rate is obviously a vital sign of human 

body's activity and its measurement is of great 

importance in many applications, for instance, 

fitness assessment, training programs and medical 

diagnosis. For example, in fitness assessment during 

the exercise, heartbeat rate is used as a crucial sign 

that helps to assess the condition of cardiovascular 

system. Here it can be used also for ensuring the 

safety of the process. If the heartbeat rate goes 

beyond the normal range, continuing the exercise is 

not safe any longer.  

Heartbeat rate is usually measured by devices 

that take samples of heartbeats and compute the 

beats per minute (bpm). Currently, one of the 

popular non-invasive and standard devices for 

measuring the heartbeat rate is electrocardiogram 

(ECG). They are very accurate, but expensive. These 

devices are electrode-based and therefore require 

wearing adhesive gel patches or chest straps that 

may cause skin irritation and slight pain. 

Commercial pulse oximetry sensor is another 

technique that is placed on specific parts of body 

like fingertips or earlobe. 

Though the above mentioned devices are 

accurate, they are inconvenient as they need to have 

physical contact with patient's body. Therefore, 

developing contactless methods, which are based on 

the patient's physiological signals, have recently 

been considered as an interesting alternative for 

measuring heartbeat rate. This technology would 

also decrease the amount of cabling and clutter 

related to Intensive Care Unit (ICU) monitoring, 

long-term epilepsy monitoring, sleep studies, and 

any continues heartbeat rate measurement (Poh, 

2008). These contactless methods that are usually 

based on computer vision techniques can be divided 

into two groups. In the first group, known as 

photoplethysmography (PPG) methods, usually a 

red, or an infrared light is transmitted on the patients 

(face or body) and the reflected light is sensed by the 

system. The variations in the transmitted and the 

reflected lights are then used to measure heartbeat 

rate. Besides using dedicated light sources, the main 

drawbacks of PPG systems are that they are 

susceptible to motion artefact (Verkruysse, 2008, 

Humphreys, 2007, Takano, 2007, Hu, 2008, 

Wieringa, 2005).  



 

In the second group of computer vision based 

methods there is no need for a dedicated light 

source. These methods assume that the periodic 

circulation of the blood by the heart to the rest of the 

body, including the head, generates some periodic 

subtle changes to the skin color of the face and also 

generates some subtle head motions. These motions 

are not usually visible to naked eyes but they can be 

viewed by techniques like, for example, Eulerian 

video magnification (Wu, 2012).  These periodic 

changes to the skin colors and head motions are then 

utilized to measure heartbeat rate. For example, in 

(Poh, 2010) periodic changes in the skin color of the 

face has been used for this purpose. In this system 

(Poh, 2010) face image of the subject is first found, 

by a simple camera. Then, it is separated into its 

colour channels and each channel is tracked 

independently. For each of these tracked colour 

channels, a trajectory is found.  Then, all the 

trajectories are fed to an Independent Component 

Analysis (ICA) algorithm. The output of ICA, 

presents independents sources that have caused 

changes to the skin colour of the face. Then, it is 

assumed that the most periodic output of ICA should 

be generated by the most periodic source that is 

present on the face, i.e., heartbeat. This system is 

effective, but it suffers from sensitivity to skin color 

and noise. It means, if the skin is not detected 

properly, or if the captured facial video is noisy, the 

system does not provide accurate results. 

To overcome the sensitivity to noise and skin 

detection of system (Poh, 2010), very recently in 

(Balakrishnan, 2013) a motion-based contactless 

system for measuring heartbeat rate was introduced. 

As mentioned above, this method is based on the 

fact that periodic circulation of the blood from the 

heart to the body, including the head through the 

aorta and carotid arteries, causes the head to move in 

a cyclic motion (Wu, 2012). Similar to (Poh, 2010), 

this system also uses a simple camera for recording 

facial images of patients. Having detected the face, 

they extracted vertical component of head motion by 

tracking feature points, and generate some 

trajectories for each feature point. These trajectories 

are then filtered by a Butterworth filter to remove 

the irrelevant frequencies. Next on the contrary 

(Poh, 2010) they use Principle Component Analysis 

(PCA) (instead of ICA) to decompose the filtered 

trajectories into a set of source signals. Then, they 

use the same assumption as (Poh, 2010), that the 

most periodic signal is generated by the most 

periodic source of the motion that is present in the 

face, i.e., by heartbeat. To find the periodicity of the 

outputs of PCA, they apply Fast Fourier Transform 

(FFT) to the trajectories, and use the percentage of 

total spectral power of the signal accounted for by 

the frequency with the maximal power and its first 

harmonic (Balakrishnan, 2013).  

This method gives reasonable results when 

the face is frontal and does not move.  Our 

experiment shows that involuntary motion and facial 

expression causes dramatic effect on the accuracy of 

this system. Furthermore, as mentioned above, this 

system is based on using the frequency with 

maximal power as the first harmonic of the 

estimated heartbeat rate. But, this assumption is not 

always true, especially when the facial expression is 

changing. The proposed system in this paper 

improves the system of (Balakrishnan, 2013) by 

replacing the FFT with a Discrete Cosine Transform 

(DCT). Furthermore, we show that involving a 

moving average filter before the Butterworth filter 

improves the results. It is shown that the proposed 

system outperforms the system of (Balakrishnan, 

2013), significantly. 

The rest of this paper is organized as follows: 

The clear problem statement and the contributions of 

the proposed system are given in the next section. 

Section 3 explains the employed methodology of the 

proposed system. The experimental results are 

reported in Section 4. Finally, the paper is concluded 

in Section 5.   

2 PROBLEM STATEMENT AND 

MAIN CONTRIBUTION 

The proposed system in this paper develops a 

vision-based contactless algorithm for heartbeat rate 

measurement using the assumption that periodic 

blood circulation by the heart to the head generates 

subtle periodic motion on the face. The proposed 

system is based on the very recent work of 

(Balakrishnan, 2013), but it advances this work by: 

1) Replacing the FFT of the system of 

(Balakrishnan, 2013) by a DCT, and  

2) Using a moving average filter before the 

Butterworth filter that is employed in (Balakrishnan, 

2013). 

The proposed modifications are simple, but are 

shown to be very effective. The results of the 

proposed system are: 

1) More correct compared to the results of the 

system of (Balakrishnan, 2013)  when they are 

compared to the ground truth data. 
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Figure 1: The block diagram of the proposed system 
 

2) More robust than the results of the system of 

(Balakrishnan, 2013) when the face is moving or 

facial expression is changing. 

3 METHODOLOGY 

The block diagram of the proposed system is 

shown in Figure 1. As it can be seen from this 

figure, the subject is continuously filmed by a 

Logitech webcam with a resolution of 640x480 

pixels. Then, the subject's face is detected by Viola 

and Jones (Viola, 2001) face detector. From the 

detected faces, the regions of interest of our system, 

and consequently the feature points are extracted and 

tracked by the Lucas Kanade’s algorithm (Bouguet, 

2000). Then, a moving average filter and a band pass 

filter are applied to the vertical component of the 

trajectories of each feature point to remove 

extraneous frequencies and involuntary head 

motions. Then, the filtered trajectories are fed to 

PCA to find the strongest independent components. 

Among these components, the most periodic one 

belongs to heartbeat. To find this most periodic one, 

we apply DCT to all the components obtained by 

PCA. Each of these sub-blocks is explained in the 

following subsections. 

 

3.1 Face Detection 

Locating the face in the scene refers to identifying a 

region containing a human face. Viola and Jones 

algorithm (Viola, 2001) has been employed for this 

purpose which is based on Haar-like rectangular 

features that are extracted from integral images. This 

detector is fast and efficient, but it fails to detect 

rotated faces and those which are of poor quality. 

However, it works fine for the purposes of the 

proposed system.  

The regions detected by the Viola and Jones 

detector cannot be directly used in our system, as it 

contains the areas of eyes and the mouth which are 

not good for the purposes of our system. Because 

these areas are the most changeable areas of the 

face, and they may change very much by any 

changes in facial expression, eye blinking, etc. 

Therefore, the trajectories obtained from these 

changeable will not reflect the motion caused by 

heartbeat. Instead, they reflect the motion caused by 

the changes in their own positions due to the 

changes in the facial expression. Tracking these 

sensitive regions therefore does not produce stable 

results. The most stable parts of the face, which are 

robust against changes in the facial expressions, are 

the forehead and the area around the nose. To keep 

these regions, we first keep 50% (experimentally 

obtained) of the width and 70% (experimentally 

obtained) of the height of the region that is detected 

the Viola and Jones’s face detector. Then, in this 

refined region we remove the area of the eyes, by 

removing all the pixels that are located in the range 

of 25% to 45% (experimentally obtained) of the 

height of the refined region (Figure 2). 

 

 

Figure 2: The yellow box is returned by the Viola and 

Jones face detector and the red boxes are those that are of 

the interest of the proposed system. 

3.2 Feature Points selection 

Having detected the regions of interest in the 

previous sub-block of the system, in this step they 

are fed to the Good Feature Tracking algorithm of 

(Shi, 1994) to select the feature points. This 



 

algorithm is based on finding and tracking the 

corners. To do so, it calculates the minimal 

eigenvalue of every point in our previously kept 

regions of the face and rejecting corners with 

minimal eigenvalues. Then, it goes through the 

strongest corners and removes those features that are 

too close the stronger features (Shi, 1994). To 

increase the efficiency of this system, it is suggested 

in (Balakrishnan, 2013) to divide the sub-regions 

obtained from Viola and Jones detector into smaller 

areas to achieve uniform selected regions. Therefore, 

we have adopted this idea here.  

3.3 Trajectory Generation and 
Smoothing 

To extract the motion trajectory signals from the 

selected feature points in the previous subsection, 

we have used Lucas Kanade’s algorithm (Bouguet, 

2000) to obtain x and y components of feature points 

inside our previously extracted regions of interest in 

each frame. Since the very tiny motions of the head, 

which are the basis for calculating the heartbeat rate 

in this work, are due to the blood circulation through 

aorta towards head (obviously in a vertical 

direction), we only consider the y components of the 

trajectories of the feature points in each frame. 

The head motions are not only due to 

heartbeats (transferred to the head by aorta), but may 

appear for several reasons, for example, respiration, 

vestibular activity, facial expression, speaking and 

so on.  To decrease the effects of the other sources, 

which cause quite large motions, a moving average 

filter is applied to the trajectories to smooth it 

(Figure 3). This will be further explained in the 

experimental results. 

 

 

Figure 3: The effect of the employed moving average filter 

on the y components of the trajectory of one of the tracked 

feature points of one of the test subjects. The red and the 

blue signals are the original and the filtered signals, on the 

x axis of the above graph is the time and on the y axis is 

the y position of the tracked feature point over time. 

Then, to remove the irrelevant frequencies (any 

frequency which might not be generated by the 

heartbeat) a pass band filter (an 8
th

 order 

Butterworth filter) with cutoff frequency interval of 

[0.75 5] Hz has been applied to the obtained 

trajectory (Balakrishnan, 2013).  

3.4 Signal Estimation 

As mentioned above, the head motions are orginated 

from different sources and only the one casued by 

the blood circulation through aorta is reflecting the 

heartbeat rate. To separate the sources of head 

motions, we have applied a PCA algorithm to the 

obtained trajectories. PCA converts the given 

trajectories into a set of linearlly uncorrelated basis, 

i.e., the principal components.  

Having separated the sources using PCA, the 

next step is to find the signal that has been generated 

by the heartbeat. Following (Balakrishnan, 2013) 

such a signal will be the most periodic signal. To 

quantify the signal periodicity we have utilized DCT 

as opposed to the system of (Balakrishnan, 2013) 

which have used FFT. Having applied DCT, we only 

keep those DCT components that carry the most 

significant power of the signal. To do so, we use the 

following algorithm: 

 
 For the trajectory of the ith feature points, 

i [1..N], Si: 
o Calculate the DCT of the ith trajectory 

and obtain SCi 
o Determine {Kj}i which is the set of 

indexes for {Si(t)} such that Kj  is the 
index of the M first highest power 
components into SCi  which consists 
50% of power of Si,  

 j [1..Mi] (Mi is number of 
components which carry 
50%of total power of Si) 

o Determine {Khl}i which is the set of the 
first 5 smallest index into {Kj}i  for 
each Si such that 2×Khl be found on 
SCi 

 l = 1:5. 
o The periodicity of the signal can be 

obtained by: 
       [  (   )   (     )]

     [   ] 
 Si with largest Qi is the heartbeat rate signal, 

and the heartbeat rate can be obtained as: 
FFT(IDCT (min{Khi})) × 60 bpm 

 
The effect of the above DCT-based algorithm for 
finding the heartbeat rate and its advantage over the 



 

FFT of (Balakrishnan, 2013) has been shown in the 
experimental results. 

4 EXPERIMENTAL RESULTS 

The proposed approach has been implemented in 

Matlab R2013a. To be able to compare our system 

against state-of-the-art Balakrishnan et al.’s work 

(Balakrishnan, 2013) we have recorded the actual 

heartbeat rates of the test subjects by a Shimmer 

wireless ECG (Electrocardiogram) sensor. This 

sensor records and sends the ECG signals, to a 

remote computer as a data file.  Figure 4 (top) shows 

a typical data that has been captured by this sensor. 

The FFT of this signal is shown in Figure 4 

(bottom). It can be seen from this figure, that the 

FFT has 4 peaks on the frequencies 1.08, 2.14, 3.13, 

and 4.22. These show that most of the power of the 

recorded heartbeat signal is carried by these 4 

component frequencies which seem to be 

approximately integer multiple components of    
       , as a fundamental frequency or first 

harmonic. Therefore, we can conclude that period of 

the heartbeat signal per minute is 1.08x60 = 64.8. 

The numbers of pulses on Figure 4 (bottom) prove 

this. 

 

 
Figure 4: Recorded ECG signal and its FFT corresponding 

signals which shows the periodicity of the ECG signal.  
 

Having shown that the ECG signals obtained by the 

employed sensor are indeed periodic (Figure 4), we 

now first explain the testing scenarios in which our 

data have been recorded. Then, we show the effects 

of the modifications that we have applied to the 

system of (Balakrishnan, 2013). Next, we give the 

details of the comparison of our system against the 

Balakrishnan et al.’s work (Balakrishnan, 2013). 

4.1 Testing Scenarios  

Five test subjects were asked to participate in testing 

the systems from which 32 different videos were 

recorded. These videos are recorded by a Logitech 

webcam at a frame rate of 30 fps in different facial 

expressions and head poses. These are the situations 

in which the videos have been recorded in: 

 Subjects look directly into the camera 

without changing their facial expressions 

(This is the same imaging condition as the 

system of (Balakrishnan, 2013)). 

 Subjects turn around their faces from left 

(     ) to right (     ) and look at seven 

different targets that are located at the same 

distance from each other. 

 Subjects show smiling/laughing expression.  

 Subjects repeat a given sentence. 

 Subjects show angry expression. 

The duration of each video is around 60 seconds.  

4.2 The moving average filter and DCT 

Before obtaining the periodicity of the selected 

source signal (Figure 1 block diagram), the only 

difference between our system and the work of 

(Balakrishnan, 2013) is that we have introduced a 

moving average filter. This does not have much 

effect when the face is standing still, and is facing 

the camera. But, as soon as the subject is changing 

his/her head pose and/or facial expressions are 

changing, there will be so many occlusions in the 

tracking of the feature points, that without using a 

moving average filter the results will be erroneous. 

Comparing Figure 5 (top) to Figure 5 (bottom) 

shows that including this moving average filter 

causes the employed PCA to pick a much smoother 

signal as the strongest component compared to the 

case where such a filter has not been included 

(Balakrishnan, 2013). This will gives us better 

results, for estimating the heartbeat rates, in the final 

step of the system.  

 

 

Figure 5: Comparing the estimated heartbeat rate signal 

when the moving average filter is used (top) and when it is 

not used (bottom).  



 

Besides introducing the moving averge filter 

for smoothing the estimated signal, in our system we 

have used DCT to estimate the periodicity of the 

estimated signal. The effect of this decision and 

comparing it with the FFT of (Balakrishnan, 2013)  

is shown in Figure 6.  In this figure (top and middle 

parts) a signal and its FFT representation are shown. 

The maximum power of this FFT (3.603) gives a 

heartbeat rate of 3.603x60 = 216.18, while the actual 

heartbeat rate in this case is 60 bpm which can be 

estimated much better using the first harmonic 

(1.001x60=60.06). Therefore, the total spectral 

power of the signal and then using the maximal 

power and its first harmonic as have been used in 

(Balakrishnan, 2013) does not always produce the 

desired results. Instead, by using DCT in Figure 6 

(bottom) it can be seen that a much better result will 

be obtained, if the component number 20 is selected 

as the component which carries the power of pulse 

frequency. Feeding this value of this component in 

the algorithm of section 3.4 results in an estimated 

beat rate of 60.88 bpm, which is very close to the 

actual value. 

Figure 6: Extracting the beat rate of the signal (top) using 

the algorithm of (Balakrishnan, 2013) (middle) and 

our employed DCT (bottom). 

4.3 Detailed Experiments 

The proposed system has been compared against the 

state-of-the-art work of (Balakrishnan, 2013) using 

the testing data that was recorded in the previously 

explained testing scenarios. The results of 

comparing these systems (the proposed system and 

the work of (Balakrishnan, 2013) against the ground 

truth data obtained by the Shimmer ECG sensor for 

the case which the testing subjects are looking 

directly into the camera are shown in Table 1. In this 

table, (a) is the subject number, (b) is the ground 

truth data read by a Shimmer ECG device, (c) is the 

heartbeat rate estimated by the system of 

(Balakrishnan, 2013), (d) is the error of the method 

of (Balakrishnan, 2013), (e) is the heartbeat rate 

estimated by our proposed method, (f) is the error of 

our proposed method. It can be seen that the error of 

our system is generally better than that of 

(Balakrishnan, 2013).  

 
Table 1: The proposed system against system of 

(Balakrishnan, 2013), please see the text for descriptions 

of the headings.  

a b c d e f 

S1-1 61.71 63.06 1.35 62.1 0.39 

S1-2 66.67 67.04 0.37 67.03 0.36 

S2-1 60 216.83 156.8 61.88 1.88 

S2-2 59 61.06 2.06 59.10 0.1 

S2-3 54.00 53.03 0.97 54.11 0.11 

S3-1 66.65 69.05 2.40 67.63 0.98 

S4-1 84.06 86.06 2.00 83.90 0.16 

S5-1 47.62 48.03 0.41 46.17 1.45 

 

 

The size of the window employed for the moving 

average filter in the previous experiment is set to 

one. It means, no moving average is applied to the 

data obtained from the previous test. Because, the 

signal is already smooth. But, when it comes to the 

case where facial expressions and/or head pose are 

changing, the effect of the moving average becomes 

more visible. Table 2 shows the results of the 

proposed system against the work of (Balakrishnan, 

2013) and the ground truth. The descriptions of the 

headings (a)-(f) are the same as those for Table 1. 

The size of the moving average window changes 

between 40-80 samples, for different testing 

scenarios. It can be seen from this table that the 

proposed system is more robust than the work of 

(Balakrishnan, 2013) in most of the cases, when the 

facial expression and/or head pose are changing. 

5 CONCLUSIONS 

Motivated by the fact that in many applications like, 

e.g., remote patient monitoring, there is not a 

possibility for installing a device on the body of the 

patients, this paper has proposed a contactless  
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Table 2: Comparing the results of the proposed system against the state-of-the-art work of (Balakrishnan, 2013) when the 

facial expressions and/or head pose are changing. Please see the text for the descriptions of the headings. 

  The test subject is smiling! The test subject is speaking! 

a b c d e f c d e f 

S1-1 66.67 49.051 17.61 58.22 8.45 81.28 14.61 67.31 0.64 

S2-1 59 48.02 10.98 59.35 0.35 75.09 16.09 58.41 0.59 

S2-2 54.00 56.04 2.04 54.99 0.99 79.05 25.05 52.66 1.34 

S3-1 66.65 48.04 18.61 56.77 9.88 51.03 15.62 66.50 0.15 

S4-1 84.06 148.09 64.03 61.73 22.33 61.04 23.02 63.78 20.28 

S5-1 47.62 47.03 0.59 48.44 0.82 46.72 0.9 48.14 0.52 

 

  The test subject is angry! The head pose is changing! 

a b c d e f c d e f 

S1-1 66.67 50.05 16.62 59.23 7.44 49.03 17.64 60.47 6.2 

S2-1 59 63.04 4.04 59.86 0.86 48.02 10.98 59.69 0.69 

S2-2 54.00 49.04 4.96 63.96 9.96 50.04 3.96 53.04 0.96 

S3-1 66.65 49.05 17.60 59.92 6.73 50.05 16.6 58.87 7.78 

S4-1 84.06 63.03 21.03 47.76 36.3 146.10 62.04 57.87 26.19 

S5-1 47.62 50.05 2.43 59.23 11.61 51.05 3.43 45.90 1.72 

 

heartbeat rate measurement using computer vision 

techniques. The system finds some robust feature 

points inside the facial areas of the users and tracks 

them over time to generate some trajectories of the 

feature points. These trajectories are then smoothed 

by a moving average filter. Then, the irrelevant 

frequencies are removed from the trajectories. All of 

these refined trajectories are then fed to a PCA 

algorithm to find the strongest independent 

component. This component is assumed to be the 

estimated heart beat signal. To find the periodicity of 

this estimated signal a DCT-based algorithm has 

been used. Experimental results on several video 

sequences show that the estimated heartbeat rates in 

different facial expressions and head poses are very 

close to the ground truth. Furthermore, it is shown 

that the proposed system outperforms state-of-the-

art. 
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