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Summary

The objective of this document is to summarize the outcome ofthe research which has been
carried out during the period Mai 2011 until June 2012 i.e. during the first year of the PhD
study. The work has been done in collaboration with the co-authors. The aim of the project was
primarily to provide numerical values for comparison with the experimental test results which
were carried out in the same time. It is for this reason why Chapter 4 does consist exclusively of
numerical values. Experimental values and measured time series of wave elevations have been
used throughout the report in order to a) validate the numerical model and b) preform stochastic
analysis. The latter technique is introduced in order to optimize the control parameters of the
power take off system. The content is summarized in the following manner:

Chapter 1 starts with an introduction. A brief literature review about optimal control of
wave energy converters is given.

In Chapter 2 the dynamic equation of the laboratory scale Wavestar modelis presented. The
calculation of the hydrodynamic loads is based on the diffraction/radiation theory. The boundary
element method is used to solve the flow problem around the geometry in 3D. The hydrodynamic
loads are given in the frequency domain and are linearized byassuming a constant equilibrium
position. The exact hydrodynamic force would result if the "exact" or "actual" position of the
float in the waves is considered. However, in general the analyses by using non-linear 3D codes
are time consuming and the justification to carry out a non-linear analysis at the design stage
must be given. In the case of the Wavestar model the wetted surface does not undergo large
changes in head seas. Thus the linear assumption is justified. A simpler approach to account for
the predominant non-linear forces such as the Froude-Krylov and the buoyancy forces is to eval-
uate the forces for each position of the float. In Chapter 2.1.1 a simple methodology is described
which addresses the non-linear hydrostatic restoring moment. The results of the numerical im-
plementation of the non-linear force are presented in the first paper; see Appendix A.

Chapter 2 starts directly by setting up the equation of motion in the time domain. The
integro-differential equation is formulated for the laboratory model which is also known as the
Cummin’s equation. In order to solve the problem in the time domain a convolution product be-
tween the radiation force and the body velocity must be solved. Two different methodologies are
described. In the second model the convolution integral is replaced by a rational approximation
of the radiation force. A state-space model is introduced toformulate the equation of motion.
Chapter 2.3 discusses the introduction of a control moment.

In Chapter 3 the experimental setup of the laboratory model is described. The model is
basically a reproduction of the Wavestar prototype which islocated in Hanstholm, Denmark.
The model scale is 1:20. Ten different wave states are analyzed. A stochastic analysis is carried
out of the measured wave states. The optimal damping coefficient is calculated by taking into
account the auto-correlation coefficient of irregular waves.

In Chapter 4 the results from the experimental and numerical calculation are presented.
Four different control strategies are applied. The numerical results are compared with the ex-
perimental tests for the passive damped point absorber. Unfortunately no experimental results
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are available for the case where a negative spring stiffnessis applied to the controller. In gen-
eral the comparison shows very good agreement between the numerical and experimental results.
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CHAPTER 1
Introduction

1.1 Introduction

The dynamical behaviour of wave energy converters (WEC’s) has been extensively investi-
gated during the past half century by means of analytical andnumerical studies, including
testing at laboratory scale and under real-sea conditions.Many concepts have been proposed
such as the oscillating-water-column (OWC), the Pico OWC (Neumannet al. 2008), overtop-
ping WEC types like the Wave Dragon (seehttp://www.wavedragon.net), multi-body
point absorber concepts like e.g.FO3 (Taghipour 2008) and the Wavestarenergy device (see
http://www.wavestarenergy.com). Point absorbers constitute an important class of
wave energy converters particularly with regard to offshore deployment.

The definition of a point absorber system lies in the ratio between the maximum geometrical
dimension and the minimum wavelength of a representative sea state. If this ratio is considered to
be small it may be concluded that the resonance bandwidth of the absorber is narrow and hence
optimal control strategies can be very promising to maximize the power production. Oscillators
with large horizontal extensions can also be classified as broad banded devices from a control
point of view. Optimal control for these devices would be less effective than for point absorber
concepts.

The use of control engineering to optimize the power absorption of point absorber wave en-
ergy converters was first proposed by Budal (Budal 1975). A maximum power is extracted from
the waves, when the velocity of the body is in phase with the incoming wave excitation force at
any time. At excitation frequencies away, a phase difference is present, and the power absorption
is considerably reduced.

This behaviour can be observed in Fig. 1.1 and Fig. 1.2 for a laboratory scale model (1:20)
of the Wavestar point absorber. The non-dimensional performance index is shown in the vertical
axis; the peak period is displayed in the horizontal axis. Irregular waves based on a Pierson
Moskovitz spectrum are analysed. The natural period of the oscillating system is 0.79 s. The
red curve in the graph is based on experiments whereas the black dashed line is calculated with
a time domain model, assuming linear fluid structure interaction. For peak periods close to the
natural period, the capture width ratio reaches its maximumof aboutν ∼= 0.55. On the other
hand for peak periods larger than the natural period, the efficiency is considerably reduced; see
the decrease of the efficiency curve in the two Figures. The black and red curves in the right
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Figure 1.1 Non-dimensional performance index in function
of the peak period, for irregular waves with a steepness fac-
tor of Hs/λp=0.02 - linear, passive damping.
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Figure 1.2 Non-dimensional performance index in function
of the peak period, for irregular waves with a steepness fac-
tor of Hs/λp=0.04 - linear, passive damping.

plot are deviating for higher peak periods. This is due to thelinearity assumption of the linear
model. Higher and hence steeper waves tend to overtop the device more often. This effect is not
captured by the linear numerical model however predominantfor peak periods above 2.25 s.

One of the main objectives of optimal control, in the presentcontext, is to increase the
efficiency for the wave states where the peak periods are awayfrom the natural period of the os-
cillator. The objective is to decrease the steepness of the efficiency curve for larger peak periods
and thus to smooth out the efficiency curve.

"Optimal" control will be replaced by the word "sub-optimal" as it suits better the concepts
presented in this work: the control is applied by using the peak period of the waves rather than
the instantaneous wave period. In irregular waves the control problem becomes non-causal due
to the fact that the input is not the direct cause for the output (Falnes 1995). Optimal control in
irregular waves requires prediction of the future waves. All the calculation in the present case
are based on the assumption that the wave force is fully known, thus one can talk about causal
reactive control. The word reactive control reflects the fact that the dynamics of the oscillating
system are changed during the power absorption process. In other words the natural period of the
float is tuned to the peak period of the waves. This concept is also known as impedance matching
which was first presented by (Falnes 2007).

In the 1970’s a handful of independent reports were published introducing the theoretical
fundamentals of maximum wave-power absorption. Salter (Salter 1974) pointed out the potential
energy in ocean waves and highlights the design problems of such devices. In 1974 he reported
that already more than hundred proposals of WECs concepts were registered at the British patent
office. Salter illustrated the importance of experimental studies on wave energy in order to test
their efficiency for power extraction. Furthermore he pointed out that the installation must be
freely floating out at the sea. Rigid connections should be avoided wherever possible.

Evans (Evans 1976) pointed out that heaving bodies with an inbuilt hydrostatic spring and
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hence a natural oscillation period shorter than the wave periods require negative applied spring
stiffness from an external power source in order to oscillate in resonance.

Mei (Mei 1976) presented a design based on the idea of a tethered-float breakwater and re-
ported criteria’s for maximum power extraction. He pointedout that the energy extraction must
be equal to the rate of radiation damping of the device. For a body of one degree of freedom
and symmetric about one axis, the maximum efficiency at a given frequency can reach 50%. For
asymmetric bodies it can even be greater than the half of the incoming energy, like in the case
of Wavestar, for instance. For a body with two degrees of freedom, all the wave power can be
extracted (Mei 1976). In this paper the first structural design criteria’s for a WEC were presented,
however only regular waves were considered for the power extraction calculation.

Budal et al. (Budal 1975) published results of model experiments of a phase controlled
point absorber operating in heave only. One of the first latching control strategies was applied at
this time.
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CHAPTER 2
Description of the numerical

model

Contents:

� Laboratory scale model of the Wavestar device.

� Nonlinear hydrostatic restoring moment.

� Truncation of the convolution integral.

� Rational approximation of the radiation force.

2.1 The dynamic model

The equation of motion is obtained by formulating the momentum equilibrium condition around
the fixed point A, see Fig. 2.2.

J θ̈(t) +Rθ(t) +

∫ t

−∞

hrθ̇(t− τ)θ̇(τ) dτ = Me(t)−Mc(t) (2.1)

J = j + j∞h (2.2)

Pitchθ(t) is the corresponding degree of freedom around the bearing. The mass moment of
inertia around the fixed point of the float mass and the arm is denoted asj , j∞h is the added mass
at infinitely high frequencies,hrθ̇(t) is the impulse response function of the radiation force,R is
the hydrostatic stiffness coefficient,Mc(t) represents the control moment from the power take-off
system,Me(t) is the excitation moment. In the following experiment, two-dimensional irregular
waves are considered, propagating in the positivey-direction relative to(x, y, z)-coordinate sys-
tem defined in Fig. 2.2.
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6 Chapter 2 – Description of the numerical model

In order to calculate the exact wave excitation moment we would need to brake down the
componentMe(t) into the Froude-Krylov and the diffraction force. The equation of motion is
reformulated:

(j + j∞h )θ̈(t) +Mg +Mrad = MFK +Md +MB (2.3)

� Mg: Moment due to gravity

� Mrad : Radiation moment

� Md: Diffraction moment

� MB: Buoyancy moment

� (j + j∞h ): Inertia moment

For a quasi static structural response analysis it is advantageous to reformulate the equation
differently.

(j + j∞h )
︸ ︷︷ ︸

Angular acceleration

θ̈ = MFK +Md +MB −Mg −Mrad
︸ ︷︷ ︸

∑
Mi

(2.4)

The force components are summarized as follows, (Næsee 2012):

1 Froude-Krylov force: Pressure effect due to the undisturbed incident waves.

2 Diffraction force: Pressure effect due to the presence of the structure.

3 Hydrodynamic added mass and damping force: Pressure effects due to motion of structural
components in an ideal fluid.

4 Viscous drag force: Pressure effects due to relative velocity between water particles and
structural components.
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(M +A∞)Ÿ
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Figure 2.1 Definition of the laboratory model (1:20) representing the Wavestar prototype model in Hanstholm, static
referential state,yE,0 andzE,0: center of buoyancy.

January 17, 2013



8 Chapter 2 – Description of the numerical model

F
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Figure 2.2 Definition of the laboratory model (1:20) representing the Wavestar prototype model in Hanstholm, static
referential state,yE,0 andzE,0: center of buoyancy.
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2.1 The dynamic model 9

2.1.1 Nonlinear hydrostatic restoring moment

The change of the hydrostatic pressure at each instantaneous position of the float below the water
plane can be taken into account by integrating the hydrostatic pressure over the instantaneous
wetted surface. Thus the hydrostatic restoring moment can be formulated in a more generalized
form as follows:

R = −ρg

∫∫

SB(t)

n · z · dS(t) (2.5)

The time domain simulations in this paper include the nonlinear hydrostatic momentR
given in Eqn. (2.5). Static tests have been carried out in order to experimentally describe the
hydrostatic moment acting on the float. The change of the wetted surface can be observed when
the float is successively dipping into the water. Figure 2.3 shows the experimental results. The
time domain model considers a trilinear piecewise approximation of the hydrostatic behavior
depicted in the dashed black curve in the Figure 2.3. The relative position of the float is calculated
by the difference of the undisturbed incident wave elevation and the rotational displacement at
the instantaneous time step.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-20

-10

0

10

20

Hydrostatic experiment

Piecewiese linear approx.

A

B

C

φ[rad]

R
[N

m
]

Figure 2.3 The piecewise linear approximation of the hy-
drostatic restoring moment is shown in the black dashed line,
the red curve shows the results from the experiments.

H

D

R
H

D

H

A B

C

D

R

Figure 2.4 Point A: the float is out of the water no hydro-
static force is acting on the sphere, Point B: the float is in its
static equilibrium position the hydrostatic restoring moment
increases linearly with degree of submergence, Point C: the
float is fully submerged the weight of the overtopped water
reduces the "spring effect" of the buoyancy force.
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10 Chapter 2 – Description of the numerical model

2.1.2 Impulse response function of the radiation force

The impulse response function of the radiation force can be seen as the system identity. If we
know the response to an impulse, then we know the response to any excitation by convolution
with the impulse response function. The basic work for this formulation of the problem was laid
by W.E. Cummins (Cummins 1962). In Figure 2.5 two different radiation impulse response func-
tions are shown. The blue line represents the solution basedon a high frequency approximation,
whereas the red line is based on a unmodified FFT analysis, i.e. no approximation of the high
frequencies. The "cut-off" frequency for the blue curve canbe observed at a frequency of 0.5 Hz,
(T ∼= 2.0sec). For the first case the initial damping valuehrθ̇(t = 0) is slightly higher than for
the second method, however for higher periods it seems to be the opposite case. The MATLAB
command is [y,x,t]=impulse[A,B,C,D,iu].
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  [
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Cut−off the tail
Including high frequencies

Figure 2.5 The radiation impulse response functionh
rθ̇
(t). The blue line represents the solution based on a high

frequency approximation whereas the red line is based on a unmodified FFT analysis, i.e. no approximation of high
frequencies.

2.1.3 Rational Approximation of the radiation force

The radiation momentMr(t) is given as:
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2.1 The dynamic model 11

Mr(t) = −j∞h θ̈(t)−Mr,0(t) (2.6)

where

Mr,0(t) =

∫ t

0

hrθ̇(t− τ)θ̇(τ)dτ (2.7)

The idea in this section is to replace the convolution integral by an equivalent system of
coupled first order differential equations, which are solved numerically along with the equations
of motion of the absorber. The method is based on an initial replacement of the actual frequency
response functionHrθ̇(ω) with an approximatingrational function H̃rθ̇(ω) given in the form

Hrφ̇4
(s) = B(ω) + iω(A(ω)−A∞) (2.8)

H̃rφ̇4
(s) =

P (s)

Q(s)
=

p0s
m + p1s

m−1 + ...+ pm−1s+ pm
sn + q1sn−1 + ...+ qn−1s+ qn

(2.9)

The unknowns are the coefficients of polynomials P and Q. The parametersp0,p1,...,pm−1,pm
andq1,...,qn−1 qn define thepoles and thezeros of the rational approximation and are all real.
The order of the filter as given by the pair (n,m) may be chosen freely with the only restriction
thatm ≤ n, and that all poles have negative real part, i.e.

Re(pj) < 0, j = 1, ..., n (2.10)

Eqn. (2.10) ensures that the filter isstable and causal. Correspondingly, the indicated
approach only applies to frequency response functions. A rational causal approximation forHrθ̇

can be obtained by theMATLAB control toolbox (Matlab 2012) or theMSS FDI toolbox (Perez
and Fossen 2009). Next, the convolution integralMr,0(t) is obtained as output of the following
system of differential equations

Mr,0(t) = p0
dmy

dtm
+ p1

dm−1y

dtm−1
+ · · ·+ pm−1

dy

dt
+ pmy (2.11)

dny

dtn
+ q1

dn−1y

dtn−1
+ · · ·+ qn−1

dy

dt
+ qny = θ̇(t) (2.12)

wherey(t) is an auxiliary variable, which cannot be related with any physical interpretation.
Eqn. (2.12) may be written in the following state vector form

żr(t) = Ar zr(t) + br θ̇(t) (2.13)
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12 Chapter 2 – Description of the numerical model

where:

zr(t) =














y(t)
d
dt
y(t)

d2

dt2
y(t)
...

dn−2

dtn−2 y(t)

dn−1

dtn−1 y(t)














, br =













0

0

0
...
0

1













(2.14)

Ar =











0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

−qn −qn−1 −qn−2 · · · −q2 −q1











(2.15)

Similarly, Eqn.(2.7) may be written on the vector form

Mr,0(t) = pr zr(t) (2.16)

pr =
[
pm pm−1 · · · p1 p0 0 · · · 0

]
(2.17)

By rearranging the equations above the equation of motion can now be rewritten in a state
space model as follows:

d

dt
z(t) = Az(t) +






0
1
J

0






∫
∞

−∞

hrθ̇(t− τ)η(τ)dτ (2.18)

where

z(t) =






θ(t)

θ̇(t)

zr(t)




 (2.19)

A =






0 1 0

−R
J

0 − 1
J
pr

0 br Ar




 (2.20)
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2.2 Solving the dynamic model 13

In Eqn.(2.18) the control momentMc(t) has been omitted. The method has been illustrated
below for the absorber defined in Fig. 2.2 with the numerical values in Tab. 3.1, using the
relatively low order filter(m,n) = (4, 5). In Fig. 2.6 and Fig. 2.6 the resulting frequency
response functions has been compared with the corresponding target frequency response function
calculated by the BEM program WAMIT, (WAMIT 2012).
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Figure 2.6 Imaginary part of the frequency response curve.
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Figure 2.7 Piecewise linear approximation of the nonlinear
hydrostatic restoring moment.

2.2 Solving the dynamic model

The time-domain analysis of a floating structure involves the calculation of a convolution integral
between the impulse response function of the radiation force and the unknown body velocity due
to an external force. The convolution integral can be seen asa memory effect where the system
response in the past affects the response in the future. Two different time-domain models will be
presented.
The first one is based on a discretization of the convolution integral. The calculation of the
convolution integral is performed at each time step regardless of the chosen numerical scheme.
In the second model the convolution integral is replaced by asystem of linear ordinary differential
equations. The formulation of the state-space model is advantageous regarding the computational
effort and the robustness of the solver. Another important feature is the linear-time invariance
of the system. In a next step the influence of the nonlinear hydrostatic behavior of the float is
investigated by using a simplified formulation.

2.2.1 Truncation of the convolution integral

Let us consider the following dynamic equilibrium equationof the WEC device shown in Fig.
2.2.

(J + j∞h )θ̈(t) +

∫ t

0

hrθ̇(t− τ)θ̇(τ)dτ +Rθ(t) + cptoθ̇(t) =

∫
∞

−∞

heη(t− τ)η(t)dτ (2.21)
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14 Chapter 2 – Description of the numerical model

The convolution integral in Eqn. 2.21 can be expressed by means of a sum:

∫ t

0

hrθ̇(t− τ)θ̇(τ)dτ = ∆t
t∑

τ=0

hrθ̇(t− τ)θ̇(τ) (2.22)

Expanding the sum in Eqn. 2.22, we get the following expression:

∆t

t∑

τ=0

hrθ̇(t− τ)θ̇(τ) = ∆t[hrθ̇(t)θ̇(0) + hrθ̇(t− 1)θ̇(1) + ...+ hrθ̇(0)θ̇(t)] (2.23)

The equation of motion can then be written as follows:

(J+j∞h )θ̈(t)+hrθ̇(0)θ̇(t)+Rθ(t)+cptoθ̇(t) =

∫
∞

−∞

heη(t−τ)η(t)dτ−

∫ t−

0

hrθ̇(t−τ)θ̇(τ)dτ

(2.24)

The numerical integration of Eqn. 2.24 only requires the calculation of the integral at the
preceding time-steps and can therefore be considered as a known quantity. A fourth order Runge
Kutta scheme with a constant time step∆t has been used to evaluate the linear equation of mo-
tion given in Eqn. 2.24. Drawbacks of this method arei) time consumingii) the convolution
integral needs to be calculated at each time stepiii) the impulse response function needs to be
interpolated with the same∆t as the time integration, which is not very convenient. The results
are shown in the last page of this chapter. Fairly good agreement can be observed when com-
paring the numerical discretization of the convolution integral with an analytical calculation for
regular waves, i.e. when a constant damping coefficient can be assumed.

Comparison between the two different integration techniques are presented in the workshop
paper of the IWWWFB workshop held in 2012 in Copenhagen, see appendix A.

2.2.2 State space model

The state space approximation of the convolution integral may be directly calculated from the
frequency domain coefficients. The convolution integral isexpressed as follows:

∫ t

0

hrθ̇(t− τ)θ̇(τ)dτ = g(I) (2.25)

whereg(I) are the new state variables.

İ = h(I, θ̇) (2.26)

The approximation of the convolution integral using the coefficients of the polynomial P(s),
introduced in Eqn. 2.9, gives us then:
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∫ t

0

hrθ̇(t− τ)θ̇(τ)dτ ≈
[
p0 p1 ... pn−1

]
I(t) (2.27)

where the derivatives of the new states are given as:

İ(t) =







−q1 −q2 −q3 qn
1 0 0 0
0 1 0 0
0 0 1 0






I(t) +







1
0
0
0






θ̇(t) (2.28)

Having defined the new state vectorİi, we assemble and get:

Y =





θ

θ̇
Ii



 (2.29)

The equation of motion is then rewritten in an ODE of first order

Ẏ = F (t, I) (2.30)

F (t, I) =





θ̇

(j + j∞)−1(Mex −
∫ t

0 hrθ̇(t− τ)θ̇(τ)dτ −Rθ + Fdrag + FPTO)

İi



 (2.31)

The state space form of the equations above may be formulatedas:

ẋ = Ax+Bu (2.32)

y = Cx+Du (2.33)

Assuming the geometry in Fig. 2.2 and based on the hydrodynamic coefficients shown in
Fig. 2.6 and Fig. 2.7 we get the following numerical values byusing the inbuild invfreqs function
in Matlab.

ẋ = Ax+Bθ̇(t) = İ(t) =







−14.69 −124.78 −124.79 −14.56
1 0 0 0
0 1 0 0
0 0 1 0






I(t) +







1
0
0
0






θ̇(t)

(2.34)

y =

∫ t

0

hrθ̇(t− τ)θ̇(τ)dτ ≈ Cx+Dθ̇(t) =
[
35.13 60.57 10.71 0

]
I(t) + 0θ̇(t) (2.35)
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The above equations are solved in MATLAB. The Figures 2.8 to 2.11 show the comparison
between the convolution of the impulse response function with a sinusoidal function and the
approximation of the convolution integral with the state space model presented in Eqn. 2.34
and 2.35. The MATLAB commentconv(K, Ẋ(t)) ·∆t is used. Figures 2.12 and 2.13 compare
the two methods i.e. the truncation and the approximation ofthe convolution integral for two
different damping coefficients.
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Figure 2.8 Convolution of the impulse response func-
tion with asin(t) signal
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Figure 2.9 Convolution of the impulse response func-
tion with asin(t) signal - zoom
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Figure 2.10 Convolution of the impulse response
function with a zero mean random noise signal
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Figure 2.11 Convolution of the impulse response
function with a zero mean random noise signal
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Figure 2.12 Comparison between direct numerical integration and a state-space approximation of the radiation kernel,
cpto = 4Nm/rad/s
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Figure 2.13 Comparison between direct numerical integration and a state-space approximation of the radiation kernel,
cpto = 12Nm/rad/s

The comparison between the experiments and the numerical calculation has been presented
in a OMAE conference in 2012 in Rio de Janeiro, see appendix B.The experimental results will
be discussed in chapter 4. The comparison is carried out for the passive damped case.
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18 Chapter 2 – Description of the numerical model

2.2.3 State space model of the wave excitation force

The block diagram in Fig. 2.14 shows the procedure which is applied hereafter in order to cal-
culate the wave excitation moment in the time domain.W (t) is a zero mean random process
known as withe noise,Hηω(ω) is the frequency response function of the wave spectrum,η(t)
corresponds to the wave elevation,heη(t) is the impulse response function of the wave excitation
moment andMe(t) is the wave excitation moment.

W (t) Hηw(ω)
η(t) heη(t) Me(t)

Figure 2.14 Block diagram for the calculation of the excitation force inthe time domain

The wave excitation moment is expressed as follows:

Me(t) =

∫
∞

−∞

heη(t− η)η(τ)dτ (2.36)

The related frequency response function is:

Heη(ω) =

∫
∞

−∞

e−iωtheη(t)dt (2.37)

Furthermore the following relation holds:

Me(ω) = |Me|e
−iα = Heη(ω)η(ω) (2.38)

|Me| is the modulus (amplitude) andα is the negative argument of the fourier transforma-
tion andη(ω) is the fourier transformation of the sea-surface elevationη(t).

The real and imaginary part of the frequency response function are shown in Fig. 2.15
and Fig. 2.16. The corresponding impulse response function(IRF) is shown in Fig. 2.17. In a
next step we split the IRF function into a causal and non-causal part respectively. The fourier
transformations of Eqn. 2.39 and Eqn. 2.39 are shown in Fig. 2.18 and Fig. 2.19 and are
compared with the original frequency response function calculated with a Boundary Element
method (BEM). From Fig. 2.19 one can see the difference between the full frequency response
function based on the BEM calculation and only the causal part of it. It can be concluded that,
for the calculation of the wave excitation force based on time series of the wave elevation, cf.
Eqn. 2.36 one has to convolute with the non-causal impulse response function rather than only
the causal part i.e. red curve in Fig. 2.17.

H+
eη(ω) =

∫
∞

0

e−iωth+
eη(t)dt (2.41)
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Figure 2.15 Real part, frequency response function
of the excitation force Re(Heη)(ω))

0 10 20 30 40 50
−50

0

50

100

150

200

250

ω [rad/s]

R
e 

(H
eη

(ω
))

 [N
/m

]

 

 
Re(H

eη(ω)) from WAMIT

Figure 2.16 Imaginary part, frequency response
function of the excitation force Im((Heη)(ω))
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Figure 2.17 Impulse response function of the excita-
tion force,heη(t), blue curve: non-causal, red curve:
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h−

eη =

{

heη(−t) if t ≤ 0,

0 if t > 0.
(2.39)

h+
eη =

{

heη(t) if t ≥ 0,

0 if t < 0.
(2.40)

H−

eη(ω) =

∫
∞

0

e−iωth−

eη(t)dt (2.42)

Random phase method

The wave spectrum is divided intoN parts by the frequency band width∆f . This means that
the irregular wave is composed ofN linear waves.

The variance of each linear wave is:

Sη(fi)∆f =
1

2
a2i , i = 1, 2, ..., N (2.43)

The amplitude is:
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Figure 2.19 Causal-part frequency response function
H+

eη(ω)

ai =
√

2Sη(fi)∆f, i = 1, 2, ..., N (2.44)

and the angular frequency is:

ωi =
2π

Ti

= 2πfi, i = 1, 2, ..., N (2.45)

The wave elevation is then a discrete sum over all the angularfrequencies and amplitudes:

η(t) =
N∑

i=1

ηi(t) =
N∑

i=1

aicos(ωit+ δi)

2.3 Control moment

The control force momentMc(t) is work conjugated to the contraction of the piston arm BC, see
Fig. 2.2 and is used to control the motion of the WEC in a way that a maximum power outtake is
obtained. The following parameterized feed-back control law is assumed, (S.R.K. Nielsen 2012):

Mc(t) = mcθ̈(t) + ccθ̇(t) + kcθ(t) + bc

∫
∞

−∞

hcθ̇(t− τ)θ̇(τ) dτ (2.46)

mc denotes the gain factor for the control force component proportional to the acceleration,
cc signifies the gain factor for the control force component proportional to the velocity andkc de-
notes the gain factor for the control force component proportional to the rotational displacement
θ, bc is a number between zero and one. In control theory the force components proportional to
the displacement and the velocity are referred to as proportional and derivative control, respec-
tively. mc andkc may attain positive as well as negative values.cc is always positive in the
present application. The last term in Eqn. 2.46 represents the weighted influence on the control
force of previous and future velocities. Accordingly, the impulse response function is not causal.
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2.3 Control moment 21

2.3.1 Optimal control of a linear point absorber

The following derivations and equations are taken from the script (Nielsen 2012). The material
was presented during a PhD course which was held at Aalborg University in 2011. The goal
was to highlight the application of stochastic methods to define the optimal control parameters
of a wave energy point absorber in irregular waves. With thisapproach the optimal damping
coefficient is calculated to be a function of the auto-correlation coefficient of the given wave ex-
citation process. An analytical expression for the optimaldamping coefficient will be presented.
It will be shown that, the closer the oscillator moves into resonance with the incoming waves the
smaller becomes the ideal damping coefficient. This means that the system experiences higher
oscillations therefore also higher inertial forces at a higher energy absorbtion rate. The question
which urges from this observation is: Are there control parameters which can also reduce the
structural forces and still keep the energy production at the most highest level ? To answer this
question the model must be extended and ideally an adequate fatigue model has to be introduced
to account for the effect of structural loads in function of the control loads.

The dynamic response of the wave energy converter in presence of waves is assumed to be
a stationary Gaussian random process with zero mean value. The optimal control parameters
are depending on the frequency spectrum in the waves. Hence for irregular waves the control
becomes difficult to establish and often simplified assumptions have to be made. The first unre-
alistic assumption is connected with the oscillator. In order to have an optimal controlled power
absorber the velocity of the oscillator has to be in phase with the incoming wave excitation force.
Assuming that this condition can be achieved physically by feeding enough power into the sys-
tem and hoping that there is more power to be harvested, the control law can be formulated as
follows:

Mex(t) = 2ccθ̇(t) (2.47)

The control law in Eq. (2.47) is theoretical and has no physical meaning unless constraints
are implemented in the control algorithm. Furthermore an important issue is related with the effi-
ciency factors of the generator in both directions. In the present case the power is absorbed solely
by the damping coefficientcc. The following calculations are based on the assumptions that the
oscillator is in resonance with the incoming wave frequencyby a wave to wave resolution and
the input and output time series are two stationary Gaussianprocesses. The dynamic response is
expressed in function of the wave excitation force assumingthe resonance condition:

Θ̇(t) =
1

2cc
Mex(t) , Θ(t) =

1

2cc

∫ t

−∞

Mex(τ) dτ (2.48)

The instantaneous power is given as:

Pc(t) = E[Θ̇(t)Mc(t)] (2.49)

whereE[] is the mathematical expectation of the random process in thesquare brackets.
The response of the system is assumed to be stochastic so is the control moment, (S.R.K. Nielsen
2012):
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22 Chapter 2 – Description of the numerical model

Mc(t) = MΘ̈(t) + ccΘ̇(t) +KΘ(t) +

∫
∞

−∞

hcΘ̇(t− τ)Θ̇(τ)dτ (2.50)

In order to fulfill the condition given in Eq. 2.47 the coefficients in equation Eq. 2.50 have
to be chosen accordingly:

M = −J (2.51)

K = −kc (2.52)

hcΘ̇(t− τ) = −hrΘ̇(t− τ) (2.53)

By inserting Eq. 2.50 into Eq. 2.49 we get

< Pc(t) >= E
[
Θ̇(t)Mc(t)

]
= −ME

[
Θ̇(t)Θ̈(t)

]
+ ccE

[
Θ̇2(t)

]
(2.54)

−KE
[
Θ̇(t)Θ(t)

]
−

∫ t

−∞

hrθ̇(t− τ)E
[
Θ̇(t)Θ̇(τ)

]
dτ (2.55)

The variablesΘ(t), Θ̇(t) and Θ̈(t) are statistically independent random variables with
E[Θ(t)] = E[Θ̇(t)] = E[Θ̈(t)] = 0 (zero mean). According to the properties of the mean value
operator of two independent random variables X and Y, (Ochi 1990),E[XY ] = E[X ]E[Y ], the
first terms in Eq. (2.54) and Eq. (2.54) are vanishing, i.e.E[Θ̇(t)Θ̈(t)] = 0 andE[Θ̇(t)Θ(t)] =
0.

The expressionE[Θ̇(t)2] is actually the variance of the random variableΘ̇(t) and is denoted
asσ2

Θ̇Θ̇
. Note that the mean value of the processΘ̇2 is zero due to the fact that in presence of no

waves the float is in its static equilibrium position, and hence the movements are zero. The vari-
ance is defined as the second order moment of the random variable x, i.e.E[(X − µ)2] = σ2

XX .

The last term in Eq. (2.54) is known as the autocovariance function. Normally the auto-
covariance function is evaluated by the time average of a signal and by its time shift ofτ . The
definition is given byRXX(τ) = E[X(t)X(t + τ)]. The convolution in Eq. (2.54) is a time
shift in the past, i.e. it is also known as the memory effect ofthe system because it does account
the behavior in the previous time step. In our case we can write,RXX(τ − t) = E[X(t)X(τ)]
and thereforeκΘ̇Θ̇(t− τ) = E[Θ̇(t)Θ̇(τ)]. Note thatRXX is an even function, i.e.RXX(−τ) =
RXX(τ). Another important characteristic is the amplitude of the auto-covariance function for
τ = 0, i.e.RXX(0) = E[(X(t)2)] = σ2

XX .

Summarized the above and applied to our case, we can write:

E
[
Θ̇(t)Θ̇(t)

]
= E

[ 1

4c2c
Mex(t)Mex(t)

]
=

1

4c2c
σ2
MexMex

E
[
Θ̇(t)Θ̇(τ)

]
= κΘ̇Θ̇(τ − t) = κΘ̇Θ̇(t− τ) =

1

4c2c
κMexMex

(t− τ)

(2.56)
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It is hereby shown that based on the stationarity assumptionof the instantaneous power
we can express the process by two well known quantities namely by the variance and the auto-
covariance function of the stochastic process. In order to continue we are going to introduce a
few more useful relationships which are common in a stochastic process analysis.
The varianceσ2

XX of a stochastic process can be calculated by settingτ = 0 for the auto-
covariance function or by simply integrating the energy spectrumSXX(ω) in the frequencyω
domain. Thus we write:

σ2
XX = RXX(0) =

∫
∞

−∞

SXX(ω)dω (2.57)

SXX(ω) can therefore be seen as a distribution of variances over thefrequency spectrum.
In our case the energy spectrum is expressed by the frequencyresponse function of the wave
excitation moment, i.e.:

SMeMe
(ω) = |Heη(ω)|

2 Sηη(ω) (2.58)

whereHeη(ω) is the frequency response function of the excitation force.This function is
complex and is calculated by a BEM (Boundary Element Method)potential solver, like WAMIT
or AQWA. The function consists of an amplitude and a phase. Note that with Eq. (2.58) only the
amplitude information is kept whereas the phase information is "lost". In Eq. (2.58) the double
sided spectrum is used, however negative frequencies have relatively low physical meaning.
The relationship between the auto-covariance functionRXX(τ) and the energy spectrumSXX(ω)
is widely known as the Wiener-Khintchine Theorem and definedas follows:

SXX(ω) =
1

π

∫
∞

−∞

RXX(τ)e−iωτdτ (2.59)

and to the auto-covariance function is then defined as:

RXX(τ) =
1

2

∫
∞

−∞

SXX(ω)eiωτdω (2.60)

Applied to the wave excitation force process:

κMexMex
(τ) =

∫
∞

−∞

eiωτSMeMe
(ω) dω (2.61)

The relationship between the auto-covariance and the auto-correlation function is given by
division of the varianceσ2

XX , i.e.:

ρMexMex
(τ) =

κMexMex
(τ)

σ2
MexMex

(2.62)
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24 Chapter 2 – Description of the numerical model

By inserting the stochastic relations (variance and auto-covariance function) into the Eq.
(2.54) we get the following

P̄c =
1

2cc
σ2
Me

−
1

4c2c

∫ t

−∞

hrv̇(t− τ)κMeMe
(t− τ) dτ =

σ2
Me

(
1

2cc
−

1

4c2c

∫
∞

0

ρMeMe
(u)hrv̇(u) du

)

(2.63)

ρMexMex
(τ) denotes the auto-correlation coefficient function of the wave excitation pro-

cess. The qualitative variation ofρMeMe
(τ) has been shown on Fig. 2.20 for monochromatic,

narrow-banded stochastic and broad-banded stochastic wave excitation forces. In order to make
comparison meaningful, the separation timeτ has been normalized with respect to the mean
zero-upcrossing periodT of the stochastic processes.
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Figure 2.20 Autocorrelation coefficient function of the wave excitation force. a) Monochromatic wave excitation force.
b) Narrow-banded stochastic excitation force (swells). c)Broad-banded stochastic wave excitation force (wind waves)

Now as we have expressed the power by two stochastic variablesρMexMex
(τ) and the damp-

ing coefficientcc we are interested if an optimal damping coefficient exists. We derive the ex-
pression in Eq. (2.61) and set it to zero:
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δPcc

δcc
= 0 = σ2

MexMex

(

−
1

2
c−2
c +

1

2
c−3
c ·

∫
∞

0

ρMexMex
(u)hθv̇(u)du

)

(2.64)

Eq. 2.64 has three roots, i.e.cc1 = 0, cc2 = 0 and the third one is

cc3 =

∫
∞

0

ρMeMe
(u)hrv̇(u) du (2.65)

Figure 2.23 shows the power in function of the damping coefficients. If Eq. (2.65) is inserted
into the expression for the energy we get.

P̄c,opt =
1

4

σ2
Me

cc
(2.66)
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Figure 2.21 Auto-correlation function of the given wave process.
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Figure 2.22 Corresponding power function in function of the damping coefficient - resonance control (Brutto power,
energy which has been fed in by negative spring coefficient isnot considered,copt = 0.7 = cc3.
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Figure 2.23 Corresponding power function in function of the damping coefficient - resonance control (Brutto power,
energy which has been fed in by negative spring coefficient isnot considered,copt = 0.7 = cc3.
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Figure 2.24 Corresponding power function in function of the damping coefficient - only passive control.
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2.3.2 Performance of a WEC

The efficiency of a wave energy converter can be expressed by the non-dimensional performance
index (NDI) which is given as:

η =
Pabs

Pwave · dactive
(2.67)

wherePabs is the absorbed wave energy by the device. This can be in the form of pneumatic,
hydraulic or mechanical energy.Pabs has the units[W ] and is also referred toPnum or Pexp in
this document. The generated power is referred as the mechanical power for the present device.
Pwave corresponds to the available energy in the waves and has the units power per unit width,
[W/m]. In the present case the calculation ofPwave is based on the wave elevation time series
which is measured at the center of the float when the device wasnot in the water. The active
width of the structure is referred asdactive. In the case of the WS absorber the active width is
equal to the diameter of the float.
The transported wave power per unit width of the wave front, for plane progressive irregular
waves in finite water depth is given as:

Pwave = 2ρg

∫
∞

0

Sηη(ω)cg(ω)dω (2.68)

whereρ is the water density,g is the acceleration of gravity,Sηη(ω) is the one sided wave
spectrum, andcg(ω) is the group velocity, which is a function of the wave frequency ω and the
water depthh. The multiplication of the group velocity with the wave spectrum in Eqn. (2.68)
results from the fact that the wave energy travels with the group velocity rather than with the
phase velocity.

The non dimensional performance index (NDI) indicates the amount of energy which is
absorbed by the device in a unit width of wave front relative to its geometry. This coefficient may
be in principle larger than one. Figure 2.25 indicates threedifferent cases where the coefficient
is smaller, equal or bigger than one.

� η < 1.0 The absorbed energy is smaller than the wave energy traveling in the active width
zone of the device.

� η = 1.0 The absorbed energy is equal to the wave energy "".

� η > 1.0 The absorbed energy is larger than the wave energy "".
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Figure 2.25 Non dimensional performance indexη
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CHAPTER 3
Description of the experimental

setup

Contents:

� Experimental setup.

� Optimal damping coefficient.

3.1 Introduction

The dynamical behavior of a point absorber wave energy converter has been extensively inves-
tigated analytically and numerically during the past half century. The theoretical groundwork
of wave power absorption considering simple geometries i.e. axisymmetric bodies oscillating
in one mode was described by Evans, Mei and Newman in the late 1970s. Budal and Falnes
have presented pioneering work in the beginning of the 1980son experimental studies of a point
absorber considering phase control. It was found that in order to apply optimum control it is
necessary to predict an irregular wave some distance into the future.
More recent studies on advanced control strategies namely phase and amplitude control were
carried out by Hals, Barbarit and Clement. A common characteristic of these models is the as-
sumption of linear fluid structure interaction based on the linear wave-diffraction theory. Wave
forces and corresponding dynamical responses are modeled using first order potential theory
which satisfies the Laplacet’s equation in the bulk of the fluid. Boundary conditions are formu-
lated at the free surface by means of linearized Euler-Bernoulli pressure terms. A considerable
drawback of this method, despite all the magnificent advantages, lies in the assumption of small
waves heights and small body motions, two conditions which might be violated for many opera-
tional sea states.

3.2 Experimental setup

Experimental tests on a point absorber wave energy converter are carried out in the wave tank of
Aalborg University. The tank has a length of 15 m, a width of 8 mand a maximum water depth
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32 Chapter 3 – Description of the experimental setup

of 0.7 m. The wave paddles are driven by a total of 15 hydraulicpistons moving in the horizontal
direction. The distance from the center of the float and the paddles is 5 m. A constant water
depth of 0.65 m is chosen during all the tests. After 10 m the waves reach the slope of the beach.
No active absorption is applied on the incoming waves thus a rather short duration of the time
series has been chosen to avoid influences of any standing waves building up in the wave tank.
The test setup consists of a floating body in the shape of a hemisphere connected with a lever
arm. The device rotates around a fixed point which is located 0.35 m above the mean water
level. Pitch is the corresponding degree of freedom around the bearing point. The hydrodynamic
parameters are therefore formulated as moments rather thanforces or masses. The laboratory de-
vice is similar to the well-known Wavestar float located in the Danish North Sea. The test setup
is modeled on a scale 20:1 compared to the prototype. A major characteristic of the laboratory
model is the power take off system which consists of a linear generator based on the electromag-
netic principle. This setup has a number of advantages. The control of the actuator can be either
force control or motion control. In the following test series both configurations were applied.
The experimental setup is shown in Fig. 3.1.

Figure 3.1 Experimental setup of the laboratory device.
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3.2.1 Data acquisition

Force and displacement measurements were carried out on thedevice. Furthermore five wave
gauges were placed in the vicinity of the float in order to measure the effective wave field, gener-
ated by the wave makers and oscillations by the device itself. A control program was developed
in Simulink which was run on a different computer than the oneused for the data acquisition.
The control algorithm was programmed in Matlab and send to the controller via the Simulink
model. The unfiltered force and displacement signals were reordered simultaneously through
the use of an A/D converter. The sample frequency was 1000 Hz for the entire test runs. Down
sampling of the time series was applied whenever needed in order to compare the results with
the numerical calculations.

3.2.2 Design parameters

The design parameters of the laboratory scaled model are shown in Table 3.1. The applied scale
law is 20:1 compared to the prototype model located in Hanstholm. The shape of the buoy
corresponds to a Hemisphere where the sidewalls are slightly enlarged.

Table 3.1 Design parameters of the laboratory model.

Description: Symbol: Value: Unit:

Length of the float arm: L 0.680 m
Diameter of the float: Do 0.254 m
Lever arm initial: c 0.200 m
Piston displacement: l(t) var. m
Mass moment of Inertia: j 0.96 kgm2

Hydrostatic stiffness: rh 87.04 Nm
Added mass at infinitely high frequencies: j∞h 0.41 kgm2

Water depth: h 0.650 m
Draught: d 0.104 m
Wavelength: λ var. m
Eigenfrequency: ωn 7.95 rad/s

3.2.3 Power-take off system

The wave energy absorber is equipped with an electric power generator via a linear actuator based
on the electromagnetic principle. A linear movement, forced by the waves, generates a direct
electromagnetic force without the use of mechanical devices such as cams, belts or gearboxes.
The motor consists of two main parts: the slider and the stator. The slider is a precision assembly
that consists of a stainless steel tube, which is filled with neodymium magnets. The stator, also
called the bearing of the slider, contains the position sensors and a microprocessor board.
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3.3 Sea states in the laboratory

Experimental tests on the point absorber have been carried out for regular and irregular waves.
The waves were generated by the wave maker based on a Pierson Moskowitz spectrum. For the
present analysis ten different irregular wave states are considered. The waves are unidirectional,
two dimensional, longcrested waves. Two types of waves are analyzed; the first five waves states
have a steepness ratio of 0.02 whereas the ratio for the second group is 0.04. An overview of the
tested waves is shown in Table 3.2.

The analysis of the wave gauge signals is performed with the software programme Wavelab,
(Wavelab 2012). It was found that the measured wave heights in the tank are slightly smaller than
the target wave heights. The measured periods however correspond rather good with the target
ones. It must be emphasized that the reliability of theHm0 andTp is small since they are based
on a short time series of approx. 300 sec. The measured irregular wave signals are used as input
in the numerical time domain model. Thus the accuracy of the generated and measured waves
does not affect the comparison between the experimental data and numerical calculation which
will be shown later.

Table 3.2 Measured significant wave heightsHm0 and measured peak periodsTp, total wave powerPwave, wave
steepnessHm0

λp
, non dimensional performance index for the ten analyzed wave states. The absorbed power was measured

applying passive control by means of a linear damping coefficient - optimized for each sea state

Wave states Hm0 Tp Pwave
Hm0

λp
η

[m] s] [W/m] [−] [-]
IRA1 0.027 0.8 0.374 0.02 0.53
IRA2 0.044 1.25 1.174 0.02 0.37
IRA3 0.062 1.3 3.137 0.02 0.20
IRA4 0.080 2.5 6.024 0.02 0.19
IRA5 0.12 3.0 14.42 0.02 0.13
IRB1 0.055 0.85 1.520 0.04 0.52
IRB2 0.090 1.30 5.287 0.04 0.32
IRB3 0.115 1.35 10.83 0.04 0.23
IRB4 0.155 2.5 22.89 0.04 0.17
IRB5 0.232 3.0 51.36 0.04 0.12

The wave excitation moment is computed from the solution of the radiation problem. The
latter relation is also known as the Haskind relation (Haskind 1953) and is considered to be
computationally efficient because a single radiation solution can be used to compute the excit-
ing moment for multiple angles of wave incidence without solving any additional hydrodynamic
problems. In order to calculate the exact incident wave excitation moment, the undisturbed wave
field at the center of the float had to be measured.

In a next step the same waves were run when the float was fixed at the equilibrium posi-
tion. In this configuration the wave excitation moment was measured by a load transducer and
compared with the wave excitation based on the linear wave theory. For moderate sea-states
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wave excitation moment and the measurement are almost in perfect agreement, see Fig. 3.2.
For steeper waves, where partial submergence and overtopping of the float was observed, the
force sensor was unable to measure the signal accurately, see Fig. 3.3. The numerical excitation
moment was calculated by means of a convolution integral. The following linear relationship is
assumed:

Mex =

∫
∞

0

heη(t− τ)ηm(t)dτ (3.1)

whereηm(t) is the measured wave elevation at the position of the float, andheη is the linear
impulse response function of the excitation moment.
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Figure 3.2 Measured moment by the load cell when the
device is fixed compared with the calculated wave excita-
tion moment based on the measured wave elevations when
the float was taken out of the water in moderate sea state,
IRA4 :Hm0 = 0.08m, Tp = 2.5sec.
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Figure 3.3 Measured moment by the load cell when the
device is fixed compared with the calculated wave excitation
moment based on the measured wave elevations when the
float was taken out of the water in extreme sea,IRB5 :
Hm0 = 0.232m, Tp = 3.0sec.

3.4 Optimal damping coefficient

In the previous chapter a stochastic analysis of the wave state has been presented. It was dis-
cussed that the maximum power can be extracted from the waveswhen the device oscillates in
resonance with the incoming wave excitation process. The input as well as the output were as-
sumed to be a stationary process. Assuming that the device oscillates in resonance with the
incoming wave frequency, the optimal damping coefficient becomes a function of the auto-
correlation coefficient function of the wave excitation process and the impulse response function
of the radiation force.

In this section the equations in chapter 2 will be applied forthe wave states which are an-
alyzed in the laboratory, see Table 3.2. The calculation of the optimal damping coefficient for a
given irregular wave state based on Eqn. (2.65) requires theanalysis of the wave elevation time
series.

The signal shown in Fig. 3.4 corresponds to the wave elevation at the center of the absorber
when measured without the absorber in the water. A FFT analysis is carried out using a home
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made function which returns the power spectrum as a functionof the angular frequencyω. The
analysis is carried out for all the measured wave elevation signals, see Fig. 3.6 to Fig. 3.24. One
of the main features of the FFT analysis is the conservation of energy of the original time series.
The energy in the signal can be expressed by the variance and for the FFT spectrum it is the area
under the curve, i.e. the zero’th moment. The calculated variance and zero’th moment are listed
in Table 3.3. In order to smooth the power spectrum the WAFO package has been used which
has an inbuilt function for performing FFT with a desired amount of smoothing. The smoothing
is controlled by the parameter L (maximum lag size of the window function). For lower values
of L, increased smoothing is applied. For each of the ten different power spectrums two different
smoothing parameters have been applied, i.e. L=300 and L=1500. On top of the three power
spectrums which were based on the measured data sets, a Pierson Moskowitz spectrum has been
plotted in order to compare the discrepancy to the target value. It was found, that the variance
of the wave signals in the tank is remarkably smaller than thetheoretical one. This problem has
already been discussed and is due to the fact that the significant wave heights in the tank differ
from the target wave heights.
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Figure 3.4 Wave elevation at the center of the float without
the absorber in the water for a Pierson Moskowitz,Hm0 =
0.092m, Tp = 1.25sec.
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Figure 3.5 FFT with two different degrees of smoothing
compared to the non-smoothed FFT spectrum of the wave
elevation.

IRB2 WG3
Variance: 4.6507 · 10−4

m0: 4.6502 · 10−4

Table 3.3 Variance of the time series and zero’th moment of response spectra.

The optimal damping value is then calculated by means of a stochastic analysis. Based on
the frequency response functionHeη(ω) of the excitation moment, the auto-covariance function
can be calculated as follows:

κMeMe
(τ) =

∫
∞

−∞

eiωτSMeMe
(ω) dω =

∫
∞

−∞

eiωτ |Heη(ω)|
2 Sηη(ω) dω (3.2)

whereSηη(ω) is the equivalent to the power spectrum of the measured wave states, a
smoothing factor of L=300 has been used, see previous plots.The auto-correlation coefficient
reads:
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ρMeMe
(τ) =

κMeMe
(τ)

σ2
Me

(3.3)

The optimal damping coefficient is then calculated as follows: ref. to Chapter 2.6:

cc =

∫
∞

0

ρMeMe
(u)hrθ̇(u) du (3.4)

Table 3.4 Evaluation of equation (40) for two different incident waveangles.

Strategy cc cc
[Nm/rad/s2] [Nm/rad/s2]

90deg 0 deg

IRA1 2.031 1.820
IRA2 1.601 1.356
IRA3 1.303 0.879
IRA4 0.948 0.668
IRA5 0.651 0.632
IRB1 1.975 1.799
IRB2 1.581 1.332
IRB3 1.280 0.864
IRB4 0.928 0.662
IRB5 0.651 0.665

The plots of the power spectrums of each wave state are shown below.
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Figure 3.6 Time series of IRA1.
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Figure 3.7 Fastfourier analysis of IRA1 for different
smoothing levels.
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Figure 3.8 Time series of IRA2.
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Figure 3.9 Fastfourier analysis of IRA2 for different
smoothing levels.

SDWED Deliverable 4.2



3.4 Optimal damping coefficient 39

40 60 80 100 120 140 160 180 200 220
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time [s]

η(
t)

Figure 3.10 Time series of IRA3.
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Figure 3.11 Fastfourier analysis of IRA3 for different
smoothing levels.
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Figure 3.12 Time series of IRA4.
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Figure 3.13 Fastfourier analysis of IRA4 for different
smoothing levels.
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Figure 3.14 Time series of IRA5.
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Figure 3.15 Fastfourier analysis of IRA5 for different
smoothing levels.
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Figure 3.16 Time series of IRB1.
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Figure 3.17 Fastfourier analysis of IRB1 for different
smoothing levels.
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Figure 3.18 Time series of IRB2.
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Figure 3.19 Fastfourier analysis of IRB2 for different
smoothing levels.
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Figure 3.20 Time series of IRB3.
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Figure 3.21 Fastfourier analysis of IRB3 for different
smoothing levels.
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Figure 3.22 Time series of IRB4.
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Figure 3.23 Fastfourier analysis of IRB3 for different
smoothing levels.
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Figure 3.24 Time series of IRB5.
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Figure 3.25 Fastfourier analysis of IRB5 for different
smoothing levels.
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CHAPTER 4
Results

Contents:

� Defining control strategies A to D.

� Annual power production at the test site in Hanstholm.

4.1 Control Strategies A-D

Four different control strategies are tested and are denoted as A, B, C and D. The aim is to
continuously approach the optimal situation where the waveexcitation force is in phase with the
bodys velocity. With each strategy an additional term is introduced in the control moment of
Eqn. 4.1 until the optimal is reached. The following table summaries the results when the device
is situated parallel to the incoming waves, i.e. at a90 deg incident wave angle. Time series are
shown for each strategy in the next chapters. The control moment in its general form is given
below:

Mc(t) = mcθ̈(t) + ccθ̇(t) + kcθ(t) + bc

∫
∞

−∞

hcθ̇(t− τ)θ̇(τ) dτ (4.1)

A – Only the gain factorcc proportional to the velocity is varied, in a way that a maximum
electrical power can be absorbed by the generator. The coefficient is optimized for irregular
waves by considering a regular wave train with the peak period of the spectrum.

B – The dampingcc and the stiffness coefficientskc are varied. The power is maximized by
optimizing the coefficients with two variable optimizationcriterion.

C – The control moment involves a mass moment of inertiamc, a stiffness coefficientkc and a
damping coefficientcc. The derivative gain factorcc is determined by an optimality criterion
for the absorbed mean power of the control force under the given sea state.
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44 Chapter 4 – Results

D – Strategy D involves all the four coefficients in the control moment, namelymc, cc, kc and
bc. Under this condition the applied control law enforces the absorber into phase with the
wave excitation moment.

The table 4.1 show the results for three different control strategies, namely A, B and C
for four selected wave states. The results show clearly thatthe efficiency of the device can be
increased by a control strategy which enforces the float to oscillate in resonance with the peak
period. The power production i.e.Pinst is always expressed as the net energy flow, i.e. the energy
which has been pumped into the system is subtracted from the instantaneous power production.

Table 4.1 Overview of the non-dimensional performance index, maximum instantaneous mechanical power for: Strategy
A; passive control i.e. linear damping coefficient, Strategy B; reactive control with a linear negative spring stiffness and
Strategy C; with a damping coefficient, negative spring and anegative mass moment of inertia for the measured irregular
wave states (selection).

Measured waves: A B C
Hm0 [m] Tp [s] η [-] Pinst [W] η [-] Pinst [W] η [-] Pinst [W]

IRA 1 0.031 1.0 0.53 0.6 0.6 1.0 0.8 2.8
IRA 2 0.046 1.25 0.37 1.2 0.7 9.5 0.9 14.7
IRB 1 0.06 1.0 0.52 2.3 0.62 5.1 0.88 20.2
IRB 2 0.09 1.25 0.32 5.06 0.67 34.4 0.88 54.8
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4.1.1 Numerical results of each wave state

In the following, the numerical values are shown for each wave state.

Table 4.2 Control strategies A-D: IRA1

IRA1 mc cc kc bc Pabs η Pins
Pinst

Pabs

Mc,inst

Mc,ave

[Nm/rad/s2] [Nm/rad/s] [Nm/rad] [-] [W ] [−] [W ] [-] [-]

A 0 4.0 0 0 0.051 0.5 0.6 11 3.8
B 0 3.0 -31.9 0 0.060 0.6 1.0 17 3.9
C -1.0 2.2 -71.4 0 0.081 0.8 2.8 34 3.9
D -0.96 2.0 - 0 0.087 0.9 −

Table 4.3 Control strategies A-D: IRA2

IRA2 mc cc kc bc Pabs η Pins
Pinst

Pabs

Mc,inst

Mc,ave

[Nm/rad/s2] [Nm/rad/s] [Nm/rad] [-] [W ] [−] [W ] [-] [-]

A 0 4.0 0 0 0.10 0.3 1.2 11.5 3.8
B 0 2.0 -51.4 0 0.23 0.7 9.5 41.6 4.2
C -1.1 2.0 -79.2 0 0.29 0.9 14.7 49.6 4.0
D -0.96 1.6 -76.6 0 0.35 1.1 −

Table 4.4 Control strategies A-D: IRA3

IRA3 mc cc kc bc Pabs η Pins
Pinst

Pabs

Mc,inst

Mc,ave

[Nm/rad/s2] [Nm/rad/s] [Nm/rad] [-] [W ] [−] [W ] [-] [-]

A 0 9.0 0 0 0.18 0.2 1.9 12.1 3.8
B 0 2.0 -61.82 0 0.64 0.8 28.07 43.54 3.9
D -0.96 1.3 - 0 0.89 1.2 −
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Table 4.5 Control strategies A-D: IRA4

IRA4 mc cc kc bc Pabs η Pins
Pinst

Pabs

Mc,inst

Mc,ave

[Nm/rad/s2] [Nm/rad/s] [Nm/rad] [-] [W ] [−] [W ] [-] [-]

A 0 15.0 0 0 0.29 0.19 4.0 13.6 3.4
B 0 1.0 -72.5 0 2.42 1.6 435 180 4.5
D -0.96 0.95 - 0 3.14 2.0 −

Table 4.6 Control strategies A-D: IRA5

IRA5 mc cc kc bc Pabs η Pins
Pinst

Pabs

Mc,inst

Mc,ave

[Nm/rad/s2] [Nm/rad/s] [Nm/rad] [-] [W ] [−] [W ] [-] [-]

A 0 25.0 0 0 0.59 0.14 8.4 14.1 4.8
A 0 1.0 -77.7 0 11.30 3.13 2310 204 3.85
D -0.96 0.595 - 0 16.9 4.6 −

Table 4.7 Control strategies A-D: IRB1

IRB1 mc cc kc bc Pabs η Pins
Pinst

Pabs

Mc,inst

Mc,ave

[Nm/rad/s2] [Nm/rad/s] [Nm/rad] [-] [W ] [−] [W ] [-] [-]

A 0 4.0 0 0 0.20 0.53 2.3 14.1 4.8
B 0 3.0 -31.4 0 0.25 0.62 5.1 20.5 4.5
C -1.1 1.97 -76.4 0 0.34 0.88 20.18 59.1 5.1
D -0.96 1.97 - 0 0.36 0.92 −

Table 4.8 Control strategies A-D: IRB2

IRB2 mc cc kc bc Pabs η Pins
Pinst

Pabs

Mc,inst

Mc,ave

[Nm/rad/s2] [Nm/rad/s] [Nm/rad] [-] [W ] [−] [W ] [-] [-]

A 0 7.0 0 0 0.44 0.33 5.06 13.4 4.3
B 0 2.0 -51.4 0 0.90 0.67 34.4 38.0 3.8
C -1.1 1.97 -76.4 0 0.34 0.88 20.18 59.1 5.1
D -0.96 1.6 - 0 1.3 0.96 −
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Table 4.9 Control strategies A-D: IRB3

IRB3 mc cc kc bc Pabs η Pins
Pinst

Pabs

Mc,inst

Mc,ave

[Nm/rad/s2] [Nm/rad/s] [Nm/rad] [-] [W ] [−] [W ] [-] [-]

A 0 7.0 0 0 0.64 0.23 6.75 11.0 4.0
B 0 2.0 -61.9 0 2.33 0.85 152 65.3 4.0
D -0.96 1.3 - 0 3.3 1.18 −

Table 4.10 Control strategies A-D: IRB4

IRB4 mc cc kc bc Pabs η Pins
Pinst

Pabs

Mc,inst

Mc,ave

[Nm/rad/s2] [Nm/rad/s] [Nm/rad] [-] [W ] [−] [W ] [-] [-]

A 0 15.0 0 0 1.12 0.19 11.3 10.13 4.0
B 0 2.0 -69.5 0 8.37 1.44 579 69 4.0
D -0.96 0.93 - 0 11.9 2.05 −

Table 4.11 Control strategies A-D: IRB5

IRB5 mc cc kc bc Pabs η Pins
Pinst

Pabs

Mc,inst

Mc,ave

[Nm/rad/s2] [Nm/rad/s] [Nm/rad] [-] [W ] [−] [W ] [-] [-]

A 0 20.0 0 0 2.02 0.15 32.7 16.2 5.2
B 0 20.0 0 0 2.02 0.15 32.7 16.2 5.2
D -0.96 0.93 - 0 48.7 3.73 −
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4.1.2 Strategy A - Time series

For this control strategy only the gain factorcc proportional to the velocitẏθ is varied, in a way
that a maximum electrical power can be absorbed by the generator. The optimization ofcc is
done for ten different irregular wave states. Figure 4.2 andFig. 4.1 show the time series for one
irregular wave state with a wave height ofHm0 = 0.055m and a wave period ofTp = 0.85sec
i.e. IRB1. Note that the instantaneous peak of the mechanical energy is approximately 2.3 [W]
compared to an average power of 0.2 [W]. The load factor is defined as the average power divided
by the instantaneous peak power. Thus, a load factor of0.08 can be calculated for this wave state.

The capture width ratio for this wave state isη = 0.53. The average power in function of
the damping coefficient are shown in Fig. 4.3 and Fig. 4.4 and compared with the experimental
data from the tests. For the passive damped case the comparison between the numerical and ex-
perimental tests are in very good agreement. The buoys displacement is shown in Fig. 4.1. The
maximum rotational angle is 0.1089 rad. This corresponds toa vertical displacement of 0.0523
m which is smaller than the draft of the float. Hence the float isnot expected to rise out of the
water thus the linear model may be applied.

Next, the velocity and the excitation force are compared fortwo wave states. For the first
case the peak period of the waves is close to the natural period of the oscillator thus the velocity
and the excitation force is almost in phase without applyingreactive control, see Figure??. The
power absorbtion is maximized in this situation. For the second wave state the peak period is
higher than the natural period which leads to a small phase shift of the velocity and the excitation
force, see Figure 4.6.
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Figure 4.1 Strategy A, blue line corresponds to the free
float, whereas the red line is the passive damped oscillator,
mc = 0, cc = 4Nm/rad/s, kc = 0, bc = 0, IRB1
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Figure 4.3 Average power in function of the damping co-
efficient, comparison between numerical model and experi-
mental results - IRB1
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Figure 4.4 Average power in function of the damping co-
efficient, comparison between numerical model and experi-
mental results - IRB2
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Figure 4.5 Velocity in blue line and excitation force in red
line - passive control, the peak period of the excitation force
is almost the same as the natural period, velocity and excita-
tion force are almost in phase, IRB1
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Annual energy production for a discrete number of wave state s

The annual energy production (AEP) is calculated for the Hanstholm wave conditions. A se-
lected number of wave states are considered for this calculation i.e. the standardized wave states
describing the energy content in the Danish seas. Table 4.12is based on a review of the existing
data on the wave condition at Hanstholm harbour, Ref. (Margheritini 2012).

The wave states are Froude-scaled with a model parameter of 1:20. The water depth in
Hanstholm where the device is located is approximately 8 m whereas the water depth in the
laboratory is at 0.65 m. The annual energy production of the laboratory model considering an
incident wave angle of90 deg is 0.54 [W]. For a full scale model the annual energy output per
float is equal to 19 [kW]. This value is an upper bond because only the favorable incident wave
angle is considered in the calculation. In reality the wavesare 3D. Table 4.12 gives the results
of the analysis for the given wave states. The irregular timeseries were calculated based on a
Pierson Moskowitz spectrum. The damping value is optimizedfor each irregular wave state by a
simple optimality criterion and is listed in the last columnof the table.

It can be seen that the damping coefficient does not vary considerably with the peak period
resulting in a very flat power curve. The last wave state is an extreme event for which the device
will not be in operation.

Table 4.12 Performance calculation for the standardized wave states at Hanstholm harbour, control strategy A, selected
wave states.

Selected wave statesHm0 Tp Pprob. Pabs
Hm0

λp
Pabs ∗ Prob. copt

Hanstholm [m] [s] [−] [W ] [−] [W ] [Nm/rad/s2]

1 0.045 1.051 0.545 0.242 0.026 0.13 4
2 0.075 1.163 0.182 0.658 0.036 0.11 4
3 0.100 1.230 0.107 1.167 0.043 0.12 5
4 0.125 1.319 0.052 1.790 0.047 0.08 5
5 0.150 1.431 0.027 2.460 0.049 0.05 6
6 0.190 1.610 0.018 3.577 0.052 0.05 7
7 0.260 1.901 0.001 − 0.055 0 −

Total AEP 0.54
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Annual energy production for a full scatter diagram

The annual energy production is calculated for the full scatter diagram at the Hanstholm test site.
The applied control strategy is simple and efficient i.e. passive damping has been applied. The
damping coefficient is optimized for each irregular wave state.

In Fig. 4.7 the optimal damping coefficient is given in the first column for each peak period
of the scatter diagram. The red numbers indicate the wave states for which the linear numerical
model is not appropriate to calculate the dynamical response of the float. In other words the
experiments have shown that the linear fluid-structure assumption is only valid for a steepness
factor smaller than 0.05. The maximum wave height for which energy can still be produced is
3.5 m. For wave states above this level the structure enters into a protection mode.
The annual energy production for the laboratory model is approximately 0.58 [W]. Note that
this value is approximately the same as we have found in the previous calculation however the
computational burden is much higher when considering all the wave states in a scatter diagram.
In this calculation the damping coefficient has been optimized for each peak period of the scatter
diagram. Keeping the damping coefficient constant at a valueof 8 Nm/rad/s, for instance, would
reduce the the annual power production to about 0.5442 [W], i.e. minus 7 % compared to the case
where the damping coefficient is changed to each each wave period. The power matrix for the
situation where the damping coefficient is held constant is shown in Figure 4.10. The difference
is visible in the maximum value of the power production indicated at the colorbar on the right
hand side.

Figure 4.7 In the matrix above the steepness factors are indicated for each wave state of the scatter diagram.

Influence of the non-linear hydrostatic behavior on the AEP

The influence of the non-linear hydrostatic restoring moment is practically negligible.

4.1.3 Strategy B - Time series

The dampingcc and the stiffness coefficientskc are varied. The two coefficients are optimized
for each wave state by maximizing the average power absorbtion. The average power is increased
by 20% from 0.2 [W] to 0.25 [W] compared with the control Strategy A.On the other hand the
load factor decreases to 0.049. Note that the instantaneouspowerP (t) can be negative, see Fig.
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Figure 4.8 Power production for a linearly damped system,
damping coefficient is optimized for each wave state.
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Figure 4.9 Probability of occurrence for Hanstholm scatter
diagram.

Power production [W]

T
p
 [s]

H
m

0 [m
]

 

 

0.5 1 1.5 2 2.5 3 3.5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4.10 Power production matrix for the case where
the damping coefficient is held constant.
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Figure 4.11 Power production matrix for a linearly damped
system, damping coefficient is optimized for each wave
state. The annual energy production is increased by 7 %.

4.25 indicating that energy is feed into the system. The negative spring stiffness must be taken
into account for the calculation of the average power, thus it is reasonable to talk about a net-
energy from the point on when power is feed into the system. The surface plots below show the
optimum average power in function of the two control parameters for the different wave series.
The increase in power production is considerably higher than for the previous waves i.e.72%,
the load factor decreases and is now 0.0159 (−67%). Note the two different shapes of the power
surface. For peak periods away from the natural period the surface turns out to be more peaky.
The negative pto-stiffness increases due to the fact that more energy is needed to force the os-
cillator to resonate with the incoming waves. The optimal damping coefficient decreases. The
two latter facts are relatively disadvantageous for the present wave energy converter. Reactive
control applied to a point absorber results in a system whichis highly sensible to changes of the
optimal control coefficients. A small change of the pto-stiffnesskc will significantly reduce the
power for the situation where the wave period is away from thenatural period. If the peak period
is close to the natural period the power surface plot is more smoothed.
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Hence, it is important to know for what purpose reactive control is applied. A differentiation
could be as follows: i) in the first case one could be interested in maximizing the power for each
wave state, on the other hand it could be beneficial to choose astrategy to maintain a constant
capture width ratio, lets say for the majority of the wave states, by changing the natural period of
the system. It is probably clear that, applying a negative spring is always connected with feeding
in electrical power. Another method could be to passively change the mass moment of inertia by
introducing a moveable mass a long the brace arm.
The load factor compared with other renewable energy technologies is normally in the range
of 0.1 -0.6. For WEPTOS, a load factor of 0.3 was measured during tank testing, assuming
constant/linear damping.
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the stiffness coefficient - IRA1
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the stiffness coefficient - IRA2
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the stiffness coefficient - IRB1
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Figure 4.19 Average power in function of the damping and
the stiffness coefficient - IRB2
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the stiffness coefficient - IRB3
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Figure 4.22 Average power in function of the damping and
the stiffness coefficient - IRB5
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Figure 4.23 Average power in function of the damping and
the stiffness coefficient - IRB5
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Figure 4.24 Average power in function of the damping and
the stiffness coefficient - IRB5
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Figure 4.25 Strategy B,mc = 0, cc = 3Nm/rad/s,
kc = −31.94Nm/rad, bc = 0, for the waves IRB1
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Annual energy production applying reactive control

In this section the energy production is calculated by including a reactive control strategy. The
spring stiffness is calculated for each peak frequency which appears in the scatter diagram. This
control strategy enforces the motions of the WEC to be in phase with the incoming waves without
the need for wave prediction. However the control strategy is still considered to be linear as long
as no amplitude or force constraints are implemented.
It must be noted that by introducing a force or amplitude constraint the oscillator becomes out
of phase again and the energy production is reduced. On the other hand if there are no force or
amplitude constraints, the displacements i.e. the rotations will become too high and the float will
rise out of the water and hence the linear fluid-structure interaction would not be valid any more.
In the following two graphs the velocity and the wave excitation force are compared for two
different control strategies: i) In the left graph, reactive control has been applied, the damping
and stiffness coefficient were optimized for the particularwave state i.e. for a peak period of
Tp = 1.45sec. by a two-parameter optimization algorithm, the calculation has shown that the
optimal control parameters are:cc = 2Nm/rad/s andkc = −49.3Nm/rad. These values may
change slightly if the intervals of the the optimization algorithm is refined. Note that the velocity
and excitation moment is almost in phase. ii) on the right side the situation is somehow more
unfavorable regarding the energy absorbtion. Only passivedamping is applied, i.e. no reactive
control, the velocity and the excitation moment are out of phase. The amplitude of the velocity
is approximately three times smaller than in the previous case i).
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Figure 4.26 The blue curve is the velocity of the buoy
whereas the green curve is the wave excitation moment di-
vided by a factor of 3,Hm0 = 0.05m, Tp = 1.45sec
applying reactive control,Pave = 0.541W.
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Figure 4.27 Velocity and wave excitation moment out of
phase,Hm0 = 0.05m, Tp = 1.45sec, applying passive
control,Pave = 0.2714W.
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Figure 4.28 Average power matrix applying reactive con-
trol including a PTO-load constraint, the annual energy pro-
duction is estimated to be0.6103W , i.e. an increase of 11
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4.1.4 Strategy C

We assume that the wave excitation momentMe(t) is completely observable from measurements
of the sea-state elevationη(t), the following sub-optimal control law was implemented:

Mc(t) = −J θ̈(t) + 2cc θ̇(t)−Rθ(t) (4.2)

wheremc = −J , cc replaced by2cc, kc = −R. The derivative gain factor2cc is determined
by an optimality criterion for the absorbed mean power of thecontrol force under the given sea-
state:

cc =

∫
∞

0

ρMeMe
(u)hrθ̇(u) du (4.3)

ρMeMe
(τ) denotes auto-correlation coefficient function for the waveexcitation moment, cf.

Eqn.(61).
The average power becomes:

Pabs =
1

T

∫ T

0

(mcθ̈(t) + ccθ̇(t) + kcθ(t))θ̇(t)dt (4.4)

In Figure 4.30 the velocity is plotted in blue and the wave excitation force is plotted in red.
The velocity of the float is nearly in phase with the excitation force. In this case a large amount
of wave excitation force can be transformed into electricalenergy. However still a small phase
difference is present.

<clearpage
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Figure 4.30 Velocity of the float in blue line and the wave excitation force in red line are in phase with each other.
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Figure 4.31 Strategy C, mc = −1.1, cc =
1.97Nm/rad/s, kc = −87.04Nm/rad, bc = 0, for the
waves IRB1
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Figure 4.33 Strategy C, mc = −1.1, cc =
1.97Nm/rad/s, kc = −76.4Nm/rad, bc = 0, for the
waves IRB1
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Figure 4.34 Strategy C, mc = −1.1, cc =
1.97Nm/rad/s, kc = −76.4Nm/rad, bc = 0, for the
waves IRB1
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4.1.5 Strategy D

Strategy D involves all the components in the control momentnamelymc = −J , cc is replaced
by 2cc, kc = −R andhcθ̇(t) = −hrθ̇(t). The derivative gain factor2cc is determined by an
optimality criterion for the absorbed mean power of the control force under the given sea-state,
see Eqn. 3.4. Under this condition the applied control law enforces the absorber into phase with
the wave excitation moment.
The optimal damping value is calculated by means of a stochastic analysis of the given wave
elevation data.
For practical applications optimal control comes along with quiet a number of uncertainties. First
of all the prediction of the incoming waves is difficult to obtain and for most cases inaccurate
when dealing with real-sea waves. For the present case no future information of the wave state
is required which indicates that the control strategy is causal. For the case where the float is
oscillating close to its resonance period the motion rotation of the brace is very large and may
be unrealistic. In reality the displacement and the power take off force is restricted by i) the
geometry of the device and ii) characteristics of the power take off system.
In (Li 2011) an end-stop system is included which limitates the heave displacement at a certain
level. The method which is used is as simple as introducing another stiffness-damper system
on top of the power take off which is able to damp the extreme motions. By applying reactive
control a very high pto force is required. The generated force is often much higher than the linear
generator can provide thus the pto force needs to be restricted as well. The paper of (Li 2011)
describes a simulation of the reactive causal control with displacement limits and then a method
of choosing an appropriate limit on the available power takeoff force. The model is build in
Simulink.

The numerical values for Strategy D for all the ten wave states are given in Table 4.14.

Table 4.13 Control strategy D, resonance condition

Strategy mc cc kc bc P̄c,opt ccJS Pwave η
C [Nm/rad/s2] [Nm/rad/s] [Nm/rad] [-] [W ] [Nm/rad/s] [W/m] [-]

IRA1 -1.36 2.026 -86 1 0.0872 2.014 0.47 0.729
IRA2 -1.36 1.601 -86 1 0.3273 2.626 1.30 0.995
IRA3 -1.36 1.300 -86 1 0.8898 1.323 2.73 1.281
IRA4 -1.36 0.951 -86 1 3.140 0.929 7.94 1.557
IRA5 -1.36 0.595 -86 1 16.925 0.616 30.48 2.186
IRB1 -1.36 1.971 -86 1 0.3567 2.014 1.88 0.746
IRB2 -1.36 1.579 -86 1 1.2858 1.626 5.18 0.976
IRB3 -1.36 1.276 -86 1 3.265 1.323 10.94 1.175
IRB4 -1.36 0.932 -86 1 11.916 0.929 31.75 1.478
IRB5 -1.36 0.651 -86 1 48.659 0.616 115.25 1.662
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Insertingσ2
Me

= κMeMe
(0) into equation of the autocorrelation function we get the follow-

ing expression for the optimal power absorbtion:

P̄c,opt =
1

4cc

∫
∞

0

|Heη(ω)|
2 Sηη(ω) dω (4.5)

A reformulation of the equation introduced in Chapter 2 gives the following equation to
express the non dimensional performance index. The numerical values are given in Table 4.14.

η∗ =
1

4ccρgD

∫
∞

0
|Heη(ω)|

2 dω
∫
∞

0
cg(ω)dω

(4.6)
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Table 4.14 Control strategy D, resonance condition

Strategy Popt η η∗

D [W ] [−] [−]

IRA1 0.087 0.917 0.6815
IRA2 0.327 1.098 0.8624
IRA3 0.890 1.117 1.0614
IRA4 3.140 2.052 1.4519
IRA5 16.92 4.621 2.3207
IRB1 0.357 0.924 0.7005
IRB2 1.286 0.957 0.8745
IRB3 3.265 1.187 1.0821
IRB4 11.916 2.050 1.4815
IRB5 48.659 3.730 2.1210

SDWED Deliverable 4.2



Bibliography

Budal, Falnes J., K. (1975). A resonant point absorber of ocean-wave power.Nature. 256, 478–479. With
corrigendum in Vol. 257, p.626.

Cummins, W.E. (1962). The impulse response function and ship motions.Schiffstechnik 9, 101–109.

Evans, D.V. (1976). A theory for wave power absorbtion by oscillating bodies.J. Fluid Mechanics 77(1),
1–25.

Falnes, J. (1995). On non-causal impulse response functions related to propagating water waves.Applied
Ocean Research 17, 379–389.

Falnes, J. (2007). A review of wave-energy extraction.20(4), 185–201.

Haskind, M.D. (1953). Oscillation of a ship on a calm sea.Society of Naval Architects and Marine Engi-
neers.

Li, Crozier R. Macpherson E., Bin. (2011). Reactive causal control of a linear generator in irregular waves
for wave power systems.

Margheritini, L. (2012). Review on available information on waves in the danwec area. Techical Report
135, Dept. of Civil Eng., Aalborg University.

Matlab (2012).Matlab Reference Guide. Natick, MA, USA: The MathWorks.

Mei, C.C. (1976). Maximum wave-power absorbtion under motion constraints.J. of Ship Research 20.

Neumann, F., Winands, V., and Sarmento, A.J.N.A. (2008). Pico shoreline OCW: status and new perspec-
tives.Proc., 2th Annual Int. Conf. on Ocean Energy (ICOE).

Nielsen, Sichani M.T. Kramer M.M. Kofoed J.P., S.R.K. (2012). Optimal control of power outtake of wave
energy point absorbers. Technical report, Lectures Notes for a PhD course.

Næsee, Moan T., A. (2012).Stochastic dynamics of marine structures.

Ochi, M. K. (1990).Applied Probability and Stochastic Processes. John Wiley and Sons.

Perez, T. and Fossen, T. I. (2009). A matlab tool for parametric identification of radiation-force models of
ships and offshore structures.30(1), 1–15.

Salter, S.H. (1974). Wave power.Nature 249, 720–724.

S.R.K. Nielsen, M.M. Kramer B. Basu Z. Zhang., Q. Zhou (2012). Optimal control of nonlinear wave
energy point converters.Ocean Engineering.

Taghipour, Arswendy A., R. (2008). Structural analysis of amulti-body wave energy converter in the fre-
quency domain by interfacing wamit and abaqus.International Conference on Offshore Mechanics
and Artic Engineering, Estoril, Portugal.

WAMIT (2012). WAMIT Manual. Chestnut Hill, Massachusetts, USA: WAMIT INC.

Wavelab (2012).Wavelab Manual.

— 63 —



64 Bibliography

SDWED Deliverable 4.2



APPENDIX A
Extended abstract

Title: Numerical time integration methods for a point absorber wave energy converter.

Published in
The 27th International Workshop on Water Waves and FloatingBodies

IWWWFB, 22-25 April 2012, Ingeniørhuset, Copenhagen.

The paper can be downloaded on the following official websiteof the Workshop:
http://www.iwwwfb.org/Workshops/27.htm

— 65 —



Numerical time integration methods

for a point absorber wave energy converter

A.S. Zurkinden1 & M.M. Kramer

Wave Energy Research Group,

Department of Civil Engineering,

Aalborg University,

email: az@civil.aau.dk, mts@civil.aau.dk

Keywords: Wave energy converters, point absorber, time integration, state-space model, nonlinear
hydrostatic behavior.

1 Background

The objective of this abstract is to provide a review of models for motion simulation of marine
structures with a special emphasis on wave energy converters. The time-domain model is applied to a
point absorber system working in pitch mode only. The device is similar to the well-known Wavestar
float located in the Danish North Sea. The main objective is to produce a tool that can accurately
simulate the dynamics of a floating structure with an arbitrary geometry provided the frequency
domain coefficients are calculated beforehand. The latter calculation is based on linear fluid structure
interaction (small deformations of the fluid surface and body), inviscid incompressible, irrotational
flow and a linearized Euler-Bernoulli formulation of the fluid pressure.
The time-domain analysis of a floating structure involves the calculation of a convolution integral
between the impulse response function of the radiation force and the unknown body velocity due
to an external force. The convolution integral can be seen as a memory effect where the system
response in the past affects the response in the future. Two different time-domain models will be
presented. The first one is based on a discretization of the convolution integral. The calculation of the
convolution integral is performed at each time step regardless of the chosen numerical scheme. In the
second model the convolution integral is replaced by a system of linear ordinary differential equations.
The formulation of the state-space model is advantageous regarding the computational effort and the
robustness of the solver. Another important feature is the linear-time invariance of the system. In
a next step the influence of the nonlinear hydrostatic behavior of the float is investigated by using a
simplified formulation.

2 Problem formulation

2.1 Truncation of the convolution integral

The equation of motion for the analyzed geometry can be formulated by a momentum equilibrium
condition around the fixed point, see Fig. 1, which leads to the following equation:

(M44 + a∞
44
)ϕ̈4(t) +

∫ t

0

K44(t− τ)ϕ̇4(τ)dτ + C44ϕ4(t) + cptoϕ̇4(t) =

∫
∞

−∞

h4(t− τ)η(t)dτ (1)

Pitch ϕ4(t) is the corresponding degree of freedom around the bearing, indicated with the indices
i = 4, j = 4. M44 corresponds to the mass moment of inertia, a∞44 is the added mass at infinite
high frequencies, K44(t) is the impulse response function of the radiation force, C44 is the hydrostatic
stiffness coefficient, cpto is a constant damping coefficient, representing the linear power take off
system, h4(t) is the impulse response function of the excitation force and η(t) corresponds to the

1presenting author



surface elevation. The impulse response function of the radiation force can be seen as the system
identity. If we know the response to an impulse, then we know the response to any excitation by
convolution with the impulse response function. The basic work for this formulation of the problem
was laid by W.E. Cummings (1962) [1]. The convolution integral in Eqn. 1 can be expressed by means
of a sum:

∫ t

0

K44(t− τ)ϕ̇4(τ)dτ = ∆t

t∑

τ=0

K44(t− τ)ϕ̇4(τ) (2)

Expanding the sum in Eqn. 2, we get the following expression:

∆t

t∑

τ=0

K44(t− τ)ϕ̇4(τ) = ∆t[K44(t)ϕ̇4(0) +K44(t− 1)ϕ̇4(1) + ...+K44(0)ϕ̇4(t)] (3)

The equation of motion can then be written:

(M44+a∞
44
)ϕ̈4(t)+K44(0)ϕ̇4(t)+C44ϕ4(t)+cptoϕ̇4(t) =

∫
∞

−∞

h4(t−τ)η(t)dτ−

∫ t−

0

K44(t−τ)ϕ̇4(τ)dτ

(4)

The numerical integration of Eqn. 4 only requires the calculation of the integral at the preceding
time-steps and can therefore be considered as a known quantity. A fourth order Runge Kutta scheme
with a constant time step ∆t has been used to evaluate the linear equation of motion given in Eqn. 4.
Drawbacks of this method are i) time consuming ii) the convolution integral needs to be calculated
at each time step iii) the impulse response function needs to be interpolated with the same ∆t as
the time integration, which is not very convenient. The results are shown in the last page of this
abstract. Fairly good agreement can be observed when comparing the numerical discretization of the
convolution integral with an analytical calculation for regular waves, i.e. when a constant damping
coefficient can be assumed.

2.2 Rational approximation to the radiation force

In this section a method is applied to circumvent the drawbacks of the discretization, presented in the
previous chapter. The convolution integral is replaced by an equivalent system of coupled first order
differential equations, which are solved along with the equations of motion of the absorber, S.R.K
Nielsen [2]. The method is based on an initial replacement of the actual frequency response function
of the floating body Hrϕ̇4

(ω) which was calculated by the software WAMIT, [3]. The approximating
rational function is given in the form

Hrϕ̇4
(s) ≈

P (s)

Q(s)
=

p0s
m−1 + p1s

m−1 + ...+ pm−1s

sn + q1sn−1 + ...+ qn

}

s = iω (5)

The unknowns are the coefficients of polynomials P and Q. The parameters p0, p1,..., pm−1 and q0,
q1,..., qn denotes the poles and the zeros of the rational approximation and are all real. The order
of the filter as given by the pair n, m may be chosen freely with the only restriction that m ≤ n.
A rational causal approximation for Hrϕ̇4

can be obtained by the MATLAB control toolbox [4] or
the MSS FDI toolbox [5]. Next, the convolution integral is approximated with the product of the
constants p0, p1,..., pm−1 and the new unknowns i.e the additional state vectors I(t).



∫ t

0

K44(t− τ)ϕ̇4(τ)dτ ≈
[
p0 p1 ... pm−1

]
I(t) (6)

where the time derivation of I(t) is given as follows:

İ(t) =







−q1 −q2 −q3 qn
1 0 0 0
0 1 0 0
0 0 1 0






I(t) +







1
0
0
0






ϕ̇4(t) (7)

We are now able to approximate the convolution integral of the radiation force by inserting Eqn. 6
into Eqn. 1. As a result we end up in having a time-invariant system for the radiation force which is
advantageous regarding computational time and storage requirements.

(M44 + a∞
44
)ϕ̈4(t) +

[
p0 p1 ... pm−1

]
I(t) +C44ϕ4(t) + cptoϕ̇4(t) =

∫
∞

−∞

h4(t− τ)η(t)dτ (8)

2.3 Nonlinear hydrostatic behavior

The change of the hydrostatic pressure at each instantaneous position of the float below the water
plane can be characterized by taking into account a nonlinear hydrostatic behavior. This effect can
be observed at the two extremities of the red curve, see Fig. 2. On the upper left corner, the
float successively dips into the water and on the lower right end of the curve the float starts to
be fully submerged by the water. In between, the derivation of the wetted surface is small, hence
a linear approximation of the hydrostatic moment becomes justifiable. The red curve is a result
of experiments which were carried out at the Hydraulic Laboratory at Aalborg University. In the
following model a simplified formulation of the nonlinear hydrostatic effect is presented, where the
red curve is approximated by a piecewise trilinear curve, see Fig. 2. The nonlinear force is computed
by implementing a displacement control algorithm, i.e. it is assumed that the wave amplitude is zero
in the vicinity of the float.
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Figure 1: Wavestar lab model, froude scaled
1:20
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3 Results: Wavestar float - lab model scale 1:20
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Figure 3: Body response under panchromatic
wave excitation, H = 0.1m, T = 2.1s
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Figure 4: Body response under panchromatic
wave excitation, H = 0.1m, T = 2.1s, zoom

0 5 10 15 20 25 30 35 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [s]

R
ot

at
io

n 
ar

ou
nd

 th
e 

be
ar

in
g 

[r
ad

]

 

 

ode45
1
 (discretization of convolution)

SS nonlinear hydrostatic cofficient

Figure 5: Non linear hydrostatic, simplified
implementation
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implementation, zoom
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ABSTRACT

Currently, a number of wave energy converters are being an-
alyzed by means of numerical models in order to predict the elec-
trical power generation under given wave conditions. A common
characteristic of this procedure is to integrate the loadings from
the hydrodynamics, power take-off and mooring systems intoa
central wave to wire model. The power production then depends
on the control strategy which is applied to the device. The ob-
jective of this paper is to develop numerical methods for motion
analysis of marine structures with a special emphasis on wave
energy converters. Two different time domain models are ap-
plied to a point absorber system working in pitch mode only. The
device is similar to the well-known Wavestar prototype located in
the Danish North Sea. A laboratory model has been set up in or-
der to validate the numerical simulations of the dynamics. Wave
Excitation force and the response of the device for regular and
irregular waves were measured. Good correspondence is found
between the numerical and the physical model for relativelymild
wave conditions. For higher waves the numerical model seems

to underestimate the response of the device due to its linearfluid-
structure interaction assumption and linearized equationof mo-
tion. The region over which the numerical model is valid will
be presented in terms of non-dimensional parameters describing
the different wave states.

1 Introduction
The idea of extracting energy from ocean waves is rela-

tively old and many WECs have been proposed during the last
decades [1]. These have initiated commercial WEC projects us-
ing devices such as different buoy concepts, Oscillating-Water-
Column (OWC) plants like Pico [2], the Pelamis [3], overtop-
ping WEC types like the Wave Dragon [4], the point absorber
approach used for the SEAREV [5] and the Wave Star device [6],
see Fig. 1. Oscillating devices and notably point absorberscon-
stitute an important class of wave energy converters particularly
with regard to offshore deployment.

The main objective of this paper is to produce a tool that can
accurately simulate the dynamics of a floating structure with an

1 Copyright c© 2012 by ASME



arbitrary geometry provided the frequency domain coefficients
are calculated beforehand. The latter calculation is basedon
linear fluid structure interaction i.e. small deformationsof the
fluid surface and body, inviscid incompressible, irrotational
flow and a linearized Euler-Bernoulli formulation of the fluid
pressure. The time-domain analysis of a floating structure
involves the calculation of a convolution integral between
the impulse response function of the radiation force and the
unknown body velocity. The convolution integral can be seenas
a memory effect where the system response in the past affects
the response in the future whereas the corresponding impulse
response function is causal. Two different time-domain models
will be presented. The first one is based on a discretization
of the convolution integral [7] and [8]. The calculation of the
convolution integral is performed at each time step regardless
of the chosen numerical scheme. In the second model the
convolution integral is replaced by a system of linear ordinary
differential equations, [9] and [10]. The formulation of the
state-space model is advantageous regarding the computational
effort and the robustness of the solver [11]. Another important
feature is the linear-time invariance of the system.

FIGURE 1. WAVESTAR PROTOTYPE DEVICE, TEST SITE IN
HANSTHOLM, DENMARK

In order to compare the numerical results with measured
data, a laboratory model has been set up. The experimental de-
vice is to some extent a reproduction of the Wavestar prototype
device which is located out in Hanstholm off the Northwest coast
of Denmark. The model is scaled to a factor of 1:20 compared to
the prototype. It consists of a float which is attached to an arm
and equipped with a linear power-take off system (PTO) based
on the electromagnetic principle. It is well understood that the

efficiency of a wave energy converter can be considerably im-
proved by adopting a more advanced control strategy [12]. When
a point absorber is left uncontrolled, the simplest but poorest way
to optimize the power-take-off is to tune the natural frequency
to a characteristic frequency in the local sea state such as the
peak frequency in the wave spectrum at the site where the device
will be deployed. Maximum power transfer between the wave
and the device will occur, when the natural period of these coin-
cides, so the absorber is oscillating at resonance, [1]. In turn, this
means the velocity of the absorber is in phase with the excitation
wave force at any time, and hence a maximum kinetic is sup-
plied to the WEC. At excitation frequencies away the resonance
frequency a phase difference is present, and the power outtake is
correspondingly reduced. Evans [13] pointed out in 1976 that for
heaving bodies, operating in resonance with the natural period of
the waves may require negative applied springs due to the rela-
tive high inbuilt hydrostatic stiffness. Keeping this observation
in mind, the following suboptimal control law has been used.

A feed-back force is introduced by the actuator to control
the motions of the float in a way which maximizes the power ab-
sorption. Reactive control is applied by means of a proportional-
derivative (PD) control algorithm. For monochromatic waves the
optimal control law can be calculated in advance by maximizing
the power function [14]. The latter assumption is only validwhen
the excitation force or at least its phase is known in advanceat
each time step. For irregular waves, on the other hand, the op-
timal control becomes non-causal [14] and [16]. For the present
case a causal sub-optimal feed-back control law has been applied
which is based on the assumption that a wave energy converter
with favorable response characteristics in regular waves will be
good in irregular waves as well. Thus the damping coefficients
are optimized for a number of relevant sea states representing
the Danish Sector of the North Sea. A common characteristic of
applying reactive control to a wave energy converter is thatthe
motions of the device can be damped or accelerated, or a com-
bination of both by the feed-back force. In the latter case the
controller i.e. the generator force transmits energy into the sys-
tem in form of negative spring stiffness whereas in the former
case, energy is absorbed by the damping coefficient. Regard-
less of the control strategy, any numerical model can simulate
both cases with equal accuracy for the given range where linear
fluid structure interaction can be adopted. When considering ex-
perimental tests or real sea tests the control situation becomes
slightly more complex. By introducing negative spring stiffness
the system becomes more sensitive to incoming waves hittingthe
body. As a result, slamming or wave overtopping effects occur
more often. It is clear that these effects violate the assumptions
in the numerical model stated above. However by introducinga
negative spring stiffness the optimal damping coefficient can be
decreased, whereas the power production is increased due tothe
increase of the bodies’ velocity. Experiments on the prototype
have shown that the net energy production for the cases where

2 Copyright c© 2012 by ASME



negative spring stiffness was applied increased, [12]. Theupper
limit of this control strategy lies in the stroke restriction of the
hydraulic cylinders or in the case of a linear generator by the
strokes in the slider and the stator.
The present results were carried out for zero spring stiffness only.
A more detailed study on the prototype applying negative spring
stiffness can be found in [12].

2 The dynamic model
The equation of motion will be described for the single de-

gree of freedom point absorber, equipped with a linear power
take-off system, shown in Fig. 2. The lever arm is assumed to be
infinitely rigid and is constrained to move around the fixed point
A. The motion is positive in the counter clockwise direction. The
equation of motion is obtained by formulating the momentum
equilibrium condition around point A:

(M44+a∞
44)φ̈4(t)+

∫ t

0
K44(t − τ)φ̇4(τ)dτ +C44φ4(t)

+Mc(t) =
∫ ∞

−∞
hφ4(t − τ)η(τ)dτ (1)

Pitch φ4(t) is the corresponding degree of freedom around
the bearing, indicated with the indicesi = 4, j = 4. M44 cor-
responds to the mass moment of inertia around the fixed point
of the float mass and the lever arm,a∞

44 is the added mass at
infinitely high frequencies,K44(t) is the impulse response func-
tion of the radiation force,C44 is the hydrostatic stiffness coeffi-
cient,Mc(t) represents the control force moment from the power
take-off system,h4(t) is the impulse response function of the ex-
citation force andη(τ) corresponds to the surface elevation of
the waves. In the following experiment two-dimensional regular
and irregular waves are considered, propagating in the positive
y-direction relative to(x,y,z)-coordinate system defined in Fig.
2.
The impulse response function of the radiation force can be seen
as the system identity. If we know the response to an impulse,
then we know the response to any excitation by convolution with
the impulse response function. The basic work for this formu-
lation of the problem was laid by W.E. Cummins [17]. In the
following section two approaches will be compared to solve the
convolution integral in Eqn.(1).

2.1 Truncation of the convolution integral
The convolution integral in Eqn.(1) can be expressed by

means of a sum:

A

FIGURE 2. DEFINITION OF THE LABORATORY MODEL
REPRESENTING THE WAVESTAR PROTOTYPE MODEL IN
HANSTHOLM, REF. FIG. 1, STATIC REFERENTIAL STATE

TABLE 1. NUMERICAL VALUES OF THE LAB MODEL

Description: Symbol: Value: Unit:

Mass of the float: mf 2.972 kg

Mass of the float arm: mf a 0.851 kg

Length of the float arm: L 0.680 m

Diameter of the float: Do 0.254 m

Lever arm initial: c 0.200 m

Piston displacement: l(t) var. m

Mass moment of Inertia: J 0.778 kgm2

Hydrostatic stiffness: rh 86.00 Nm

Water depth: h 0.650 m

Draught: d 0.104 m

Wavelength: λ var. m

Eigenfrequency: ωn 7.95 rad/s

PTO velocity gain: cc var. Ns/m

∫ t

0
K44(t − τ)φ̇4(τ)dτ = ∆t

m

∑
i=0

K44((m− i)∆t)φ̇4(i∆t), t = m∆t

(2)
3 Copyright c© 2012 by ASME



Equation (1) can be rearranged as:

(M44+a∞
44)φ̈4(t)+K44(0)φ̇4(t)+C44φ4(t)+Mc(t)

=

∫ ∞

−∞
h4(t − τ)η(t)dτ −

∫ t−

0
K44(t − τ)φ̇4(τ)dτ (3)

The right hand side of Eqn.(3) only requires calculation of
the integral at the preceding time-steps and can therefore be con-
sidered as a known quantity. A fourth order Runge Kutta scheme
with a constant time step has been used to evaluate the linear
equation of motion given in Eqn.(3). The drawbacks of this
method are i) it is time consuming, ii) the convolution integral
needs to be calculated at each time step, iii) the impulse response
function needs to be interpolated with the same time step as the
time integration, which is not very convenient. In Fig. 4 two
independent solutions are given for the rotational displacement
subjected to irregular waves. Note that the damping coefficient
is zero for the sake of comparison of the two solvers.

2.2 Rational approximation of the radiation force
The radiation force momentMr(t) is given, cf. Eqn. (1)

Mr(t) =−a∞
44φ̈4(t)−Mr,0(t) (4)

where

Mr,0(t) =
∫ t

0
K44(t − τ)φ̇4(τ)dτ (5)

The idea in this section is to replace the convolution integral
by an equivalent system of coupled first order differential equa-
tions, which are solved numerically along with the equations of
motion of the absorber. The method is based on an initial replace-
ment of the actual frequency response functionHrφ̇4

(ω) with an
approximatingrational functionH̃rφ̇4

(ω) given in the form

H̃rφ̇4
(s) =

P(s)
Q(s)

=
p0sm+ p1sm−1+ ...+ pm−1s+ pm

sn+q1sn−1+ ...+qn−1s+qn

}

s= iω

(6)
The unknowns are the coefficients of polynomials P and Q.

The parametersp0,p1,...,pm−1,pm and q1,...,qn−1 qn define the
polesand thezerosof the rational approximation and are all real.
The order of the filter as given by the pair (n,m) may be chosen

freely with the only restriction thatm≤ n, and that all poles have
negative real part, i.e.

Re(p j)< 0, j = 1, ...,n (7)

Eqn. (7) ensures that the filter isstableandcausal. Corre-
spondingly, the indicated approach only applies to frequency re-
sponse functions. A rational causal approximation forHrφ̇4

can
be obtained by theMATLAB control toolbox[18] or theMSS FDI
toolbox[11]. Next, the convolution integralMr,0(t) is obtained
as output of the following system of differential equations:

Mr,0(t) = p0
dmy
dtm

+ p1
dm−1y
dtm−1 + · · ·+ pm−1

dy
dt

+ pmy (8)

dny
dtn

+q1
dn−1y
dtn−1 + · · ·+qn−1

dy
dt

+qny= φ̇4(t) (9)

wherey(t) is an auxiliary variable, which cannot be related
with any physical interpretation. Eqn. (9) may be written inthe
following state vector form

żr(t) = Ar zr(t)+br φ̇4(t) (10)

where:

zr(t) =















y(t)
d
dt y(t)
d2

dt2
y(t)
...

dn−2

dtn−2 y(t)
dn−1

dtn−1 y(t)















, br =













0

0

0
...
0

1













(11)

Ar =











0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

−qn −qn−1 −qn−2 · · · −q2 −q1











(12)
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Similarly, Eqn.(5) may be written on the vector form

Mr,0(t) = pr zr(t) (13)

pr =
[
pm pm−1 · · · p1 p0 0 · · · 0

]
(14)

By rearranging the equations above the equation of motion
can now be rewritten in a state space model as follows:

d
dt

z(t) = Az(t)+






0
1

(M44+a∞
44)

0






∫ ∞

−∞
hφ4(t − τ)η(τ)dτ (15)

where

z(t) =






φ4(t)

φ̇4(t)

zr(t)




 (16)

A =






0 1 0

− C44
(M44+a∞

44)
0 − 1

(M44+a∞
44)

pr

0 br Ar




 (17)

In Eqn.(15) the control momentMc(t) has been omitted.
The method has been illustrated below for the absorber defined
in Fig. 2 with the numerical values in Tab. 1, using the rel-
atively low order filter(m,n) = (4,5). In Fig. 3 the resulting
frequency response function has been compared with the corre-
sponding target frequency response function calculated bythe
BEM program WAMIT, [19]. Note that only the real part of the
frequency response function has been displayed, i.e the hydrody-
namic damping coefficient of the float. The two time integration
methods were compared with each other. A constant time step
of ∆t = 0.01s has been assumed for all the calculations. The
wave excitation force is calculated for a JONSWAP spectrum
with a significant wave height ofHs = 0.1m and a peak period
of Tp = 2.1s, the peak enhancement factor isγ = 3.3. It can be
seen from Fig. 4 that the time domain implementation based on
a state-space and a direct convolution evaluation give results of
similar quality. Similar results were found by [7].
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FIGURE 3. RATIONAL APPROXIMATION TO Re(Hr φ̇4
(ω)) OF

ORDER(m,n) = (4,5)
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FIGURE 4. COMPARISON OF TWO TIME INTEGRATION
METHODS FOR A JONSWAP SPECTRUM(Hs = 0.1m,Tp = 2.1s),
i) DISCRETIZATION OF THE CONVOLUTION INTEGRAL ii) RA-
TIONAL APPROXIMATION OF THE CONVOLUTION INTEGRAL

2.3 Control moment
The control force momentMc(t) is work conjugated to the

contraction of the piston arm BC and is used to control the mo-
tion of the WEC in a way that a maximum power outtake is ob-
tained. The following rather general parameterized feed-back
control law is presumed:

Mc(t) = mcφ̈4(t)+ ccφ̇4(t)+ kcφ4(t)+
∫ ∞

−∞
hcφ̇4

(t − τ)φ̇4(τ) dτ
(18)

mc denotes the gain factor for the control force component
proportional to the acceleration,cc signifies the gain factor for
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the control force component proportional to the velocity and kc

denotes the gain factor for the control force component propor-
tional to the rotational displacementφ4. In control theory the
force components proportional to the displacement and the ve-
locity are referred to as proportional and derivative control, re-
spectively.mc andkc may attain positive as well as negative val-
ues. cc is always positive in the present application. The last
term in Eqn. (18) represents the weighted influence on the con-
trol force of previous and future velocities. Accordingly,the im-
pulse response function is not causal. It should be noticed that
for the practical implementation of the control law in the exper-
imentsmc, kc andhcφ̇4

has been set to be zero for the present
investigation.

3 Description of the experimental setup
The geometrical device shown in Fig. 2 is represented by

a physical model shown in Fig. 6. The wave energy absorber
is equipped with an electric power generator via a linear ac-
tuator based on the electromagnetic principle. A linear move-
ment, forced by the waves, generates a direct electromagnetic
force without the use of mechanical devices such as cams, belts
or gearboxes. The motor consists of two main parts: the slider
and the stator. The slider is a precision assembly that consists
of a stainless steel tube, which is filled with neodymium mag-
nets. The stator, also called the bearing of the slider, contains
the position sensors and a microprocessor board. The deviceis
supplemented by a force and a displacement transducer. The dis-
placement sensor consists of a laser measurement system which
is mounted on top of the transducer. The unfiltered force signal
and displacement signal were recorded at a sample frequencyof
1000 Hz through the use of A/D converter. In total 5 wave gauges
were placed around the float in order to accurately measure the
incoming waves produced by the wave makers in the tank. The
excitation moment was then calculated by means of a convolu-
tion integral between the measured wave elevationηm(t) and the
linear impulse response function of the excitation momenthϕ4,
which was previously calculated by the use of the BEM code
WAMIT, [19]. The following linear relationship was assumedfor
calculating the excitation moment based on the measured wave
signal, Eqn. 19. This moment is then compared with the force
which was measured in the load transducer multiplied with the
lever arm. The results are plotted in Fig. 9, 11, 13 and 15 for
regular and irregular waves respectively. In order to measure the
force, the float was kept in a fixed position. In this case the actu-
ator is in the displacement control mode. The numerical calcula-
tion of the excitation moment is given by:

Mex=

∫ ∞

−∞
hϕ4(t − τ)ηm(t)dτ (19)

whereηm(t) is the measured wave elevation at the position
of the float, see Fig. 5. The numerical calculation of the ro-
tational displacement is then calculated by using the measured
time signal of the excitation moment. In this case the accumu-
lated error is reduced.

TABLE 2. PLOTTED TIME SERIES, H=WAVE HEIGHT, T=WAVE
PERIOD,λ=WAVE LENGTH, d=WATER DEPTH=0.65M

Waves: H
λ H T cc

H
gT2

d
gT2

Hm0
λp

Hm0 Tp
Hm0
gT2

p

d
gT2

p

[−] [m] [sec] [kgm/s] [−] [−]

Regular 1: 0.055 0.09 1.0 6 0.0096 0.066

Regular 2: 0.109 0.30 1.4 15 0.016 0.03

Irregular 1: 0.02 0.14 3.0 20 0.0016 0.007

Irregular 2: 0.04 0.28 3.0 20 0.003 0.007
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FIGURE 5. WAVE MEASUREMENT AT THE FLOAT FOR THE
FOUR ANALYZED SIGNALS
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FIGURE 6. REGULAR WAVES 2,H
λ = 0.10

FIGURE 7. IRREGULAR WAVES 1,H
λ = 0.02

4 Results - Time series
Four different experimental time series were compared

with the numerical calculation. Tab. 2 gives an overview which
waves have been considered for the comparison. The irregular
waves were calculated using a Pierson Moskowitz spectrum. For
each wave state a number of runs have been analyzed varying
the damping factorcc to the value where the maximum power
was measured by the system. For the regular waves the simu-
lation time was approximately 60 sec, for irregular waves the
measurement time was increased to 500 sec. In order to compare
the time series, only 4 to 5 periods are shown in the plots. The
numerical model is fed with the time series of the excitation
moment which was measured with the force transducer holding
the float in the fixed position. In the case of the irregular waves,
the data series of the wave elevations had to be stored in order to
reproduce the same signal when the device was in the floating

FIGURE 8. IRREGULAR WAVES 2,H
λ = 0.04

position. In general good agreement was found between the
results from the time domain solver and the experimental data.

Regular 1 The measured force signal and the excitation
moment based on the diffraction radiation theory are given
in Fig. 9. The equation of motion is solved by using the
measured force signal as an input and is then compared with
the experimental rotations measured directly at the device,
see Fig. 10. The latter comparison seems to be in very good
agreement. It must be emphasized that due to technical limi-
tations in the laboratory it was not possible to simulate purely
linear waves which would require a factor ofH

gT2 <= 0.001
for intermediate depth [20]. Thus all the wave signals which
have been measured are described by higher order wave theories.

Regular 2 The float is overtopped at each wave crest pass-
ing the device, see Fig. 6. The force sensor is unable to measure
the signal accurately due to the submergence of the float, see
Fig. 11. Fig. 12 shows the rotational displacement, it can be
concluded that the numerical model underestimates the dynam-
ics of the float for the given wave heights and periods. Note that
the non dimensional parameter is quiet highH

gT2 <= 0.016. The
non linear shape of the waves can be observed in Fig. 5.

Irregular 1 Next, irregular waves have been measured and
compared with the numerical calculations. The situation looks
similar to the regular 1 wave, cf. first case. The excitation force
based on the numerical calculation is accurately representing the
measured signal. Moreover the rotational displacement seems to
be in good agreement with the experiments. The assumptions of
linear fluid-structure interaction can be adopted.

Irregular 2 In this case, irregular waves with a relative zero
moment height to peak wavelength ratio of 0.04 were compared
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with the numerical model. The overtopping of the device does
not take place at each wave crest, compared to case 2 for steep
regular waves.
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Numerical calculation, Eqn.(19)
Experimental data

FIGURE 9. MEASURED MOMENT IN THE FIXED POSITION
COMPARED WITH THE NUMERICAL CALCULATION, H/λ =

0.05
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Numerical model, Eqn.(15)
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FIGURE 10. MEASURED ROTATIONAL DISPLACEMENT
COMPARED WITH THE NUMERICAL MODEL,H/λ = 0.05
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Numerical calculation, Eqn.(19)
Experimental data

FIGURE 11. MEASURED MOMENT IN THE FIXED POSITION
COMPARED WITH THE NUMERICAL CALCULATION, H/λ =

0.10
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Numerical model, Eqn.(15)
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FIGURE 12. MEASURED ROTATIONAL DISPLACEMENT
COMPARED WITH THE NUMERICAL MODEL,H/λ = 0.10

5 Conclusions
Two time domain models have been implemented in MAT-

LAB describing the dynamics of the wave energy device shown
in Fig. 2. The equation of motion is described by Cummins
integro-differential equation which involves a convolution inte-
gral of the radiation force. A simplified power take off system
has been introduced by means of a linear velocity proportional
feedback force. The first method is based on a discretizationof
the convolution integral. The drawbacks of it are that it is time
consuming, the convolution integral needs to be calculatedat
each time step and the impulse response function needs to be in-
terpolated with the same time step as the time integration scheme.
In the second model the convolution integral is replaced by asys-
tem of linear ordinary differential equations, which are solved
numerically along with the equations of motion of the absorber.
The two methods were compared with each other and the output
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Numerical calculation, Eqn.(19)
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FIGURE 13. MEASURED MOMENT IN THE FIXED POSITION
COMPARED WITH THE NUMERICAL CALCULATION ,Hm0/λp =

0.02
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FIGURE 14. MEASURED ROTATIONAL DISPLACEMENT
COMPARED WITH THE NUMERICAL MODEL,Hm0/λp = 0.02

results are in good agreement. The performance of the numeri-
cal model was then validated by means of experimental results.
The comparison was carried out for four different waves, look-
ing at the force moment measurement and the response i.e. the
dynamics of the float. Two regular and two irregular waves with
different wave height to wavelength ratios were compared. It can
be concluded that for relatively mild steepness factors thenu-
merical model based on linear-fluid structure interaction seems
to be well adopted, provided that the input to the solver i.e the
excitation force moment corresponds to the measured one. A
numerical generated excitation force moment would most prob-
ably lead to inaccuracies as can be concluded from the plots.For
higher steepness factors the numerical calculation seems to un-
derestimate the dynamics of the float. The latter one is most
probable due to the fact that non-linear effects such as non-linear
hydrostatic restoring forces become important due to the high
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Numerical calculation, Eqn.(19)
Experimental data

FIGURE 15. MEASURED MOMENT IN THE FIXED POSITION
COMPARED WITH THE NUMERICAL CALCULATION,Hm0/λp =

0.04

15 20 25
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

φ 4 [r
ad

]

 

 

Numerical model, Eqn.(15)
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FIGURE 16. MEASURED ROTATIONAL DISPLACEMENT
COMPARED WITH THE NUMERICAL MODEL,Hm0/λp = 0.04

velocities and displacements of the float.
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