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AN ABSTRACT OF THE RESEARCH PAPER OF

NAAMA LEWIS, for the Master of Science degree in Mathematics, presented

on 8th of November, 2011 at Southern Illinois University Carbondale.

TITLE: FINITE ELEMENT ANLAYSIS: MATHEMATICAL THEORY AND AP-

PLICATIONS.

MAJOR PROFESSOR: Dr. G. Budzban

This paper discusses the mathematical theory of finite elements. Using the

concepts of inner product spaces, the mathematics of finite element analysis is ex-

plained in the context of function spaces. The finite elements as well as the finite

element space will be rigorously defined. Furthermore, examples from research in

the field of engineering will be explained and viewed through a mathematical lens.

This research paper seeks to firmly bridge the applications with mathematical con-

tent for the research scientist who generally focuses on the applications. The paper

will begin with a review of some basic building blocks for the finite element space

followed by validation of the process and construction of finite elements. The use

of these elements will be compared. A trial will be done on the computer using a

simple differential equation where the use of different finite elements will be inves-

tigated for accuracy to validate the roof functions used in finite element analysis.

Finally a short review of literature illustrating the technique will be presented.
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CHAPTER 1

MATHEMATICAL THEORY

1.1 FUNCTION SPACES

Finite Element Analysis has become an indispensible tool for many engineers

and other scientists. The sophistication of the method, its accuracy, simplicity, and

computability all make it a widely used tool in the engineering modeling and design

process. This paper will discuss finite element analysis from mathematical theory

to applications. For purposes of analysis of the method, it is easier to study theory

along side applications. This hopefully gives the reader an opportunity to draw

direct connections between application and theory, putting the mathematics into

context. For the basis of understanding the mathematical theory, we will utilize

a one dimensional problem. However, all the concepts and proofs can be easily

transformed to multidimensional situations with a few adjustments.

In many cases, the solution to even second order differential equations can be

quite complicated and an alternative method to computing an exact answer would

be needed. Finite element analysis provides the tools necessary to approximate the

solution. We will consider a simple example to help illustrate the theory. Consider,

the second-order linear differential equation −y′′+y = x on the domain [0, 1]. In this

case an exact solution using traditional methods for solving differential equations can

be found. Applying methods traditionally learned in standard differential courses

we find that the exact solution that satisfies y(0) = 0 and y(1) = 0 to be y(x) =

x− sinh(x)
sinh(1)

. However, we will utilize this example for explanation purposes and as a

comparison for the accuracy of the method.We will return to this equation in section

chapter 4.

Before we begin, let us build the mathematical framework and key ideas needed

for the theoretical foundation of finite element anlaysis. Consider the following
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definitions.

Definition. (Vector Space) Let V be a set. Let F be a field of scalars. We call the

set V a vector space over F if V is an abelian group under an operation, which we

will denote ’+’ and for every λ, µ ∈ F and for every v1, v2 ∈ V

(i) λ(v1 + v2) = λv1 + λv2

(ii) (λ+ µ)v1 = λv1 + µv1

(iii) λ(µv1) = (λµ)v1

(iv) 1v1 = v1

For purposes of our work, all vector spaces will be over the real numbers.

Definition. (Inner Product) Let V be a vector space. Let 〈∗, ∗〉 be a real valued

function 〈∗, ∗〉 : V × V → R,defined on V × V . We call 〈∗, ∗〉 an inner product if

the following criteria are met: For all v1, v2 ∈ V and for all λ ∈ R,

(i) 〈v1, v1〉 ≥ 0 with equality ⇔ v1 = 0

(ii) 〈v1, v2〉 = 〈v2, v1〉

(iii) 〈v1 + v2, v3〉 = 〈v1, v3〉+ 〈v2, v3〉

(iv) 〈λv1, v2〉 = λ 〈v1, v2〉

We call the vector space V together with the inner product (V, 〈, 〉) an inner product

space.

Definition. (Norm) Let V be a vector space. Let ‖∗‖, ‖∗‖ : V → R be a real

valued function defined on the set V . We call the function ‖∗‖ a norm if the

following criteria are met:

For all v1, v2 ∈ V and for all λ ∈ R
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(i) ‖v1‖ ≥ 0 with equality ⇔ v1 = 0

(ii) ‖λv1‖ = |λ| ‖v1‖

(iii) ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖

We call the vector space V together with a defined norm (V, ‖∗‖) a normed vector

space.

Let’s take a second to solidify some of these definitions with concrete examples.

Example 1.1.1. An example of a vector space is the set of m× n matrices. Using

addition and scalar multiplication defined component wise, one can easily check that

the set of all m× n matrices meet the criteria for a vector space.

Example 1.1.2. An example of a norm is the absolute value function on the reals.

Example 1.1.3. An example of an inner product is 〈f, g〉 =
∫ 1

0
f(x)g(x)dx. Here

we use the Riemann Integral to define an inner product on a function space.

Proposition 1.1.1. Let (H, 〈, 〉) be an inner product space. Then H becomes a

normed inner product space with ‖h‖ =
√
〈h, h〉. We will call this the norm induced

by the inner product.

Proof. To prove the first property of norm, ‖h‖ ≥ 0 for all h ∈ H with equality

if and only if h = 0. Suppose that ‖h‖ =
√
〈h, h〉. Then, ‖h‖2 = 〈h, h〉. By

application of property (i) of inner products, ‖h‖2 = 〈h, h〉 ≥ 0. By properties of

square root function ‖h‖ ≥ 0. Now suppose that ‖h‖ = 0. Then, ‖h‖2 = 〈h, h〉 = 0.

By property (i) of inner products 〈h, h〉 = 0 if and only if h = 0.

To prove the second property of norm, ‖λh‖ = |λ| ‖h‖ ∀λ ∈ R, ∀h ∈ H, notice

that, ‖λh‖ =
√
〈λh, λh〉. Then, by property (iv) of inner products,

√
λ2 〈h, h〉 =

√
λ2
√
〈h, h〉 = |λ| ‖h‖.
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To prove third property of norms (triangle inequality), ‖h1 + h2‖ ≤ ‖h1‖ +

‖h2‖ ∀h1, h2 ∈ H, notice, ‖h1 + h2‖2 = 〈h1 + h2, h1 + h2〉. By property (ii) and (iii)

of inner products,

‖h1 + h2‖2 = 〈h1, h1〉+ 2 〈h1, h2〉+ 〈h2, h2〉

≤ 〈h1, h1〉+ 2 |〈h1, h2〉|+ 〈h2, h2〉

Thus, by the Cauchy-Schwarz inequality,

〈h1, h1〉+ 2 |〈h1, h2〉|+ 〈h2, h2〉 ≤ ‖h1‖2 + 2 ‖h1‖ ‖h2‖+ ‖h2‖2

‖h1‖2 + 2 ‖h1‖ ‖h2‖+ ‖h2‖2 = (‖h1‖+ ‖h2‖)2

Now we have the following inequality, (‖h1 + h2‖)2 ≤ (‖h1‖ + ‖h2‖)2. Taking the

square root of both sides of the equation gives

‖h1 + h2‖ ≤ ‖h1‖+ ‖h2‖.

1.2 VARIATIONAL FORM OF DIFFERENTIAL EQUATIONS

Before we begin, let’s first describe some notation. In what follows C will denote

the set of all continuous functions and L will denote the set of all polynomials of

degree 1. Superscripts will denote the order of the smoothness of the function. For

example C2([0, 1]) is the set of all second order differentiable functions defined on

the closed interval [0, 1].

When we discuss the weak or variational form of an object in mathematics it

generalizes the standard form and exists in context where the standard form may

not. For example the weak derivative of a function may exist where the standard

form does not. In addition, in many cases the adjective ’weak’ implies the use of

the inner product. For example, we say a sequence of vectors (vn) in a vector space

converges weakly to the vector w ∈ V if and only if lim
n→∞

〈vn, u〉 = 〈w, u〉 for all

vectors u ∈ V .

To restate our problem in its weak or variational form we will utilize the prop-

erties of the inner product. For purposes of what is to follow, we will use two inner
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products. The inner product which we will define as 〈f, g〉 =
∫ 1

0
f(x)g(x)dx, stan-

dard integration and the ’energy’ inner product defined as 〈f, g〉e =
∫ 1

0
f ′(x)g′(x)dx

where ′ represents the derivative operator.

Suppose there is a linear differential relationship between the two functions y

and f which exist in the function space H. Suppose we consider non-zero functions

h ∈ H where H = {h ∈ L2(0, 1) s.t. h(0) = 0 and 〈h, h〉 <∞}. Suppose the fol-

lowing inner product relationship is true, 〈Ly, h〉 = 〈f, h〉 where L is some defined

linear operator (differential operator in the case of differential equations), y is an

undetermined differentiable function, and f is some determined function involved

in the differential relationship. Using what we know about inner products we can

restate the problem of finding y as the following:

Find some y ∈ H such that 〈Ly, h〉− 〈f, h〉 = 〈Ly − f, h〉 = 0 ∀ h ∈ H.

This allows the opportunity to utilize a systematic check/search of all possible func-

tions, meeting the given criteria, that may solve the relationship or equation.

Proposition 1.2.1. Let 〈∗, ∗〉e be defined on C2([0, 1]) where 〈f, g〉e :=∫ 1

0
f ′(x)g′(x)dx. Then 〈∗, ∗〉e is an inner product on the set H defined above. We

will refer to this inner product as the energy inner product.

Proof. To prove property (i) of inner product, suppose h1(x) ∈ C2([0, 1]) with

h(0) = 0. Then, (h′1(x))2 is non-negative and continuous. Thus,
∫ 1

0
(h′1(x))2dx ≥ 0.

Now suppose
∫ 1

0
(h′1(x))2 = 0. This implies that h′1(x) = 0, for all x ∈ [0, 1], which

implies that h1(x) is constant. Since h1(0) = 0, then h1(x) = 0 for all x ∈ [0, 1].

Note: The inner product described here is only valid for a specific set of func-

tions. The Neumann and Dirichlet boundary conditions become important assump-

tions for our analysis. Here we have assumed that our function was such that

h(0) = 0 and h(1) = 0

To prove property (ii) of inner product, notice 〈h1, h2〉e =
∫ 1

0
h′1(x) h′2(x)dx.
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By commutativity of multiplication for functions∫ 1

0
h′1(x) h′2(x)dx =

∫ 1

0
h′2(x)h′1(x)dx = 〈h2, h1〉e.

To prove property (iii) of inner product, notice that

〈h1 + h3, h2〉e =

∫ 1

0

(h′1 + h′3)(x)h′2(x)dx =

∫ 1

0

h′1h
′
2(x) + h′3h

′
2(x)dx

. Using the linearity of integration we have∫ 1

0

h′1h
′
2(x) + h′3h

′
2(x)dx =

∫ 1

0

h′1h
′
2(x)dx+

∫ 1

0

h′3h
′
2(x)dx = 〈h1, h2〉e + 〈h3, h2〉e

To prove property (iv) of inner product,

〈λh1, h2〉e =

∫ 1

0

λh′1h
′
2(x)dx = λ

∫ 1

0

h′1h
′
2(x)dx = λ 〈h1, h2〉e

To consider an approximate solution to any problem in FEA we must have

some criteria for measuring the closeness of our approximations. To do this we need

a measure of distance. In mathematics one way to generate a measure of distance

is the norm. In a normed vector space d(u, v) = ‖u− v‖. It was shown previously

that the described relationship ‖h‖ =
√
〈h, h〉 is indeed a norm. We will utilize this

norm within our calculations. Based on the previous proof we can easily show that

‖h‖E =
√
〈h, h〉e is also a valid norm since 〈, 〉e also meets the criteria for being an

inner product.

Let us illustrate this theory in the context of an example. Consider, −y′′ = x

We can rewrite this problem in terms of a differential operator D, as (−D2)y = x,

or equivalently, Ly = f where L represents the linear operator −D2 and f = x.

To restate the problem in its varitional or weak form, suppose there is a non zero

function h ∈ H where H = {h ∈ L2(0, 1) s.t. h(0) = 0 and 〈h, h〉e <∞}. Suppose

the following inner product relationship is true, 〈Ly, h〉 = 〈f, h〉. Then by properties

of inner products 〈Ly, h〉−〈f, h〉 = 〈Ly − f, h〉 = 0. Using our defined inner product

we find that
∫ 1

0
(−y′′ − x) ∗ hdx = 0. So using inner products the problem can be

restated in the following way:
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Find a y ∈ H such that
∫ 1

0
(−y′′ − x)hdx = 0 for all h ∈ H.

Utilizing integration by parts and applying the boundary conditions, we find

that
∫ 1

0
−y′′hdx becomes

∫ 1

0
y′ h′dx -

∫ 1

0
xh dx = 0. This can be written in terms

the two defined inner products as 〈y, h〉e − 〈x, h〉 = 0

Theorem 1.2.2. Suppose y ∈ C2([0, 1]) and f ∈ C0([0, 1]), with y(0) = 0. Let y be

such that 〈y, h〉e = 〈f, h〉 for all h ∈ H, the function space defined previously. Then

y solves the equation, −y′′ = f .

Proof: Let h be contained in the space H ∩ U1 ⊂ U where U1 is the set

of functions with continuous 1st order derivatives. Suppose h meets all bound-

ary requirements. Suppose
∫ 1

0
fhdx =

∫ 1

0
y′h′dx. Using integration by parts

with
∫ 1

0
y′h′dx where w = y′, dz = h′dx, dw = y′′ and z = h, we find that∫ 1

0
y′h′dx = y′h|10 −

∫ 1

0
hy′′dx = y′(1)h(1) −

∫ 1

0
hy′′dx. Since y(0) = 0 and we

assumed that h(x) has the same boundary conditions then h(0) = 0. This state-

ment must be true for all h in the subspace with h(0) = h(1) = 0. Finally we have

that
∫ 1

0
y′h′dx =

∫ 1

0
y′′hdx = 〈−y′′, h〉. Using what we know about inner products

we find that 〈f, h〉 − 〈−y′′, h〉 = 0 and 〈f − (−y′′), h〉 = 0. Let w = f + y′′,

then w is in C0([0, 1]). Suppose w 6= 0. Since w is continuous we find that

∃ (x0, x1) s.t. ∀ x ∈ (x0, x1) either w(x) > 0 or w(x) < 0.

Then notice that h(x) = (x − x0)2(x − x1)2 on [x0, x1] with h(x) = 0 outside

of the given interval, meets the requirements for being in H. Now we have the

following:

(i) w(x) is continuous by continuity of −y′′ and f

(ii) h(x) is such that 〈h, h〉e < ∞. Notice that after reduction of h and application

of chain and multiplication rules for derivatives, you obtain a fourth degree

polymomial, which has finite ‘area’ on any finite sub interval.
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(iii) h(x) is continuous

Now consider 〈w, h〉. We find that,∫ 1

0

(f + y′′)(x− x0)2(x− x1)2dx =

∫ x1

x0

(f + y′′)(x− x0)2(x− x1)2dx > 0

Since this is not equal to zero, we must have a contradiction and w must be equal

to zero. This implies that f + y′′ = 0 and that f = −y′′.

Remark. In the previous proof we utilized the assumption that y(0) = 0 which

is the essential or Dirichlet boundary condition. A similar proof, can be done to

prove that the approximation solves the original equation with natural or Neumann

boundary condition of y′(1) = 0.

Now that we have established that the weak form solves the original equation,

we can utilize the weak form of the differential equation to estimate local solutions

using peice-wise polynomial approximations in the finite element method. However,

before we do this we must verify the uniqueness of our proposed solution. Previ-

ously, we have considered infinite dimensional spaces. For purposes of finite element

analysis we will truncate our dimensions. Consider the set Sn ⊂ H a finite dimen-

sional subspace of H. We can consider a finite degree polymonial approximation to

each of our involved quantities. We can write a new statement as follows:

Find ys ∈ Sn such that ys satisfies,
∫ 1

0
y′sh
′
s + yshs dx =

∫ 1

0
xhs dx ∀hs ∈ Sn.

As we build on our analysis we can begin to specify characteristics of our

subspaces, keeping in mind that all subspaces must contain the same properties of

the original space.

Proposition 1.2.3. Suppose 〈ys, hs〉 = 〈f, hs〉 for all hs in the subspace Sn. Then

for any given function f ∈ L2(0, 1), there is only one function ys which satisfies the

supposed statement.
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Proof: Since Sn is a finite dimensional vector space we can write Sn in terms of a

basis, {Φi : 1 ≤ i ≤ n}. Let ys =
n∑
j=1

yjΦj where yj is some constant, Kij = 〈Φi,Φj〉e,

and

Fi = 〈f,Φi〉. Using this we can again rewrite the expression as KY = F where K

is a square matrix and Y = (yj). Proving uniqueness in the context of a square

matrix is to prove that the matrix K has an inverse. For the inverse of a matrix

to exist, the determinant of the matrix must be non-zero, which implies row or

column independence. Row independence implies that if KV = 0, then it must be

that V = 0. So let’s assume that KV = 0 but V 6= 0. Then v =
∑n

j=1 vjΦj with

V = (vj) and the equivalence of KY = F and 〈ys, hs〉e = 〈f, hs〉 allows the following

representation:

KV =


〈Φ1,Φ1〉e · · · 〈Φ1,Φn〉e

...

〈Φn,Φ1〉e · · · 〈Φn,Φn〉e




v1

...

vn


Performing the KV will result in the following:

Take for illustration the 1st row of matrix K multiplied by V .

v1 〈Φ1,Φ1〉e + v2 〈Φ1,Φ2〉e + · · ·+ vn 〈Φ1,Φn〉e = 0

After applying properties of the inner product, we have 〈Φ1, V 〉e = 0. Thus we

have that 〈Φj, V 〉e = 0 for all j. Multiplying by vj and summing over all j would

result in the following 〈V, V 〉e = 0. This is true if v′(x) = 0. If v′(x) = 0 then

we have that v(x) is a constant function. Recall that v(0) = 0 according to our

original assumptions for function to be in H, and thus v(x) = 0 everywhere. This is

a contradiction to our original statement that v 6= 0. Therefore K is invertible and

the solution to our equation exists and is unique.
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1.3 KEY POINTS

In this section we have attempted to develop some key concepts that would

be helpful in analyzing the Finite Element Method for approximating differential

equations. We have shown the following three main points.

(1) Given a second order differential equation, we can convert the equation into a

valid weak or inner product form for analysis

(2) Any solution to the weak form of the equation is also a solution to the orig-

inal differential equaliton. An important note is that the weak form solution

minimizes the weak equation in the given function space.

(3) For a differential equation, if a solution to the weak form exists, the solution

is unique.

The remainder of this paper will discuss the finite element space.
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CHAPTER 2

FINITE ELEMENT SPACE

2.1 DEFINITION AND CONSTRUCTION OF FINITE ELEMENTS

Now that we have an understanding of inner product spaces, we will take a

more intimate look at finite element spaces. In the previous section we saw that the

original equation existed in a function space with continuous 2nd order derivatives,

a norm to measure distance and an inner product. Also, we saw some sub-spaces

including V , and Sn. The finite element space is a finite dimensional inner product

space. This will be the sub-space for our analysis. In this case we will define a finite

dimensional space of continuous and piecewise differentiable functions. We wish to

approximate the solution within the context of this space. The finite element space

is constructed from a set of finite elements, defined on sub-intervals of the domain.

The sub-intervals constructed form a partition x0 < x1 < x2 < x3 < · · · < xn where

x0 = 0 and xn = 1. Once we have partitioned the domain, we need to define a set

of simple functions/elements to choose from to approximate the solution over the

interval. Recall from the introduction that we can construct all elements of the finite

dimensional space using a set of basis functions defined on the subintervals. We will

call these basis functions ’finite elements’. The space for which these elements form

a basis is called the finite element space.

We show the properties of finite elements as defined by Ciarlet, 1978.

Definition. Finite Element [1: p 69]

Let K ⊂ Rn be a bounded closed set with nonempty interior and piece-wise

smooth boundary (the element domain)

Let P be a finite dimensional space of functions defined on K (the space of

shape functions)
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Let N = {N1, N2, . . . , Nk} be the basis for the set of nodal variables P ′.

We call (K,P,N) a finite element.

A finite element is defined here in Rn. Since we are working in R1 the following

example is important to illustrate the definition of a finite element and finite element

space.

Example 2.1.1 (1: p 70). Let K = [0, 1], P be the set of linear polynomials, and

N = {N1, N2} where N1(v) = v(0) and N2(v) = v(1) for all v ∈ P . Then (K,P,N)

is a finite element and the nodal basis consists of Φ1(x) = 1 − x and Φ2(x) = x.

This is the 1-dimensional Lagrange element.

More generally,let the domain [0, 1] be partitioned such that 0 = x0 < x1 · · · <

xn = 1 and let Sn be the vector space of functions v such that, v ∈ C0([0, 1]), v|[xi,xi+1]

is a linear polynomial, for i = 1, . . . , n, and v(0) = 0. Consider the following roof

functions,

Φi(x) =



x− xi−1
hi

for xi−1 ≤ x ≤ xi

xi+1 − x
hi+1

for xi ≤ x ≤ xi+1

0 otherwise

Here hi = xi − xi−1 is the fixed interval size, xi ∈ [0, 1] with 0 = x0 < x1 <

· · · < xn = 1. In general h should be small. Notice the domain is closed and

bounded by definition of the function. Notice Φi(xi−1) = 0, the same is true for

xi+1. This is the element domain. The functions x−xi−1

hi
and xi+1−x

hi+1
are the shape

functions. These functions are piece-wise linear and smooth. Finally we will show

the set of all such functions form a basis for the finite element space. That is, the

set {Φi : i = 1, 2, . . . , n} is linearly independent and spans the finite element space

Sn.
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Note that as we change the partition, the dimension of the subspace Sn will

change as well.

Proposition 2.1.1. The previously described roof function form a basis for the finite

element space.

Proof Suppose that
n∑
i=1

ciΦi = 0̂ where 0̂ is the zero function. By definition of

the finite element Φj(xi) = 0 for all i 6= j and Φi(xi) = 1 for all i. Consider the

point xk ∈ [0, 1]. We have that

n∑
i=1

ciΦi(xk) = c1Φ1(xk) + c2Φ2(xk) + · · ·+ ckΦk(xk) + · · ·+ cnΦn(xk) = 0̂(xk).

This will simplify to ckΦk(xk) = 0̂(xk) which proves that ck = 0.

Given f ∈ C0([0, 1]) with f(0) = 0, we define the interpolant of f to be

fp =
n∑
i=1

f(xi)Φi. Notice the interpolant is a projection of f onto the subspace Sn.

To show {Φi : i = 1, . . . , n} spans Sn we must show that if f ∈ S, then f is a linear

combination of the Φi’s. Since fp is defined to be a linear combination of Φi’s, if we

can prove that whenever f ∈ S, f = fp , then we are done. Notice that f − fp ∈ S.

Therefore, by definition of Sn, (f − fp)(0) = 0, f − fp ∈ C0([0, 1]), and f − fp is

linear on [xi, xi+1] for all i ∈ Z.

(f − fp)(xi) = f(xi)− fp(xi) = f(xi)−
n∑
j=1

f(xj)Φj(xi)

Notice that Φi(xi) = 1 for all i and Φi(xj) = 0 for all i 6= j. Thus the previous

statement reduces to f(xi)− fp(xi) = 0 which proves that f = fp and the set spans

the function space.

Now that we have defined the finite element and the finite element space. Let’s

take a look back at our original problem. Using the roof functions described above

we can partition the domain, approximate all of our function from the original

equation with elements from the finite element space, and create a new expression.

13



By approximating in our subspace, we find that y ≈ ys =
n∑
i=1

αiΦi, v ≈ vs =
n∑
i=1

βiΦi.

Our objective is as follows:

Find vs ∈ S such that 〈ys, vs〉e + 〈ys, vs〉 = 〈x, vs〉.

2.2 KEY POINTS

In this section we have

(1) Defined/Constructed a subspace of our defined H space which is finite dimen-

sional and contains a defined norm and inner product.

(2) Defined/constructed a set of elements which can be used as a basis in the finite

element space.

(3) Proved the roof functions described are a basis for the set Sn defined above.

Keep in mind that the roof/hat function is not the only finite element function.

There are multiple other types including triangular and rectangular finte element

basis functions.

Appropriate choice of basis or element functions can change the accuracy of

results. This will be discussed in the following section.
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CHAPTER 3

ERROR OF THE FINITE ELEMENT METHOD

Previously we defined an energy inner product on our space and we demon-

strated that ‖h‖e =
√
〈h, h〉e for all h ∈ H was a valid norm. In this section we

will use this norm to determine some error bounds on the finite element method.

Now, ys is the projection of y onto the subspace Sn. Thus, y − ys is orthogonal to

everything in Sn. We will use this fact in the following proof.

Proposition 3.0.1. ‖y − ys‖e = min {‖y − v‖e : v ∈ S}

Proof. ‖y − ys‖2e = 〈y − ys, y − ys〉e rewriting the quantity for the second part as

y− v+ v− ys we obtain ‖y − ys‖2e = 〈y − ys, y − v〉e + 〈y − ys, v − ys〉e. Notice that

the second part will be zero because v− ys ∈ S. Thus, ‖y − ys‖2e = 〈y − ys, y − v〉e.

By the Cauchy Schwartz inequality ‖y − ys‖2e ≤ ‖y − ys‖e ‖y − v‖e. Notice this will

be true for all v. Dividing both sides by ‖y − ys‖e we find, ‖y − ys‖e ≤ ‖y − v‖e for

any v ∈ S

Taking the infimum of the right hand side gives us the following:

‖y − ys‖e ≤ inf{‖y − v‖e : v ∈ S} ≤ ‖y − ys‖e

Thus, ‖y − ys‖e = inf{‖y − v‖e : v ∈ Sn}. Since this infimum is obtained at ys ∈

Sn, we can replace inf with min.

This is the basic error for our approximation using the energy norm. Notice

that the error is bounded. Assuming that the infimum is small enough we can find

a good approximation to our solution. However, how can we guarantee that the

infimum will be small? This will depend mainly on two things: the size of the

intervals h used to discretize the domain, and the shape of the finite elements used.

An example of this will be shown in chapter 4. What is left to show is that the error

in the L2 norm will be smaller.
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Theorem 3.0.2. The following inequality holds: ‖y − ys‖ ≤ ‖y − ys‖e

Proof. Let w be the solution to the following differential equation −w′′ = y−ys

on the interval [0, 1] with boundary conditions same as y. Taking the norm of both

sides results in the following, ‖y − ys‖ = 〈y − ys, y − ys〉. Replacing y − ys with

−w′′ and using integration by parts with u = y − ys, du = (y − ys)′, dv = −w′′ and

v = w′, we can rewrite the previous equation as ‖y − ys‖2 = 〈y − ys, w〉e. Suppose

v ∈ S. Then, 〈y − ys, v〉 = 0 and 〈y − ys, w〉e = 〈y − ys, w − v〉e for all v ∈ S. Then

we have the following, ‖y − ys‖2 = 〈y − ys, w〉e = 〈y − ys, w − v〉e. Applying the

Cauchy Schwarz inequality we find that ‖y − ys‖2 ≤ ‖y − ys‖e ‖w − v‖e. Dividing

both sides by ‖y − ys‖, replacing y − ys with −w′′ and taking the infimum over all

v ∈ S, we have

‖y − ys‖ ≤ ‖y − ys‖e inf
v∈S

‖w − v‖e
‖−w′′‖

Now,provided that we can approximate w close enough by some function v ∈ S and

the following approximation assumption holds, infv∈Sn ‖w − v‖e ≤ ε ‖−w′′‖, we get

that ‖y − ys‖ ≤ ε ‖y − ys‖e.

The next result is useful to bound the error as a function of the mesh size of

the partition. It shows that as the mesh size decreases, or as h decreases, the error

in the approximation of ys ∈ Sn, decreases.

Theorem 3.0.3. Let h = max1≤i≤n(xi − xi−1). Then ‖y − ys‖e ≤ Ch ‖y′′‖ for all

y ∈ H where C is independent of h and y

Proof. Recall the interpolant described previously. We can identify the function

ys(x) with it’s interpolant. Then for any subinterval [xj, xj−1] we can write the

following equivalent statement,∫ xj

xj−1

(y − yp)′(x)2dx ≤ c(xj − xj−1)2
∫ xj

xj−1

y′′(x)2
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Notice here that we have defined the statement of our proof piecewise. By definition

of the two norms, it is sufficient to prove the inequality piecewise. Let,e = y − ys

represent the error function. Then e′ = (y− ys)′ and e′′ = y′′− y′′s , but the linearity

of ys on the subinterval means y′′s = 0. Therefore we have,∫ xj

xj−1

e′(x)2dx ≤ c(xj − xj−1)2
∫ xj

xj−1

e′′(x)2dx

Using x̂ =
x−xj−1

xj−xj−1
we can write the following,

∫ 1

0
e′(x̂)2dx̂ ≤ c

∫ 1

0
e′′(x̂)2dx̂.

Now that we have rewritten the proposition in a form that does not depend on

h, we will prove the inequality to be true for some c.

Utilizing Rolle’s Theorem, e′(ξ) = 0 for some ξ on the interval (0, 1). Thus,

e′(z) =
∫ z
ξ
e′′(x̂)dx̂ and |e′(z)| =

∣∣∣∫ zξ e′′(x̂)dx̂
∣∣∣. By the Cauchy Schwartz inequality,

|e′(z)| ≤
∣∣∣∣∫ z

ξ

1dx̂

∣∣∣∣1/2 ∣∣∣∣∫ z

ξ

e′′(x̂)2dx̂

∣∣∣∣1/2

|e′(z)| ≤ |z − ξ|1/2
∣∣∣∣∫ z

ξ

e′′(x̂)2dx̂

∣∣∣∣1/2

|e′(z)| ≤ |z − ξ|1/2
(∫ 1

0

e′′(x̂)2dx̂

)1/2

Squaring both sides and integrating with respect to z will give the following

results for c.

C = c = sup
0<ξ<1

∫ 1

0

|z − ξ| dy = 1/2

Let h represent the size of [xi−1, xi] for the domain [0, 1]. Let ε ≥ 0 be some

small value. Assuming we are in a space where ε can be arbitrarily small, which is

the case for the reals, we have the following: ‖y − ys‖e ≤ ε ‖y − v‖e. Notice that

this decreases the error in our approximation. Letting ĥ = εh , we can make our

error significantly small.

17



3.1 KEY POINTS

In this section we have

(1) Utilized the energy norm as an estimate of error for the finite element method.

(2) Proved that the L2 error is bounded.

(3) Proved two methods of controlling error using mesh size h or various finite

elements.

The two methods for decreasing error described in this section do not exhaust

the techniques for error reduction in the finite element method. Other techniques

include, weighted residual formulations that assume an approximate solution for the

governing differential equation, subdoman methods that force the intergral of the

error function to be zero over some selected subintervals, and least square methods

that require the error to be minimized with respect to the unknow coefficients in

the assumed solution. [3: pp 43-8]
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CHAPTER 4

WORKED EXAMPLES AND APPLICATIONS

4.1 WORKED EXAMPLES WITH MATLAB APPROXIMATION

Now we return to our stated example, −y′′ + y = x. We can rewrite this

statement using the definitions of ys and vs as follows

n∑
i=1

n∑
j=1

∫
αiβj

dΦi

dx

dΦj

dx
+

n∑
i=1

n∑
i=1

∫
αiβjΦiΦj =

n∑
i=1

∫
xαiΦi.

Using the previous information, we can state the previous problem as,

find vs ∈ S such that 〈ys, vs〉e + 〈ys, vs〉 = 〈x, vs〉.

Notice that this can be simplified in the following way:

Consider only the prime inner product portion of the equation. When we expand

this form we get,∫ (
α1β1Φ

′2
1 + α1β2Φ

′
1Φ
′
2 + ...+ α1βnΦ′1Φ

′
n + ...+ αnβnΦ′2n

)
dx

Similary for the inner product of ys and vs we will find the following:∫ (
α1β1Φ

2
1 + α1β2Φ1Φ2 + ...+ α1βnΦ1Φn + ...+ αnβnΦ2

n

)
dx

Finally for the inner product of x and vs we find the following∫
x(β1Φ1 + ...+ βnΦn) dx

We can group all terms according to their β index. This allows us to write the

left hand side of the statement in the following way.

n∑
i=1

βi

(
n∑
j=1

αj

∫
(Φ′jΦ

′
i + ΦjΦi) dx

)
=

n∑
i=1

βi

∫
xΦi

This form lends itself to computer programming analysis because it can easily

be written in terms of matrices and vectors. The entire analysis is reduced to the

following statement.
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n∑
j=1

βj(
n∑
i=1

Ki,jαi − Fj) = 0 where K is called the stiffness matrix and F is called

the load vector, with Ki,j =
∫

Φ′jΦ
′
i + ΦiΦj and Fi =

∫
xΦi

Notice that ys is completely determined by the coefficients αi. Therefore if

we know these coefficients, we know ys. These can be found by manipulating the

previous equation. We cannot manipulate the α’s. However we can control our trail

functions. So let’s assume that for any given k, βk = 1 and βi = 0 for all i 6= k.

Now we find that we have a system of equations given by the following: for any

i ∈ [1, n], Fi =
n∑
j=1

Ki,jαj Given this we can determine the values of αj by inverting

the matrix Ki,j and multiplying the vector Fi. Finally we get that αj =
n∑
i=1

K−1j,i Fi

In general when constructing a finite element analysis approximation we are

given values at various nodes. This informaiton is observed through experimen-

tation. For example, given that a specific differential equation governs a process,

during an experiment a researh scientist may, based on observations, determine

values of the solution at various time points. These values can be used in the

approximation of the differential equation.

Consider the problem at hand with domain [0, 1] and h = 1/3, using the given

basis functions (hat functions). Our first task is to determine the stiffness matrix for

the approximation. This approximation will be done using MATLAB. See Appendix

for MATLAB code. This would result in the following approximation graph.
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Figure 4.1. Approximation of exact solution with h = 1/3.

Notice that this approximation is poor. However, increasing the value of h we

can see that we will get progressively better approximations.
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Figure 4.2. Approximation of exact solution with h = 1/5.

Figure 4.3. Approximation of exact solution with h = 1/10.

22



Figure 4.4. Approximation of exact solution with h = 1/15.

Figure 4.5. Approximation of exact solution with h = 1/20.
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As can be seen from the figures, there is not much visual difference between

the exact solution and the approximation for h = 20. The same program was run

using h = 100. This approximation took more computer time. This is one important

issue for research scientist who tend to have time constraints and the question of how

accurate an approximation can get in the shortest amount of time is an increasingly

pressing one. Much of the current research in software for finite element analysis is

related to optimizing the accuracy without increasing the run-time for the process.

4.2 APPLICATIONS

Very few applications of the finite element analysis method involve such a sim-

ple equation or analysis. However the same theory applies. Finite element analysis

is now widely used in almost every arena, there are researchers who utilize finite

element analyis to improve finte element analysis. One body of research of particu-

lar interest to me as a biomechanist, is the use of finite element analysis in building

and analyzing mathematical models of biological processes in bone. Researchers like

Yoo and Jasiuk, are working to build computer models that accurately predict the

growth and modulation of bone tissue, as well as pinpointing areas of high stress

due to certain physical activities. In the past this research would have to be done

using an animal model or using human bones. Today these types of experiments

are increasingly being done by computers with fairly high levels of accuracy. Yoo

and Jasiuk, 2006, used finite element analysis techniques to model the strain in a

section of bone under uniaxial extension, hydrostatic deformation, shear deforma-

tion, torsion, and bending. After analysis using FEA software, the group found

that the results from the model were in agreement with result for physical materials

previously tested.[4] Kumar et al., 2009 used finite element stress analysis coupled

with an evolution model to simulate the response of bone to mechanical loading.

They found, after comparing to experimental observations, that the model results
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were consistent with expermental observations.[2] These results support the validity

of mathematical modeling in biological sciences.
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APPENDIX I

One Dimensional Finite Element Analysis MATLAB code

%%This file is a simulation of finite element analysis technique.

%%The first portion of this program is setting up for the problem.

%%-y” + y = x; y(0)=0 and y(1)=0;

%%The solution to the following differential equation is

%% y(x)= x -sinh(x)/sinh(1)

%%The following code shows a graphical solution to the equation

format rational

%%xd will be the domain intervals, yd will be the solution

xd=linspace(0,1,100);

yd=xd-(sinh(xd)/sinh(1));

yalta=((exp(1)-exp(-1))/2);

yalternative= xd - ((exp(xd)-exp(-xd))/2);

%%Notice the boundary conditions have been met.

%%The following code is to set up the hat functions.

%% We will utilize hi to be the interval size.

%%Here we assume constant interval size

hi=input(’please specify a step size between 0 and 1 in the form 1/n’)

%%We define xa to be the descretized domain in vector form

xa=[0:1:(1/hi)];

%%getting the proper interval values for our subregions of the domain

nodevalues=xa.*hi;

%%getting the element matrix so that the left and right hand positions are

%%organized properly. The first column will be the left hand end points

%%the second column will be the right hand end points.

elementr=zeros(1/hi,2);
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elementr(1,1)=1;

elementr(1,2)=2;

for i=2:1/hi

elementr(i,1)=elementr(i-1,1)+1;

elementr(i,2)=elementr(i-1,2)+1;

end

%%This matrix is to store my hat functions

syms o

HatM=[o];

%%Now to program the hat functions to do this we will use two functions.

for j=1:1/hi

leftpoint=nodevalues(elementr(j,1))

rightpoint=nodevalues(elementr(j,2))

x=linspace(leftpoint,rightpoint,100);

%These few lines of code were to check that the hat functions were working.

f1=hat1(x,leftpoint,rightpoint);

f2=hat2(x,leftpoint,rightpoint);

%plot(x,f1, ’b’)

%hold on

%plot(x,f2, ’r’)

%This code will replace elements of the H

syms x

f1f=hat1(x,leftpoint,rightpoint);

f2f=hat2(x,leftpoint,rightpoint);

%f2p=diff(hat2(x,leftpoint,rightpoint));

%f1p=diff(hat1(x,leftpoint,rightpoint));

HatM(1,j)=f1f;
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HatM(2,j)=f2f;

end

%%This code is to determine the K element matrix

HatM;

HatM(1,1)=0;

HatM(2,(1/hi))=0;

HatMp=diff(HatM);

%%This will set up a matrix to store K-values

K=zeros((1/hi)-1,(1/hi)-1);

%%Calculation of K(i,i) for stiffness matrix

for i=1:(1/hi)-1

for j=i:(1/hi)-1

if i==j

pKa=((HatMp(2,j))ˆ 2)+((HatM(2,j))ˆ 2)

p1Ka=expand(pKa)

prKa=int(p1Ka)

preKa=subs(prKa,nodevalues(j+1))-subs(prKa,nodevalues(j))

pKb=((HatMp(1,j+1))ˆ 2)+((HatM(1,j+1))ˆ 2)

p1Kb=expand(pKb)

prKb=int(p1Kb)

preKb=subs(prKb,nodevalues(j+2))-subs(prKb,nodevalues(j+1))

K(i,j)=preKa+preKb

elseif abs(i-j)¿1

K(i,j)=0

else

pKc=((HatMp(1,j))*(HatMp(2,j)))+((HatM(1,j))*(HatM(2,j)))

p1Kc=expand(pKc)
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prKc=int(p1Kc)

preKc=subs(prKc,nodevalues(j+1))-subs(prKc,nodevalues(j))

K(i,j)=preKc

K(j,i)=K(i,j)

end

end

end

%%The following code will calculate the values for F

F=zeros((1/hi)-1,1);

for i=1:(1/hi)-1

pfa=x*HatM(2,i)

prfa=int(pfa)

prefa=subs(prfa,nodevalues(i+1))-subs(prfa,nodevalues(i))

pfb=x*HatM(1,i+1)

prfb=int(pfb)

prefb=subs(prfb,nodevalues(i+2))-subs(prfb,nodevalues(i+1))

F(i)=prefa+prefb

end

%%This is the code for the approximation with the hand calculations.

alpha=(Kˆ -1)*F

%%Plot of the approximation

for i=1:(1/hi)

x=linspace(nodevalues(i),nodevalues(i+1),100);

if i==1

approximation=alpha(i)*HatM(2,1);

y=subs(approximation,x);

plot(x,y,’r’)
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hold on

elseif i==(1/hi)

approximation=alpha((1/hi)-1)*HatM(1,i);

y=subs(approximation,x);

plot(x,y, ’r’)

hold on

else

approximation=alpha(i-1)*HatM(1,i) + alpha(i)*HatM(2,i);

y=subs(approximation,x);

plot(x,y, ’r’)

hold on

end

end

plot(xd, yd)

Remark. This previously described progam will solve any differential equation of

the form −y′′+y = f(x) for any function f(x). For example by modifying a few lines

of code, we can approximate a solution to −y′′ + y = x3 using the same program.
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