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Schedulability and Energy Efficiency for
Multi-core Hierarchical Scheduling Systems
A.Jalil Boudjadar, Alexandre David, Jinhyun Kim, Kim. G. Larsen, Ulrik Nyman, Arne Skou

Institute of Computer Science, Aalborg University, Denmark

Abstract—We propose a framework for modeling and analyz-
ing the schedulability and energy efficiency of embedded hierar-
chical scheduling systems running on a multi-core platform. The
framework is realized using Hybrid Timed Automata describing
the concrete task behavior. The schedulability can be verified in
a compositional way using UPPAAL, and the energy profile can
be generated using the statistical model checking algorithms of
UPPAAL SMC. To our knowledge, our paper is the first one
considering hierarchical scheduling, multi-core platforms and
energy consumption simultaneously. The framework is being
applied to a case-study from the CRAFTERS project.

I. INTRODUCTION

Embedded systems is an essential part of many modern
products including complex safety critical real-time systems.
Within the industrial domains of avionics and automotive,
the safe composition of several embedded features within the
same systems can be achieved through the use of hierarchical
scheduling. The separation between features is secured by
using time partition scheduling at the system level [7]. A trend
within embedded systems is to use multi-core platforms in
order to increase performance and to be able to implement
more functionality within one embedded system.

In this paper we propose an approach to analyzing both
the schedulability and the energy consumption of hierarchical
systems on embedded multi-core platforms.

In the literature, a large amount of work has been devoted
to the description and analysis of scheduling systems [9]
together with energy efficiency [8]. However none of these
papers deals with important aspects of modern systems like (1)
powerful execution platforms which are based on multi-core
technology, (2) hierarchy of system architecture resulting from
the component-based design, and (3) concrete task behavior
which consists of a set of operations having different energy
consumption rates. In all of the previous work systems can be
viewed as a set of abstract components competing for CPU and
other resources, and having a uniform distribution of energy
consumption. In contrast, our framework enables modeling
concrete task behavior and differentiated energy consumption
rates based on task state.

The rest of the paper is structured in the following way:
Related work is discussed in section II. Section III first gives
a general overview of our approach followed by a detailed
description of how the approach is modeled in terms of
Constant Slope Timed Automata (CSTA) and analyzed using
Uppaal. Finally the conclusion is given in section V.

II. RELATED WORK

Compositional framework for hierarchical scheduling sys-
tems was initially presented in [11] by Shin and Lee as a
formal way to elaborate a compositional approach for schedu-
lability analysis of hierarchical scheduling systems [12]. In
[10], the authors dealt with a hierarchical scheduling frame-
work for multiprocessors based on cluster-based scheduling.
They use analytical methods to perform analysis, however this
apporach has difficulty in dealing with complicated behavior
of tasks.

In [3], the authors analyzed the schedulability of hierarchical
scheduling systems using the TIMES tool [2] and implemented
their framework in VxWorks [4]. They constructed an abstract
task model as well as scheduling algorithms focusing on the
component under analysis. However, their approach requires
not only timing attributes of the component under analysis, but
also timing attributes of other components that can preempt
the execution of the current component. Moreover, they did
not consider multi-core execution environments.

The authors of [5] provided a compositional framework
for the verification of hierarchical scheduling systems using
a model-based approach. They specified the system behavior
in terms of Preemtible Time Petri nets, and only considered a
single-core execution platform.

In [1], the authors study the schedulability of real-time em-
bedded systems under energy constraints, such as using solar
panels. We extend their approach by considering hierarchy and
a multi-core platform while analyzing it in a compositional
way.

III. GENERAL APPROACH

In this paper we structure our system model as a set of
hierarchical components. Each component, in turn, is the
parallel composition of a set of entities with a local scheduler
and possible local resources. Moreover, we consider multi-
core execution environments where each processor may have
different energy consumption rates depending on the cur-
rent operation it performs. Similarly, the execution of an
operation does not consume the same energy on different
processors. Furthermore, we elaborate a concrete task model
which consists of a set of distinctly different operations, and
associate to each operation together with a processor an energy
consumption rate. Of course, the energy consumed by an
operation depends on its rate and its execution time. Therefore,
the energy consumed by a task is obtained by accumulating
the energy consumed by the individual task operations.
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Fig. 1. Overview of the workflow.

Figure 1 summarizes our approach, modeling and verifica-
tion, where we consider different profiles: schedulability re-
quirements, energy consumption and hierarchical architecture
of the system.

1) Concrete behavior and energy consumption of tasks:
A task has a concrete behavior perfoming a sequence of
timed actions. Each timed action can either be a computation
step (Compute), acquiring (Lock) or releasing (Unlock) a
resource, or special statements marking the end of the period
(Pend) or the end of the task execution (End).

Definition 1 (Timed action): Given a set of
resources R, set of action names Acts =
{Compute, Lock, Unlock, Pend, End}
and a multi-core platform P , a timed action A
is a one step computation given by the tuple
〈Act, Proc,R,BCET,WCET 〉 where:

• Act ∈ Acts is the action name,
• Proc ⊆ P specifies the identifiers of processors on which

the timed action A can be run,
• R ∈ R is the resource that action A requires,
• BCET and WCET are respectively best case and worst

case execution time,

By A we denote the set of all timed actions.
We consider a multi-core platform and associate each timed
action to a set of processors on which it can execute. Moreover,
we associate to each timed action energy consumption rates
specifying how much energy is consumed by this action per
time unit during its execution on a given processor. To this
end, we introduce the rate relation Γ : A × P → R+ which
associates to the execution of each action on a given processor
an energy consumption rate.

Likewise, we define the behavior B of a task as a transition
system 〈L, l0,→〉 specifying the sequence of timed actions
perfomred by that task, where L is a set of states, l0 ∈ L is the
initial state and→⊆ L×A×L is the transition relation. In fact,
each transition is guarded by the resource requirement of the
corresponding timed action (label). When gathering the whole
system, the scheduler decides whether a transition is firable or
not according to the availability of required resources. States
can be interpreted in the semantic level as valuations of the
task variables.

The behavior of a component is given by the parallel
composition of the transition systems of its nested tasks.

Definition 2 (Task structure): A task T is given by
〈Prd,BCET,WCET, Prio,B,Γ〉 where Prd is the task
period, BCET and WCET are respectively best case and
worst case execution time of T , Prio is the priority level
associated to task T , B is the task behavior defined above and
Γ states the energy consumption rates of T actions.
Therefore, the task specification is given by an interface
Prd,BCET,WCET stating the time constraints, a behavior
B expressed by a sequence of timed actions and a priority
Prio that will be applied for each timed action of the task in
question.

2) Hierarchical scheduling: We structure our system as a
set of concurrent components. Each component, in turn, can
also be a parallel composition of either other components or
tasks. Accordingly, the leaves of our system are tasks. Roughly
speaking, a component is given by an interface stating its time
requirements, declaration of possible local resources and a
local policy for scheduling its nested entities.

Definition 3 (Component): A component C is a tuple
〈Prd,Budget, Pri, s,R, 〈e1, .., en〉〉 where:

• Prd and Pri are the same as for tasks,
• Budget is the amount of resource that the component

guarantees to provide to its nested entities,
• s ∈ {EDF,FP,RM, ..} is a scheduling policy,
• R is a set of typed resources,
• 〈e1, .., en〉 are component entities, either tasks or compo-

nents (workload).
Similarly, a system is the top level component without tim-

ing requirements (Prd,Budget, Pri). We emphasize the fact
that our framework can be instantiated for any combination of
scheduling algorithms.

IV. COMPOSITIONAL FRAMEWORK

Our analysis for multi-core hierarchical scheduling sys-
tems aims at obtaining verified and specified task designs
that satisfy resource constraints, e.g. cpu usage and energy
consumption. The analysis framework is compositional in
the sense that the analysis is performed on each component
individually with respect to its requirements. The schedula-
bility of each component is verified by checking its timing
specification against the interface of its sub entities. Using the
same framework each component is also analyzed with respect
to its energy profile in terms of energy efficiency.

To this end, we present a behavioral model of hierarchical
scheduling systems. This model consists of components and
task models based on task specifications including energy
profiles. We construct a hierarchical scheduling system model
using hybrid timed automata. The schedulability is verified
by model checking in UPPAAL, and the energy efficiency is
analyzed by statistical model checking in UPPAAL SMC.

The system model in this paper consists of CPU resource
models, abstract task models and concrete task models. The
CPU resource model represents a component executing its sub
entities, such as tasks or sub-components, using a specific
scheduling policy, specifying resource allocations that are
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Fig. 2. CPU Resource Model

provided to its sub entities and to verify that they can be
scheduled within the component budget. A task specification is
described by two task models: an abstract task and a concrete
task. The abstract task models the scheduled behavior of
tasks with states such as Running, Ready and Blocked. The
concrete task models specific processing steps that consume
CPU allocation time, energy, and potentially locking system
resources.

A. Models of System in Hybrid Timed Automata

The CPU resource, abstract and concrete task models are
constructed in terms of hybrid timed automata. The CPU re-
source model is instantiated with a given component interface,
period and budget. The abstract task model is instantiated with
individual task timing requirements, period, BCET, WCET and
priority. Finally, the concrete task model is instantiated with a
sequence of timed actions.

1) Resource Model: In order to achieve compositional anal-
ysis, we introduce a non-deterministic CPU resource model.
In this way we non-deterministically model all infinitely many
ways in which the budget can be supplied by a higher level to a
component. The non-deterministic resource model guarantees
that it assigns the budgeted amount of resource allocation
time to tasks every period. Thus, all components are also
guaranteed to receive their budgeted amount of resources, but
the supply is non-deterministic within the period. The non-
deterministic resource allocation within a period simulates a
resource allocation that can always be interrupted by higher
priority components that share the same resources. In this way,
we facilitate the scheduling analysis of hierarchical scheduling
systems in a compositional way.

The non-deterministic CPU resource model is shown in
Fig. 2. The transitions with the channels StartSupplying and
StopSupplying are non-deterministic. The clock SuppliedTime
is the amount of resource allocation that has been provided
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Fig. 3. Abstract Task Model

up to now. The clock is running at the location Supplying but
stopped at NotSupplying.

This resource model guarantees that it provides the budget
amount of resource to tasks by handling the two cases: 1)
when the left amount of resource allocation budget is equal to
the left time up to the end of period 2) when any task has not
arrived yet. For the first case, the condition “CurT ime ==
Period−Budget+SuppliedT ime” on the transition from the
location NoTask and Fulfill and the invariant “CurT ime <=
Period−Budget+SuppliedT ime” are given, meaning that
the remaining time in the period and the remaining budget
are exactly equal. The model continues supplying resource
allocation until the end of the period. In the second case, the
resource model stays at the location NoTask until a task arrives.

In our compositional multi-core framework, each core is
individually managed by its corresponding CPU resource
model. Each task can be scheduled on different cores over
its lifetime.

2) Abstract Task Model: The abstract task model, Fig. 3, is
responsible for the periodic execution of the concrete task. It
asks for a CPU scheduling using the channel ReqSched with
CPU Id and task Id at the beginning of the period. It stops if its
execution time, ExeTime, is fulfilled. It can also be preempted
by a higher priority task when other tasks request a CPU
scheduling. The abstract task can wait for the next scheduling
at the location Ready. When its requested resource, such as
a semaphore, is delayed, it can be blocked at the location
Blocked until the resource is available. The clock RunTime is
used to check whether the task misses the deadline.

3) Concrete Task Model: A timed action is carried out by
the concrete task model, Fig. 4. When a task starts a new
period and is Running, the concrete task starts to execute its
sequence of timed actions.

The timed action Compute executes using one of the CPUs
specified in Proc. The execution time is modeled using lower
and upper bounds in form of BCET and WCET. If the abstract
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task is preempted or suspended, the corresponding concrete
task should stop running. The progress of clock x depends
on the variable T Running representing the running status of
its associated abstract task. x is running if T Running is 1,
otherwise, it is stopped. The progress of clock e, representing
the consumed energy, depends on the current timed action and
the CPU on which that action is executing. In addition to CPU,
the task can use other types of resource by executing a LOCK
action. If the task acquires a resource, it moves on to the next
timed action, otherwise, it stops at the location WaitResource.
Whenever this concrete task executes a COMPUTE timed
action, it checks the CPU Id at CheckCPUId. If the current
CPU Id (CurCPUId) differs from the CPU Id of the new timed
action, the concrete task asks the abstract task to request to
be scheduled on the corresponding CPU using ChgCPU.

B. Analysis: Schedulability and Energy Efficiency

The schedulability is checked using the UPPAAL model
checking engine while the energy efficiency is analyzed using
the UPPAAL SMC engine. Namely, UPPAAL SMC is a statisti-
cal model checker which monitors a number of simulations of
a system based on a stochastic semantics of the hybrid timed
automata.

From the viewpoint of the supplier and sub entities, the uti-
lization of resources, such as CPU and energy, can be analyzed
as follows: Let C be a component, W = (T1, T2, ...Tn) the
tasks, s a scheduling algorithm, and R any resource model.
I denotes the collective requirements, (Prd and Bud given
in Definition 3). For any resource model R, a scheduling unit
Ψ(W,R, s) is said to be schedulable if and only if:

∀t > 0 dbfA(W, t) ≤ sbfR(t)

where dbfA(W, t) is the demand-bound function and sbfR(t)
is the supply-bound function [10].

The interface I of a component C(W, s) is said to be
schedulable if the scheduling unit Ψ(W,R, s) is schedulable

with R = I , i.e. the resource model R satisfies the interface
I of the component timing requirements.

For an processor resource CPU ∈ P , the meaning of the
schedulability in [10] is adopted for this framework. To verify
the schedulability, we check the following property:

∀t > 0 dbfACPU(W, t) ≤ sbfRCPU(t)

For an energy resource E ∈ R, an energy profile IE of a
component is said to be efficient if and only if the following
condition is satisfied for all time intervals t:

∀t > 0 dbfAE(W, t) ≤ sbfRE(t)

V. CONCLUSIONS

We have presented a compositional framework for the
analysis of schedulability and energy efficiency of hierarchical
embedded multi-core real-time systems. The framework has
been instantiated as reusable models given in terms of hybrid
timed automata which we analyzed using UPPAAL and UP-
PAAL SMC. The reusable models ensure that when modeling
a hierarchical scheduling application only the concrete task
behavior and the hierarchical structure need to be specified by
the system engineer. The framework also allows for instant
changes of the scheduling policy at each given level in the
hierarchy. We are currently applying the framework to an
avionics UAV case-study from the CRAFTERS [6] project.
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