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Chapter 1

General Introduction

Ever since the commercialization of the silicon transistor, silicon became
and has been the stable work horse of the electronics industry, thanks to its
excellent electronic properties and the ease of growing useful oxide layers.
Today a modern computer chip can contain more than a billion transistors,
each having a footprint less than 0.2 µm2, illustrating the giant leaps silicon
technology has made ever since its birth, as boldly predicted by Moore’s
law. In many ways, silicon is the ideal material for electronics manufacture,
its conductance may be varied over orders of magnitude by the addition of
dopants and its oxide is very stable and highly insulating. In addition it
is very abundant, thus cheap, and may be processed to high purity with
relative ease.
However, as the boundaries keep on being pushed, heat generation and band-
width limitations from thin interconnects need to be addressed. A possible
solution is optical interconnects and passive components integrated onto the
chip. Whereas waveguides are quite easy to realise in silicon dioxide, inte-
grating a light emitter onto silicon circuitry is not trivial. The indirect band
gap nature of silicon makes it a poor choice for an optical source, instead
direct band gap sources such as GaAs are much preferred. While it is pos-
sible to integrate a GaAs emitter onto silicon, this task is neither cheap nor
comercially very viable. Thus, to make silicon truely viable for integrated
optoelectronics an active, optical medium that can be readily integrated is
needed.
One approach towards realizing a direct gap material that may be integrated
readily with silicon technology is to nanostructure silicon. By forming small
clusters of silicon in a suitable matrix, eg. silica, the carriers are greatly con-
fined, leading to new physical properties inbetween that of a bulk material

7



Chapter 1. General Introduction

and a molecule. Such a material may have a pseudo direct band gap greater
than that of bulk silicon, typically corresponding to 600-900 nm emission.
To tune this emission towards wavelengths commonly used for telecommu-
nications, around 1530 nm, a dopant such as erbium may be introduced
into the matrix. As it turns out, the small clusters act as sensitizers of the
otherwise very weakly absorbing erbium ions and the first steps towards an
integrated emitter have been taken. Operation at this wavelength has the
added benefit of being in the low-loss window of silica.
The work in this thesis has been focused on the generation of 1530 nm light
from silica films, doped with Er, sensitized by Si clusters. As an alterna-
tive, optical properties of α-Sn nanoparticles are investigated as they may
be a direct route to this light generation. The second chapter serves as
an introduction to the field and summarizes some of the results on silicon
nanocrystals and erbium in silica, both the isolated and complete systems.
A brief introduction to α-Sn is also given. The third chapter gives a brief
introduction to tight binding and density functional theory, which are used
for obtaining optical properties for α-Sn nanocrystals. Chapter four sum-
marises the theoretical results obtained for both bulk and nanocrystalline
α-Sn along with Si-Sn alloys, based on papers I, III and IV. Chapter five
is a summary of the experimental results on particularly the interaction be-
tween silicon clusters and erbium in papers II and V, as well as a number of
unpublished results on the SiO2:Er and Si-nc/SiO2:Er system.

8



Chapter 2

The Nanocrystal-Erbium
System

2.1 Silicon Nanocrystals

The realization of effective photoluminescence from silicon-based structures
dates back to 1990, when the first paper on porous silicon was published1,
where the confinement of carriers leads to a pseudo-direct band gap be-
haviour of silicon. This also paved the way for the first LEDs based on
silicon as the active material2,3. By varying process parameters, it is possi-
ble to tune the size of the nanocrystallites in the porous silicon and thus also
the optical and electrical properties4. While porous silicon continues to be
an active field of research, it has seen limited commercial application for a
number of reasons; notably the electrochemical etching process is somewhat
undesirable in a production environment, as well as reproducibility and ma-
terial degradation being issues5.
Following this initial demonstration of quantum confined carriers leading to
improved optical properties of silicon, several routes towards nanocrystalline
silicon have been demonstrated, both by an aerosol process6 or by deposi-
tion of a thin film of silicon rich silicon dioxide. The principle behind the
thin film method is that at an equilibrium state, silicon will tend to seperate
from the oxide7 and as long as the diffusion length of silicon is not too long,
it will tend to form into nanocrystals in the oxide. In the following, different
routes towards producing silicon nanocrystals in thin film will be discussed.
Following this the photoluminescence properties in both steady state and
under pulsed excitation will be discussed. Finally we will briefly look at the
theoretical work done on silicon nanocrystals.
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Chapter 2. The Nanocrystal-Erbium System

Figure 2.1: TEM images of Si nanocrystals prepared by annealing SiO1.3

(left), from16 and by annealing a multi-layer Si/SiO2 film (right), from9.

2.1.1 Production methods

There are several ways of depositing a thin film leading to silicon nanocrys-
tals - briefly spoken there are three approaches commonly used. These are:
deposition of a silicon rich silicon dioxide, SiOx, deposition of a multi-layer
film of alternating Si8,9 or SiO10 and SiO2 layers and finally ion implanta-
tion of silicon into silicon dioxide11. Of these methods we have primarily
used the Si/SiO2 multi-layer approach, as this leads to excellent size con-
trol and dispersion. The deposition of these thin films may be carried out
in a multitude of ways and has been demonstrated using plasma enhanced
chemical vapour deposition12,13, magnetron sputtering14 and e-beam depo-
sition. In all cases the film is subsequently annealed in an inert atmosphere,
most commonly N2, although Ar has also been used. It is believed that
nitrogen helps reduce surface defects on the Si/SiO2 interface, whereas Ar
is completely inert15, which is evident from the significantly more intense
luminescence from N2 annealed samples.
The connection between nanocrystal size and silicon excess in the sample
is well understood. In the case of SiOx films, less excess generally leads to
smaller nanocrystals whereas a larger excess leads to larger nanocrystals,
with mean radii of nanocrystals down to 1 nm reported13,16. For multi-
layer Si/SiO2 films the nanocrystal diameter after annealing is on the order
of the Si layer thickness, in part due to the limited Si diffusion through
the SiO2 layers9,17. Typical TEM images of the two different structures
may be seen in fig. 2.1. Regarding annealing, higher temperatures and
longer times naturally lead to longer diffusion lengths for the silicon and
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Chapter 2. The Nanocrystal-Erbium System

thus larger nanocrystals18. Temperatures around 700◦C are needed to start
silicon diffusion, amorphous nanocrystals are observed when annealing up to
900◦C, whereas crystallisation of the amorphous nanocrystals take place at
1100◦C17, as evidenced by TEM and Raman spectroscopy18. Following the
high temperature anneal to promote formation/crystallisation of nanocrys-
tals, an anneal at typically 500◦C is carried out in forming gas (95% N2/5%
H2) in order to passivate dangling bonds at the nanocrystal/oxide interface,
which, as will be seen, has a dramatic effect on the photoluminescence yield.

2.1.2 Photoluminescence

The photoluminescence from silicon nanocrystals in SiO2 has been subject
to intense research, however the exact mechanisms at play have not been
agreed upon19. Most commonly defects at the nanocrystal surface and quan-
tum confinement of the exciton are discussed as possible mechanisms. Early
reports of luminescence in the blue-green are now mostly ascribed to de-
fects in the SiO2. Today, luminescence reports are in the range around 600
nm to 1050 nm, which is in good agreement with the 1.1 eV band gap of
bulk silicon corresponding to 1130 nm emission. A typical spectrum from
a multi-layer sample containing 20 periods of 2 nm Si/4 nm SiO2 deposited
by magnetron sputtering and then annealed at 1100◦C in N2 with following
hydrogen passivation may be seen in Fig. 2.2.
The systems under investigation may vary wildly in production and com-

position. Depending on size and environment of the nanocrystals, different
mechanisms may be at play, which is part of the reason for no universal
mechanism being accepted. Given the role played by defects and non radia-
tive pathways, as evidenced by the relatively low quantum efficiency, under
0.1%20, of silicon nanocrystals, it is an important factor in any case. As
mentioned, hydrogen passivation after nanocrystal crystallization has taken
place is often applied and leads to an increase in photoluminescence yield by
as much as an order of magnitude. In an impressive experiment attempting
to measure the spatial distribution of the wave function and backed up by
EPR measurements, Godefroo and coworkers proposed that the photolumi-
nescence before passivation is due to interface defect states, whereas it is
from a mode confined to the whole nanocrystal after passivation21.
Time resolved photoluminescence spectroscopy has been used extensively to
characterize silicon nanocrystals in SiO2. A decay characteristic slower than
a single exponential form is found, most often the stretched exponential is
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Chapter 2. The Nanocrystal-Erbium System

Figure 2.2: Photoluminescence spectrum from a multi-layer sample contain-
ing 20 periods of 2 nm Si/4 nm SiO2, annealed at 1100◦C in N2 for 60
minutes and then hydrogen passivated at 500◦C.

used,

I(t) = I0 exp

[
−
(
t

τ

)β]
, (2.1)

where β is a dispersion factor due to the distribution of nanocrystal sizes and
electron transfer processes, depending on nanocrystal size and seperation.
The time constant τ will depend on a host of factors, broadly spoken the
size and environment of the nanocrystals22–25. A large part of the multiex-
ponential nature of silicon nanocrystal may also owe to their pseudo-direct
band gap, which facilitates several different decay pathways, both direct and
phonon-assisted26. By measuring τ at different wave lengths, it is possible
to deduce some size-dependence. It is found that decay times are generally
shorter for lower wavelengths (smaller nanocrystals), which corresponds to
the physical picture of the electron and hole being confined to a smaller
volume and thus having a larger recombination rate. However migration
of the electron-hole pair from the nanocrystal also plays a significant role,
specifically recombination at non-radiative centers leads to a lowering of the
decay time. This effect is also seen if observing similar samples with and
without hydrogen passivation, the hydrogen passivated samples will tend
to have longer lifetimes as non-radiative pathways are eliminated from the
system.
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Chapter 2. The Nanocrystal-Erbium System

2.1.3 Theoretical Modelling

Several theoretical models have been applied towards understanding elec-
tronic and optical properties of silicon nanocrystals. The most used candi-
dates for treating nanocrystals up to several nanometers of size are tight-
binding26,27 and effective mass approaches28, while ab initio methods like
density functional theory may be used for small clusters29. Both silicon
clusters passivated by hydrogen as well as silicon clusters embedded in SiO2

and with simulated oxygen defect sites in the form of Si=O have been mod-
elled. In the latter case it is found that Si=O introduces an almost constant
energy electron and hole defect state into the otherwise size-dependent band
gap27, an example of this is shown in Fig. 2.3.

Figure 2.3: Calculated tight binding energy levels in a hydrogen-terminated
silicon nanocrystal, with one Si=O bond on its surface. For smaller diame-
ters, the defect state introduced by Si=O has a lower gap than the completely
passivated crystal. Reproduced from27.

2.2 Erbium in Glass

Erbium is a lanthanide with electronic configuration [Xe]4f126s2. Most
often encountered, and of the most interest in optical applications is the
trivalent ion, which gives off its 6s electrons and one of the 4f electrons.
The outer electrons are now 5s25p6 which partially shield the 4f electrons,
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Chapter 2. The Nanocrystal-Erbium System

which are responsible for the optical transitions. The splitting and energy
levels of the 4f electrons due to spin-orbit interaction is shown in Fig. 2.4.
It is the transition from the first excited state 4I13/2 to the ground state that
is responsible for emission around 1.53µm, which is of particular interest.
For isolated Er3+, the intra 4f transitions are parity forbidden and hence

Figure 2.4: Splitting and energy levels in the Er3+ ion, due to spin-orbit
interaction, from30.

very slow. In the presence of an external perturbation, for example by sit-
ting in a crystal host, the crystal field leads to mixing of the odd and even
parity wave functions making the transitions slightly more dipole-allowed.
Even then, the 4I13/2 →4 I15/2 still exhibits a fairly long lifetime of up to
14 ms in silica30 and even slower in other glasses31. In spite of this, the
shielding of the 4f electrons by the outer electroncs leads to the transi-
tion energies varying only slightly with differing hosts. Spectral broadening
owes to temperature dependent phonon effects and temperature indepen-
dent inhomogenous broadening due to ions at different sites experiencing
slightly different energy shifts32, different crystal hosts may also give differ-
ent amounts of splitting because of different strengths of the crystal field.
Absorption bands are found around 1480 nm, 980 nm, 800 nm and 520 nm
and at lower wavelengths, into the top of the 4I13/2,

4I11/2,
4I9/2 and 4S3/2

levels respectively. Whereas the 4I13/2 →4 I15/2 is 100 percent radiative
in nature, the higher states are dominated by non radiative multi-phonon
assisted decay, leading to only weak luminescence from these33.
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2.3 Erbium sensitized by Si Nanocrystals

As seen, the absorption spectra of erbium in glass is discrete and in addition
has a low absorption cross section (on the order of 10−21 − 10−20 cm2 30,33).
This means that commercial Erbium Doped Fiber Amplifiers (EDFAs) are
usually pumped by rather expensive 980 nm lasers, which in addition are
absorbed weakly34. A way to improve this is by the addition of silicon
nanocrystals to the SiO2 host, the nanocrystals couple strongly to the er-
bium ions35,36. The effect is two-fold, most significantly, the effective ab-
sorption cross section of the erbium ions is increased by several orders of
magnitudes, to 10−21 − 10−20 cm2 and the effective absorption spectrum
becomes much broader. By using such an approach, gain at 1.53µm has
been demonstrated in a top-pumped configuration using commercial LEDs
and Er-doped silica with nanocrystals as the active medium37. Despite this
achievement, performance is in many regards still inferior to conventional
in-line pumped amplifiers. To achieve efficient gain, achieving population
inversion is neccesary, meaning that all erbium ions in the sample should be
coupled to nearby sensitizers. As such, careful control and understanding of
this interaction is neccesary.

2.3.1 Production Methods

Many of the same methods used for the production of silicon nanocrys-
tals in a silica matrix can also be applied, with erbium added to the SiO2

source, or by simultaneous deposition of SiO2 and erbium. Erbium concen-
trations should be kept below 1020 cm−3 in order to avoid cluster forma-
tion38. Annealing is carried out with similar results as in pure nanocrystal
films, eg. temperatures around 1100◦C are needed in order to obtain crys-
talline nanocrystals, whereas lower temperatures yield amorphous nanocrys-
tallites/sensitizers as would be expected. Often, anneals are followed by
hydrogen passivation. What is perhaps more surprising is that low temper-
ature annealed samples may show higher photoluminescence yield and, more
significantly, higher fractions of excited erbium39–45 than high temperature
annealed samples, even if determining the optimum Si excess at each an-
neal temperature45, see Fig. 2.5 for an example. Thus, the sensitizers need
not be crystalline (and thus fairly efficient optical emitters themselves), to
effectively transfer energy to erbium ions46. Conceptually, the density of sen-
sitizers at low anneal temperatures may be significantly higher than when
many Si atoms are used to form large nanocrystals, whereas an amorphous
sensitizer may contain much fewer atoms. This is essential to achieve a

15
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Figure 2.5: Photoluminescence spectrum from Er3+ sensitized in Si-rich
silica, annealed at varying temperatures from 600-1200◦C. Insert shows Er3+

signal at 981 and 1535 nm as a function of pump power. From40.

high fraction of exciteable erbium through sensitizers. If assuming perfect
coupling between each sensitizer and erbium, the optimum sensitizer con-
centration should be equal to the erbium concentration, for a typical erbium
concentration of 2 · 1019 cm−3, an equivalent sensitizer concentration leaves

2.3.2 Luminescence properties

Luminescence around 1535 nm is always present in succesfully sensitized
samples, however transient behavior of the 4I13/2 →4 I15/2 transition varies
a lot across samples, particularly depending on annealing temperature and
conditions, but also on the Si excess. For silica with low Si excess annealed
at around 1100◦C, lifetimes around 11 ms are reported, close to the life-
time observed for Er3+ in pure silica30. Generally decreasing temperature
and increasing the silicon content decreases the lifetime, due to the stronger
pertubation from the less ordered environment47. For low temperature an-
nealed samples lifetimes as low as 0.5 ms are observed40.
Apart from luminescence at 1535 nm, luminescence at 980 nm is also ob-
served in all sensitized samples, corresponding to the 4I11/2 →4 I15/2 tran-
sition, which leads to the conclusion that sensitization takes place into the
4I11/2 level40,48.
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2.3.3 Sensitizer Interaction

The rate of transfer from sensitizers in silica to erbium ions has been com-
mented on in several publications. By observing nanocrystal and erbium
emission at temperatures from 20 K to 300 K, it is seen that while nanocrys-
tal photoluminescence is strongly affected, becoming both more intense and
much slower in accordance with23, erbium emission is unaffected by tem-
perature. This is only possible if the nanocrystal-erbium coupling is strong
and much faster than the decay rate at room temperature. If we adopt a
picture where some nanocrystals are coupled to erbium ions and the rest are
not close enough with an erbium ion to interact with it and thus act like
silicon nanocrystals would in a pure silica matrix49. The coupling, however,
is not so strong as to make back transfer a problem, like it is in Er doped
Si50. Studying the nanocrystal-erbium system using ns laser pulses reveals
a similar picture, the interaction is faster than what may be resolved22,48,51,
a similar result is found for low temperature annealed sensitizers42.
In order to further investigate the interaction between sensitizer and erbium,
several experiments have been made attempting to determine the interac-
tion distance. Briefly spoken, the interaction may either be short Dexter-like
and require some degree of wave function overlap between the erbium 4f or-
bitals and the sensitizer’s orbital52. It may perhaps be some longer range
Förster dipole-dipole interaction53. While it may be simple to envision an
experiment where one would construct a multilayer Si/SiO2:Er/SiO2 film,
changing the thickness of the SiO2:Er layer while keeping total SiO2 layer
thickness constant to see how the distance from erbium to sensitizer influ-
ences the total photoluminescence yield such a film is not easily made. First
off, if the interaction distance is indeed short, it is neccesary to deposit ho-
mogenous films with subnanometer precision over several layers. While this
challenge can be overcome, the diffusion of erbium is a much more serious
challenge to overcome, erbium will diffuse several nm into the undoped silica
if annealing to temperatures high enough to form crystalline nanocrystals54.
Thus, succesful experiments are limited to low temperature annealed sam-
ples, in which the sensitizers are amorphous nanocrystals. In such cases, the
interaction distance has been found to be very short, around 0.5 nm55, or
even in direct contact with the nanocrystals56. Followingly, the interaction
is believed to be dominated by wave function overlap between sensitizer and
the erbium 4f orbitals.
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Figure 2.6: Phase diagram for Sn. Gray tin is the diamond structured, zero
gap α-phase, whereas white tin is the metallic phase. Sn II is a high pressure
Sn2+ phase, reproduced from ref.58.

2.3.4 Theoretical Modelling

The amount of theoretical work on the nanocrystal-Er3+ is fairly limited due
to the complexity of the system and the uncertainties regarding the trans-
fer mechanism. A model was proposed in ref.48,57. The silicon nanocrystal
wave functions are found using an effective mass approach as in28 and their
probability of exciting a nearby Er3+-ion into the 4I13/2 state via an intra-
band Auger proces as a result of hot carrier transitions is considered. Also
excitation into higher-lying states by electron-hole recombination is consid-
ered. It is suggested that the first mechanism is responsible for initial, fast
decay of Er3+ in the Si-NC:Er system and the second for the slower decay.
In addition it is found that the electron-hole recombination mechanism is
effectively a “contact” transfer mechanism and that dipole-dipole interaction
(Förster transfer) is non-efficient.

2.4 α-Tin

α-Sn, or grey tin, is the preferred state for Sn below 13.2◦C, where it takes
on diamond structure. At higher temperatures it is metallic in its body-
centered tetragonal β-form58, white-tin, see the phase diagram in fig. 2.6.
Unlike the higher lying group IV semiconductors, α-Sn is a direct, zero-gap
semiconductor, or a semimetal, as seen from the band structure in fig. 2.7.

18



Chapter 2. The Nanocrystal-Erbium System

That is, the band gap is 0 eV, but the density of states at the Fermi level is
0, thus α-Sn is usually not considered in conventional semiconductor appli-
cations. Where α-Sn shows promise is when nanocrystals are formed from

Figure 2.7: Band structure of α-Sn, calculated with tight binding parameters
that reproduce the DFT-GW bandstructure including spin-orbit interaction,
given in59. The dashed line at 0 eV indicates the Fermi level.

it. Thanks to the zero-gap nature of the bulk material, it is possible to tai-
lor the band gap of the nanocrystals to even NIR applications60–62 through
their size. Such low band-gap nanocrystals are not realisable in Si or Ge
due to the intriscally higher band gap of the bulk material. As is evident
from the phase diagram in fig. 2.6, it is neccesary to strain stabilize α-Sn
to prevent it from turning into β-Sn at room temperature. As it turns out,
α-Sn nanocrystals may be strain-stabilized by embedding them in a suit-
able host, for instance Ge or Si63–67. The lattice mismatch between Si and
α-Sn however is fairly large at 19.5% and as such it remains a challenge to
grow α-Sn nanocrystals. An example of the absorption spectrum of α-Sn
nanocrystals is seen in fig. 2.8. The crystals are grown on a Si(001) sub-
strate by molecular beam epitaxial deposition of α-Sn0.10Si0.90 at 170◦C and
subsequent annealing at 800◦C in vacuum where crystallisation takes place,
as is confirmed be TEM in the study67. In this spectrum it is evident that
there is absorption far into the infrared, highlighting the potential that α-Sn
nanocrystals have in a spectral range that is not easily accesible.
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Figure 2.8: Fourier transform infrared spectroscopy measurement of the ab-
sorption coefficient for a thin film of Sn0.10Si0.90 annealed at 800◦C, leading
to the formation of nanocrystals. From ref.67.
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Chapter 3

Theoretical methods

There are a host of different methods available for calculating electronic
structure in periodic solids, ranging from ab initio methods such as density
functional theory (DFT) to empirical methods such as empirical pseudopo-
tentials. Furthermore, in spite of the large number of electrons present in
almost all systems, most methods solve single-electron Schrödinger equa-
tions for the outermost electrons in each atom, with a potential applied,
meant to emulate the other electrons, the nuclei and their interaction. In
all cases the initial goal is to accurately predict the electronic structure for
relatively small unit cells with periodicity in three dimensions, eg. a bulk
material. In the case of nanocrystals, this periodicity is not present and the
unit cell may contain thousands of atoms, in order to describe nanocrystal a
few nanometers large. This is also what gives rise to many of the interesting
properties of nanocrystals as the breakdown of the periodicity means the
band nature of solids is no longer an adequate description of nanocrystals,
which instead undertake a more molecular-like behaviour. Under these cir-
cumstances, atomistic descriptions of the nanocrystal with the aim to solve
the full Schrödinger equation, with each atom being described in terms of
a local potential becomes increasingly demanding and for sufficiently large
nanocrystals becomes computationally unfeasible. In this case the problem
may be solved in terms of a less demanding description of each atom, as is
done for instance in tight binding, where each atom is decribed by a num-
ber of localized orbitals, which strongly reduces the overall size of the basis
needed for expanding the solution. Another possibility is to employ an ef-
fective mass model, where the nanocrystal is considered a three dimensional
spherical potential well, with a potential jump on the edge corresponding to
the work function difference between nanocrystal and host material.

21



Chapter 3. Theoretical methods

3.1 Tight Binding

In the following a brief description of tight binding will be given and how it
is applied to both bulk solids as well as nanocrystals. Furthermore it will
be discussed how to calculate the optical response on the background of the
tight binding wave functions.

The central idea of tight binding is to expand the one electron wave
function in a linear combination of localized, atomic orbitals, centered at ~R,
|α, ~R), with α denoting the kind of orbital and in case of multiple atoms per
unit cell also which atom it belongs to. For periodic solids the expansion
in orbitals is usually combined with Bloch’s theorem, eg. that if the wave
function is expanded in plane waves, it can be be easily rewritten on the
form68

ψ(~r,~k) = ei
~k·~ru(~r,~k), (3.1)

where u(~r,~k) is a function with the same periodicity as the crystal lattice.
Thus for an arbitrary translation vector of the crystal lattice ~T , it follows
that u(~r + ~T ,~k) = u(~r,~k). Thus we construct our tight binding bloch func-
tions

|α,~k〉 =
1√
N

∑

~R

ei
~k·~R|α, ~R) (3.2)

where N is the number of unit cells in the crystal and the summation should
run over all lattice vectors ~R in the crystal. We now expand the n’th crystal
wave function in terms of the Bloch tight binding orbitals in eq. 3.2

|n,~k〉 =
∑

α

cn,α|α,~k〉. (3.3)

Inserting this into the Schrödinger equation and minimizing the the energy
leads to the secular equation

(
←→
H − E(~k)

←→
S )~c = 0, (3.4)

with

Hm,m′ =
1

N

∑

~R, ~R′

ei
~k·(~R− ~R′)(m′, ~R′|Ĥ|m, ~R), (3.5)

Sm,m′ =
1

N

∑

~R, ~R′

ei
~k·(~R− ~R′)(m′, ~R′|m, ~R), (3.6)
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with m being an index running over each orbital, on each site in the crystal.
In a periodic crystal with N lattice sites, the summation on each site will
give the same result, allowing us to simplify the summation to only one site,

Hm,m′ =
∑

~R

ei
~k·(~R− ~R0)(m′, ~R0|Ĥ|m, ~R), (3.7)

Sm,m′ =
∑

~R

ei
~k·(~R− ~R0)(m′, ~R0|m, ~R). (3.8)

In practice, due to the localized nature of the atomic orbitals, it is assumed
that the contributions from orbitals some cut-off distance away is negligible.
In the calculations in this work, orbitals belonging up to the third near-
est neighbour are considered. In principle, the matrix elements are multi-
centered in nature, that is they should depend on the presence of all other
atoms in the lattice. However, as first discovered by Slater and Koster69, us-
ing a two-center form and exploiting symmetries of the atomic orbitals, sim-
ple expressions for the matrix elements may be derived in terms of (~R− ~R0)
and a number of constants that may be either calculated (semi-)empirically
or fitted to reproduce a given band structure. Taking for example bulk sili-
con, the experimental band structure may be accurately reproduced by the
help of a 3s, 3px, 3py, 3pz basis. As silicon has two distinct atoms in its unit
cell, this corresponds to an expansion in 8 basis functions and thus a 8x8
eigenvalue problem, with each matrix element being easily calculable. Com-
putationally the evaluation of such a problem is extremely quick, allowing
evaluation for many seperate ~k-points very rapidly. As an example, the band
structure of silicon has been calculated, using the parameters from70, shown
in fig. 3.1. Inclusion of spin-orbit interaction (SOI) turns out to be fairly
simple in tight binding and is a relevant correction particularly for heavier
elements. Using instead spin polarized tight binding orbitals, introduces a
number of simple coupling terms between p orbitals of different orientation
in the Hamilton matrix, however this means that the matrix problem dou-
bles in size.

For a nanocrystal, the periodicity of the solid breaks down and in effect
only ~k = ~0 makes sense, which cancels out the phase factor. On the other
hand, the basis size increases tremendously, as the unit cell also increases in
size. As we are no longer considering a solid with periodic boundary condi-
tions, the surface also needs to be treated, in order to avoid dangling bonds.
The most simple way of doing this is by saturating each dangling bond by
a single hydrogen atom, in practice this means that a silicon atom which
has only 3 nearest neighbours in the nanocrystal would get an additional
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Figure 3.1: The band structure of silicon calculated from the tight binding
parameters in70, and including spin orbit coupling ∆ = 0.044eV.

hydrogen atom placed at the position of the fourth, missing atom.

3.1.1 Optical response

The aim of this section is to describe how to obtain the electric suscepti-
bility from the tight binding wave functions. First and foremost, a general
expression for the linear optical susceptibility for a semiconductor may be
obtained by the means of first order pertubation theory71,

χ(ω) =
2e2~2

ε0m2
eΩ

∑

m∈c

∑

n∈v

|〈m|p̂z|n〉|2
Emn {E2

mn − ~2(ω + iΓ)2} (3.9)

this taken in the limit of zero temperature. This ensures full occupation of
the valence bands, v and no occupation of the conduction bands, c, which
also ensures that there is no intra-band contribution to the susceptibility or
indirect transitions. The summation m ∈ c runs over all conduction band
states and similarly for the valence bands and n ∈ v. The remaining chal-
lenge is to calculate the so called momentum matrix elements 〈m|p̂z|n〉.
Centrally, the idea is to exploit the commutator relation ~̂p = im0

~

[
Ĥ, ~r

]
to

rewrite the matrix elements. Assuming that the overlap between neighbour-
ing cells is vanishing, it follows that (m, ~R′|~r|n, ~R) = (~Rδnm + ~dnm)δ~R ~R′ ,
where the two terms may be interpreted as inter and intra-atomic terms
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respectively. Putting the tight binding eigen functions in eq. 3.3 into the
momentum matrix element this may be reduced to72,

〈n,~k|~p|m,~k〉 =
m0

~
∑

α,β

cnβ(~k)∗cmα(~k)∇~k〈β,~k|H|α,~k〉

+
im0

~

(
E
n,~k
− E

m,~k

)∑

α,β

cnβ(~k)∗cmα(~k)~dαβ. (3.10)

While the first inter-atomic term is fully determined from the band structure,
the second intra-atomic term, which is occasionally omitted, has the quantity
~dαβ, which must be fitted, as we do not know the explicit form of the tight
binding basis functions. As the derivative in pz changes the parity in the
z-direction, for an orbital pair to contribute, one of the orbitals should be
odd in the z-direction. Thus, when evaluating pz in a basis set containing
only s and p orbitals, the only orbital pair contributing to the term is s and
pz. This also means that there is only one ~dαβ to fit, which may be done to
best reproduce the experimental absorption spectrum, before extending the
calculation to predict optical properties of eg. nanocrystals. As an example,
the absorption spectrum for Si has been calculated, including both the inter-
and intra-atomic terms and including the contribution from each, seen in
fig. 3.2, with the value ds,px = 5.2 eVÅ. In practice, the integration over the
first Brillouin zone may be greatly simplified by only integrating over the
irreducible Brillouin zone and further by dividing this into several tetrahedra
and applying an interpolation scheme, like in73,74. As may be seen from
fig. 3.2 the predicted absorption properties when using the full expression
yields a satisfying result, in the sense that the low energy structure and
approximate magnitude is in agreement with experiment.

3.2 Density Functional Theory

The central theorem of DFT is that the properties of a many-body electronic
system depend only on the ground state electronic density n(~r) through some
arbitrary functional, as discovered by Hohenberg and Kohn76. While the
proof of this is quite simple and elegant it does not tell us which functional we
should put the electron density into, to obtain for instance the total energy of
the system, or how to solve the equations. As such much of the effort spent
on DFT is on developing suitable functionals and developing algorithms for
solving the equations. We start by considering the hamiltonian for a system
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Figure 3.2: Absorption spectrum of silicon calculated from the tight binding
band structure. The light blue line is the experimental result from75, the
black, red and blue lines are experimental calculations including both, only
intra- and only inter-atomic terms, respectively.

of many electrons and fixed nuclei in some external potential

Ĥ = −1

2

∑

i

∇2
i +

1

2

∑

i 6=j

1

|~ri − ~rj |
+
∑

i

Vext(~ri), (3.11)

where the Coulomb electron-electron interaction is included in the second
term and the electron-nuclei interaction is contained in the external potential
Vext. What the Hohenberg-Kohn theorem states is that the external poten-
tial is uniquely determined within a constant by the ground state electron
density

n0(~r) = |ψ0(~r1, ~r2, ... ~rn)|2. (3.12)

Conversely, if we know the full form of Vext this allows us to determine the
full hamiltonian of our system and thus determine all excited states as well,
hence all properties of the system. The second part of the theorem states
that a functional for the total energy of the system may be stated in terms
of the electron density, given by

EHK [n] = T [n] + Eint[n] + EII +

∫
Vext(~r)n(~r)d3r (3.13)
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with T [n] being the kinetic energy functional, Eint[n] is the electron-electron
interaction, EII is the nuclei interaction energy, and the last term is the in-
teraction of the density with the external potential. The ground state energy
then becomes a matter of identifying the electron density n0(~r) that mini-
mizes this functional. It is important to note that this theorem only gives
us the ground state energy, it tells us nothing about the excited states. Fur-
thermore, this functional is rather elusive, we do not know its explicit form.
The next step towards practical implementation of DFT is that made by
Kohn and Sham77. The central ansatz is that the ground state density
of the interacting many electron system is equal to that of some chosen
non-interacting system. This allows us to consider the system in terms of
a number of independent particles, in a local, effective potential. In prac-
tice, the calculations are carried out on this auxiliary, independent system
through the auxiliary hamiltonian

Ĥaux = −1

2
∇2 + Veff (~r). (3.14)

Insofar, the form of this effective potential is unknown. For a system of N
electrons obeying this hamiltonian, the system has one electron in each of
the first N states and as such the ground state density is given by

n(~r) =

N∑

i

|ψi(~r)|2. (3.15)

In a similar fashion the total kinetic energy of the independent particle
ensemble is given by

TKS = −1

2

N∑

i

〈ψi|∇2|ψi〉, (3.16)

the Coulomb interaction of the electron density with itself is given by

EH [n] =
1

2

∫
n(~r)n(~r′)

|~r − ~r′|
d3rd3r′. (3.17)

Finally, this allows us to evaluate the total energy in this picture,

EKS = TKS +

∫
Vext(~r)n(~r)d3r + EH + EXC [n], (3.18)

where again, Vext is the external potential due to nuclei and external fields
and we have introduced the exchange and correlation functional EXC [n],
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which includes all many-body effects. Comparing eq. 3.18 with eq. 3.13
allows us to determine the form of the exchange-correlation functional

EXC [n] = T [n]− TKS + Eint[n]− EH [n]. (3.19)

Thus the exchange-correlation functional’s aim is to compensate the dif-
ference in kinetic and interaction energy between the real many-electron
system and the independent electron system. Obviously, the explicit form
of the exchange-correlation energy functional is exceedingly complex, how-
ever it may be very well approximated.
Finally by taking the functional derivative of eq. 3.18 with respect to the
density, we may arrive at the much celebrated Kohn-Sham equations:

HKS = −1

2
∇2 + Vext(~r) + VH(~r) + Vxc(~r), (3.20)

and the secular equation

(HKS − εi)ψi(~r) = 0, (3.21)

where εi are the Kohn-Sham eigenvalues. This gives an equation for each
electron that must be solved and this solution gives rise to the electron den-
sity, which in turn determines the external potential Vext which each electron
equation has to be solved self consistently for.
The simplest approximation to the exchange-correlation (XC) functional is
that achieved by considering an uniform electron gas, from which an analyt-
ical solution can be achieved in terms of the local density, hence the name
Local Density Approximation (LDA). More complicated functionals exist
that also depend on the local density gradient, however the LDA turns out
to be an excellent approximation in many cases.
In practice, solving the Kohn-Sham equations for all electrons in a system
of many atoms is computationally unfeasible, when the properties of inter-
est are determined only by the outermost electrons in each atom. Instead,
each atom and its core electrons are represented by a pseudopotential, which
replicates the correct behaviour of the outer electrons in the atom, outside
some cut-off radius. In turn, this reduces the number of electrons that need
to be solved for dramatically.

3.3 Beyond DFT

As mentioned, DFT only promises to accurately determine the ground state
energy, however it makes no assertions of the excited states in the system. As
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it turns out, the addition of an electron to an isolator causes a discontinuity
in the exchange-correlation potential, which may be described in terms of
the energy dependent electron self-interaction and thus not in terms of the
density78,79. This is the predominant reason for the underestimation that
DFT with various functionals makes to the band gap in semiconductors.
While the band gap predicted by exact DFT (eg. where the XC potential is
fully determined) may be found accurately with the help of a suitable XC
functional, this band gap will also be too small and additional self energy
terms are needed in order to obtain correct conduction band states80. How-
ever, knowing at least the first excited states is important in order to asssess
several physical quantities, in all kinds of materials.
A particularly succesful framework for the determintion of the excited states
is the GW approximation. Due to Coulombic repulsion each electron is sur-
rounded by a positive screening potential, forming a quasi-particle. Mathe-
matically this quasi-particle is described by the single particle Green’s func-
tion G, which requires the complete self energy

∑
, that includes and de-

scribes all exchange and correlation effects. Due to the complex nature of
the self energy in extended systems, only an approximate to it may be ob-
tained. In the GW approximation (GWA) the the self energy is expanded
in the screened interaction W and single particle Green’s functions G, thus

∑
≈ GW, (3.22)

which gives name to the approximation. While this theory was proposed al-
ready in 1965 by Hedin81, computational and practical constraints has kept
it from being used until the eighties82,83. As we shall see, when applied to
most semiconductors, the resulting band structures closely reproduce exper-
imental values. An example of this is silicon, which as always has attracted
much attention due to its dominant industrial role. The band structure of
Si with and without the GW corrected energies is shown in fig. 3.3, taken
from84. The found band gap of 1.25 eV is in very good agreement with the
experimental value of 1.17 eV and similarly the direct gap is found to be
3.36 eV compared to the experimental value of 3.40 eV. As is also seen, the
correction to the valence band states is marginal, the LDA approximation
is indeed a very good one for the valence bands. The conduction bands,
however, are shifted by an almost constant value across the band structure.
This nearly equal shifting of the conduction band states is often found in
GW calculations.
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Figure 3.3: Calculated band structure of silicon on the basis of DFT. The
dashed lines represent the LDA band structure, whereas the solid lines rep-
resent the LDA+GW calculation. From84.
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Theoretical Modelling

4.1 α-Sn

In comparison to the the higher-lying group IV elements, the theoretical
work on α-Sn is very limited. In particular, the modelling of α-Sn nanocrys-
tals is limited to small nanocrystals85–87 for all but an effective mass, ~k · ~p
method88. An accurate method for determining electronic and optical prop-
erties of nanostructures is tight binding, which also allows for surface effects
to be included. However, prior to this, sufficiently accurate tight binding
parameters did not exist85,89–91.

4.1.1 Bulk modelling

The electronic structure of α-Sn may be modelled very accurately within
the LDA+GW framework, however using the DFT package abinit the inclu-
sion of spin-orbit interaction (SOI) in the GW calculation is not possible. A
way around this, that has the added benefit of saving computational power,
is to calculate the GW-shifts seperately and apply them to an LDA band
structure, with SOI included. This was done in ref.59. Then, tight bind-
ing parameters were fitted to the GW-corrected band structures, at various
degrees of strain, resulting in 3 sets of parameters for −5%, 0% and 5%
uniform, tensile strain. The varying degrees of tensile strain allows for the
calculation of nanocrystals under strain, as they need to be strain-stabilized
in their matrix, as discussed in sec. 2.4. The band structure as well as the
TB fit may be seen in fig. 4.1. An excellent way to check the accuracy of the
band structure is to calculate the dielectric constant and compare it to the
experimental findings. While this may be done on the basis of the GW band
structure, in a highly accurate framework (see for instance ref.92), however
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Figure 4.1: DFT band structure of α-Sn under varying degrees of strain.
Black lines are energies from the DFT band structure (including SOI), ma-
genta squares are the GW corrected values and the magenta lines are from
the TB-fit to the GW band structure, from ref.59.
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Figure 4.2: Real and imaginary dielectric constant, calculated for α-Sn based
on the TB band structure (solid lines), dotted line is the experimental value.
From ref.59.

such an approach is quite complicated and very computationally taxing. A
much simpler, computationally fast approach is to use the TB band struc-
ture and the method outlined in sec. 3.1.1. This has the added advantage
of also testing whether the TB fit is good, outside the fitted interval, as a
poor fit outside the fitted interval would result in a poorly corresponding
dielectric constant, as this is obtained by integrating over the full Brillouin
zone. The calculated and experimental values for the dielectric constant may
be seen in fig. 4.2, with the value 3.2 eVÅfound for the momentum matrix
element, fitted to minimize the deviation from the experimental result. As
may be seen the agreement with experiment is very good and the features
corresponding to the first transitions in the band structure is apparent in the
ı́maginary dielectric constant as well. Also the splitting of the peak around
1.8 eV is due to SOI, this highlights the importance of including SOI in the
calculation, in order to produce the experimental results truthfully. We now
have a reliable set of TB parameters and may proceed to apply those to
nanocrystals.

4.1.2 α-Sn nanocrystals

We calculated the properties of both faceted and round nanocrystals, to
investigate if there are any structural effects and as faceted α-Sn nanocrys-
tals have been observed experimentally64. The faceted nanocrystal are con-
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Figure 4.3: Illustration of α-Sn nanocrystals. The left are round crystals
whereas the right are faceted. The golden atoms are Sn atoms, whereas the
white surface atoms are H.

structed as octaeders, truncated by (111) facets, as in64, see fig. 4.3 for
an illustration. As the surface atoms have dangling bonds, these are satu-
rated with hydrogen atoms, in order to supress surface states. The hydrogen
atoms are treated like single s orbitals with Hssσ = −4 eV and Hspσ = 4
eV, considering only nearest neighbour interaction, for α-Sn we apply the
TB parameters from ref.59. Nanocrystals ranging from SnH4 and up to
Sn2317H756 for round and Sn2293H756 for faceted crystals were constructed.
This corresponds to a nanocrystal radii of up to 2.65 nm, which covers the
observed experimental species reasonably63,64,66. The effective radii of the
faceted crystals were calculated by considering a round nanocrystals with
an equivalent number of Sn atoms. Also, as observed species are strain sta-
bilized, we consider nanocrystals under −5% and 5% tensile strain as well.
The energy gaps found for various sized nanocrystals may be seen in fig. 4.4.
As expected, for unstrained nanocrystals the band gap tends to zero, as
in bulk, as the radius becomes large. Interestingly, the nanocrystals cover
an energy range around 0.1-1 eV, a range not normally available to small
nanocrystals, as the bulk band gap energy of most materials prevent this.
Given good optical properties, this may make them interesting candidates
in NIR applications. Furthermore we see that strain plays a quite large
role, with up to 0.5 eV separation between unstrained and strained crystals,
as such strain engineering is expected to be relevant in applications. The
differences between faceted and round crystals is found to be neglible, ex-
pectedly they would play a bigger role if surface effects were treated in a
more accurate manner.
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Figure 4.4: Band gap versus radius for α-Sn nanocrystals in both strained
and unstrained geometries. Top panel is for spherical nanocrystals, bottom
panel is for faceted nanocrystals.

35



Chapter 4. Theoretical Modelling

Figure 4.5: Imaginary dielectric constant for round α-Sn nanocrystals
in strained and unstrained (a=6.47 Å) configurations. Top panel is for
Sn275H172 and bottom panel is for Sn1863H605.

The imaginary part of the dielectric constant was then calculated for various
sized nanocrystals, see fig. 4.5. As is seen, there is an immediate onset of
absorption at an energy corresponding to the band gap energy. The direct
onset of absorption is believed to be due to the direct gap nature of α-Sn
and is particularly promising for applications in optical absorbers, for in-
stance NIR detectors. Particularly for large nanocrystals (bottom panel in
fig. 4.5) the absorption spectrum becomes increasingly bulk-like (see fig. 4.2),
as expected. While it may be tempting to conclude that tensile strained
nanocrystals absorb more strongly, much of this owes to the 1/E depen-
dence of the dielectric constant. Calculating the oscillator strength, it may
be seen that it is around 10% stronger for tensile strained nanocrystals.
Finally, as excitonic effects are not included in the calculation of the optical
properties, we attempt to assess the size of such effects. The scale of the exci-
ton binding energy is given by the effective Rydberg, Ry∗ = 13.6eV ·µ/ε(0)2,
with µ the reduced, effective electron-hole mass and ε(0) is the static dielec-
tric constant. Based on experimental values we may find µ = 0.024m0. The
static dielectric constant may be obtained by Kramers-Kronig transforma-
tion of the imaginary dielectric constant to obtain the real part, for bulk,
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Figure 4.6: Calculated static dielectric constant ε(0) for α-Sn nanocrystals of
varying radii and in both unstrained (a=6.47Å) and strained configurations.

unstrained α-Sn we find ε(0) = 25. This corresponds to an effective Ryd-
berg of 0.58 meV. In nanocrystals, the static dielectric constant is reduced,
see fig. 4.6. This yields somewhat larger effective Rydbergs, particularly for
compressed α-Sn, which has semiconductor-like character in bulk. In any
case values no greater than 2.3 meV are found for tensile strained nanocrys-
tals. Tensile strained nanocrystals show much stronger screening as bulk,
tensile strained α-Sn has more metal-like character. In any case, these num-
bers are upper bounds, as intraband screening will contribute further to the
dielectric screening, at finite temperature. Also, as we see, excitonic binding
appears to be very weak and as such we do not expect α-Sn nanocrystals to
be affected greatly by exciton effects.

4.2 The SiSn System

In order to further investigate the properties of Sn-Si systems, we study the
SiSn alloy. We aim to determine the electronic and optical properties of this
system, as previously we will determine the properties under uniform, ten-
sile strain to account for real world conditions. Also, the optical properties
are determined by using a TB parameterization to extrapolate the electronic
structure to the whole Brillouin zone. The TB parameters may also be use-
ful for studying α-Sn nanocrystals in a Si matrix, in order to account for the
Si-Sn bonds on the interface in such a system.
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Si

Sn

Figure 4.7: The crystal structure used for SiSn2. Black atoms are Si, grey
atoms are Sn.

We start off as for α-Sn by calculating the band structure under −5%, 0%
and 5% uniform, tensile strain. A two-atom SiSn unit cell with zinc-blende
symmetry was constructed and relaxed. In order to assess stability, the total
energy per unit cell for the relaxed unit cell is compared with Si and Sn,
calculated using a similar approach and pseudopotentials. Furthermore, we
relax the SiSn2 structure formed by the 3-atom unit cell with Si at (0, 0, 0)
and Sn at ±(14 ,

1
4 ,

1
4) in a fcc lattice, see fig. 4.7. This is done to investi-

gate whether a compound like this could be thought to form in SiSn alloys
and in that case, which properties it would have. In table 4.1 we have
summarized the results and the cost of formation for the compounds. Start-
ing with the lattice constants found for Si and α-Sn, we see that they are
slightly smaller than the experimental values, 5.40Åversus 5.43Åfor Si and
6.41Åversus 6.49Åfor α-Sn. This underestimation of the binding is normal
for LDA and in good agreement with other theoretical results in similar
frameworks93–98. For SiSn we observe a lattice constant inbetween that
found for Si and α-Sn which is as expected, as is the observation from the
cost of formation, that it is a metastable phase. Notably, we also see that
the silicide, SiSn2 may form more favorably than SiSn, while clearly still
instable it may be stabilized under suitable conditions. We have not found
any mentions of SiSn2 in the litterature which may be a sign that the strain
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Figure 4.8: The total DFT energy versus the lattice constant a for Si (top
left), α-Sn (top right), SiSn (lower left), SiSn2 (lower right). Experimental
values for Si and Sn are marked by arrows and green dots.

Compound Energy/cell a0 Cost of formation/atom

Si -215.84 eV 5.43Å 0

α-Sn -194.37 eV 6.49Å 0

SiSn -202.04 eV 5.93Å 3.07 eV

SiSn2 -300.97 eV 6.68Å 0.41 eV

Table 4.1: Total energy calculated for Si, α-Sn, SiSn and SiSn2, the equi-
librium lattice constant a0 and the cost of formation per atom in SiSn and
SiSn2 relative to Si and α-Sn.
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Figure 4.9: DFT+GW band structure for SiSn (points) and TB fit (lines).
Top panel is for 5% tensile strain applied to the geometry, middle is equi-
librium and the lower is for 5% compressive strain.

stabilization of this compound is not easy.
Following the initilization and relaxation of the geometry, we calculated the
LDA band structure including SOI under −5%, 0% and 5% tensile strain.
Following a procedure similar to that used for α-Sn, we proceeded to calcu-
late GW corrections and applying them to the LDA band structure. Finally,
we fit tight binding parameters to the corrected band structures, this was
done by using a mix of Si99 and α-Sn59 sp parameters, including up to third
nearest neighbour, as an initial guess. The error between the TB band struc-
ture and the DFT band structure within the L → Γ → X path in ~k-space
was then minimized by varying the TB parameters. The corrected band
structures and their fits may be seen in fig. 4.9. Within the fitted region,
the fit is excellent for all bands and even outside the fitted interval, the
fit remains very good for all valence bands and the first conduction bands.
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Figure 4.10: Calculated transition energies for the Γ → L, Γ → Γ and
Γ→ X in SiSn, for varying degrees of tensile strain. The points are results
from the calculation, the line serves as a guide to the eye.

While higher conduction bands may not be reproduced quite accurately, we
are mostly interested in the lower conduction bands to determine the optical
properties at low energies. We observe that SiSn is an indirect band gap
semiconductor in equilibrium, whereas under 5% tensile strain, the gap has
become direct. In order to further investigate the behaviour of this effect,
we have calculated band structures for 1, 2, 3 and 4% tensile strain as well.
From these we have extracted Γ→ Γ, Γ→ L and Γ→ X transition energies
and plotted them as a function of applied tensile strain, in fig. 4.10. As it
turns out the transition to direct gap happens at ≈ 2.2% tensile strain, a
finding in good agreement with those of ref.100, however we report a slightly
larger direct band gap, due to the more accurate estimate of the conductions
bands in the GW corrected calculation. From an applications point of view,
this highlights the possibilities and importance of strain engineering of SiSn
compounds, for instance for NIR applications. In order to further investi-
gate what properties SiSn compounds will have, we turn our attention to
the silicide SiSn2. In contrast to the semiconducting nature of SiSn, SiSn2

has metallic characteristics, as seen from the band structure in fig. 4.11. We
attribute this behaviour to the silicide SiSn2, having a more ‘β-like” phase,
contributing to metallic properties. This is also a possible explanation for the
more favorable formation of SiSn2 as compared to SiSn, following table 4.1,
as the β-phase of Sn is more energetically favorable than the α-phase at
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Figure 4.11: DFT band structure of SiSn2, with the Fermi level at 0 eV, as
marked by the dotted line.

room temperature. It should be kept in mind, that despite the lower cost
of formation, this comes at the expense of a large lattice mismatch with Si
and as such, some of this lower cost of formation is offset by strain energy.
Under all circumstances, SiSn2 formation could have detrimental effects to
optoelectronic devices based on SiSn alloys. Finally, we wish to determine
the optical properties of SiSn, following the method outlined in sec. 3.1.1.
This method requires knowledge of the momentum matrix elements psp,Si
and psp,α−Sn, in order to predict the optical properties of SiSn. The value
psp,α−Sn = 3.2eV may be obtained from ref.59, however the value of psp,Si
may not be readily retrieved from the literature. Thus, we adopt the TB
parameters for Si from ref.99 and calculate the optical spectra on this basis.
Then these are fitted to the experimental spectra from ref.75, via the ma-
trix element psp,Si, such that the low energy features from the experiment
are reproduced in the theoretical results. On the basis of this approach we
arrive at psp,Si = 5.2eV , the resulting theoretical spectra compared to the
experiment is shown in Fig. 4.12. The agreement is very reasonable in the
sense that the low energy part of the spectrum is produced reliably. It is
worth stressing that excitonic effects are not included and as such the low
energy peaks are to be associated with intense band edge transitions and not
exciton states. Lastly, the optical spectra of SiSn may then be calculated,
now that we know both momentum matrix elements. Doing this for various
strain configurations, the spectra may be seen in fig. 4.13.
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Figure 4.12: Calculated optical spectra for Si (black lines) compared to the
experimental values (green lines) from ref.75.

Figure 4.13: Calculated dielectric constant for SiSn under tensile strain (top
panel), equilibrium (middle) and compressive strain (bottom). The black
line is the imaginary part of ε and the green line is the real part.
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Experimental Results

5.1 Er3+ Lifetime in Silica

The goal of this study was to investigate photoluminescence properties of
Er3+ in glass in theabsence of nanocrystals, as a function of annealing tem-
perature. This is done in order to gain deeper insight into the interaction
between nanocrystals and erbium particularly in low temperature annealed
samples, where the environment around erbium certainly is more pertubed
than in high temperature annealed glass.

5.1.1 Method

The SiO2:Er samples are produced by depositing 100 nm of SiO2:Er on a
Si substrate, using magnetron sputtering. The SiO2:Er+NC samples are
produced by sputtering 20 periods of 2 nm Si and 4 nm SiO2:Er on a Si
substrate. Subsequently, the samples are annealed at 5-1100◦C in N2 for
one hour. Finally some of the the samples are hydrogen passivated at 500◦C
for one hour in 5% H2,95% N2. The SiO2:Er samples are available both with
and without hydrogen passivation.
As the amount of light emitted by the non-sensitized samples is very low, par-
ticularly for the low temperature annealed samples, it is neccesary to make
an experimental setup that is as sensitive as possible. Thus, a NIR-PMT is
used in conjunction with a 1500 nm long pass filter for light collection. The
advantage of this compared to a spectrometer is twofold, first of the entire
Er3+ peak centered at 1535 nm is collected and second the losses inherent to
a spectrometer are avoided. As the PMT is not sensitive in the area above
1650 nm, this gives a fairly narrow spectral window, still.
For excitation, a nanosecond pulsed Nd:YAG laser operating at 10 Hz in
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conjunction with an optical parametric oscillator (OPO) is used. This al-
lows for scanning the excitation wavelength, to pump Er3+ resonantly. To
obtain time resolved spectra, an exictation wavelength is chosen and the
trigger pulse from the laser triggers a multi-channel scaler, which tempo-
rally resolves the signal from the PMT. The wavelength used for excitation
in the time resolved spectra is 520 nm, unless otherwise noted. A schematic
of the experimental setup may be seen in fig. 5.1. Due to the temporal nature
of the signal having an initial fast behaviour and a slow long component,
a spectrum with high time resolution (80-320 ns) of the initial part of the
complete spectrum is joined with a lower resolution spectrum with a longer
time range.

Figure 5.1: Experimental setup used to capture time resolved photolumines-
cence from samples with Er-doped silica deposited on top of Si. The trigger
pulse from the Nd-YAG laser starts the multi-channel scaler which allows
for temporal resolution of the photoluminescence recorded by the PMT.

5.1.2 Results and Discussion

First a PLE scan is performed, in order to assess which wavelengths are
suitable for excitation and to ensure that only resonant excitation of er-
bium takes place in the samples, and that no significant sensitizing effects
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Figure 5.2: Photoluminescence at 1530 nm, from SiO2:Er samples, as a
function of the excitation wavelength. Peaks correspond to various energy
transitions in Er3+.

are present. Such a scan is seen in fig. 5.2. As is evident, only transitions
corresponding to energy transitions in Er3+ yields any significant photo-
luminescence yield. The peak at 980 nm thus corresponds to excitation
into the 4I11/2 level, whereas the 520 nm peak corresponds to 4S3/2 and
higher energy peaks to even higher energy levels. The increase at 1400 nm
and beyond corresponds to resonant excitation directly into the 4I13/2 level.
Samples annealed at lower temperatures exhibit the same behaviour. As
such we are led to believe that there are no sensitizers present in our sam-
ples and only resonant excitation of Er is possible. Time resolved spectra
are then obtained, with 520 nm excitation, as this yielded the most light
output. Initial components of each spectrum, regardless of temperature, are
characterized by an immediate fast decay, followed by an ingrowth and then
finally a long, slow, temperature dependent decay (3µs-10.5ms). The vast
majority of the emitted light is caused by the slow component. An exam-
ple of such an emission pattern is shown in fig. 5.3. As excitation takes
place into the 4S3/2 level, the ingrowth may be explained by relaxation to
4I13/2 being neccesary before emission can take place. However, emission
with a fast temporal character does take place before this, this may be as-
cribed to fast processes (e.g. Auger) causing an initial high population of
the 4I13/2 level, with a subsequent fast process, such as upconversion, caus-
ing the quick depopulation of this initial population. The same behaviour
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Figure 5.3: Time resolved spectrum from Er3+ in SiO2, taken from a sample
annealed at 900◦C in N2, followed by H-passivation at 500◦C. The spectrum
is characterized by an initial fast decay, followed by an ingrowth (≈ 100 µs)
and a long, slow decay.

is found when pumping with 980 nm into the 4I11/2 level. A similar re-
sult was found for SiO2:Er with nanocrystals in ref.22, in this paper where
the erbium was sensitized by nanocrystals the initial fast population was
ascribed to hot carriers in the nanocrystals relaxing to the ground exciton
state and exciting the erbium to the 4I13/2 state. Obviously, this can not
be the case here, although a somewhat similar explanation may be feasible.
In any case, both with and without nanocrystals, this is an area worthy
of much more study, though one often overlooked as the focus is often on
steady state PL or the slow PL from erbium. However, we will focus on
the slow component from now and onwards. As is seen in fig. 5.4, the de-
cay time is generally increasing with temperature. This is not surprising
and the case of deposited glass annealed at low temperatures is somewhat
comparable to glass damaged during ion implantation of Er-ions. In such
studies101,102, an increase in erbium lifetime is also observed with increasing
anneal temperatures, this is believed to be due to the glass having many de-
fects, introducing non-radiative pathways which leads to shortening of the
4I11/2 lifetime. These defects are annealed away as temperature increases,
inhibiting non-radiative pathways. The non-passivated samples show a large
deviation for the low-temperature annealed samples and no explanation for
this is readily available. However it is remarkable that the high temperature
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Figure 5.4: Lifetime of the slow part of the 1530 nm emission from SiO2:Er
samples at various annealing temperatures, for both unpassivated and H-
passivated samples.

annealed non-passivated sample shows longer decay than the H-passivated
sample. The value of 10.58 ms for the non-passivated sample is close to that
observed in high quality SiO2

30 and is a sign that a good defect free film
is formed. The quicker decay of the H-passivated sample may actually be
because of OH-defects being introduced during passivation, leading to more
non-radiative pathways being available in the H-passivated samples. The
total yield, in this case the time-integrated signal from each sample, is illus-
trated in fig. 5.5. For the hydrogen-passivated samples there is a tendency
towards growth, some plateauing at 700-800◦C and then further activation
as the temperature is increased. The general tendency of increasing yield
with temperature is in part explained by the longer lifetime of each excited
erbium ion as the annealing temperature increases and the glass environ-
ment of the erbium ion becomes more defect free. The effect of hydrogen
annealing on the total yield in these samples is uncertain and due to the
variance observed in the lifetime of the the non-passivated samples, further
investigation is needed to draw final conclusions on this part of the subject.
From an applications point of view, however, it is highly relevant to be able
to access as many erbium ions as possible in the material. To get an estimate
of how many erbium ions are excited in the samples, relative to eachother
we need to compensate for the non-radiative decay. Thus we calculate the
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Figure 5.5: Total yield from the 1530 nm peak, from SiO2:Er samples an-
nealed at various temperatures, for both unpassivated and H-passivated sam-
ples.

active erbium concentration, in a simple 2-level picture from

Y ∝ [Er3+]
τ

τrad
(5.1)

where τrad is the radiative lifetime of erbium in absence of non-radiative
pathways and τ is the measured decay time for a given annealing tempera-
ture. Due to the variance in the non-passivated samples, the relative erbium
activation is only estimated for the passivated samples and is plotted in
fig. 5.6. As is seen the optimal erbium activation takes place around 800◦C
which is consistent with the results found in ref.102. At higher temperatures,
starting cluster formation may lead to a lower amount of active erbium ions.
However, this effect is disguised in the yields, as non-radiative pathways
quench a great deal of the luminescence at low anneal temperatures. We
now turn our attention towards the samples where erbium is sensitized with
nanocrystals.

5.2 Effective Er3+ Cross Section in SiO2:Er+NC

The aim of this series of experiments was to investigate the dependence of
photoluminescence properties of SiO2:Er+NC as a function of the annealing
temperature. This includes both steady state and transient behaviour, from
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Figure 5.6: Approximation of the relative activation of Er3+ in different
samples as a function of the annealing temperature in H-passivated samples.

the latter it is possible to extract the effective cross section for Er3+ in the
presence of nanocrystals and gain deeper understanding of the interaction.

5.2.1 Method

The samples are made by depositing multiple alternating layers of 2 nm Si
and 4 nm SiO2:Er on a Si substrate using magnetron sputtering. The sam-
ples are then annealed at temperatures from 500-1150◦C in N2 for 1 hour
and are then passivated in 95% N2, 5% H2 for 1 hour.
The experimental setup is somewhat the similar to the one in fig. 5.1, but
except for a pulsed laser, an Ar+-ion laser at 488 nm is used in conjunc-
tion with a chopper wheel triggering the multichannel scaler, this allows for
long pulses with lower intensity, which is neccesary to record the rise time.
Instead of a longpass filter, a monochromator is used in conjunction with
the PMT. Initial steady state photoluminescence is recorded with the chop-
per wheel off. Time resolved spectra are recorded with the chopper wheel
at varying frequencies from 55-210 Hz depending on the decay time of the
sample. To calculate the effective cross section, we measure the rise time at
varying pump intensities, with a known spotsize. The spotsize was measured
by sweeping a razor blade through the beam at the sample position in along
the long and short axis of the beam, as the incoming beam is elliptical. To
vary the pump intensity a set of polarizers are used, by varying the angle of
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Figure 5.7: Top: Photoluminescence spectra from SiO2:Er+NC samples
annealed at various temperatures. Bottom: Integrated photoluminescence
signal as a function of the sample anneal temperature.

the first polarizer with respect to the second, it is possible to regulate the
incoming power.

5.2.2 Results and Discussion

As is apparent from fig. 5.7 the spectral shape of the erbium-related emis-
sion does not change appreciably with the annealing temperature, meaning
that the energy levels in the Er3+ ion are not significantly altered by the
slightly varying glass environment. The integrated erbium luminescence
does, however change significantly, leading to maximum luminescence at
700◦C, before decreasing and having a local maximum at 1100◦C and de-
creasing again at higher temperatures. The phenomenon at 700◦C is seen
in the litterature40–42 and ascribed to so called luminescence centers being
formed at these lower annealing temperatuers and acting as erbium sensitiz-
ers. As temperature increases crystalline Si nanocrystals are formed and act
as sensitizers. When temperature is increased even further, the Si starts to
melt together and the structure of the films breaks down. Next, the decay
time of the Er3+ luminescence at 1530 nm is measured and fitted with a bi-
exponential. The 1/e lifetimes as a function of the annealing temperature
are seen in fig. 5.8, as is seen there is a local maximum at 800◦C, and a
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Figure 5.8: Decay times for erbium in SiO2:Er+NC samples as a function
of the annealing temperature.

general increase with temperature. The general increase with temperature
is easily understood in terms of the glass forming a more ordered network
leading to longer Er3+ lifetimes, as is also seen for the case of SiO2:Er. The
local maximum at 800◦C may possibly arise from the fact that amorphous
nanocrystal formation starts to set in around 900◦C, due to the increased
silicon diffusion. This may bring even further disturbances to the glass net-
work, before a temperature high enough to fully repair the glass is met and
a decay in the ms regime is met. In any case, the decay times are faster than
in the pure silica samples, which is likely due to the disturbances brought by
the increased silicon content in the samples. The natural question to ask is,
if decay times are not particularly slow, e.g. we possibly have a high amount
of non-radiative channels, why is the luminescence then maximized at 700-
800◦C?. Two possible scenarios are that the sensitizers are simply more
efficient at some annealing temperature, another is that the number of sen-
sitizers is maximized at some given temperature. A way to investigate this
in detail is to determine the effective cross section for the erbium sensitized
by the nanocrystals. In a simplified two-level picture of the Er-nanocrystal
system, the cross section may be derived from,

1

τrise
= σφ+

1

τdecay
(5.2)

where σ is the (effective) cross section, φ is the incoming photon flux, and
τrise and τdecay are the rise and fall times of the erbium luminescence, under
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Figure 5.9: Effective cross section for erbium in SiO2:Er+NC, as a function
of the annealing temperature.

long-pulsed excitation. By varying the excitation intensity, the cross section
may thus be determined. As is seen in fig. 5.9 the cross section remains al-
most constant until 800◦C, where it drops off and decreases with increasing
anneal temperature. As such, it seems as if the formation of nanocrys-
tals that takes place changes the interaction dynamics between erbium and
sensitizer. Up to 800◦C it would appear that the number of sensitizers is
optimized, as the luminescence is maximized here, dispite the effective cross
section not being increased. As was seen in sec. 5.1, 800◦C is also around the
temperature that yields the highest active Er fraction, which may in part
explain why sensitization is optimized at this temperature. For the high
temperature annealed samples, it appears that the crystalline nanocrystals
are not neccesarily the best sensitizers in terms of cross section, but are
mostly aided by more efficient erbium luminescence from the much more
ordered silica matrix.

5.3 Er3+ Diffusion in Silica

The interaction between nanocrystals and Er3+ in silica is one that has been
much discussed and investigated, yet some controversy is still present regard-
ing which mechanism is at play. Commonly, one wishes to determine the
distance dependence of the interaction, in order to ratify whether a Förster
or Dexter interaction is in play, as discussed in section 2.3.3. However, high

54



Chapter 5. Experimental Results

Figure 5.10: Illustration of the film structure, for determing erbium diffu-
sivity. In the MS films the thickness of the SiO2 layer was 350 nm, in the
CVD layer it was 220 nm, in the TH layer it was 250 nm. In all cases the
SiO2+0.2 at.% Er layer was around 50 nm.

temperatures are needed in order to form crystalline nanocrystals in the films
considered for such an interaction study. It becomes a valid, but largely ig-
nored, question whether erbium diffusion plays a significant role, which we
set out to investigate in54. Thus the aim was to determine the diffusivity
for erbium in silica, by using SIMS (Secondary Ion Mass Spectroscopy)

5.3.1 Method

A number of samples were prepared on top of Si wafters, consisting of 220-
350 nm of SiO2 with around 50 nm of magnetron sputtered SiO2 + 0.2
at% Er on top were prepared. The pure SiO2 layers were prepared by both
magnetron sputtering (MS), chemical vapour deposition (CVD) and ther-
mal heating in a wet oxygen ambiance (TH), to investigate the effect of
differently grown SiO2. Finally, in the MS system, a sample with SiO2 on
both sides of the SiO2+Er layer was prepared. For an overview of the sam-
ples, see fig. 5.10. After preparation the samples were cut in pieces, one
piece from each sample was used as a reference and the rest were annealed
at temperatures from 1000-1100◦C for 1.5-7 hours, with lower temperature
samples annealed for longer times, due to the lower diffusion rate at lower
temperature.
Er concentration profiles were then obtained by secondary ion mass spec-
troscopy (SIMS) of samples both before and after annealing. In the instru-
ment a 100×100µm2 area was sputtered with Bi+ ions, while Cs+ ions were
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used for the mass analysis of the area. To convert the sputtering time to a
depth scale, the sputtered crater depth was subsequently determined with a
surface profiler.

5.3.2 Results and discussion

To determine the diffusion rate, the concentration profile of the as-deposited
sample was convolved with a Gaussian function f(x) = A/(

√
2πσ) exp (−x2/2σ2)

to best reproduce the concentration profile from the annealed samples. This
corresponds to diffusion according to Fick’s second law, with σ2 = 2Dt,
where D is the diffusion coefficient and t is the annealing time. The front
factor A, close to unity, is to compensate for slightly different areas under
the distributions. An example of this fit may be seen in fig. 5.11, for the
MS-SiO2/SiO2+Er/MS-SiO2 sample annealed at 1100◦C. As is obviously
apparent, Er has diffused into the pure SiO2 layers on both sides and no
surface effects are apparent. Investigating the diffusion coefficient at differ-
ent temperatures, as seen in fig. 5.12 allows to determine the temperature
dependence of the diffusion coefficient according to the Arrhenius equation

D(T ) = DT0 exp

[
−∆E

kb

(
1

T
− 1

T0

)]
, (5.3)

where kb is Boltzmann’s constant, T is the anneal temperature, T0 is the
reference temperature and ∆E is the activation energy. Fitting according to
this, we obtain an activation energy ∆E = 5.3± 0.1 eV, with the prefactor
DT0 = 1.76 ± 0.08 · 10−16 cm2/s at a reference temperature T0 = 1346◦

K, with the uncertainties coming from the statistical error of the fit and a
2% uncertainty of the depth scale. Diffusion was also investigated in the
one-layer samples, however a surface effect causing pile-up of Er takes place,
which was not investigated further, instead only a region at least a diffusion
length away from the surface was fitted. The results from these samples
are also shown in fig. 5.12. Somewhat surprisingly, the diffusion coefficient
is not very sensitive to the type of SiO2, in fact diffusion in the less dense
MS-SiO2 appears to be faster than in CVD or thermal SiO2, however this
is within the statistical error of the experiment and as such demand further
investigation. Compared to the 2MS sample, the diffusion coefficients from
the one-layer samples appear greater by a factor of two, even for the 1MS
sample, which certainly indicates some surface effect that is not understood
at this point.
Most importantly, however, is the determination of a diffusion constant for
Er in SiO2, which is relevant under any circumstances. For instance, if we
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Figure 5.11: The Er SIMS profile of the MS-SiO2/SiO2+Er/MS-SiO2 sample
before (blue crosses) and after annealing at 1100◦ C (red dots) as well as
the fitted result (black line), corresponding to a diffusion length, L = 2

√
Dt

of 31 nm.

Figure 5.12: Diffusion coefficient versus temperature for Er in thermally
grown SiO2 (blue circles), CVD grown SiO2 (green diamonds) and mag-
netron sputtered SiO2 (red cross). The black straight line is an Arrhenius
fit according to eq.5.3.
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want to perform an experiment with a buried SiO2+Er layer and annealing
takes place at 1100◦C, for 1 h, we obtain a diffusion length of 25 nm. Clearly,
any subsequent assumptions about the Er only being in the buried layer
following the anneal will be wrong.

5.4 Nanocrystal-Er3+ Interaction Distance

Having now determined the importance of erbium diffusion, it is possible
to properly design an experiment to determine the distance dependence of
the interaction between Er3+ and Si nanocrystals. From this it should be
possible to infer whether a Förster or Dexter mechanism is responsible for
the interaction. Thus, the goal was to determine the distance dependence
of the interaction mechanism.

5.4.1 Method

The samples are produced by RF-magnetron sputtering, with the substrate
heated to 200◦. The sample structure is illustrated in fig. 5.13. First a buffer
layer of SiO2 is deposited, followed by 10 superlayer structures consisting of
(10 - d) nm SiO2, d nm SiO2:Er and 1.5 nm Si, finally a 50 nm SiO2 capping
layer is applied. The thickness, d, of the SiO2:Er layer is varied and samples
with 0, 0.3, 0.6, 0.9, 1.2, 1.5, 2.0 and 3.0 nm are fabricated. The samples
are annealed at 700◦ C in N2 for one hour, followed by hydrogen passivation
in 95% N2 and 5% H2. The annealing temperature and time was kept at
700◦C, as previous studies54 have shown that this should give no appreciable
diffusion of erbium in silica, thus the position of the erbium in relation to
the silicon is well-defined. The samples are excited by a continous wave
laser diode at 405 nm, with the pump flux being adjusted by varying the
spot size on the sample. Photoluminescence above 1100 nm was detected
with a monochromator and a near-infrared sensitive photomultiplier tube.
Photoluminescence at 700-1100 nm was detected using a CCD.

5.4.2 Results and Discussion

The samples exhibit broadband Si-related photoluminescence from 700 nm
and upwards as well as a characteristic and much more intense peak centered
around 1535 nm arising from Er3+ 4I13/2 →4 I15/2 luminescence.
The total PL-yields from the Si and Er peaks from the 3.0 nm Er-layer
sample are plotted in fig. 5.14 as a function of the pump intensity. The Er
intensity yields information about the efficiency of the sensitization, whereas
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Figure 5.13: Sample structure used for determining the interaction distance.
Multilayer samples with increasing SiO2:Er layer thickness, with the total
layer thickness constant are fabricated.

the Si intensity gives information about electron-hole dynamics in the Si
sensitizing layer. While the Si peak seems to scale linearly with the pump
intensity, the Er peak exhibits saturation at high pump intensities, owing to
a finite number of Er ions that can be excited and decay radiatively, which
sets the upper limit for the Er peak.
We assume the energy transfer rate between erbium and sensitizer to be
on a simple one-dimensional form, P (x) = P0 exp(−x/x0), where x is the
distance between sensitizer and erbium and x0 is the characteristic inter-
action distance. Defining Γ as the decay rate of the 4I13/2 state, the total
luminescence yield as a function of d in the limit d � x0 can be found to
be:

Y∞ = C ln

(
P0

Γ
+ 1

)
≡ AIsat ln

(
I

Isat
+ 1

)
, (5.4)

where Isat is the intensity required to for having the pumping rate P0 equal
to the decay rate, Γ. In the linear regime, I � Isat, A is the slope. This
model has been fitted in fig. 5.14, the agreement is very reasonable and repro-
duces the logarithmic behaviour at large intensity, although no saturation
is observed. In the following we will use Ilow for the intensity in the regime
where the behaviour is linear and Ihigh in the regime where saturation effects
play a role, both are marked in fig. 5.14. The yield is now measured at low
and high intensities for the different samples and is plotted as a function of
the Er-layer thickness in fig. 5.15, as well as the ratio of high and low yield
versus thickness. Although there are some sample variation related errors
to the measurements, there is a clear difference between the distance de-
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Figure 5.14: The photoluminescence yield from the 1535 nm Er3+ peak
(circles) and from the nanocrystal-related luminescence at 750-900 nm
(squares), as a function of the pump intensity, taken on the sample with
3.0 nm Er-layer.

pendence for the low (panel (a)) and high (panel (b)) excitation intensities.
The higher excitation rate and thus saturation effects causes the interaction
distance to appear longer. This is examined further in panel (c) where the
normalized ratio of high to low-excitation intensity is shown, which has the
advantage of cancelling out systematic sample-to-sample variation. From
panel (c) it is very clear that the yield ratio increases with increasing Er-
layer thickness. We chose the model Y = A[1− exp(−x/x0)], corresponding
to a one-dimensional Dexter model, to describe the distance dependence of
the interaction. To model the yield ratio we thus arrive at the expression

Yhigh
Ylow

= A
1− exp(−x/xhigh)

1− exp(−x/xlow)
. (5.5)

This model apparently fits the data quite nicely, with the fitting parameters
xlow = 0.21±0.06nm and xhigh = 0.54±0.10nm and xhigh/xlow = 2.6±0.4.
The yield models for Yhigh and Ylow are also added to the corresponding
panels, with the interaction distances derived from the fit to panel (c). This
gives a better estimation to xlow as compared to what we would get from
fitting to panel (a), as the result from such a fit is very sensitive to the
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Figure 5.15: Dependence of the integrated photoluminescence around 1535
nm, from Er3+ on the Er-layer thickness. Panels (a) and (b) were recorded
at low and high intensities. In panel (c) the ratio of yields at high and low
intensities, Yhigh/Ylow is plotted and fitted to eq.5.5.
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uncertainty arising from sample-to-sample variations. We now turn to the
Si luminescence as a function of the erbium layer thickness, seen in fig. 5.16
for both low (panel (a)) and high pump (panel (b)) fluences. As is evident in
both cases, the yield decreases with the layer thickness over the entire range
and no saturation effects are apparent. A model, y = A1 exp(−d/x1) +
A2 exp(−d/x2) is used to fit the data, with the first term describing the
short range interaction with the erbium ions and the second term a long
range interaction term. The fit to the low intensity excitation is x1 = 0.21±
0.03 nm, x2 = 4.2 ± 1.2 nm, and A2/A1 = 0.19 ± 0.04. For panel (b) we
obtain x1 = 0.24 ± 0.05 nm, x2 = 2.9 ± 0.6 nm and A2/A1 = 0.40 ± 0.09.
Indeed, the x1 term is found within uncertainties to be the same as the
low-intensity sensitizer-erbium interaction distance xlow. As such it would
appear that the short-distance interaction is insensitive to the pump flux.
The Si luminescence is always quenched by the presence of Er ions, regardless
of pump intensity (see fig. 5.16) but show no saturation effect, as seen in
fig. 5.14. As such a constant proportion of energy seems to flow to the Er,
if no unexcited Er is available, excitation to higher levels than 4I13/2 takes
place, leading to no additional Er luminescence and thus a saturation effect
for Er. In summary, saturation effects play a significant role when trying
to estimate the characteristic interaction distance. Such a behaviour has
been observed previously103 and it was suggested that Er-Er energy transfer
leads to the increased length scale. This can not be ruled out, however it is
apparent that the saturation effect is significant, as it dominates the short
scale interaction at higher pump intensities.
It is also noteworthy that the interaction distance found is so short that it is
in essence inter-atomic and thus on the limit of experimental resolution, as
also noted elsewhre56. However it is easily seen from the distance depence
of the yield ratio in fig. 5.15, that there must be a distance dependence
of the transfer mechanism, as otherwise each erbium ion would be excited
and saturate in the same manner, which is clearly not the case. Whether
a Förster or Dexter interaction is responsible for the energy transfer is not
totally clear, as a 3D Förster model may give rise to a similar plane-to-plane
behaviour, as noted in104. What is certain is that the interaction distance is
very short, 0.22± 0.02 nm, on the order of inter-atomic distances and thus
wave function overlap is a requirement for efficient transfer. As seen for the
Si yield, additional processes may take place in addition to the Si-Er energy
transfer, which may prove an interesting topic for further investigation.
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Figure 5.16: Dependence of the integrated photoluminescence at 700-950
nm, from the nanocrystals, as a function of the Er-layer thickness. Panels
(a) and (b) are obtained at low and high pump flux. Lines are fitted as
double exponential decays.
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Chapter 6

Summary

Ever since photoluminescence was first realised from quantum confined car-
riers in porous silicon, the development towards integrated nanocrystal sys-
tems compatible with conventional silicon processing technology has been
very rapid. In particular erbium doped silica with nanocrystals is a promis-
ing candidate for optoelectronic integration. However a number of questions
still remain unanswered for this system.
The work in this thesis is divided in two, the first concerns understanding
and optimizing the interaction between erbium and silicon nanocrystal sen-
sitizers. The second investigates alternative structures in the form of α-Sn,
embeddable in silicon, that may be used for optoelectronic application.
With regards to the first topic, erbium and Si nanocrystals, the annealing
conditions for formation and sensitizing were studied and an optimum was
found at around 700-800◦C, in agreement with previous experiments. An-
nealing conditions for erbium in silica was then studied as an isolated system
and it was found that optimal activation of erbium takes place at around
800◦C, which is lower than the temperature needed to form crystalline nan-
oclusters. This effect may explain the lower yield in the nanocluster-erbium
samples at higher annealing temperatures.
The diffusion characteristics of erbium in silica was found and the diffu-
sion coefficient with respect to temperature was found. The interaction
between nanocluster and erbium was then studied by varying the distance
between thin silicon layers and thin erbium-doped silica layers. The samples
were processed at temperatures allowing minimal erbium diffusion, yet high
enough to allow nanoclusters to form. It was found that the interaction is
very short-range, on the order of 0.5 nm, which in practice makes it hard to
discern between a Förster or Dexter interaction, although it is likely to be
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the latter.
Concerning α-Sn, a DFT calculation of the band structure including the
GW correction for the conduction band was carried out for varying degrees
of strain. Tight binding parameters were fitted to these band structures,
providing an excellent fit. To test these parameters, the optical absorp-
tion spectrum was calculated from the tight binding band structure and
compared with experiment, again providing excellent agreement. The tight
binding parameters were then applied to α-Sn nanocrystals and the band
gap and optical absorption was investigated as a function of nanocrystal size
and applied strain. We found α-Sn nanocrystal to be exciting candidates
for integration with silicon, providing a tuneable band gap all the way into
the near-infrared. Finally we investigated zinc-blende Si-Sn and SiSn2 in the
GW framework in order to assess its role as a candidate for optoelectronics.
While we found SiSn2 to be a metallic phase, we found SiSn to become a
direct gap semiconductor at 2.2% applied tensile strain, with a band gap of
0.85 eV. At lower strain we found it to be an indirect band gap semicon-
ductor, like Si. We then fitted tight binding parameters to the SiSn band
structures and calculated the optical spectra, which reflected the electronic
properties well. This confirmed the notion of SiSn also being a promising
candidate for optoelectronic integration with Si.
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Summary in Danish

Lige siden fotoluminescens fra kvantebegrænsede ladningsbærere første gang
blev observeret i porøst silicium, er der sket massiv forskning i at integrere
nanokrystallinske systemer med konventionel silicium teknologi. Særligt er-
bium doteret silika indeholdende nanokrystaller er et lovende bud med hen-
blik p̊a optoelektronisk integration. Der er dog stadig en række ubesvarede
spørgsm̊al der trænger sig p̊a, for dette system.
Arbejdet i denne afhandling er delt i to; den første del handler om forst̊aelse
og optimering af interaktionen imellem erbium og sensitiverende silicium
nanokrystaller. I den anden del undersøges alternative strukturer til nanokrystal-
erbium systemet, i form at α-Sn indlejret i silicium, som ogs̊a er en potentiel
kandidat til optoelektroniske anvendelser.
For erbium og Si nanokrystaller har vi undersøgt hærdningsbetingelserne for
dannelse og sensitivering og fundet en optimal temperatur ved 700-800◦C,
i overensstemmelse med andre forsøg. Hærdningsbetingelserne for erbium i
silika, uden nanokrystaller, blev efterfølgende undersøgt og vi fandt optimal
aktivering af erbium ioner ved omkring 800◦C, hvilket er lavere end den tem-
peratur der skal til for at danne krystallinske nanokrystaller. Denne effekt
er en mulig forklaring p̊a den lavere effektivitet der observeres i nanokrystal-
erbium prøver ved højere hærdningstemperaturer.
Diffusionsegenskaberne for erbium i silika blev efterfølgende undersøgt, og
diffusionskonstanten blev bestemt som en funktion af temperaturen. Med
denne viden blev interaktionen imellem nanokrystaller og erbium undersøgt,
ved at variere afstanden imellem tynde silicium lag og tynde erbium-doterede
silika lag. Prøverne blev bagt ved temperaturer der sikrede minimal erbium
diffusion, men høj nok temperatur til at danne nanokrystaller. Det blev vist
at interaktionsafstanden er meget kort, omkring 0.5 nm, hvilket i praksis
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gør det svært at skelne imellem en Förster eller Dexter interaktion, selvom
det er mere sandsynligt at det er den sidstenævnte.
For α-Sn har vi lavet DFT beregninger af b̊andstrukturen, inklusive GW kor-
rektioner til ledningsb̊andene, under forskellige grader af træk og tryk. Disse
b̊andstrukturer dannede udgangspunkt for et fit af tight binding parametre.
For at afprøve disse parameter blev det optiske absorptionsspektrum for α-
Sn beregnet p̊a baggrund af dem og sammenholdt med det eksperimentelle
spektrum, med glimrende overensstemmelse imellem teori og praksis. Efter-
følgende brugte vi tight binding parametrene til at undersøge α-Sn nanokrys-
taller og b̊andgabet s̊avel som den optiske absorption blev undersøgt som
funktion af nanokrystal størrelse og træk/tryk. Resultaterne viser at α-Sn
nanokrystaller er spændende bud p̊a et integrerbart system i silicium, i kraft
af et tunbart b̊andgab der g̊ar hele vejen ud i den infrarøde del af spektret.
Endelig undersøgte vi zinc-blende Si-Sn og SiSn2 inden for GW teorien, for
at vurdere dets potentiale indenfor optoelektroniske anvendelser. Det blev
fundet at SiSn2 er en metallisk fase, men at SiSn er en halvleder der f̊ar et
direkte b̊andgab under 2.2% træk, med et b̊andgab p̊a 0.85 eV. Ved lavere
træk er b̊andgabet indirekte, ligesom i silicium. Endelig lavede vi ogs̊a et
fit af tight binding parametre til SiSn b̊andstrukturen og brugte den til at
udregne det optiske spektrum, hvilket afspejlede de elektroniske egenskaber.
Dette bekræftede vores antagelse om at ogs̊a SiSn kan være et interessant
bud til optoelektronisk integration med Si.
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a b s t r a c t

The diamond structure of tin (a-Sn) can be stabilized in nanocrystals embedded in a suitable host. We

developed highly accurate parameterizations for tight-binding simulation of such structures

incorporating strain and spin–orbit interaction. Parameters are obtained by fitting to ab initio GW

quasiparticle band structures of unstrained a-Sn as well as geometries under uniform compressive or

tensile strain. The optical response calculated from this fit is in excellent agreement with experiments.

As an application, confinement induced band gaps in strained and unstrained 3 nm nanocrystals are

computed. It is found that compressive and tensile strain raises and lowers the gap, respectively.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Tin is iso-electronic with the important group IV semiconduc-
tors carbon, silicon and germanium but its properties differ
significantly in several respects. Primarily, the stable crystal
structure at room temperature and low pressure is the b-Sn form,
which is a metallic body-centred tetragonal structure. The
diamond structure a-Sn is stable only at lower temperatures [1].
Secondly, even in the a-Sn diamond structure, the material is a
direct zero-gap semiconductor in contrast to the other group IV
semiconductors that all possess finite indirect band gaps. Finally,
Sn is a sufficiently heavy element that spin–orbit interaction (SOI)
is a very significant perturbation. Due to these differences, Sn is
usually not considered for semiconductor applications. However,
a-Sn can be stabilized by embedding the material as nanoparticles
in an appropriate host material such as Si [2–4] and Ge [5].
Apparently, tensile strain prevents the lattice from collapsing to
the much denser b-Sn form. Moreover, in a nanoparticle, a finite
energy gap develops as a result of confinement. Importantly,
provided the a-Sn form remains stabilized, this gap can be tuned
nearly all the way to zero by increasing the particle size since the
bulk material has a vanishing gap. This opens the possibility of
utilizing Sn in novel applications requiring small band gaps.

Compared to other group IV elements, the theoretical under-
standing of a-Sn is quite rudimentary. In particular, calculations of
nanocrystal properties are very limited. Small clusters Snn with
upper limits of n between 13 and 20 have been analyzed using a

molecular orbital method [6], simple tight-binding (TB) [7] and ab

initio methods [8]. The information on larger structures is limited,
however, to a combined k

!
U p
!

and effective mass approach [9]. In
addition, TB parameterizations of bulk bands exist [10–12]. The TB
method is capable of accurately simulating the properties of
nanocrystals containing thousands of atoms and to account for
effects of surface termination. The existing parameterizations are
not sufficiently accurate, however. The model of Ref. [7] uses
universal Harrison parameters and overlap as well as SOI is
neglected. In Ref. [10], a nearest-neighbor sp3sn parameterization
ignoring overlap and SOI is used. The models of Refs. [11,12] are
more realistic in that Ref. [11] includes SOI (but ignores overlap)
whereas Ref. [12] includes overlap (but ignores SOI). Both of these
fits fail to produce the correct behavior of the lowest conduction
band along the important G-X direction, though, as is evident
from their comparison with pseudopotential [11] and density-
functional theory (DFT) [12] band structures. Moreover, none of
the existing parameterizations incorporate strain. In the present
work, we provide an improved tight-binding parameterization
suitable for a-Sn nanoparticles including the effects of uniform
strain and spin–orbit interaction. The parameterization is based
on fits of ab initio band structures for crystal structures in the
equilibrium geometry and under uniform strain, i.e. for lattices
uniformly compressed or expanded. Consequently, the present
model is limited to simulating nanoparticles under hydrostatic
strain by the host material and does not apply to e.g. particles
under orthorhombic strain.

A difficulty in this approach is that DFT is unable to account for
the zero-gap character of a-Sn and incorrectly predicts a metallic
band structure [13,14]. This deficiency can be remedied by
incorporating quasiparticle effects, however. Rohlfing et al. [14]
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found that quasiparticle corrections within the GW approximation
restores the zero-gap character by shifting the conduction bands
upwards at the L point of the Brillouin zone while leaving the G
point essentially unchanged. This is in marked contrast to the
usual trend that GW corrections tend to shift all conduction bands
upwards rigidly [15]. Accordingly, in the present work, GW
corrected band structures are applied in the fitting procedure.
As an application of this parameterization, we compute the
density of states of 3 nm a-Sn nanoparticles in the equilibrium
geometry and under strain emulating the influence of the host
material.

2. Tight-binding parameterization

It is essential that accurate band structures are applied in the
parameterization of TB parameters. In the present work, GW
corrected bands are therefore computed using the ab initio code
Abinit [16] within the GW extension [17,18]. A dense 8�8�8
Monkhorst–Pack lattice of k-points is applied for all calculations.
As a first step, DFT band structures in the local density
approximation with and without SOI were obtained. In both
cases, the Teter–Pade parameterization of exchange-correlation
terms [19] was applied and for bands without SOI we used
Troullier–Martins pseudopotentials [20] whereas SOI corrected
bands were computed using Hartwigsen–Goedecker–Hutter
pseudopotentials [21]. The latter has previously been successfully
applied for the description of SOI-split bands in b-Sn [22]. The
theoretical equilibrium geometry is obtained using DFT including
SOI and setting the plane-wave energy cut-off to 15 Ha. The
calculated total energy vs. lattice constant for a-Sn is shown in
Fig. 1 together with a quadratic fit to the data points near
equilibrium. We find an equilibrium lattice constant of
a0=12.11 Bohr. In addition, the fitted curvature 0.02065 Ha/Bohr2

corresponds to a bulk modulus of B=0.02065 (8/9a0)=1.52 mHa/
Bohr3=45 GPa. Both lattice constant and Bulk modulus are in
reasonable agreement with the experimental values. The
experimental lattice constant at 250 K and 90 K are 6.489 Å and
6.483 Å [23], respectively, and extrapolate to a 0 K value of
12.24 Bohr. The theoretical bulk modulus is to be compared to the
experimental value of 54 GPa [24]. Hence, both lattice constant
and bulk modulus are slightly underestimated theoretically. This
level of agreement is reasonable considering the incorrect metallic
state predicted by DFT near the equilibrium. To eliminate errors

related to the incorrect geometry, however, we will use the
equilibrium lattice constant a=12.23 Bohr obtained using a
linearized augmented plane-wave approach to DFT by Akdim et
al. [12] in excellent agreement with experiment. In addition, we
consider a-Sn under 5% compressive strain (a=11.62 Bohr) as well
as 5% tensile strain (a=12.84 Bohr), as indicated in Fig. 1. These
strains are much larger than the experimental values (o0.5 %
tensile [2]) but were selected in order to clearly expose the
influence of lattice deformation. Also, an arbitrary strain in the
�5–5% range may be studied using simple quadratic interpolation
based on the parameters derived for these three cases.

In Abinit, the GW extension takes as input the self-consistent
DFT bands and wave functions. This information is applied to
construct the susceptibility matrix using the random phase
approximation and, subsequently, the dielectric and self-energy
matrices. To this end, the frequency dependence is simplified
using the single plasmon-pole approximation [17]. We use the
DFT settings above but lower the plane wave cut-off to 8 Ha due to
computational limitations (see also [18]). The GW extension is not
capable of handling SOI and an approximate procedure is
therefore required. For clarity, we will refer to density functional
band structures with and without SOI as DFT(SO+) and
DFT(SO�), respectively. Hence, due to the aforementioned
limitations in the Abinit code, we compute the GW corrections
based on DFT(SO�) bands. Subsequently, the GW corrections for
each DFT(SO�) band are transferred to each corresponding
DFT(SO+) band. Essentially this means, that SOI-split DFT(SO+)
bands are shifted by an approximate amount computed from their
degenerated DFT(SO�) counterpart. It is this approximate GW
corrected DFT(SO+) band structure, which we denote GW(SO+)
below, that we finally use as input for TB fitting. Recently, a similar
approach based on TB fitting of Abinit GW bands was applied to Si,
Ge and SiGe [25].

It is known that the sp3 TB parameterization of Mattheiss and
Patel [26] including interactions up to third nearest neighbors and
nonorthogonality of atomic orbitals provides a highly accurate fit
of the silicon band structure. For this reason, a similar model will
be adopted in the present work. In addition, our TB parameteriza-
tion includes atomic SOI factors D¼ 5px;m9HSO 5pz;kS¼

���
i 5px;m9HSO 5py;mS

���
as introduced in the usual prescription [11].

Hence, 27 parameters need to be fitted: SOI constant D and onsite
energies Es and Ep as well as Hamilton (energy) matrix elements
Hsss; Hsps; Hpps; Hppp and overlap elements Ssss; Ssps; Spps; Sppp
for first, second and third nearest neighbors. The fits are obtained
by minimizing the mean square difference between TB and GW
band structures for 13 selected k-points along the G-L and G-X

directions in the Brillouin zone, cf. Figs 2 and 3. Also, we restrict
fitting to the important bands 2 through 5 when counted from
below. These bands are the ones responsible for behavior in the
vicinity of the Fermi-level and, hence, to a large extent determine
the band gap properties. For strained and unstrained geometries,
the fitted parameters are given in Table 1.

In the unstrained case, our DFT(SO�) results predict a metallic
band structure with the L6c energy 0.09 eV lower than the G7c

point. With the GW correction, an upwards shift of the L6c point
with respect to G7c by 0.33 eV restores the zero-gap structure, in
good agreement with the 0.3 eV shift found by Rohlfing et al. [14].
At 5% compressive strain, a-Sn develops an indirect band gap with
the top of the valence band in the zone centre and the conduction
band minimum displaced approximately 85% along the G-X

direction, similar to the case of unstrained Si. Within DFT(SO�),
an indirect band gap of 0.25 eV is obtained. In addition, the
indirect L–G gap is 0.63 eV. Hence, compressed a-Sn is a narrow
indirect gap semiconductor. Finally, the expanded lattice leads to
a metallic DFT(SO�) band structure as illustrated in the upper
panel of Fig. 2. The L–G gap is only C0.06 eV, however.

Fig. 1. Total DFT energy vs. lattice constant a and a quadratic fit to the central data

points. Tight-binding parameterizations are found for the points indicated by

circles.
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Fig. 2. Comparison between GW (diamonds) and DFT (squares and lines) bands

without SOI. The panels illustrate cases without strain (bottom), and under

compressive strain (middle) and tensile strain (top), respectively, with a the

corresponding lattice constants.

Fig. 3. GW corrected TB and uncorrected DFT band structures including SOI for

strained and unstrained lattices.
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In Fig. 3, the DFT(SO+) as well as our TB fits of the GW(SO+) bands
are illustrated. The excellent agreement between GW points and fitted
TB band structures is evident. The figure also clearly illustrates the
pronounced split of the top valence bands resulting from the SOI
correction. The conclusions regarding material characteristics (semi-
conducting vs. metallic, etc.) obtained without considering SOI remain
valid. Hence, the unstrained structure remains a zero-gap semicon-
ductor, while compressive strain produces a narrow indirect band gap
of 0.5 eV, i.e. an additional opening of 0.25 eV compared to the
DFT(SO�) value. Finally, the metallic character under tensile strain is
now enhanced with a negative L–G gap of C0.31 eV. The total
densities of states (DOS) for the GW–TB bands, obtained through
tetrahedron integration, are compared in Fig. 4. It is clear that all three
structures display very similar trends in the vicinity of the Fermi level.
Even in the metallic (a=12.84 Bohr) case, the DOS is only 0.05 eV�1

cell�1 at the Fermi level. The top valence band DOS increases
systematically with lattice constant while the DOS of the lowest
conduction band is only slightly affected.

The accuracy of the parameterization is best checked by
comparison with experiments. A sensitive test is the optical response
because any error in the band structure will reveal itself if critical
points or band splittings are compared. The experimental dielectric
constant of unstrained a-Sn in the photon energy range 1.2–5.5 eV
measured by Viña, Höchst and Cardona [27] is applied to this end.
Besides the band structure, the momentum matrix elements are
needed for the computation of the dielectric constant. We adopt the
method of Ref. [28] for this purpose and, thus, separate the matrix
element into intra- and inter-atomic contributions. The latter is
entirely determined by the band structure and the lattice geometry.
In contrast, the intra-atomic term requires fitting of an atomic
transition momentum value psp ¼ 5s;m9@=@x 5px;mS_2=m

���D
. We fit

this parameter such that theoretical and experimental spectra agree

in the low photon energy range. In this manner, the value
psp=3.2 eVÅ is found. Theoretical spectra are computed using
tetrahedron integration and convolution with a Gaussian line shape
function expð�E2=G2

Þ=G
ffiffiffiffi
p
p

with G=60 meV. The calculated and
experimental results in the full range are compared in Fig. 5. It is
clear that excellent agreement is obtained. The locations of the E1

(1.35 eV) and E1+D (1.8 eV) peaks that are produced mainly by
transitions in the vicinity of the L point of the Brillouin zone are
reproduced with very high accuracy. The E2 resonance, which is
dominated by transitions near the X point, is slightly redshifted in
the calculations (3.4 eV) compared to measurements (3.7 eV). In
addition, the intensity of this transition is overestimated. The overall
agreement in the range for which experimental data exist is rather
convincing, however. We take this as further evidence that our GW–
TB parameterization produces reliable band structure predictions.

3. Application to 3 nm nanocrystals

A primary purpose of developing an accurate TB parameteriza-
tion is to provide a tool for simulation of a-Sn nanostructures. The

Table 1
Tight-binding parameters for the nonorthogonal sp3 model including SOI and

interactions up to 3 nearest neighbors.

TB parameters a=12.84 Bohr

Onsite Es=�7.5098 eV Ep=�1.3709 eV

SOI D=0.1705 eV

Overlap Ssss Ssps Spps Sppp

1. nn 0.2579 �0.3366 �0.2969 0.2135

2. nn 0.0276 �0.0416 �0.1055 0.0260

3. nn 0.0067 �0.0075 �0.0406 0.0000

Energy [eV] Hsss Hsps Hpps Hppp

1. nn �2.4072 2.4153 1.6590 �0.8136

2. nn �0.2769 0.4436 0.6805 �0.1018

3. nn �0.0689 0.1182 0.2444 �0.0216

TB parameters a=11.62 Bohr

Onsite Es=–7.2342 eV Ep=–1.0007 eV

SOI D=0.1830 eV

Overlap Ssss Ssps Spps Sppp

1. nn 0.2667 �0.3114 �0.2853 0.2105

2. nn 0.0252 �0.0380 �0.1115 0.0180

3. nn 0.0058 �0.0108 �0.0401 0.0000

Energy [eV] Hsss Hsps Hpps Hppp

1. nn �2.6245 2.6504 1.4926 �0.7877

2. nn �0.3165 0.5596 0.8047 �0.0816

3. nn �0.0731 0.1285 0.2755 �0.0076

TB parameters a=12.23 Bohr

Onsite Es=–7.1615 eV Ep=–1.2060 eV

SOI D=0.1591 eV

Overlap Ssss Ssps Spps Sppp

1. nn 0.2449 �0.3206 �0.2972 0.2101

2. nn 0.0270 �0.0367 �0.0975 0.0124

3. nn 0.0072 �0.0115 �0.0480 0.0000

Energy [eV] Hsss Hsps Hpps Hppp

1. nn �2.4025 2.5459 1.4457 �0.7349

2. nn �0.2770 0.4863 0.7584 �0.0909

3. nn �0.0731 0.1352 0.2452 �0.0215

Fig. 4. Density of states for different lattice constants a computed from TB

parameterizations including SOI and strain.

Fig. 5. Comparison between calculated (solid lines) and experimental (dots,

Ref. [27]) dielectric constants.
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systematic application of the parameterization to a-Sn nanocrys-
tals will be presented elsewhere and in the present work we
restrict ourselves to a single illustrative example. To this end, an
Sn633 H300 nanocrystal with and without strain is considered. This
structure has a core diameter between 32 Å and 35 Å dependent
on the strain. Thus, it is in the range of realistic geometries for
experiments. The geometry of the Sn core is constructed simply as
a spherical section of the bulk diamond lattice. Thus, relaxation of
the nanoparticle geometry is not taken into account. Moreover,
faceting is typically observed in experimental samples. In general,
small nanoparticles may be severely affected by reconstruction [8]
whereas the bulk crystal symmetry is approximately preserved in
the core of larger ones [2,5]. Also, sufficiently large particles are
found to be roughly spherical [5]. Hence, to estimate the influence
of strain on energy gaps in nanoparticles we believe the simple
geometry is adequate. We emphasize that the large strains of
75% are outside the realistic range but, similar to the bulk case,
were chosen in order to clearly display the effect of strain. More
realistic strains can be studied, however, using a simple quadratic
interpolation of all parameters in Table 1. Thus, if the values of a
given parameter f at 0, +5%, �5% strain are denoted as f0, f+ and
f� , respectively, an interpolated value is readily obtained from the
expression

f ðeÞ � f0þ
fþ � f�

2

e
e0
þ

fþ þ f� � 2f0

2

e
e0

� �2

;

where e=(a�a0)/a0 is an arbitrary strain in the range 7e0 with
e0=5% and a0=12.23 Bohr.

The H-termination is an artificial means of eliminating
dangling surface bonds in order to remove such states from the
band gap, as described in Ref. [29]. These pseudo H-atoms are
modeled as a single s-type orbital with zero onsite energy and H–
Sn interaction parameters Hsss=� 4eV and Hsps=4 eV and non-
orthogonality neglected. They are positioned along the directions
of the dangling bonds. In Fig. 6, the DOS of strained and
unstrained nanocrystals are displayed. The curves have been
smoothed by a Gaussian with G=50 meV. In all cases, a
confinement induced band gap appears. The gaps, calculated
from the un-smoothed DOS, are: 0.95 eV (a=12.23 Bohr), 1.42 eV
(a=11.62 Bohr) and 0.45 eV (a=12.84 Bohr). Thus, the induced
band gap tends to follow the lattice constant systematically, with
a large gap for compressed lattices. Under tensile strain, an
isolated state approximately 0.31 eV below the practically

continuous conduction band DOS brings about the substantially
lower band gap. Hence, in the absence of this isolated state, the
nanocrystal under tensile strain would enlarge its gap to 0.76 eV,
still significantly below the other cases. Experimentally, the
realistic scenario is that embedded nanocrystals are under slight
tensile strain (o0.5%) by the host lattice [2]. Hence, the present
results predict that such particles in the 3–4 nm diameter range
will exhibit band gaps in the order of 1 eV. Realistically, then,
nanocrystals ranging from a few to a dozen nm in diameter will
produce band gaps in the �0.1–1 eV range of great practical
interest for e.g. solar cells.

4. Summary

In summary, ab initio GW quasiparticle band structures have
been applied to provide an accurate tight-binding parameteriza-
tion for a-Sn. Unstrained structures as well as lattices uniformly
compressed or expanded have been considered and separate
parameterizations are presented. Moreover, spin–orbit interaction
is included in the tight-binding model. Unstrained a-Sn and
geometries under 5% compressive or tensile strain are found to
be zero-gap semiconducting, narrow indirect gap semiconducting
and weakly metallic, respectively. The quality of the parameter-
ization is demonstrated by the excellent agreement between
calculated and measured dielectric constants. The properties
of 3 nm nanocrystals have been simulated using the new
parameterizations. We find that unstrained nanocrystals exhibit
band gaps of nearly 1 eV whereas 5% compressive or tensile strain
leads to a substantial raising or lowering of the energy gap,
respectively.

Acknowledgement

Financial support from FTP grant #274-07-0523 project
SERBINA is gratefully acknowledged. Computations were carried
out at the Fyrkat grid, Aalborg University.

References

[1] A. Jayaraman, W. Klement, G.C. Kennedy, Phys. Rev. 130 (1963) 540.
[2] M.F. Fyhn, J. Chevallier, A. Nylandsted Larsen, R. Feidenhans’l, M. Seibt, Phys.

Rev. B60 (1999) 5770.
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Abstract
The Si1−xSnx material system is an interesting candidate for an optically active material
compatible with Si. Based on density functional theory with quasiparticle corrections we
calculate the electronic band structure of zinc-blende SiSn under both compressive and tensile
strain. At 2.2% tensile strain the band gap becomes direct with a magnitude of 0.85 eV. We
develop an accurate tight-binding parameterization of the electronic structure and calculate the
optical properties of SiSn. Furthermore, the silicide SiSn2 is investigated and found to have
metallic character.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An ongoing, intense field of research is the search for
optoelectronic structures that can be integrated with silicon
technology. The indirect band gap of silicon, however, does
not directly facilitate the production of light emitting or
absorbing devices. A host of different approaches have been
taken to overcome this inherent shortcoming of silicon,
notably including the use of quantum confined silicon
structures [1] and the growth of III–V overlayers via buffer
layers [2]. These have only seen limited success in a
commercial sense, however. A promising option is the use
of group IV binary or ternary overlayers with Sn which in
sufficiently high concentrations gives rise to a direct band
gap, owing to the direct zero-gap nature of bulk α-Sn. One
of the simplest examples of such a system is Si1−xSnx,
which has been investigated both experimentally [3, 4]
and theoretically [4–9]. In terms of theoretical approaches,
predicted electronic structure and optical properties in
the binary SiSn system have been calculated applying
simple interpolation between band structures [5], empirical
pseudopotentials [6, 7], optical bowing parameters [8], as
well as local density approximation (LDA) density functional
theory (DFT) [4, 9]. In order to assess the usefulness of
SiSn in optoelectronic applications, accurate estimates of the
band structure and optical spectra are necessary. Also, in

such overlayer systems, strain is often present which to our
knowledge has not been investigated in detail yet.

In this work we shall calculate the electronic properties
of zinc-blende SiSn using DFT with quasiparticle self-energy
corrections, in order to get a more accurate estimate of the
band gap. The quasiparticle correction is analyzed using
the GW approximation [10]. It is well established that
DFT without quasiparticle corrections leads to a dramatic
underestimation of the Si band gap [10] by roughly 50% and
even fails to reproduce the zero-gap nature of α-Sn [11, 12].
Thus, such corrections are expected to be equally important
for Si–Sn alloys. We subsequently fit sp3 tight-binding
parameters to the electronic band structures and calculate
the optical spectra based on the obtained parameters. We
will treat both bulk, unstrained SiSn as well as SiSn under
both tensile and compressive uniform strain in particular with
regards to the changes in the electronic structure. Due to the
computational complexity of the GW method, we will not
investigate cases of biaxial strain although such effects are
probably important for layered samples grown on crystalline
substrates. Finally, the possibility of mixed Si–Sn alloys
forming Sn-rich structures is investigated via the electronic
structure of the silicide SiSn2 and whether it is likely to form
locally.

10953-8984/11/345501+07$33.00 c© 2011 IOP Publishing Ltd Printed in the UK & the USA
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Figure 1. Total DFT energy versus lattice constant, a, as obtained for Si (top left), α-Sn (top right), SiSn (lower left) and SiSn2 (lower
right). Experimental lattice constants for Si and α-Sn are marked by a green point and an arrow.

2. Calculations

The electronic band structure was calculated on the basis of
DFT, using the ab initio software package Abinit [13, 14].
As spin–orbit interaction (SOI) plays a large role in Sn [12,
15, 16], it is also expected to be significant in SiSn. It is
currently not possible to include SOI in the GW calculation
in Abinit, and so we instead calculate the band structure
including SOI using the LDA and then correct this band
structure with the shifts obtained from the GW calculation,
similarly to the procedure applied in [12]. For all calculations,
a dense 8×8×8 Monkhorst–Pack grid of Ek-points was applied
as well as a plane wave energy cut-off of 14 Ha. Initially,
a two-atom SiSn unit cell having zinc-blende symmetry was
constructed and relaxed using Hartwigsen–Goedecker–Hutter
pseudopotentials [17], the Teter–Pade exchange–correlation
parameterization [18] and including SOI. A plot of the total
DFT energy versus lattice constant is shown in figure 1.
We find the lattice constant of SiSn to be a0 = 5.93 Å,
which, as expected, is in between the values found for
bulk Si and α-Sn, 5.40 and 6.41 Å, respectively. This is in
reasonable agreement with the experimental values of 5.43
and 6.49 Å, respectively, and in accordance with similar
theoretical results and the general tendency of LDA to
underestimate lattice constants [19]. Specifically, LDA values
between 6.38 and 6.46 Å have been reported [20–22] for α-Sn,
whereas the generalized gradient approximation (GGA) value
is 6.74 Å [20]. For Si, typical values reported using LDA are
between 5.37 and 5.41 Å [19, 23, 24].

In order to assess the stability of SiSn we compare the
total energy per cell of the SiSn unit cell with the Si and
α-Sn cells in table 1. As expected, SiSn is less energetically
favourable than segregated, unstrained Si and Sn. However,
the lattice mismatch between Si and Sn facilitates a strain

Table 1. Calculation of total energy per cell in Si, α-Sn, SiSn and
SiSn2 along with the cost of formation per atom for SiSn and SiSn2
relative to α-Sn and Si.

Compound Energy/cell (eV) Cost of formation/atom (eV)

Si −215.84 0
α-Sn −194.37 0
SiSn −202.04 3.07
SiSn2 −300.97 0.41

energy comparable to the formation energy of SiSn. Thus,
SiSn turns out to be a metastable phase, similarly to α-Sn
at room temperature. We also investigate the silicide, SiSn2,
which is formed by a three-atom basis with Si at (0, 0, 0) and
Sn at ±( 1

4 ,
1
4 ,

1
4 ) in an fcc lattice, as illustrated in figure 2.

As per table 1, SiSn2 may actually form more favourably than
SiSn. It is clearly still unstable but under suitable conditions
may be stabilized by strain similarly to SiSn. We are not aware
of any reports of SiSn2 bulk structures in the literature. This
is in agreement with our finding that the structure is unstable
and, furthermore, indicates that the material cannot easily be
stabilized by strain.

The LDA band structure was calculated for unstrained
SiSn and under 5% tensile and compressive strain. While
5% strain is on the large side of what would usually
be encountered under experimental conditions, this clearly
elucidates the influence at strain on the electronic properties.
Furthermore, from the tight-binding fits, parameters for
smaller strains can be obtained by a quadratic interpolation
of the three obtained parameter sets. After this, we calculated
the GW corrections in the different strain configurations
using Troullier–Martins pseudopotentials [25] and Teter–Pade
exchange–correlation terms. The DFT wavefunctions with
the same parameters as above were used as input to the
plasmon-pole dielectric matrix needed in the GW calculation.
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Figure 2. Illustration of the crystal structure of SiSn2.

This dielectric function should not be confused with the
optical dielectric constant computed in a separate calculation
below. As mentioned, currently the GW calculation cannot
be made including SOI in Abinit. To compensate for this
shortcoming, we correct the individual bands in our LDA band
structures including SOI with the GW corrections for each
band, to obtain the approximate, final band structures.

The GW corrected band structure is extremely accurate
but also very computationally demanding. To enable
calculations of densities of states and response functions that
require dense Ek-point sampling to reach convergence, we
therefore use tight-binding models to fit the bands. Below,
these fits are subsequently used to compute the optical
response using a very dense sampling of the irreducible
Brillouin zone (BZ), which is partitioned into 12 288
tetrahedra. Moreover, such fits could be useful in simulations
of various SiSn nanostructures. For the tight-binding (TB)
parameterization, we have chosen an sp3 basis, which includes
up to third nearest neighbour interaction, non-orthogonal
atomic orbitals and SOI. Such a basis has proven successful
both in accurate descriptions of the Si [26] and α-Sn [12]
band structures and we expect it to yield an accurate fit to the
SiSn band structure. This leaves us with 41 unique parameters
to fit, the SOI constant 1, onsite elements Es and Ep, and
Hamilton matrix elements Hssσ , Hspσ , Hppσ , Hppπ along with
overlap elements Sssσ , Sspσ , Sppσ , Sppπ for the first, second
and third nearest neighbours, for both Si and Sn. The constants
are fitted by minimizing the mean square difference in band
energy values between the GW corrected band structure and
the calculated TB band structure at 23 Ek-points along the
X → 0 → L path in the BZ. The obtained TB parameters
may be seen in tables A.1–A.3 and the TB band structures as
well as the DFT band structures are shown in figure 3. In these
plots, we have illustrated the DFT and TB band structures
along the L→ 0 → X→ U→ 0 route in Ek-space in order
to assess how well the TB parameters reproduce the band
structure outside their fitted interval. Even outside the fitted
range, valence band fits remain excellent and only the higher

Figure 3. Calculated DFT band structure with GW corrections
(points) and TB fits (lines). The top panel illustrates the case under
tensile strain, the middle in equilibrium and the bottom under
compressive strain.

conduction bands have some inaccuracies. This will, however,
only have an effect on the high-energy part of the optical
spectra and therefore is acceptable.

For the unstrained SiSn we predict an indirect band
gap of 0.97 eV across the 0 → X transition, which is in
good agreement with the indirect gap of 0.91 eV reported
for SiSn by [6], using empirical pseudopotentials. We find a
0v → 0c gap of 1.48 eV, in contrast to the 1.14 eV reported
using empirical pseudopotentials. In [4] a random alloy of
Si0.50Sn0.50 was modelled using DFT with an empirical
correction to the band gap. In this case a band gap of 0.8 eV
was identified. We attribute this significantly lower band
gap to more ‘α-Sn’-like phases in the unit cell, which will
pull it towards a direct gap, semi-metallic character like that
found in bulk α-Sn. Under compressive strain, the indirect
band gap decreases slightly to 0.75 eV, but the 0 → 0 gap
increases to 2.72 eV. This is a dramatic strain effect, as is
also seen in α-Sn [12]. Under 5% tensile strain the band
gap shifts to become direct and is found to be 0.46 eV. This
shifting towards a more direct band gap is also reported by [6]
and [9]. In order to further investigate this shift from indirect
to direct gap we perform new GW corrected band structure
calculations for SiSn under tensile strains of 1–5%. From
these we extract the energy gap across the first 0–L, 0–0
and 0–X transitions, as shown in figure 4. As can be seen,
around 2.2% tensile strain, the band gap becomes a direct one
as a consequence of the applied strain. This effect becomes
more pronounced as the strain is increased, due to the steeper
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Figure 4. Calculated energy gaps of the 0–L, 0–0 and 0–X
transitions in SiSn for varying degrees of tensile strain, marked by
the points. The line serves as a guide to the eye.

Figure 5. DFT band structure of SiSn2, with the Fermi level at
0 eV, marked by the dotted line.

slope of the 0–0 curve as compared to the 0–L curve. This
effect is also observed in other group IV semiconductors
and is in good agreement with the findings in [9], except
that we report slightly higher band gap values, due to the
more accurate estimate of the conduction bands in the GW
corrected calculation. This also highlights the possibilities
afforded through strain engineering of SiSn compounds.

The semiconducting nature of SiSn can be contrasted
with the DFT band structure of SiSn2, which is illustrated
in figure 5. It is apparent that this structure has metallic
characteristics that we ascribe to Sn being in a more β-like
configuration. As the β-phase is the energetically more
favourable one at room temperature, this would also explain
the more favourable formation energy of SiSn2 compared to
SiSn. This low formation energy, however, comes at the cost
of a large lattice mismatch with Si. The metallic nature of

Figure 6. Calculated optical spectra of Si and comparison with
experimental values, taken from [29].

SiSn2 could be detrimental to optoelectronic devices based on
Si–Sn alloys with excess Sn.

Next, in order to investigate the properties of SiSn in
optical applications, we calculate the dielectric constant of
SiSn in both the strained and unstrained geometries, using
the TB parameters to determine the band structure in the
irreducible wedge of the BZ. For the calculation, we adopt the
method in [27], where the contributions to the matrix element
are split into intra- and inter-atomic terms. Whereas the latter
is determined solely from the band structure and the lattice
constant, the former requires fitting the momentum matrix
element psp = h̄2/m〈s|∂/∂x|p〉 for transitions between atomic
s and p orbitals. The Ek-point integration over the BZ is carried
out by summation over tetrahedra [28]. For α-Sn we adopt
the value psp,Sn = 3.2 eV Å from [12], however we have
no readily available value for Si. To obtain the momentum
matrix value for Si, we carry out the above mentioned
calculation on bulk Si, using the TB parameters from [26],
then calculating the optical spectra and fitting the momentum
matrix element to the experimental values from [29] such
that the low energy features are replicated. Based on this
we arrive at psp,Si = 5.2 eV Å. As illustrated in figure 6,
the real part of the dielectric constant is then determined
by Kramers–Krönig transformation of the imaginary part.
In these spectra, excitonic effects are ignored and distinct
features therefore simply reflect single-electron transitions.
Hence, the observed peaks should not be associated with
excitonic resonances but, rather, with intense transitions at
band edges. Similarly, the discrepancy between calculated
and experimental absorption edges near the direct band
gap is partly due to omitted excitonic effects. Obviously,
an improved spectrum including excitonic effects may be
obtained by solving the Bethe–Salpeter equation, as has
been done for Si and other materials [30, 31]. Given
these shortcomings of the present model, however, the
reproduction of the low energy part of the absorption spectrum
is satisfactory in the sense that it replicates the important
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Figure 7. Calculated real and imaginary parts of the dielectric
constants for SiSn. The top panel illustrates the case under tensile
strain, the middle in equilibrium and the bottom under compressive
strain.

features in the spectrum due to transitions near the band
edges.

The optical spectra of SiSn may then be calculated
following the same method. A plot of the dielectric constant
for the strained and unstrained geometries is seen in figure 7.
For the unstrained geometry, there is a slow onset of
absorption at 1.48 eV, corresponding to the direct 0–0
transition, which is the lowest direct transition, as seen from
figure 3. The rapid rise at 2.2 eV is due to the E1 and
E1 + 1 transitions becoming available along the L region

in the band structure. As expected, the compressed structure
has an absorption onset at higher energies, however this rises
very rapidly as there are a large number of available direct
transitions at similar energies along the L→ 0 path in the BZ.
The structure under tensile strain starts absorbing at 0.45 eV
corresponding to the direct gap at 0 found in this case.

3. Conclusion

We have calculated the electronic band structure of SiSn
using DFT with GW correction in strained and unstrained
geometries. In the unstrained case we find an indirect gap of
0.97 eV. Under tensile strain the band gap decreases and at
2.2% strain we find a transition to a direct band gap of 0.85 eV.
On the other hand, compressive strain is found to increase
the band gap. We then presented TB parameterizations to
replicate the band structures. From the TB band structures we
have calculated the dielectric constants for varying degrees
of strain. Finally we investigated the silicide SiSn2, which
is found to show metallic character and have relatively low
formation energy.
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Appendix. Tight-binding parameters

Table A.1. Tight-binding parameters for unstrained SiSn.

Tight-binding parameters, a = 11.2 Bohr

SOI 1 = 0.0707 eV

Onsite (eV) Es,Si = −6.8506 Ep,Si = −0.9360 Es,Sn = −7.2198 Ep,Sn = −0.8446

Energy, Si (eV) Hssσ Hspσ Hppσ Hppπ

(1) NN −2.6557 2.7191 1.5158 −0.7672
(2) NN −0.3067 0.5299 0.7937 −0.0960
(3) NN −0.0725 0.1199 0.2632 −0.0133

Energy, Sn (eV) Hssσ Hspσ Hppσ Hppπ

(1) NN −2.6557 2.8244 1.5158 −0.7672
(2) NN −0.3421 0.5870 0.8582 −0.0960
(3) NN −0.0725 0.1793 0.2632 −0.0133

Overlap, Si Sssσ Sspσ Sppσ Sppπ

(1) NN 0.2275 −0.2625 −0.3551 0.2337
(2) NN 0.0158 −0.0311 −0.0925 0.0223
(3) NN 0.0035 −0.0134 −0.0440 0.0000

Overlap, Sn Sssσ Sspσ Sppσ Sppπ

(1) NN 0.2275 −0.2676 −0.3661 0.2337
(2) NN 0.0135 −0.0373 −0.1216 0.0167
(3) NN 0.0035 −0.0139 −0.0440 0.0000
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Table A.2. Tight-binding parameters for SiSn under 5% tensile strain.

Tight-binding parameters, a = 11.76 Bohr

SOI 1 = 0.0720 eV

Onsite (eV) Es,Si = −7.0198 Ep,Si = −1.0503 Es,Sn = −7.3831 Ep,Sn = −0.9974

Energy, Si (eV) Hssσ Hspσ Hppσ Hppπ

(1) NN −2.4303 2.5283 1.5697 −0.7564
(2) NN −0.2025 0.4856 0.7469 −0.0698
(3) NN −0.0636 0.1477 0.2624 −0.0141

Energy, Sn (eV) Hssσ Hspσ Hppσ Hppπ

(1) NN −2.4303 2.7767 1.5697 −0.7564
(2) NN −0.3154 0.4725 0.7323 −0.1068
(3) NN −0.0636 0.1131 0.2624 −0.0141

Overlap, Si Sssσ Sspσ Sppσ Sppπ

(1) NN 0.2082 −0.2533 −0.3442 0.2260
(2) NN 0.0118 −0.0361 −0.1118 0.0158
(3) NN 0.0047 −0.0054 −0.0377 0.0000

Overlap, Sn Sssσ Sspσ Sppσ Sppπ

(1) NN 0.2082 −0.2870 −0.3442 0.2260
(2) NN 0.0155 −0.0270 −0.0956 0.0233
(3) NN 0.0047 −0.0115 −0.0377 0.0000

Table A.3. Tight-binding parameters for SiSn under 5% compressive strain.

Tight-binding parameters, a = 10.64 Bohr

SOI 1 = 0.0761 eV

Onsite (eV) Es,Si = −6.5077 Ep,Si = −0.7204 Es,Sn = −7.4791 Ep,Sn = −0.9248

Energy, Si (eV) Hssσ Hspσ Hppσ Hppπ

(1) NN −2.7651 3.2122 1.6350 −0.8385
(2) NN −0.3085 0.6413 0.8675 −0.0895
(3) NN −0.0570 0.1200 0.3004 −0.0057

Energy, Sn (eV) Hssσ Hspσ Hppσ Hppπ

(1) NN −2.7651 2.6199 1.6350 −0.8385
(2) NN −0.3400 0.5725 1.0385 −0.1098
(3) NN −0.0570 0.1417 0.3004 −0.0057

Overlap, Si Sssσ Sspσ Sppσ Sppπ

(1) NN 0.2241 −0.2668 −0.3657 0.2303
(2) NN 0.0105 −0.0165 −0.0808 0.0189
(3) NN 0.0012 −0.0103 −0.0337 0.0000

Overlap, Sn Sssσ Sspσ Sppσ Sppπ

(1) NN 0.2241 −0.2476 −0.3657 0.2303
(2) NN 0.0076 −0.0400 −0.1019 0.0141
(3) NN 0.0012 −0.0163 −0.0337 0.0000
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The semiconducting diamond structure of α-Sn may be
stabilized by embedding nanocrystals in a suitable host.
Based on a very accurate tight binding parametrization
we calculate electronic and optical properties of round,
as well as faceted nanocrystals, under both no, tensile
and compressive strain. Nanocrystals with radii up to 2.6
nm are treated and are found to cover an energy range
starting at near-zero band gap energy,

with both size and also strain playing a significant role
in determining the electronic properties. The HOMO-
LUMO optical transition is found to be strong even for
larger crystals, making them an attractive candidate in
many potential NIR applications. Furthermore, exciton
effects are estimated for bulk and nanocrystals and are
found to be weak.

1 Introduction Tin is, unlike the other highly impor-
tant group IV semiconductors, a metal at standard labora-
tory conditions, where it is found in its β-form, with body-
centered tetragonal structure. However, tin may be found
in its α-form at lower temperatures [1], where it takes on
diamond structure. Even in this form tin still differs from
the other group IV semiconductors in that it is a direct zero
gap material, in contrast to the finite indirect band gap na-
ture of the group IV semiconductors. As such, bulk α-Sn
is usually not considered for semiconductor applications,
however, particles of α-Sn can be stabilized in a suitable
matrix host, which has been demonstrated in both Si and
Ge [2–5]. In these cases it is believed that the tensile strain
from the matrix prevents the particles from collapsing to
the denser β form. As the size of these particles enters the
nano regime, a band gap opens as a consequence of quan-
tum confinement effects. Due to the zero gap nature of the
bulk form, this band gap may be tuned over a wide en-
ergy range and may be promising in small gap nanocrystal
applications which have been previously unavailable to Si
and Ge based devices due to the intrinsic lower limit of the
band gap in nanocrystals of these elements. As such, appli-

cations may include NIR diodes [6], optical amplifiers [7],
lasers and solar cells [8]. Just like Si and Ge, Sn may be
readily used in CMOS processes. While the treatment of
Ge and Si nanocrystals in the litterature is vast and carried
out in many frameworks, the available litterature on α-Sn
nanocrystals is similarly scarce and only structures up to
20 Sn atoms have been treated by molecular orbital [9],
tight binding [10] and ab initio methods [11]. For larger
structures, only a combined k · p and effective mass ap-
proach exists [12]. Tight-binding is a suitable method for
accurately treating nanocrystals with thousands of atoms.
Until recently, tight binding treatments of α-Sn have not
included both spin-orbit interaction (SOI), which plays a
large role in Sn, as well as overlap and strain parameters
[13]. In order to fully realise the potential of α-Sn nanopar-
ticles, we explore the size-dependence of the electronic
and optical properties. Furthermore, we include uniformly
strained and faceted nanocrystals in our analysis, as it is
likely that this is the form that will be encountered in real
applications [2,3]. We base our calculations on a previous
tight-binding paramerization of α-Sn two-center interac-
tions, including strain, SOI and quasi-particle effects in the

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 



density functional theory framework [13]. This provides a
very accurate description of the bulk band structure as well
as showing excellent agreement with the bulk optical prop-
erties of α-Sn.

2 Electronic properties To initialize the nanocrystal
geometry, we consider cutouts of the atom-centered dia-
mond lattice, applying both a spherical cutout as well as
an octaeder truncated by (111) facets. In addition, the sur-
face is saturated with hydrogen in order to eliminate dan-
gling bonds. Various faceted and round nanocrystals are
illustrated in Fig. 1. We then use the sp3 tight binding pa-

Figure 1 Illustration of round nanocrystals (left) and faceted
nanocrystals (right), golden atoms are Sn and white surface atoms
are hydrogen atoms, applied to eliminate dangling bonds.

Figure 2 Calculated band structure of unstrained α-Sn (left) and
absorption spectrum (right). Transitions arising from around the
Γ point are marked with E0, E1 and E1 + Δ are arising from
mainly around the L-point, Δ being the SOI energy and E2 tran-
sition being dominantly from around the X point.

rameterization including up to third nearest neighbour in-
teraction and SOI described in [13], which accurately de-
scribes the band structure in α-Sn, as shown in Fig. 2 along
with the calculated absorption spectrum. The terminating
H-atoms are treated as s-orbitals with zero onsite energy
and H-Sn interaction parameters given by Hssσ = −4 eV
and Hspσ = 4 eV, considering only the nearest neigh-
bour interaction. Nanocrystals ranging from SnH4 up to
Sn2317H756 for round species and up to Sn2293H756 for
faceted species are treated, corresponding to nanocrystal
radii up to 2.65 nm, which covers what has been encoun-
tered so far in the laboratory regarding pure α-Sn nanocrys-
tals [2]. Unstrained geometries are treated along with ones
under 5% uniform tensile and compressive strain. Plots
of the energy gap versus the nanocrystal radius are plot-
ted in Fig. 3 for round crystals and faceted. The radii of
the faceted nanocrystals were calculated according to the
number of Sn atoms in an equivalent round nanocrystal as
reff = ( 3

32π a3NSn)
1

3 , with a the lattice constant and NSn
the number of Sn atoms. The band gap for both faceted and
round nanocrystals appear similar with regards to size and
as such the band gap is believed to be predominantly size
dependent, with both converging towards the bulk value of
0 eV for large, unstrained nanocrystals, as expected. The
energy scale of the α-Sn nanocrystals, which to the best
of our knowledge has not been specifically addressed be-
fore, covers a wide range of energies and in particular for
strained nanocrystals an energy range (0.1-1 eV) that is
normally not easily accesible to relatively small nanocrys-
tals is opened up. Given good optical properties, α-Sn nano-
crystals may see application for capturing IR radiation in
both solar cells as well as detectors. Also we see that strain
plays a fairly large role, with a 0.5 eV seperation between
unstrained and tensile strained nanocrystals, making strain
play a potentially very important role in real world appli-
cations.

3 Optical properties To obtain the optical properties
of α-Sn nanocrystals, we apply the method in [14], which
splits the contributions to the matrix elements into inter-
and intra-atomic terms, in this the inter-atomic contribu-
tion is determined from the band structure while the intra-
atomic term requires fitting an atomic momentum value.
We adopt the value psp = 3.2 eVÅ from Ref. [13], which
describes the optical properties in bulk α-Sn excellently.
The imaginary parts of the dielectric constant of both large
and small, round and faceted nanocrystals are plotted in
Figs. 4 and 5 for round and faceted species, respectively
and the bulk spectrum illustrated in Fig. 2. For larger nano-
crystals in particular, both the E0, E1, E1 + Δ and E2

resonances arising from transitions near the Γ , X and L
points in the bulk spectrum are reproduced in the nanocrys-
tal spectra as well, which is expected as the size effects
diminish and the nanocrystal start to take on more bulk-
like character. We observe a distinct peak corresponding
to the HOMO-LUMO E0 transition at small energies, for
both large and small large nanocrystals, which is stronger
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Figure 3 Band gap versus the radius of spherical α-Sn nanocrys-
tals (top) and (111) faceted nanocrystals (bottom) in both un-
strained (a = 6.47 Å) and strained geometries. Line serves as
a guide to the eye only.

than the corresponding peak in the bulk spectrum and en-
hanced by decreasing size. This is contrary to, for instance,
Si nanocrystals, where the nanocrystals exhibit some of
the indirect band gap nature of the bulk [15,16] - the di-
rect gap nature of α-Sn ensures good absorption charac-
teristics even for larger sized nanocrystals. This is of ut-
most importance in applications where α-Sn nanocrystals
are to be used as absorbers of low energy photons, for in-
stance in photovoltaic applications. Observing the oscilla-
tor strength, it varies slightly, with the tensile strained be-
ing slightly (on the order of 10%) stronger, however most
of the stronger absorption for tensile strained nanocrystals
owe to the 1/E dependence of the absorption.

The optical spectra obtained above are calculated with-
out considering exciton effects. In general, the Coulomb
coupling between electrons and holes modfiies the spec-
tra and may be of importance for optical applications. For
instance, strong exciton binding is a severe obstacle to car-
rier separation in solar cells and photodetectors. Hence, a
estimate of exciton binding is important. The scale of the
binding energies is set by the effective Rydberg given by
Ry∗ = 13.6eV · μ/ε2(0), where μ is the reduced effective
electron-hole pair mass in units of the free-electron value
m0 and ε(0) is the static dielectric constant. Using experi-
mental values [17,18] of the light electron mass 0.028m0

and heavy hole mass 0.195m0 we find μ = 0.024m0.
For bulk and nanoparticle α-Sn, the dielectric screening
ε(0) can be determined from the low frequency limit of the
real part of the dielectric constant, which is found from a
Kramers-Kronig transformation of the imaginary parts de-
scribed above. In this manner, it is found that ε(0) is ap-
proximately 25 for unstrained bulk α-Sn and 12 and 82
under compressive and tensile strain, respectively. In fact,
in the latter case, the material becomes metallic and, hence,

Figure 4 Imaginary part of the dielectric constant for round α-
Sn275H172 (top) and α-Sn1863H605 (bottom) nanocrystals in un-
strained (a = 6.47 Å) and strained geometries.

Figure 5 Imaginary part of the dielectric constant for faceted
α-Sn165H100 (top) α-Sn1669H484 (bottom) nanocrystals in un-
strained (a = 6.47 Å) and strained geometries.

additional intraband contributions to the screening should
be considered. Moreover, at finite temperatures, even the
unstrained zero-gap material supports intraband transitions
due to the broadened Fermi distribution. In a simple para-
bolic band model, the squared plasma frequency ω2

p,metal
of a genuine metal at low temperature scales linearly with
the electron density n ∝ E

3/2

F , where EF is the Fermi en-
ergy measured relative to the band edge. Conversely, for
a parabolic zero-gap material with the Fermi level at the
band edge a simple calculation, based e.g. on [19], shows
that the squared plasma frequency ω2

p,zero−gap varies as

p
h

ys
ic

ap s sst
at

u
s

so
lid

i c

1004 R. V. S. Jensen et al.: Optical properties of a-Sn nanocrystals

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-c.com



(kBT )3/2. More precisely,

ω2

p,zero−gap

ω2

p,metal

= 3
√

π

(
1

2
− 1

23/2

)
ζ(3/2)

(
kBT

EF

)3/2

≈ 2.03

(
kBT

EF

)3/2

,

where ζ(x) is the zeta function. Hence, intraband transi-
tions in unstrained α-Sn are greatly suppressed compared
to metallic (tensile strained) α-Sn. By ignoring intraband
screening, an upper bound on the effective exciton Ryd-
berg is found. Thus, in this manner we find bulk effec-
tive Rydbergs of 0.58 meV for unstrained material and 2.3
and 0.053 meV for crystals under compressive and ten-
sile strain, respectively. These values will be further re-
duced by intraband screening and it follows that exciton
effects are negligible at room temperature in bulk α-Sn.
In the corresponding nanocrystals, however, size effects
may substantially reduce screening. In order to evaluate
the significance of this effect, we have calculated the elec-
tronic screening for various sizes of rounded nanocrystals
as illustrated in Fig. 6. In these curves, the dependence
on strain clearly agrees with the bulk cases, although the
values for a = 6.47 Å and a = 6.15 Å appear to ”‘over-
shoot”’ slightly before reaching the bulk values. This be-
havior is attributed to the simplistic method used to deter-
mine nanocrystal volume that ignores electron spill-out at
the surface. Thus, for the unstrained nanocrystals the value
of ε(0) reaches values slightly above the bulk value of 25.
As expected, the screening diminishes in smaller nanocrys-

Figure 6 The electronic screening ε(0) versus nanocrystal ra-
dius for round α-Sn nanocrystals in unstrained (a = 6.47 Å) and
strained geometries.

tals, but even for nanocrystals in the 1 nm size range, the
effective Rydberg does not exceed 5 meV, irrespective of
strain. Thus, for nanoparticles embedded in a Si matrix (di-
electric constant ≈ 12) exciton effects are not expected to
be significant. It follows that electron-hole separation in

α-Sn nanocrystals is unlikely to be seriously affected by
exciton binding.

4 Conclusion Applying tight binding theory, we have
calculated the electronic band gap of α-Sn nanocrystals, in
both strained and unstrained geometries and for both round
and faceted nanocrystals, saturated with hydrogen at the
surface to passify dangling bonds. Nanocrystals with radii
ranging up to 2.6 nm yield a widely tunable band gap, al-
most down to 0 eV, which may make α-Sn nanocrystals a
promising candidate in many optoelectronic applications.
Optical spectra were calculated and the lowest energy tran-
sition is found to be enhanced compared to bulk α-Sn. In
both cases, the properties are mainly influenced by the size
of the nanocrystal, with shape playing only a minor role.
Exciton effects have also estimated and are believed to play
only a minor role in α-Sn and nanocrystals.

Acknowledgements Financial support from FTP grant #274-
07-0523, project SERBINA, is gratefully acknowledged.

References

[1] A. Jayraman, W. Klement, and G. C. Kennedy, Phys. Rev.
130, 540 (1963).

[2] M. F. Fyhn, J. Chevallier, and A. N. Nielsen, Phys. Rev. B
60, 5770 (1999).

[3] I. Arslan, N. D. B. T. J. V. Yates, and P. A. Midgley, Science
309, 2195 (2005).

[4] R. Ragan and H. A. Atwater, Appl. Phys. A 80, 1335
(2005).

[5] Y. Lei, P. Mock, T. Topuria, R. R. N. D. Browning, K. S.
Min, and H. A. Atwater, Appl. Phys. Lett 82, 4262 (2003).

[6] R. J. Walters, G. I. Bourianoff, and H. A. Atwater, Nature
Mater. 4, 143 (2005).

[7] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and
F. Priolo, Nature 408, 440 (2000).

[8] V. I. Klimov, J. Phys. Chem. B 110(August), 16827 (2006).
[9] A. B. Anderson, J. Chem. Phys 63, 4430 (1975).

[10] C. Jo and K. Lee, J. Chem. Phys. 113, 7268 (2000).
[11] C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe,

Phys. Rev. B 71, 035401 (2005).
[12] P. Moontragoon, N. Vukmirovic, Z. Ikonic, and P. Harri-

son, J. Appl. Phys 103, 103712 (2008).
[13] T. G. Pedersen, C. Fisker, and R. V. S. Jensen, J. Phys.

Chem. Solids 71, 18 (2010).
[14] T. G. Pedersen, K. Pedersen, and T. B. Kristensen, Phys.

Rev. B 63, 201101 (2001).
[15] C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 48,

11024 (1993).
[16] D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Phys.

Status Solidi B 215, 871.
[17] S. H. Groves, C. R. Pidgeon, A. W. Ewald, and J. Wagner,

J. Phys. Chem. Solids 31, 2031 (1970).
[18] T. Brudevoll, D. S. Citrin, M. Cardona, and N. E. Chris-

tensen, Phys. Rev. B 48, 8629 (1993).
[19] T. G. Pedersen, M. Paritosh, K. Pedersen, N. E. Chris-

tensen, M. M. Kjeldsen, and A. N. Nielsen, J. Phys.: Con-
dens. Matter 21, 115502 (2009).

Phys. Status Solidi C 8, No. 3 (2011) 1005

Contributed

Article

www.pss-c.com © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Chapter C. Phys. Stat. Sol. C, 8, 1002 (2011)

102



Appendix D

App. Phys. Lett, 97, 141903
(2010)

103



Erbium diffusion in silicon dioxide
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Erbium diffusion in silicon dioxide layers prepared by magnetron sputtering, chemical vapor deposition, and
thermal growth has been investigated by secondary ion mass spectrometry, and diffusion coefficients have
been extracted from simulations based on Fick’s second law of diffusion. Erbium diffusion in magnetron
sputtered silicon dioxide from buried Er distributions has in particular been studied, and in this case a simple
Arrhenius law can describe the diffusivity with an activation energy of 5.3± 0.1 eV. Within a factor of two,
the Er diffusion coefficients at a given temperature are identical for all investigated matrices.

Light emission from erbium ions (Er3+) embedded in
a silicon dioxide (SiO2) matrix is one of the most im-
portant candidates for a light source for fiber-optic com-
munication techniques since the emitted wavelength, at
around 1.5 µm, corresponds to the minimum attenua-
tion and dispersion in quartz optical fibers.1 Moreover,
the Er3+ emission has attracted intensive attention since
it is remarkably enhanced by introducing some kind of
sensitizer into the matrix, such as silicon nanocrystals
(nc-Si).2–5 This enhancement is believed to be due to an
interaction between the Er3+ ions and a nc-Si following
the Förster or Dexter mechanism.6–9 The distance, x, be-
tween the Er3+ ions and the nc-Si must plays a key role
for this coupling no matter which physical principle dom-
inates since both mechanisms are distance-dependent:
the interaction decreases with the distance as x−6 for
the Förster mechanism, and as exp(−x/x0) for the Dex-
ter mechanism where x0 is the characteristic interaction
distance.10

In order to study this interaction mechanism it is of
decisive importance to have well-defined separations be-
tween the Er3+ ions and the nc-Si. Well-defined nc-Si
positions can be realized by employing multilayer struc-
tures even after heat treatment at the high forming tem-
perature of nc-Si.11–13 The high temperature, however,
might result in Er diffusion in the SiO2 matrix, and ac-
cordingly introduce confusion as to the exact interaction
distance. To our knowledge there are no reports in the
literature as to the diffusional behavior of Er in SiO2.
In previous studies Er precipitation in SiO2 were demon-
strated for temperatures above 1100 ◦C, however, these
studies did not discuss the diffusional aspects of Er in
SiO2.

14,15 The aim of the present study is thus to explore
the diffusional behavior of Er in SiO2 matrices prepared
in different ways: by magnetron sputtering, chemical va-
por deposition (CVD), and thermal growth. Ideally, Er

a)Author to whom correspondence should be addressed. Electronic
mail: luyw@phys.au.dk. Tel.: +45 89423746. FAX: +45 86120740.

FIG. 1. (Color online) Sketches of film structures. The thick-
nesses of pure SiO2 layers are 350 nm for magnetron sputtered
SiO2 and thermally grown SiO2 layers, 220 nm for CVD grown
SiO2 layer, respectively. The thickness of SiO2 containing Er
layer is around 50 nm in all cases.

diffusion in the different types of SiO2 matrices should
have been studied from buried Er distributions in order
to minimize the effects of the surface. This was, however,
not possible for all the types of matrices. Instead, Er
diffusion was thoroughly studied from a buried Er distri-
bution in magnetron sputtered SiO2, and the activation
energy and pre-exponential factor determined. Diffusion
coefficients determined for Er in-diffusion from a surface
source into SiO2 layers produced either by magnetron
sputtering, CVD, or thermal growth were then compared
to those determined from the buried distribution. In this
way it has been possible to compare Er diffusion in the
three different matrices.
The three different types of pure SiO2 layers were de-

posited on Si wafers by magnetron sputtering without
substrate heating using a homemade system, by plasma
enhanced CVD at 250 ◦C from a Surface Technology
System (STS Multiplex CVD), and by thermal growth
from a wet oxygen ambiance at 1100 ◦C. Accordingly,
these samples are labeled 1MS, 1CVD, and 1TH, respec-
tively. Subsequently, on top of these SiO2 layers a SiO2



2

layer containing Er with a concentration in the order of
0.2 at. % was deposited on each of them by magnetron
sputtering at room temperature (the layer composition of
these samples can be seen in Fig. 1). Then each sample
was cut into several pieces and heated in N2 at different
temperatures ranging from 1000 to 1100 ◦C in steps of 25
◦C. The duration of heat treatment were 6 hours for the
1000 ◦C heating and 4 hours for the other temperatures.
At each temperature the three types of samples were put
in the oven together which means that they were heat
treated under exactly the same conditions. The sample
with the buried Er distribution was prepared by mag-
netron sputtering at room temperature as a sandwich
structure (see Fig. 1); this sample is labeled 2MS. It was
also cut into several pieces, and heat treated in N2 for
1.5 hours at different temperatures ranging from 1020 to
1100 ◦C in steps of 20 ◦C. The 1000 ◦C sample was
heated for 7 hours.

The Er diffusion at a given temperature was investi-
gated by measuring the Er concentration profiles before
and after heat treatment using secondary ion mass spec-
trometry (SIMS) with a “TOF.SIMS5” instrument based
on time of flight.16 Here, the analysis was accomplished
in positive polarity using bismuth ions (Bi+) at 25 keV
rastering an area of 100µm× 100µm. Cesium ions (Cs+)
at 10 keV were used to sputter material away for depth
profiling. In this way Er profiles as function of sputter-
ing time are obtained. In order to convert the sputtering
time to a depth scale in the SIMS profiles a Veeco Dek-
tak 150 surface profiler was used to measure the depths
of the craters (formed by the Cs+ ions). This conversion
is based on the assumption that the sputtering rate was
constant during the whole SIMS measurement which is a
reasonable assumption since all of the SIMS spectra were
acquired in steady state conditions, and the Er concentra-
tion is too low to give rise to differences in the sputtering
rate of a pure SiO2 layer and a SiO2 layer containing Er
atoms.

To extract the diffusion coefficient, D(T ), as a function
of temperature, T , the Er SIMS profile was compared for
each sample to the profile of an as-deposited sample. The
latter profile was convolved with the Gaussian function,
f(x) = A/(

√
2πσ) exp(−x2/2σ2), and fitted to the for-

mer by χ2-minimization. The convolution by the func-
tion, f(x), resembles diffusion according to Fick’s second
law when σ2 = 2Dt, where D is the diffusion coefficient
and t is the duration of the heat treatment. The front
factor, A, is of the order of unity and compensates for
slightly different areas under the initial and final distri-
butions.

The depth scale obtained by the surface profiler is es-
timated to be accurate within 2%, and before the fitting
procedure the depth scale of the heat-treated profile was
adjusted slightly in order to overlap its center to that
of the as-deposited profile. This improves the accuracy
and is justified since all samples originate from the same
wafer and since the diffusion is symmetric for the 2MS
samples.
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FIG. 2. (Color online) The Er SIMS profiles of the 2MS sam-
ple before (blue crosses) and after heat treatment at 1100 ◦C
(red dots) together with the fitting result (black solid curve).
The inserted scale bar of 31 nm is the corresponding diffusion
length, L = 2

√
Dt.

Typical SIMS profiles of the 2MS sample before and
after heat treatment at 1100 ◦C, and the fitted profile are
shown in Fig. 2. It is clearly seen that the Er atoms have
diffused from the initial layer into the pure SiO2 layers
on both sides of the Er distribution as a result of the
heat treatment and that effects from the surface can be
totally neglected. The diffusion coefficients are shown in
Fig. 4 as black squares for all temperatures investigated.
The error bars denote the statistical uncertainty from the
fitting procedure. The data was fitted by the Arrhenius
equation:

D(T ) = DT0
exp

[
−∆E

kB
×

(
1

T
− 1

T0

)]
, (1)

where kB is the Boltzmann constant and T is the tem-
perature of the heat treatment (in Kelvin). The activa-
tion energy was determined to be: ∆E = 5.3 ± 0.1 eV,
and the pre-factor, DT0

= 1.76± 0.08× 10−16 cm2/s, de-
notes the value of the diffusion coefficient at a reference
temperature, T0 = 1346 K, chosen in order to minimize
the correlation between the fitting parameters, DT0

and
∆E. The 2% uncertainty of the absolute depth scale de-
termination was included in the uncertainty estimate of
DT0

. Extrapolating to infinite temperature we obtain:
D(∞) = 1.3± 1.2× 104 cm2/s.
Figure 3 shows SIMS profiles of as-deposited and 1050

◦C heat treated 1MS samples, and the fitting curve.
As can be seen, a significant redistribution of the Er
atoms takes place during the heat treatment. In the heat
treated sample there is pile up of Er atoms at the surface,
but it is outside the scope of this work to understand the
details of surface effects, which are also left out in the
fitting procedure. Instead we ensure that the beginning
of the fitting range is always at least a diffusion length,
L = 2

√
Dt, away for the region where surface effects are

in play. In Fig. 3 the diffusion length is shown in the
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FIG. 3. (Color online) The Er SIMS profiles of the 1MS sam-
ple before (blue crosses) and after heat treatment at 1050 ◦C
(red dots) together with the fitting curve (black solid curve).
The inserted scale bar of 27 nm is the diffusion length of the
heated sample.

upper, right corner, and the range of the fitting curve is
restricted accordingly.
Diffusion coefficients for several temperatures have

been added in Fig. 4 for the 1MS, 1CVD, and 1TH sam-
ples. The error bars include both statistical errors from
the fitting procedure and the absolute depth scale uncer-
tainty. For the highest temperatures it turned out that
a consistent fitting range could not be found and data
for these temperatures were not included in Fig. 4. Two
more data points (1025 ◦C of the 1CVD sample and 1000
◦C of the 1TH sample) were excluded due to the prob-
lems with the surface profiler measurements.
Intuitively, one would expect that the Er diffusion in

magnetron sputtered SiO2 would be faster than that in
both CVD and thermally grown SiO2 due to the less com-
pact structure of magnetron sputtered SiO2. However,
from the overall comparison between the diffusion coeffi-
cients determined for the four different types of samples
shown in Fig. 4 we note the following points: (1) The
buried samples (2MS) are more trustworthy due to the
lack of surface effect, (2) the diffusion coefficients deter-
mined from the in-diffusion experiments from a surface
source are identical within uncertainty which indicates
that the Er diffusion is not very sensitive to the origin of
SiO2, (3) the observation that the diffusion coefficients of
the two purely magnetron sputtered samples (1MS and
2MS) differ by approximately a factor of two, indicates a
systematic effect (experimental or possibly a physical sur-
face effect) which is not understood so far. These points
taken together, we are confident about the fitting param-
eters of Eq. (1) for a magnetron sputtered sample, and
the diffusion coefficient is comparable for the thermally
grown or CVD grown SiO2.

In summary, Er diffusion in different SiO2 matrices
prepared by magnetron sputtering, CVD, and thermal
growth have been characterized by SIMS, and diffusion
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FIG. 4. (Color online) Temperature dependence of the diffu-
sion coefficients of Er in thermally grown SiO2 (blue circles),
CVD grown SiO2 (green diamonds), and magnetron sputtered
SiO2 (red crosses for 1MS samples, black squares for 2MS
samples). The black straight line denotes Eq. (1) fitted to the
data of the 2MS samples.

coefficients have been extracted from simulations. Very
accurate diffusion coefficients have been extracted for dif-
fusion of a buried Er distribution in a magnetron sput-
tered SiO2 layer. In this case a simple Arrhenius law can
describe the diffusivity in the whole investigated tem-
perature range with an activation energy of diffusion of
∆E = 5.3 ± 0.1 eV. Furthermore, comparable diffusion
coefficients for all four types of samples indicate that
there is no significant difference between Er diffusion in
the magnetron sputtered, CVD deposited or thermally
grown SiO2 layers used in the present investigation.
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From photoluminescence measurements on sensitized erbium in a-Si/SiO2:Er/SiO2 multilayers, we determine
the characteristic interaction length of the sensitization process from the silicon-layer sensitizer to the erbium-ion
receiver to be 0.22 ± 0.02 nm. By using sufficiently low temperatures in the fabrication steps, we ensure that
diffusion of erbium ions does not affect our results. In addition, we demonstrate that saturation of the erbium
4I13/2 → 4I15/2 transition may lead to an exaggerated estimate of the interaction distance.

DOI: 10.1103/PhysRevB.84.085403 PACS number(s): 71.35.Gg, 76.30.Kg, 78.67.Bf

I. INTRODUCTION

Since the discovery that Er3+ can be sensitized by, for
example, silicon (Si) nanocrystals,1,2 there has been a great
effort in understanding the mechanisms behind the energy
transfer process from the silicon-based sensitizer to the erbium
(Er) receiver ions. It has been demonstrated that not only
silicon nanocrystals can sensitize Er3+ but luminescence
centers can act as efficient sensitizers,3 and the sensitization is
enabled even at low annealing temperatures in samples based
on either silicon layers4 or silicon-rich silica,5 which gives
rise to a higher concentration of Si-grain sensitizers and, hence,
more effective Er luminescence as compared to Si-nanocrystal
sensitization.

The sensitizer-to-receiver distance dependence of the en-
ergy transfer has also been investigated in great detail in order
to understand the actual physical origin of the interaction
mechanism.6–12 In particular, two mechanisms have been
proposed:13 (1) the Dexter mechanism in which the sensitizer
and receiver exchange electrons—this process requires an
overlap of sensitizer and receiver wave functions leading to a
transfer efficiency decreasing exponentially with the distance,
and (2) the Förster resonant energy transfer in which the
near field from the sensitizer and receiver optical dipoles are
coupled with a characteristic x−6 point-to-point dependence.
Most studies suggest that the Dexter mechanism is responsible
for the energy transfer,6–9,12 while it has been pointed out that
by taking the three-dimensional nature of the process into
account, both processes lead to similar plane-to-plane distance
dependencies.10

However, apart from a recent experiment using room-
temperature fabrication steps,12 the above-mentioned studies
have ignored the possibility that the Er ions diffuse during the
sample annealing process. In the present study, we examine the
energy transfer efficiency as a function of interaction distance
using Si/SiO2:Er/SiO2 multilayer samples subject to annealing
temperatures sufficiently low to exclude effects of Er diffusion.
Furthermore, we demonstrate that if the optical excitation of
the sensitizer is too strong, the Er3+ transition at 1.5 μm will
saturate with an overestimated interaction distance as a result.
Simplified theoretical models are given in order to estimate
the effects of Er diffusion and saturation.

This paper is organized as follows. In Sec. II we describe
the sample fabrication process, while details of the optical

measurement setup is given in Sec. III. The actual optical
characterization is covered in Sec. IV, while the interpretation
and main results are discussed in Sec. V. After the final
conclusion in Sec. VI, two Appendices present the simplified
modeling of Er diffusion (Appendix A) and saturation effects
(Appendix B).

II. SAMPLE FABRICATION

The samples were fabricated by radio-frequency-
magnetron sputtering with substrate heating at 200 ◦C. The
sample layout is depicted in Fig. 1(a). On a Si wafer, a 10-nm
layer of SiO2 was deposited followed by ten multilayers, each
of which consists of a pure SiO2 layer of thickness 10 − d nm,
an Er-doped SiO2 layer of thickness d followed by a 1.5-nm
Si layer. Hence, each SiO2 layer is fixed to a total thickness of
10 nm. Finally, the samples were capped by 50 nm of SiO2.
The thickness d of the Er-rich SiO2 layers was varied between
the nominal values (in nanometers) 0, 0.3, 0.6, 0.9, 1.2, 1.5,
2.0, and 3.0. The thickness of the Er-rich layers was controlled
by varying the deposition time while keeping the sputtering
power constant.

The samples were annealed for one hour at 700 ◦C in N2

(2.0 Bar) followed by a 1-hour passivation step at 500 ◦C in
a N2(95%) + H2(5%) atmosphere (2.0 Bar). The sample-
to-sample standard deviation in Er concentration was eight
percent measured by secondary ion mass spectrometry—all
Er-related photoluminescence (PL) yields have been corrected
for this slight variation. In comparison to a sample with a
known Er concentration (measured by Rutherford backscatter-
ing spectrometry), the absolute Er concentration was estimated
to be 0.3 atomic percent. According to the estimates of
Appendix A, the heat treatment at 700 ◦C will not give rise to
any diffusion of Er ions. A transmission electron micrograph
of the sample is presented in Fig. 1(b).

III. EXPERIMENTAL SETUP

The samples were attached in an optical characterization
setup as depicted in Fig. 2. As an excitation source we used
a continuous-wave diode laser at 405 nm. The excitation
intensity was controlled by adjusting the pumping power
and (for the lowest intensities) by increasing the spot size
of the excitation beam at the sample position. Beam sizes

085403-11098-0121/2011/84(8)/085403(7) ©2011 American Physical Society
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Si wafer

SiO2 buffer (10 nm)

Si (1.5 nm)
SiO2:Er

SiO2

d
10 nm

SiO2 buffer (50 nm)

Repeat × 10

(a)

(b) 50 nm

FIG. 1. (Color online) (a) Schematic view of the sample prepara-
tion steps. (b) Transmission electron micrograph of the sample with
a nominal layer thickness d = 3.0 nm after annealing at 700 ◦C. The
dark horizontal lines correspond to the Si layers.

were estimated by illuminating a charge-coupled device
(CCD)-camera chip, and intensities have been corrected for
the incidence angle and for the reflection from the sam-
ple surface. The photoluminescence at wavelengths above
1100 nm was detected by a liquid-nitrogen-cooled photomul-
tiplier tube (Hamamatsu R5509-73) attached to a McPherson
218 monochromator. In the wavelength range 700–1100 nm,
the PL was detected by a CCD camera (Princeton Instruments,
PIXIS 100BR) attached to an Acton Research 300-mm focal
length monochromator.

IV. OPTICAL CHARACTERIZATION

The spectrum from an Er-rich sample is displayed in Fig. 3
and shows the following features: (1) the luminescence from
the Er transition 4I13/2 → 4I15/2, which peaks at 1535 nm,
(2) a luminescence band characteristic of the silicon bulk
band gap peaking around 1137 nm (1.091 eV), (3) a peak at
983 nm from the Er transition 4I11/2 → 4I15/2, and (4) a broad
feature extending from 700 nm to the Si-bulk-related peak. We
attribute the latter feature to luminescence from the deposited
1.5-nm silicon layers.

The luminescence peak at 1535 nm is used as the figure
of merit for the energy transfer from the Si layer to the Er
ions. At the same time, the integrated luminescence in the
range 700–950 nm brings information about the dynamics of
electrons and holes in the sensitizing Si layer.

A. Saturated erbium excitation

The Er and Si-layer PL yields are plotted in Fig. 4 as a
function of pumping intensity and reveal a very significant

FIG. 2. (Color online) The optical characterization apparatus.
The sample is mounted in a sample holder and subjected to pump
light (p polarized), a focus of which can be adjusted down to
approximately 100 microns by translation of a cylindrical lens.
Different spectral parts of the emitted light is collected simultaneously
by two monochromators. One is equipped with a charge-coupled
device (CCD), and the other with a photomultiplier tube (PMT).

feature: the Si-layer PL yield increases proportionally with
the intensity in the entire range examined. Hence, there are
no saturation effects in the sensitizer part of the sensitization
process. In contrast, the Er-related PL yield shows a significant
saturation effect for high excitation intensities; the finite
number of Er ions together with their radiative decay rate
sets the ultimate upper limit for the luminescence yield.

In a simplified one-dimensional model of the energy
transfer process (details are given in Appendix B), we let the
excitation rate P (x) of the 4I13/2 state in an Er ion depend on
the Si-layer-to-Er-ion distance x as P (x) = P0 exp(−x/x0),
where x0 is the characteristic interaction distance. Taking � as
the decay rate of the 4I13/2 state, the luminescence yield Y can
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FIG. 3. The emitted spectrum from the sample with nominal Er-
layer thickness of 3.0 nm under continuous pumping at 405 nm with
intensity I = 104 W/m2. The part below 1400 nm has been multiplied
by a factor of ten for clarity.
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FIG. 4. (Color online) The photoluminescence yield at 1535 nm
(circles) and in the range 700–950 nm (squares) vs pumping intensity
for the sample with 3.0 nm Er-layer thickness. The vertical position
of each data set is arbitrary. The straight lines denote proportionality
fits of the data, the dashed line is fitted to the five lowest-intensity
points only. The solid line through the circles represents a fit to the
expression in Eq. (1) with A fixed at the slope of the dashed line
and the saturation intensity fitted to Isat = 33 W/m2. The data points
corresponding to the low and high intensities, Ilow = 3.0 W/m2 and
Ihigh = 0.94 × 104 W/m2, are marked on the graph.

be found as a function of the Er-layer thickness d for a given
ratio P0/�, see Eq. (B1). In the limit d � x0, we obtain

Y∞ = C ln

(
P0

�
+ 1

)
≡ AIsat ln

(
I

Isat
+ 1

)
, (1)

where Isat is defined as the intensity required for having the
pumping rate P0 equal to the decay rate �. The front factor A

represents the slope in the linear regime, I � Isat. The above
model is fitted to the experimental data in Fig. 4. It is clear
that the fit is not perfect, however, by its logarithmic behavior
at large intensities it includes the experimental feature that
although the increase in PL yield slows down, there is not a
specific upper limit within reach.

In the data analysis to follow, we will use two specific
excitation intensities Ilow and Ihigh, which are marked in
Fig. 4. The lower intensity Ilow is clearly in the linear
regime, whereas the higher one Ihigh leads to saturation of the
Er-receiver system (but not the Si-related sensitizer system).
In the following section, we examine the effect of saturation
on the distance-dependent sensitizer-receiver interaction.

B. Distance dependence of erbium excitation

In the optical characterization apparatus, the photolumines-
cence yield from each of the samples was measured, the result
of which can be used to estimate the distance dependence of
the sensitizer-receiver interaction. The PL yield (normalized
to the mean yield of the data points with d � 1.2 nm) for
excitation intensities Ilow and Ihigh are plotted in Fig. 5, panel
(a) and (b), respectively. Each data point was obtained in eight
steps, in which the luminescence at 1535 nm (resolution 8 nm)
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FIG. 5. The dependence of the 1535-nm normalized PL yield on
the Er-layer thickness. Panels (a) and (b) show the luminescence yield
obtained at low and high pump intensities, respectively. The data in
panel (c) is the PL yield ratio YI=Ihigh/YI=Ilow , i.e., the data of panel
(b) normalized to the data of panel (a). The solid line in panel (c) is
a fit to Eq. (2), and the dashed lines in panels (a) and (b) show the
in-growth function y = A[1 − exp(−x/x0)] with x0 fixed at the fitted
values xlow and xhigh, respectively.

was accumulated for one minute. Between each step the
sample was moved slightly in order to average out possible
sample inhomogeneities. The error bars in Fig. 5 represent the
statistical uncertainty of the averaged luminescence yield—
the dominant source of uncertainty is in fact given by the
reproducibility of each step, i.e., by sample inhomogeneities.

Comparing the data in panels (a) and (b) of Fig. 5, we
also observe a systematic source of error; the data points
show a slight scattering common to the two graphs (most
pronounced is the point at 1.2 nm thickness, which has fallen
well below its neighbors). We attribute this to sample-to-
sample variations—the scattering represents the precision of
the fabrication process. Nonetheless, the two data sets are
clearly different as the luminescence increases slower in panel
(b) compared to panel (a), i.e., the effect of saturation causes an
apparently longer interaction distance. In order to examine this
effect further, we plot in panel (c) the “PL yield ratio” defined
as the data in panel (b) normalized to that of panel (a), i.e.,
panel (c) represents the high-excitation-intensity normalized
PL yield divided by the low-excitation-intensity normalized
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PL yield. The effect of saturation has now become very clear
as the PL yield ratio is definitely increasing as a function of
Er-layer thickness. But more importantly, the PL yield ratio
is insensitive to the systematic sample-to-sample variations as
the luminescence yields at low and high intensities are affected
equally by these variations [this is evident from the fact that
in panel (c) the scattering is within the statistical error bars in
contrast to panels (a) and (b)]. For this reason the curve-fitting
analysis to follow is based entirely on the data of Fig. 5(c).

In modeling the photoluminescence yields, we choose (in
any case independent on the level of saturation) the functional
dependence, Y = A[1 − exp(−x/x0)], which corresponds to a
one-dimensional, unsaturated exchange (Dexter) model. This
simplified description is a practical choice, which in fact, with
its few free parameters, fits the data nicely. As mentioned in
Appendix B it is theoretically inadequate if saturation effects
are significant in which case Eq. (B2) should be used instead.
However, there could be additional effects that are not covered
by the model of Appendix B; as mentioned in the introduction,
a more complete three-dimensional theory exists10 in which
the sensitization process is integrated over the sensitizer-layer
thickness, and which also discusses the possibility of Förster
resonant energy transfer. However, the authors behind this
theory could not distinguish between the transfer mechanisms
in practice, and it may even be questioned whether it is
correct to integrate over the sensitizer layer thickness since
the luminescence centers responsible for the sensitization3

could be located on the surface only. Furthermore, effects
of excited-state absorption and cooperative up-conversion14,15

are also not included. The available data, anyway, will not
allow us to distinguish among all these various details, and the
simplified model is retained.

Taking the low-intensity data of Fig. 5(a) to represent the
model Ylow = Alow[1 − exp(−x/xlow)] and the high-intensity
data of panel (b) to reflect Yhigh = Ahigh[1 − exp(−x/xhigh)],
where xlow and xhigh are the characteristic interaction distances
when I = Ilow and I = Ihigh, respectively, we can model the
PL yield ratio of panel (c) as

Yhigh

Ylow
= A

1 − exp(−x/xhigh)

1 − exp(−x/xlow)
. (2)

As can be see from Fig. 5(c), this model apparently fits the
data, and we extract the fitting parameters: xlow = 0.21 ±
0.06 nm, xhigh = 0.54 ± 0.10 nm, and xhigh/xlow = 2.6 ± 0.4.
The individual yield models Ylow and Yhigh have been added
in panels (a) and (b) for comparison, and we stress that the
parametrization of these curves is based on the fit to the data
in panel (c). If instead the data in only panel (a) had been
used to extract a value xlow for the characteristic interaction
distance, the single left-most data point at d = 0.3 nm
would essentially determine xlow, which would lead to a rather
uncertain value due to the sample-to-sample scattering. Indeed,
it is the comparison to the corresponding data point in panel (b),
which allows for the more accurate estimate of the interaction
distance.

So far, the results can be summarized to an effective
sensitizer-receiver interaction distance measured by the pa-
rameter xlow = 0.21 ± 0.06 nm, which in practice appears
larger by a factor xhigh/xlow = 2.6 ± 0.4 when the excita-
tion intensity is increased to Ihigh = 0.94 × 104 W/m2. In

comparison, the inverse slope of Eq. (B2) in the limit d → 0
(which present a rough estimate of the interaction distance un-
der the influence of saturation) predicts an enhancement factor
xhigh/xlow = 5.7 when taking P0

�
= Ihigh

Isat
and Isat = 33 W/m2

(fitted value, see Fig. 4). The discrepancy in the enhancement
factor is not surprising since the model of Appendix B presents
a simplified, qualitative description of the saturation effects.

C. Distance dependence of Si-layer luminescence

In order to examine the Si-layer luminescence, we plot in
Fig. 6 as a function of the Er-layer thickness, the intensity
integrated over the wavelength range 700–950 nm (thus
excluding possible impacts from the Er luminescence line
at 983 nm). The results in panel (a) and (b) correspond to
intensities Ilow and Ihigh, respectively, and the error bars reflect
the statistical uncertainty of the average of eight measurement
steps (just as in the case of the 1535-nm luminescence in
Fig. 5). We note the following features common to both
panels: (1) there is a significant decrease for increasing layer
thicknesses below 0.5 nm, (2) the decrease continues in the
entire range investigated, and (3) there seems to be no drastic
effects of saturation in panel (b) as compared to panel (a).

A quantitative investigation of the data is performed
by fitting the data to the model y = A1 exp(−d/x1) +
A2 exp(−d/x2). As mentioned in Sec. IV B, there are numer-
ous effects needed to be taken into account for a detailed theory,
which is outside the scope of the present work. Instead, we
use an exponential dependence as a descriptive model, which
includes most importantly (by the fitting parameter x1 of the
first exponential term) the initial short-distance-scale decrease.
The continued decrease in PL yield is accounted for by the
second term, and since there are no indications whether the
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FIG. 6. The dependence of the integrated photoluminescence
yield in the range 700–950 nm on the Er-layer thickness. Panels
(a) and (b) show the yield obtained at low and high pump intensities,
respectively. The solid lines are fits to a double-exponential model.
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data would converge toward zero or any other value at larger
Er-layer thicknesses, the second-term length scale x2 should
only be taken as a free parameter to match the data.

The fitting results in Fig. 6(a) are x1 = 0.21 ± 0.03 nm,
x2 = 4.2 ± 1.2 nm, and A2/A1 = 0.19 ± 0.04. In panel (b),
we obtain x1 = 0.24 ± 0.05 nm, x2 = 2.9 ± 0.6 nm, and
A2/A1 = 0.40 ± 0.09. Remarkably, within uncertainties the
short-distance scale x1 is independent on the intensity and
agrees with the low-intensity sensitizer-receiver interaction
distance xlow from the 1535-nm luminescence yield of Fig. 5.
Assuming that the two x1 values from Fig. 6 and xlow from
Fig. 5 are independent measurements of the characteristic
sensitizer-receiver interaction distance, we find a combined
value of 0.22 ± 0.02 nm.

It is indeed reasonable that the short-distance scale x1 of
Fig. 6 is independent of the excitation intensity and that the
two panels of Fig. 6 appear very similar in general; the Si-layer
photoluminescence yield does not show any saturation (see
Fig. 4), but since it is always quenched by the presence of Er
ions (both for low and high pump intensity, see Fig. 6), we
conclude that energy always flows from the Si-layer to the Er
ions, i.e., independently of the excitation intensity. Hence, Er
ions do always receive a large fraction of the energy available
from the Si layer. If the 4I13/2 state is already highly populated,
e.g., in the strongly saturated case, the Er ion is just excited to
an even higher energy state (and subsequently decaying back
to possibly the 4I13/2 state).

A convenient estimate of the Si-layer-luminescence
quenching specifically due to the short-distance-scale energy
transfer mechanism (with 0.22 nm characteristic interaction
distance) is given by the fitted value of A2/A1 in Fig. 6. In panel
(a), the “direct-quenching fraction” is A1

A1+A2
= 1

1+A2/A1
=

0.84 ± 0.03, whereas in panel (b), we find 0.71 ± 0.05. In
addition, when increasing the Er-layer thickness from 1.0 to
3.0 nm, the Si-layer luminescence is quenched by approxi-
mately a further factor of two. Since this is not accompanied by
a corresponding increase in the Er PL (Fig. 5), we suggest that
a separate Er-related quenching mechanism must be present.

V. DISCUSSION

Saturation of the 4I13/2 → 4I15/2 transition at 1535 nm
definitely plays a role in the estimation of the characteristic
interaction distance as seen directly by the data in Fig. 5.
Such an increase of the apparent interaction distance together
with the constant length scale of the Si-related PL has in fact
been reported previously.11 In this study, it was suggested
that energy transfer processes between individual Er ions was
responsible for the additional length scale. We can not exclude
that such a transfer takes place; however, we find that the
saturation effect must be dominant since in the nonsaturated
limit the two length scales (xlow in Fig. 5 and x1 in Fig. 6)
coincide.

We also wish to note that the thinnest nominal Er-rich layer
thickness and the derived characteristic interaction distance
are both comparable to interatomic distances. Hence, it is clear
that the experimental resolution is reaching ultimate limits and
one could in fact speculate whether the increase in Er PL as
a function of the Er-layer thickness d is a purely statistical
feature, i.e., if it would require a rather thick layer (compared

to an atomic bond length) to ensure that the entire Si layer
has been covered with Er-rich SiO2. We cannot exclude that
our results are influenced slightly by such statistical effects;
however, the flatness of the Si layers observed from Fig. 1(b)
suggests that the deposition process runs predominantly in
a layer-by-layer fashion. In any case, there must be a real
physical dependence of the energy transfer efficiency on the Er-
ion-to-Si-layer distance. Otherwise, all sensitized ions would
always behave in the exact same manner and, in particular, be
saturated to the same level at high excitation intensities. This
contradicts the observed distance dependence of the PL yield
ratio in Fig. 5(c).

As already mentioned, Er ions, which are already excited
to the 4I13/2 state, can easily receive more energy and become
further excited. This effect is not included in the modeling of
saturation in Appendix B. In addition, effects of cooperative
up-conversion14,15 could also play a role in the dynamics. It is
clear that our saturation model is too simple to match exactly
the experimental data in Fig. 4. Anyway, the model delivers an
intuitive explanation of the overestimated (power broadened)
interaction distance as observed from Fig. 5(b).

The modeling of the distance dependence is based on an
exponential dependence, P (x) = P0 exp(−x/x0), which leads
to a satisfactory fit to the experimental data. It is thus tempting
to conclude that the Dexter mechanism is responsible for the
energy transfer. However, in the light of a more elaborate three-
dimensional analysis,10 which concludes that the Dexter and
Förster mechanisms lead to similar plane-to-plane features,
one should be cautious with such a conclusion. In any case, it
resides without question that, for the main part of the energy
transfer, the effective interaction distance of 0.22 ± 0.02 nm
is very short and comparable to the interatomic distance. This
indicates that overlap of wave functions is a requirement
for the efficient energy transfer, which is in agreement with
recent studies on Er3+ forced to be in direct contact with Si
nanostructures.12 We remind that the continuing decrease of
Si-layer PL in Fig. 6 indicates that further processes may take
place in addition to the dominant short-range Si-to-Er energy
transfer.

A. The role of Er diffusion

Now let us go through the previously published results
on the interaction-distance dependence of Er sensitization,
which have been carried out with SiO2-based samples. In the
following, the uncertainties on the diffusion lengths arise from
measurements on Er ions embedded far from surfaces inside a
magnetron-sputtered host of SiO2, but we emphasize that, in
general, the diffusion length should be valid within a factor of
two. See Appendix A for details.

In Ref. 9, all samples were annealed at 900 ◦C for
1 hour. This corresponds to a diffusion coefficient of
D(900 ◦C) = 2.1(3) × 10−19 cm2/s and a diffusion length of
L = 0.27(2) nm. While this number might influence their
stated interaction distance of 0.4 ± 0.1 nm for amorphous-Si
sensitizers (grown from a 1.8 nm layer of silicon-rich silicon
oxide), the authors also state significantly longer interaction
distances (up to 5 nm) for crystalline Si sensitizers. The latter
case is obviously not an Er-diffusion related artifact.
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In Refs. 8 and 15, a uniform distribution of Er ions around
Si nanocrystals was assumed. In addition, by assuming that
the Si nanocrystal interacts with the nearest unexcited Er ion
with a rate K ∝ exp[−(R − Rnc)/R0], the authors managed
to estimate R0 ≈ 0.45 nm from the photon-flux dependence
of Er photoluminescence. The samples were annealed for
1 hour at 900 ◦C, which, as in the above case, translates into a
diffusion length of L = 0.27(2) nm. While diffusion does not
change the uniformity in a homogeneous medium, the results
might be slightly affected by effects near the Si nanocrystals.

For T = 950 ◦C, the diffusion coefficient is D(950 ◦C) =
1.8(2) × 10−18 cm2/s. Exposing a sample to this temperature
for five minutes (as was done in the work of Ref. 7) we find
a diffusion length L = 0.23(1) nm, which is roughly half of
their reported value of the interaction distance 0.5 nm. Hence,
some influence of diffusion on this result is possible.

In Ref. 10, a temperature of 1000 ◦C was used, in which
case the diffusion coefficient is D(1000 ◦C) = 1.28(9) ×
10−17 cm2/s while the annealing time was unspecified. The
authors found a characteristic interaction distance of 5 nm
assuming the simple exponential dependence of the Dexter
mechanism. This number was stated as nonphysically large
and by integrating the Förster mechanism (x−6 dependence)
over space in three dimensions an alternative explanation was
also stated. For comparison, a 1-hour annealing time at 1000 ◦C
leads to a diffusion length of L = 2.15(7) nm.

In Ref. 6, a layer of Er ions was deposited onto a pre-
oxidized sample of porous silicon. In order to activate the
optical emission, the samples were annealed at 1200 ◦C for
30 seconds. This corresponds to a diffusion coefficient of
D(1200 ◦C) = 9.0(8) × 10−15 cm2/s and a diffusion length
of L = 5.2(2) nm. For comparison, the authors estimate the
energy-transfer rate to decrease exponentially with Si-Er
distance where the characteristic length is 1

0.36 nm−1 ≈ 2.8 nm.
This result must be heavily influenced by the Er diffusion.

By working through the above examples, we find that
the experiments conducted at the lowest temperatures give
a characteristic interaction distance of the order of 0.4 nm,
and remembering that these results could be overestimated
slightly by a diffusion length of approximately 0.2 nm, this is
definitely consistent with our somewhat smaller characteristic
interaction distance of 0.22 nm in absence of Er diffusion.
For comparison, in our experiments the highest heat treatment
temperature was 700 ◦C to which the samples were exposed
for 1 hour. The characteristic diffusion length in this case is
estimated to be L(700 ◦C) = 1.3 × 10−3 nm, which means in
practice that Er ions are stationary.

VI. CONCLUSION

We have measured the effective interaction distance be-
tween a sensitizing a-Si layer and Er receiver ions to be
0.22 ± 0.02 nm. Our experimental approach excludes effects
of Er diffusion and saturation, which can otherwise exaggerate
the estimate of the interaction distance. The short range of
the interaction is comparable to interatomic distances, which
indicates that wave-function overlap is a requirement for the
transfer process.
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APPENDIX A: INFLUENCE OF ER DIFFUSION

The role of Er diffusion can be estimated from the diffusion
coefficient of Er in SiO2, which follows the Arrhenius
law: D = DT0 exp[−�E

kB
(T −1 − T −1

0 )], where T is the tem-
perature in Kelvin, T0 = 1346 K is a reference temperature
at which the diffusion coefficient is DT0 = (1.76 ± 0.08) ×
10−16 cm2/s, and �E = (5.3 ± 0.1) eV is the activation
energy.16 The uncertainties on these parameters relate specifi-
cally to a magnetron-sputtered SiO2 host with Er ions located
far within the host matrix. However, for Er ions closer to the
surface or for Er ions in other types of SiO2 (thermal oxide
or grown by chemical vapor deposition), similar diffusion
coefficients within a factor of three were found.16 If t denotes
the time of a heat treatment, the characteristic diffusion length,
L = √

Dt , can thus be conservatively estimated to within a
factor of two.

Let us consider (in a simple one-dimensional model) how Er
diffusion relates to the particular geometry of our experimental
procedure. If an infinitesimal layer of Er with concentration ρ0

and thickness dx0 is located within a SiO2 matrix at position
x0 [see Fig. 7(a)], the impact of diffusion on this layer leads to
the x-dependent concentration:

ρ(x) = ρ0dx0

2L
√

π
exp

[
− (x − x0)2

4L2

]
, (A1)

where L = √
Dt is the diffusion length. Now, assume that a

sensitizer of Er emission is located at x = 0, and that the sensi-
tization interaction is short-range (compared to L). Then the Er
ions must travel by diffusion to x = 0 in order to be sensitized.
We stress that Eq. (A1) is, in principle, only applicable within
the SiO2 host in absence of material boundaries. When Er ions
reach the sensitizer (e.g., a thin Si layer), we simply assume
that they stay there and become optically active. Hence, we
assume that the sheet density σ (x0)dx0 of sensitized Er ions
originating from the infinitesimal layer at x0 is given by

σ (x0)dx0 =
∫ 0

−∞
ρ(x)dx = 1

2
erfc(ξ )ρ0dx0, (A2)

where erfc(ξ ) is the complementary error function and ξ =
x0/2L. Now, assume the Er ions were initially distributed
uniformly with density, ρ0, in the range x = 0 to x = d, i.e.,
an Er layer with thickness d is located right next to a thin sheet
of sensitizers. The total sheet density σd of Er ions, which by
diffusion reach the sensitizer layer, is then

σd =
∫ d

0
σ (x0)dx0

= ρ0L√
π

[
1 − e−μ2 + √

πμ erfc(μ)
]
, (A3)
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dx0

Si SiO2 + Er
(a)
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(b)
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d
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∞

FIG. 7. (a) Schematics of the diffusion model. An initial distribu-
tion of Er is located at x0 within the thickness dx0. A subsequent heat
treatment broadens the Er concentration (solid line, exaggerated in
magnitude) according to Eq. (A1). The part, which falls below x = 0,
is assumed to become optically active. (b) The solid line denotes the
analytical sheet carrier density of Eq. (A3). The circles show a simple
exponential in-growth with characteristic length L.

where μ = d/2L. This function approaches zero when d →
0 and it saturates at σ∞ = ρ0L/

√
π for large d. There is a

great similarity with a simple exponential in-growth: σ
(exp)
d =

σ∞[1 − exp(−d/L)], as can be seen from Fig. 7(b). If L is not
much larger than the interaction distance x1, the full result may
still be approximated by an exponential, albeit with a better fit
if Leff = √

L2 + x2
1 replaces L.

The above considerations show that if diffusion of Er
ions is significant, a short-range sensitization interaction can

mistakenly be interpreted as a longer, exponentially dependent
interaction mechanism with characteristic interaction distance
essentially determined by the diffusion length L.

APPENDIX B: INFLUENCE OF SATURATION

We will employ a one-dimensional model in which the
excitation rate P (x) of erbium depends exponentially on the
distance x between the Er ion and the sensitizer layer: P =
P0 exp(−x/x0). The sensitization mechanism pumps Er ions to
the state 4I13/2 (possibly via fast-decaying excited states17) with
a rate P (x). Denoting the decay rate back to the ground state
4I15/2 by �, the probabilities ρ13/2 and ρ15/2 of populating the
two lowest states are governed by the equations: ∂ρ13/2/∂t =
Pρ15/2 − �ρ13/2 and ρ13/2 + ρ15/2 = 1, which in steady state
leads to ρ13/2(x) = P (x)

P (x)+�
. The total detected photolumines-

cence yield Y from Er at the 1.5-μm transition is proportional
to the population ρ13/2(x) integrated over the Er receiver
layer:

Y = C ln

[
P0
�

+ 1
P0
�

exp(−d/x0) + 1

]
, (B1)

where C is a constant dependent on the radiative decay
rate and on details of the measurement apparatus. We note
that for a thick Er layer with d � x0, the total yield is
Y∞ = C ln(P0/� + 1), which rises linearly with P0 when
P0 � � and saturates to a logarithmic dependence at high
pumping rates. By normalizing the yield to its value at large
Er thickness, we find

Y

Y∞
= 1 − ln

[
P0
�

exp(−d/x0) + 1
]

ln
(

P0
�

+ 1
) , (B2)

which in fact reduces to 1 − exp(−d/x0) when saturation is
negligible (P0 � �).
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