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SUMMARY 
 

As a part of reinforcing the 400 kV transmission system in Jutland, Denmark, the Danish TSO 

is in the process of constructing a new gas insulated substation (GIS) in Revsing. This 

includes raising a new type of pylon, which will carry the new overhead lines to the GIS. The 

reliability of the substation and transmission line is of great importance as it is a part of the 

400 kV backbone between Sweden, Norway, Germany and the offshore wind farms in Horns 

Rev, Denmark. The new Eagle pylon has been designed with the focus of minimizing the 

visual impacted of overhead lines. A detailed lightning performance analysis of the existing 

Donau and the new Eagle pylon is therefore important in order to assess the risk of failure.  

The lightning strike analysis is based on the number of strikes expected to terminate on the 

line and an investigation of how many of these there may be expected to cause a flashover. 

The analysis includes an evaluation of both direct stroke and backflashover.  

The analysis of direct stroke is performed from calculation of the maximum shielding failure 

current (IMSF), the shielding failure rate (SFR) and the shielding failure flashover rate 

(SFFOR).  

Backflashover is evaluated using an iterative process recommended by CIGRÉ [4]. The 

process intends to determine the expected backflashover rate (BFR).  

This analysis is performed for both types of pylons and the results compared. From this 

analysis it is concluded that the phase conductors on the Eagle pylon are significantly better 

protected from direct stroke than the phase conductors on the Donau pylon. Furthermore with 

respect to a backflash, the Eagle has a better performance than the Donau pylon.  

It is therefore concluded that the Eagle has a better lightning performance than the Donau.    
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1. METHODS 

 

There are many different methods to analyze lightning performance of pylons. This analysis is 

based on an Electro-geometrical model (EGM), which in general results in the highest 

shielding failure current and thereby assumes a worst case scenario, according to [2, p.11]. 

EGM is also the recommended practice from the IEEE Std. 1243-1997 [3, p.9]. For the 

analysis of the BFR, the method which is used by the CIGRÉ Working group 33.01 [4] is 

utilized. Throughout the analysis only the first stroke will be accounted for, thereby 

neglecting the subsequent strokes. 

 

2. SHIELDING OF OVERHEAD LINES 

 

In order to protect overhead lines (OHL) against lightning ground wires are used. The ground 

wires are placed on top of the pylons in order to attract the lightning strokes and prevent the 

lightning from directly terminating on the phase conductors. The geometry and thereby the 

placing of the ground wires have significant influence on their capability to protect the phase 

conductors (shielding effects) and in the overall lightning performance of the OHL. 

Figure 1 shows both the Donau, which have been widely used in Denmark, and the new Eagle 

pylon, which is used for the new OHL. It can be seen that the geometry and especially the 

placing of the ground wires differs significantly between the Donau and the Eagle pylon. 
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Figure 1 : Eagle pylon on the right side and Donau on the left. 

On the Eagle pylon the ground wires are located on the outside of the outer most phase 

conductor compared to the Donau pylon where two of the phase conductors are placed on the 

outside of the ground wire.   

 

3. STRIKING DISTANCE 

 

The ground wires do not always protect the conductors from a direct stroke, resulting in 

shielding failure. When a downwards leader is approaching the OHL from a charged cloud, 

upwards leaders will be launched from ground wires and phase conductors. If an upwards 

leader from a ground wire reaches the downwards leader the lightning will terminated on the 

ground wire. The length of the upwards leader from the conductor is defined as the striking 
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distance. Figure 2 shows the striking distance of an OHL's ground wires and phase conductors 

[2, p.1].  
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Figure 2 : Illustration of striking distances. 

The general equation for striking distance based on the normal electro geometrical model is 

given in equation 1 [1, p. 249].  

 

             [m] (1) 

Where: 

rc is the striking distance of the phase conductor/shielding wire [m]. 

rg is the striking distance of the ground,    
  

 
 [m]. 

A, B and γ are constants. 

I is the lightning current [kA]. 

 

The striking distance may as shown in Figure 2, be represented as the radius rc of a circle 

surrounding a conductor. A striking distance to the ground (earth) generated in the same 

manner also exists. Unlike the circle of a conductor, this is a horizontal line above the ground 

rg. If the downwards leader reaches the striking distance in between points A and B shown in 

Figure 2, the lightning will terminate on the phase conductor. If however the leader reaches 

the area Dg or Sg the lightning will terminate on the ground wire. Lightning striking outside 

these areas will terminate on the ground.  As the lightning current increases the distance Dc 

decreases, this is shown in Figure 3. 
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Figure 3 : As the lightning current increases the distance Dc decreases. 
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The largest current that can terminate on the phase conductor therefore equals the current 

where Dc=0, this is defined as the maximum shielding failure current (IMSF) which can be 

determined by equation 2.  
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In Figure 3 angle α is defined as positive because the ground wire is placed closer to the 

center of the tower, than the outer most phase conductor. The shielding angles of the Eagle 

and the Donau pylons are shown in Table 1, it is seen that the Eagle pylon has a negative 

shielding angle. This is due to the tower geometry of the Eagle pylon. 

 

Table 1 : Shielding angles of the Eagle and Donau pylons. The angles are with respect to 

corresponding phase conductors, for the Eagle the lowest one to the right and for the Donau, 

the highest one.  

 Angle [°] 

Eagle -5.11 

Donau 14.2 

 

Different values for the constants in equation 1 and equation 2 are given from various sources 

and standards. Table 2 shows a comparison of how the different sources affect the striking 

distance and the IMSF.  

 

Table 2 : Evaluation of striking distances using different sources and methods [1].  

Electrogeometric models Eagle Pylon Donau Pylon 

Source A B γ 
rc 

[m] 

rg 

[m] 

IMSF 

[kA] 

rc 

[m] 

rg 

[m] 

IMSF 

[kA] 

Young 27γ 0,32 γy 32,51 30,67 1,49 53,53 50,68 7,16 

Brown-Whitehead 7,1 0,75 1,11 33,91 30,55 8,04 57,28 51,60 16,18 

Love 10 0,65 1 30,82 30,82 5,65 49,76 49,76 11,81 

IEEE-1991 T&D 

Committee 
8 0,65 1/β

a 
33,41 30,58 9,02 91,28 59,95 42,33 

IEEE Std. 1243 – 1997 10 0,65 1/β
b
 35,36 30,42 6,98 75,50 56,07 22,42 

Wagner & Hileman 14,2 0,42 1 30,82 30,82 6,33 49,76 49,76 19,80 

Mousa & IEEE – 1995 

Substation Committee 
8 0,65 1 30,82 30,82 7,96 49,76 49,76 16,64 

Where: β
a
 =     , 0,6 < β < 0,9. β

b
 =             (    ), if h > 43 then h = 43. y is the 

phase conductor height. h is the ground wire height. γy
 
= 1 for h < 18 m; 444/(462-h) for h > 

18 m 

 

From Table 2 it is seen that the striking distances (rC, rG) differs slightly for the Eagle pylon 

but a lager deviation is seen for the Donau pylon. The different methods show a large 

difference in the IMSF. It can therefore be seen that the choice of method has large impact on 

the lightning performance of the pylons. 

 

In Figure 4 (a), are shown the striking distances using different methods which result in a 

deviation of less than 5 meters for the striking distance of the conductor. For the striking 

distance of the ground, approximately all of the methods result in the same distance. 
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According to [2, p.11] the IEEE Std. is the one recommended for use. These constants will 

therefore be used for further evaluation. 

The IMSF using the IEEE std. is calculated for the Eagle and Donau pylon respectively and 

given in Table 3. 

 

Table 3 : Maximum shielding failure current for the pylons. 

 IMSF [kA] 

Eagle 9.60 

Donau 22.42 

 

A plot of the striking distances using the currents from Table 3 for the Eagle and Donau 

pylons and the constants from IEEE std. is shown in Figure 4. 

 

(a) (b) (c) 

Figure 4 : (a) Comparison of striking distance for different sources and standards, (b) striking 

distance for Donau, (c) striking distance for Eagle. 

From Figure 4 it is seen that for IMSF the phase conductors are completely protected by the 

striking distances from the ground wire and ground.   

 

4. CRITICAL CURRENT 

 

It is furthermore of importance to determine the current needed to cause a flashover of the 

tower insulators. The critical current (IC) is the lightning stroke current that will cause a 

flashover of the insulators. IC is determined from the characteristic impedance of the line and 

the critical flashover voltage of the tower insulators and is defined in equation 3 [1, p.249]. 

 

 
   

    

  
 

[A] (3) 

Where: 

CFO is the critical flashover voltage [V], [IEC60071-2]          insulator length (3.2 m) 

Zc is the surge impedance of the line [Ω]. 

 

The critical currents for the pylons and their respective surge impedances are shown in Table 

4.  

Table 4 : The critical currents and surge impedances. 

    [Ω]    [kA] 

Eagle 252,1 17,80 

Donau 241,3 18,57 
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5. LIGHTNING GROUND FLASH DENSITY 

 

In order to estimate the number of lightning strikes to the transmission line, its shadow area 

must be analyzed. The grey area beneath the transmission line is called the shadow area, see 

Figure 5.  
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Figure 5 : The shadow area. 

If a lightning strikes within this area it is attracted to the line. From the shadow area and the 

lightning density the expected number of lightning striking the line can be calculated using 

equation 4 [8].  

 

 

 

 

                                 
  

  
 (        ) [

       

          
] (4) 

Where Ng is the ground flash density and for H and D see Figure 5. 

 

The worst case of ground flash density in Denmark between 2001-2005, was equal to 1.39 

flashes/km
2
 ∙ year, according to [7]. Table 5 shows the estimated number of strikes to the line 

using this value. 

 

Table 5 : Estimated number of strikes to the line. 

 Flashes per 100km-year 

Eagle 38.7 

Donau 36.7 

 

From Table 5 it is seen that the Eagle pylon attracts slightly higher number of lightings that 

the Donau pylon. This is mainly due to larger distance between the ground wires on the Eagle 

pylon. 

 

6. SHIELDING FAILURE RATE (SFR) 

 

In a previous section the IMSF for both pylons was determined. These are the largest currents 

that will terminate on the phase conductor. SFR is the number of strokes that will strike the 

line and a phase conductor, resulting in shielding failure. The SFR is determined by equation 

5 [3, p.9]. 

 

 
          ∫   ( )   ( )   

    

    

 
[Flashes/year] (5) 
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Where: 

f (I)1 is the probability density function of the first stroke current. 

L is the line length [m]. 

DC is a function of the stroke current and is given in equation 6 and Figure 6. 

Note that the equation only accounts for vertical strokes and the lower bound of the integral is 

3 kA, as is recommended by [4, p.24]. 
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Figure 6 : Dimensions used in equation 6. 
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Furthermore in order to calculate the SFR the probability density function f(I)1 of the first 

stroke current is needed. According to [4, p11] the log-normal distribution for the first stroke 

amplitude can be calculated as shown in equation 7.  

 

Where: 

z = ln(I/M) / β 

β is the logarithmic standard deviation, see Table 6. 

M is the median value of the striking current, see Table 6. 

 

Table 6 : Constants used in equation 7 [4, p13]. 

Parameter Shielding failure domain (I < 20 kA) Backflash domain (I < 20 kA) 

M 61 33.3 

β 1.33 0.605 

 

The calculated SFR values for both pylons are given in Table 7. 
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Table 7 : SFR results for the pylons. 

 SFR [flashes/year] 

Eagle 0.0353 

Donau 0.1150 

 

As can be seen from Table 7, there is a relatively large difference between the SFR for the 

Eagle and the Donau pylon. This is in line with the maximum shielding failure current for the 

Donau being higher than for the Eagle. 

 

7. SHIELDING FAILURE FLASHOVER RATE (SFFOR) 

 

SFR may however not mean that all of these strokes will result in a flashover. In this section 

the SFFOR is determined. This is the number of lightning strikes to the phase conductor that 

will result in a flashover of the insulation. This rate may be calculated using the same 

expression as for the SFR, but now integrating from IC to IMSF, this is shown in equation 8 [1, 

p.250]. 

 

 
            ∫   ( )   ( )   

    

  

 [Flashes/year] (8) 

 

IMSF and IC for both types of pylons have earlier been determined and are shown in Table 8, 

for convenience. 

 

Table 8 : The critical and maximum shielding failure currents. 

    [kA]      [kA] 

Eagle 17,80 9.61 

Donau 18,57 22.42 

 

For the Eagle pylon it can be seen that IC is larger than IMSF. Therefore, theoretically no 

lightning current can strike the phase conductor and create a flashover. From this it can be 

concluded that the theoretical SFFOR for the Eagle pylon is zero. 

 

This is however only a theoretical assumption as according to IEEE [3] there is an 8 % 

change that the first stroke is below 12 kA. This means that there is some change that the first 

stroke is below the IMSF value, thereby striking the conductor. If the first stroke is followed by 

a subsequent stroke, the subsequent stroke will follow the same leader as the first stroke. The 

subsequent stroke may be higher than the Ic and result in a flashover. IEEE suggest a method 

to account for this possibility however this will not be further considered in this study, due to 

the recommendations in [1, p.267]. However it should be kept in mind that flashover can 

occur from subsequent strokes. 

 

For the Donau pylon the IMSF exceeds the IC. Therefore there is a chance that the lightning 

strikes a phase conductor on the Donau pylon and creates a flashover to the tower. The 

SFFOR is calculated and the result is shown in Table 9. 
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Table 9 : The SFFOR results for the Eagle and the Donau. 

 SFFOR [flashes/year] 

Eagle 0 

Donau 0.0234 

 

The SFR and the SFFOR were determined for the Eagle and the Donau pylon in the previous 

sections.  

 

From this it is seen in regard to SFR and SFFOR that the Eagle pylon performs better than the 

Donau pylon, due to tower geometry and negative shielding angle of the Eagle pylon.  

 

8. BACKFLASHOVER RATE (BFR) 

 

In the event of a strike to the ground wire or the tower, a current is forced down the pylon and 

divided between a current entering ground through tower and another current divided into two 

which are entering the ground wires in each direction. As a result, voltage will build up across 

the insulators as the potential of the pylon rises compared to the phase voltage. If the potential 

of a tower rises to a value where the insulator string no longer can withstand the voltages 

between the tower and the phase conductor, a backflash can occur. 

 

The method used in this analysis is the method proposed by CIGRÉ [4, p.40-48] (see 

flowchart in Figure 7) and [1, p.396]. 

 

Match 
selected 

Ri 

 

 tf 
Match 

selected  
tf 

 

 

Select Ri  IC Select tf  IR  Ri 

No 

Yes 

Yes 

No 

 Iterate Ri 

 Iterate tf 

Stop 

Calculated 

Calculated 

 

 
Figure 7 : Flowchart of the CIGRE method for determining the impulse resistance Ri and the 

time to crest tf. 

The calculation of the BFR is an iterative process for which the procedure is given below. The 

equation for calculating the BFR is as shown in equation 9. 

 

 

              ∫  ( )  
 

  

 [
          

          
] (9) 

Where: 

f (I) is the probability density function of stroke current. 
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The upper limit of the integral is 200 kA in accordance with [4]. 

According to [1, p.379] the voltage produced by a stroke to the span will always be equal or 

less than the voltage produced by a strike to the tower. It is therefore recommended to only 

assume strikes to the tower, when calculating the BFR. This rate will however be too high if 

strikes to the span are not considered and therefore BFR must be multiplied by 0.6 [1, p.379]. 

 

To evaluate equation 9 the lower integration limit must be determined, this is done in the 

followings steps and values used are shown in Table 10 : 

 

1. Select the value for the impulse resistance Ri, typical first guess is 0.5 ∙ R0 [1, p.397]. 

2. Select time to crest tf [μs], typical value of 4, for 354 kV and above [1, p.397] . 

3. Calculate the couplings factor between ground wire and phase A: Ca [1, eq:4.41]. 

4. Calculate the couplings factor between ground wire and phase B: Cb [1, eq:4.41]. 

5. Calculate the couplings factor between ground wire and phase C: Cc [1, eq:4.41]. 

6. Determine the lowest couplings factor. 

7. Calculate the non-standard CFO [1, eq:4.51]. 

8. Calculate the critical current IC [1, eq:4.57]. 

9. Calculate the grounding current IR [1, eq:4.16.] 

10. Recalculate Ri [1, eq:4.20]. 

11. Compare the initial calculated Ri with the value of Ri calculated in number 10, if the two 

values are within a specified limit stop, otherwise iterate (replace initial value with calculated 

value). 

12. When step 11 converges, recalculate tf = 0.207 ∙ IC
0.53

. 

13. Compare the initial selected tf with the value of tf calculated in number 12, if the two 

values are within a specified limit stop, otherwise iterate (replace initial value with calculated 

value). 

14. When step 13 converges, the value IC, is the lower limit in equation 9. 

 

Table 10 shows that the current needed for a backflashover is very high, relative to the 

normally used upper limit of 200 kA [4]. This result in an almost zero possibility of a 

flashover, which is somewhat questionable.  

 

Table 10 : Results from BFR iteration process for earth resistivity of 100 Ω∙m. 

Value [Unit] Eagle Donau 

ZT [Ω]  239.93 203.19 

Zg [Ω] 332.13 352.44 

Span [m] 300 300 

Ri [Ω] (initial) 5 5 

tf [µs] (initial) 4 4 

Ca 0.2388 0.2333 

Cb 0.1283 0.1486 

Cc 0.1350 0.1425 

CFONS [kV] 2611 2227 

IC [kA] 422 366 

IR [kA] 413 362 

Ri [Ω] 3.66 3.94 

tf [µs] 5.1 4.76 

BFR [flashover/100km∙year] 0.000313 0.000812 
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There are several factors which may introduce errors, which are difficult to correct without 

further testing. These factors are: 

 

 The exact value of the grounding resistance Ri. 
 The precise value of the ground resistivity. According to [5, p.31] the soil in Denmark 

has a lot of sand and clay. The resistivity for clay and sand is 100 and 150 Ω∙m 

respectively. Suggesting a value in-between the two. 

 The exact value of the CFO. There exist numerous methods to calculate the CFO and 

the exact value of this may vary from the one calculated in this paper. 

 

It is therefore of interest to perform a sensitivity analysis of these parameters. Shown in Table 

11 are the critical current and the BFR for different value of the fore mentioned factors. The 

base values used are the ones from Table 10 for Eagle. 

 

Table 11 : The critical current and BFR for typical values. 

Pylon : Eagle IC [kA] BFR [flashover/100km∙year] 

R0 

10 Ω 258.9 0.0081 

25 Ω 182 0.0585 

50 Ω 169.43 0.1043 

CFO 

1425 kV 139.64 0.2102 

1600 kV 163.47 0.0992 

2240 kV 258.9 0.0081 

Soil resistivity 

100 Ω∙m 422 0.0003 

600 Ω∙m 258.9 0.0081 

1000 Ω∙m 242.14 0.1257 

 

It is apparent that the BFR is very dependent on each of the parameters. This indicates that the 

method is very dependent on the input parameters. It may be recommended to assure as low 

as possible grounding resistance of the pylons closest to the substations.  

 

9. CONCLUSION 

 

The results for the SFR, SFFOR and BFR are combined in Table 12.  

 

Table 12 : Results from the SFR, SFFOR and BFR analysis. 

 SFR [flashes/year] SFFOR [flashes/year] BFR [flashover/100km∙year] 

Eagle 0.0353 0 0.000313 

Donau 0.1150 0.0234 0.000812 

 

It is evident from Table 12, that the Eagle pylons lightning performance is better than the 

Donau pylon.   

 

In the case of direct strokes, both the SFR and SFFOR result in a lower rate for the Eagle 

pylon than for the Donau. This is due to the geometry of the two pylons especially the fact 

that the Eagle pylon has a negative shielding angle. 

 

In the case of the BFR the geometry of the pylons results in different coupling factors, which 

account for the difference of the two pylons. 
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A comparisons of the maximum shielding failure revealed that the current which will strike 

the phase conductor directly is lower for the Eagle than it is for the Donau. As a result, the 

voltage which will appear at the substation terminals will be higher for the Donau, and 

thereby increase the stress on the substation components. 

 

The new Eagle pylon (shown in Figure 8) is, besides having a more elegant design, a better 

technical solution in regard to lightning performance.  

 

 
Figure 8 : A picture of the Eagle and the Donau pylons. 
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