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Summary

The objective of this document is to summarize the outcomth@fresearch which has been
carried out during the period Mai 2011 until June 2012 i.erirduthe first year of the PhD
study. The work has been done in collaboration with the abas. The aim of the project was
primarily to provide numerical values for comparison witte texperimental test results which
were carried out in the same time. It is for this reason whypf#rad does consist exclusively of
numerical values. Experimental values and measured tinessaf wave elevations have been
used throughout the report in order to a) validate the nurakbmodel and b) preform stochastic
analysis. The latter technique is introduced in order tanoge the control parameters of the
power take off system. The content is summarized in thewatig manner:

Chapter 1 starts with an introduction. A brief literature review abaptimal control of
wave energy converters is given.

In Chapter 2the dynamic equation of the laboratory scale Wavestar nisgetsented. The
calculation of the hydrodynamic loads is based on the diffoa/radiation theory. The boundary
element method is used to solve the flow problem around theageg in 3D. The hydrodynamic
loads are given in the frequency domain and are linearizeasbyming a constant equilibrium
position. The exact hydrodynamic force would result if tlegact" or "actual” position of the
float in the waves is considered. However, in general theyaaalby using non-linear 3D codes
are time consuming and the justification to carry out a noedr analysis at the design stage
must be given. In the case of the Wavestar model the wettddcgudoes not undergo large
changes in head seas. Thus the linear assumption is jusiigichpler approach to account for
the predominant non-linear forces such as the Froude-Kga the buoyancy forces is to eval-
uate the forces for each position of the float. In Chapted2akimple methodology is described
which addresses the non-linear hydrostatic restoring momikhe results of the numerical im-
plementation of the non-linear force are presented in teegaper; see Appendix A.

Chapter 2 starts directly by setting up the equation of nmotiothe time domain. The
integro-differential equation is formulated for the labtmry model which is also known as the
Cummin’s equation. In order to solve the problem in the tiraedin a convolution product be-
tween the radiation force and the body velocity must be sbl¥eo different methodologies are
described. In the second model the convolution integradpgaced by a rational approximation
of the radiation force. A state-space model is introducefbtmulate the equation of motion.
Chapter 2.3 discusses the introduction of a control moment.

In Chapter 3 the experimental setup of the laboratory model is descrilidte model is
basically a reproduction of the Wavestar prototype whiclogated in Hanstholm, Denmark.
The model scale is 1:20. Ten different wave states are amalyx stochastic analysis is carried
out of the measured wave states. The optimal damping cagffics calculated by taking into
account the auto-correlation coefficient of irregular wave

In Chapter 4 the results from the experimental and numerical calcutatice presented.
Four different control strategies are applied. The nunaériesults are compared with the ex-
perimental tests for the passive damped point absorberortumfately no experimental results
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are available for the case where a negative spring stiffiseapplied to the controller. In gen-
eral the comparison shows very good agreement between tinerioal and experimental results.
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CHAPTER 1
Introduction

1.1 Introduction

The dynamical behaviour of wave energy converters (WEC& been extensively investi-
gated during the past half century by means of analytical mmderical studies, including
testing at laboratory scale and under real-sea conditibfemy concepts have been proposed
such as the oscillating-water-column (OWC), the Pico OW@uyidannet al. 2008), overtop-
ping WEC types like the Wave Dragon (seet p: / / ww. wavedr agon. net ), multi-body
point absorber concepts like e.g.0? (Taghipour 2008) and the Wavestarenergy device (see
http://ww. wavest ar ener gy. con). Point absorbers constitute an important class of
wave energy converters particularly with regard to offghdeployment.

The definition of a point absorber system lies in the ratiovieen the maximum geometrical
dimension and the minimum wavelength of a representatastsee. If this ratio is considered to
be small it may be concluded that the resonance bandwidtieadltsorber is narrow and hence
optimal control strategies can be very promising to maxintie power production. Oscillators
with large horizontal extensions can also be classified aadbanded devices from a control
point of view. Optimal control for these devices would besleffective than for point absorber
concepts.

The use of control engineering to optimize the power absmrtf point absorber wave en-
ergy converters was first proposed by Budal (Budal 1975). Aimam power is extracted from
the waves, when the velocity of the body is in phase with tlenning wave excitation force at
any time. At excitation frequencies away, a phase diffezéspresent, and the power absorption
is considerably reduced.

This behaviour can be observed in Fig. 1.1 and Fig. 1.2 fobarktory scale model (1:20)
of the Wavestar point absorber. The non-dimensional paidoce index is shown in the vertical
axis; the peak period is displayed in the horizontal axisedular waves based on a Pierson
Moskovitz spectrum are analysed. The natural period of Hudllating system is 0.79 s. The
red curve in the graph is based on experiments whereas ttie ddashed line is calculated with
a time domain model, assuming linear fluid structure intésac For peak periods close to the
natural period, the capture width ratio reaches its maxinfimboutr = 0.55. On the other
hand for peak periods larger than the natural period, theigifty is considerably reduced; see
the decrease of the efficiency curve in the two Figures. Thekbhnd red curves in the right
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2 Chapter 1 — Introduction

v Experiments

v Experiments

0.551 — — —v Linear time domain model|] 0.55 — — —v Linear time domain model|]

Figure 1.1 Non-dimensional performance index in functibigure 1.2 Non-dimensional performance index in function
of the peak period, for irregular waves with a steepnessdbttie peak period, for irregular waves with a steepness fac-
tor of Hs/Ap=0.02 - linear, passive damping. tor of Hs/\p=0.04 - linear, passive damping.

plot are deviating for higher peak periods. This is due tolithearity assumption of the linear
model. Higher and hence steeper waves tend to overtop theedeere often. This effect is not
captured by the linear numerical model however predomifraiteak periods above 2.25 s.

One of the main objectives of optimal control, in the preseoritext, is to increase the
efficiency for the wave states where the peak periods are fraaythe natural period of the os-
cillator. The objective is to decrease the steepness offticeeacy curve for larger peak periods
and thus to smooth out the efficiency curve.

"Optimal" control will be replaced by the word "sub-optirhak it suits better the concepts
presented in this work: the control is applied by using thekpeeriod of the waves rather than
the instantaneous wave period. In irregular waves the abptoblem becomes non-causal due
to the fact that the input is not the direct cause for the auipalnes 1995). Optimal control in
irregular waves requires prediction of the future waved. ti¢ calculation in the present case
are based on the assumption that the wave force is fully kntvas one can talk about causal
reactive control. The word reactive control reflects the faat the dynamics of the oscillating
system are changed during the power absorption procesthénwords the natural period of the
float is tuned to the peak period of the waves. This concepdgdskaown as impedance matching
which was first presented by (Falnes 2007).

In the 1970’s a handful of independent reports were puldish&oducing the theoretical
fundamentals of maximum wave-power absorption. Saltdt€SE974) pointed out the potential
energy in ocean waves and highlights the design problemsobf devices. In 1974 he reported
that already more than hundred proposals of WECs concepésregistered at the British patent
office. Salter illustrated the importance of experimentadiies on wave energy in order to test
their efficiency for power extraction. Furthermore he pethbut that the installation must be
freely floating out at the sea. Rigid connections should lméded wherever possible.

Evans (Evans 1976) pointed out that heaving bodies with lamilirhydrostatic spring and
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1.1 Introduction 3

hence a natural oscillation period shorter than the waviegerequire negative applied spring
stiffness from an external power source in order to oseiliatresonance.

Mei (Mei 1976) presented a design based on the idea of a &atHkrat breakwater and re-
ported criteria’s for maximum power extraction. He pointed that the energy extraction must
be equal to the rate of radiation damping of the device. Foodyf one degree of freedom
and symmetric about one axis, the maximum efficiency at angiegjuency can reach 50%. For
asymmetric bodies it can even be greater than the half ofnib@ming energy, like in the case
of Wavestar, for instance. For a body with two degrees ofdoee, all the wave power can be
extracted (Mei 1976). In this paper the first structural gesriteria’s for a WEC were presented,
however only regular waves were considered for the poweaetion calculation.

Budal et al. (Budal 1975) published results of model experita of a phase controlled
point absorber operating in heave only. One of the first latghontrol strategies was applied at
this time.
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o CHAI_DTER 2
Description of the numerical

model

Contents:

¢ Laboratory scale model of the Wavestar device.
4 Nonlinear hydrostatic restoring moment.
¢ Truncation of the convolution integral.

¢ Rational approximation of the radiation force.

2.1 The dynamic model

The equation of motion is obtained by formulating the moraeméquilibrium condition around
the fixed point A, see Fig. 2.2.

JO(t) + RO(t) + /_t h,o(t —T)0(T) dr = M (t) — M,(t) (2.1)

J=j+3j5 (2.2)

Pitchd(t) is the corresponding degree of freedom around the bearimgniass moment of
inertia around the fixed point of the float mass and the armnistgel ag , j;° is the added mass
at infinitely high frequencies,_;(t) is the impulse response function of the radiation for¢és
the hydrostatic stiffness coefficient].(t) represents the control moment from the power take-off
system M, (t) is the excitation moment. In the following experiment, tdioaensional irregular
waves are considered, propagating in the positidirection relative tqz, y, z)-coordinate sys-
tem defined in Fig. 2.2.
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In order to calculate the exact wave excitation moment weldvoaed to brake down the
component\,(t) into the Froude-Krylov and the diffraction force. The egoatof motion is
reformulated:

(J+3p)01) + My + Myoa = Mpk + Mg+ Mp (2.3)
¢ M, Moment due to gravity
¢ M, .q : Radiation moment
4 M, Diffraction moment
¢ Mp: Buoyancy moment
¢ (j +73°): Inertia moment

For a quasi static structural response analysis it is adgaotus to reformulate the equation
differently.

(G+35°) 0= Mpg+ Mg+ Mp— My — Myqq (2.4)
N——
Angular acceleration S M;

The force components are summarized as follows, (Neese§:2012

Froude-Krylov force: Pressure effect due to the undistuifbeident waves.
Diffraction force: Pressure effect due to the presence®sttucture.

Hydrodynamic added mass and damping force: Pressuresffeetto motion of structural
components in an ideal fluid.

Viscous drag force: Pressure effects due to relative viglditween water particles and
structural components.

SDWED Deliverable 4.2
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Load cell
z
A Y
.. KradY
(M + Ax)Y Frg +Fq4+ Fp

~

0 V. Dy

o
d (yE,o, ZE,O)

v'" 4 ¥ ¥ ¥ ¥ 7
o e e et e fet 1

Figure 2.1 Definition of the laboratory model (1:20) representing thavéstar prototype model in Hanstholm, static
referential statey; o andzg o: center of buoyancy.
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Load cell

AN

y =

.. Frad
(j+] Frrg +Fg+ Fp

7
S Dy

[¢]

d (yE,o, ZE,O)

h e

v'" 4 ¥ ¥ ¥ ¥ 7
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Figure 2.2 Definition of the laboratory model (1:20) representing thavéstar prototype model in Hanstholm, static
referential statey; o andzg o: center of buoyancy.
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2.1 The dynamic model 9

2.1.1 Nonlinear hydrostatic restoring moment

The change of the hydrostatic pressure at each instantapesition of the float below the water

plane can be taken into account by integrating the hydiogta¢ssure over the instantaneous
wetted surface. Thus the hydrostatic restoring moment edormulated in a more generalized

form as follows:

R= —pg//SB(t)n-z-dS(t) (2.5)

The time domain simulations in this paper include the n@dmhydrostatic momen®
given in Eqn. (2.5). Static tests have been carried out it experimentally describe the
hydrostatic moment acting on the float. The change of theadettirface can be observed when
the float is successively dipping into the water. Figure A@as the experimental results. The
time domain model considers a trilinear piecewise appration of the hydrostatic behavior
depicted in the dashed black curve in the Figure 2.3. Thévelposition of the float is calculated
by the difference of the undisturbed incident wave elevatind the rotational displacement at
the instantaneous time step.

\\t\\
20 T T T T T [’}

R[Nm)

C
S0+ - 1
— Hydrostatic experiment
C == = = = Piecewiese linear approx.
e H
7’
23 02 o1 0 01 02 03 5
dlrad) Figure 2.4 Point A: the float is out of the water no hydro-

Figure 2.3 The piecewise linear approximation of the fgjatic force is acting on the sphere, Point B: the float issin it
drostatic restoring moment is shown in the black dasheg$i@éic equilibrium position the hydrostatic restoring nesth

the red curve shows the results from the experiments. increases linearly with degree of submergence, Point C: the
float is fully submerged the weight of the overtopped water

reduces the "spring effect" of the buoyancy force.

January 17, 2013



10 Chapter 2 — Description of the numerical model

2.1.2 Impulse response function of the radiation force

The impulse response function of the radiation force candlem sis the system identity. If we
know the response to an impulse, then we know the responsg/texaitation by convolution
with the impulse response function. The basic work for thisrfulation of the problem was laid
by W.E. Cummins (Cummins 1962). In Figure 2.5 two differexttintion impulse response func-
tions are shown. The blue line represents the solution basachigh frequency approximation,
whereas the red line is based on a unmodified FFT analysispé.@pproximation of the high
frequencies. The "cut-off" frequency for the blue curve bammbserved at a frequency of 0.5 Hz,
(T = 2.0sec). For the first case the initial damping vallig; (¢t = 0) is slightly higher than for
the second method, however for higher periods it seems thebefposite case. The MATLAB
command is [y,x,t]=impulse[A,B,C,D,iu].

35 T T T T T
Cut-off the tail
30k Including high frequencies| |

20 : ‘ ‘ ‘ ‘ -

15 b

k(t) [Nm/rad]

_10 1 1 Il
0 0.5 1 15 2 25 3
Time [s]

Figure 2.5 The radiation impulse response functibn,;(¢). The blue line represents the solution based on a high
frequency approximation whereas the red line is based omedified FFT analysis, i.e. no approximation of high
frequencies.

2.1.3 Rational Approximation of the radiation force

The radiation moment/,.(t) is given as:

SDWED Deliverable 4.2



2.1 The dynamic model 11

Mr(t) = _]goe(t) - Mr,o(t) (26)
where
t
Mat) = [ hglt=miriar 2.7)

The idea in this section is to replace the convolution irdéQy an equivalent system of
coupled first order differential equations, which are sdlmamerically along with the equations
of motion of the absorber. The method is based on an initidacement of the actual frequency
response functioi/, ;(w) with an approximatingational function ﬁré(w) given in the form

T

H, ;. (s) = B(w) +iw(A(w) — A%) (2.8)

] P(S) p05m+p13m_1+...+pm—ls+pm
H : (s)= = 2.9
b () Q(s) ST qsm L g1s+agn (2:9)

The unknowns are the coefficients of polynomials P and Q. Bn@metergg.p1,..- Pm—1,Pm
andqs,...qn—1 g define thepoles and thezeros of the rational approximation and are all real.
The order of the filter as given by the pair,2) may be chosen freely with the only restriction
thatm < n, and that all poles have negative real part, i.e.

Re(p;) <0, j=1,..,n (2.10)

Egn. (2.10) ensures that the filter s&ble and causal. Correspondingly, the indicated
approach only applies to frequency response functionstidmal causal approximation fat_
can be obtained by thATLAB control toolbox (Matlab 2012) or theéVISSFDI toolbox (Perez
and Fossen 2009). Next, the convolution intedr&l,(¢) is obtained as output of the following
system of differential equations

dmy mfly dy
M, o(t) = po—= ot Pm1— + Pm 2.11
o(t) Po +p1 7 +etp e + Pmy ( )
dny dnfly dy .
T O et dna g T ay = 0(0) (2.12)

wherey(t) is an auxiliary variable, which cannot be related with anygital interpretation.
Eqn. (2.12) may be written in the following state vector form

7, (t) = A, 2, (t) + b,0(t) (2.13)

January 17, 2013



12 Chapter 2 — Description of the numerical model

where:
[y ] r07
;ty(t) 0
d2
Loyt 0
z,(t) = dtz?’() , b=, (2.14)
n—2‘
== y(t) 0
n—1
_%y(t)_ L1
0 0 0 0
0 0 1 0 0
A= : oo (2.15)
0 0 0 0 1
—Gn —QGn-1 —QGn-2 - —q2 —q1

Similarly, Eqn.(2.7) may be written on the vector form

My0(t) = przr(t) (2.16)

Pr=[Pm Pm-1 - p1 po O -+ 0] (2.17)

By rearranging the equations above the equation of motiamoav be rewritten in a state
space model as follows:

0
%z(t) = Az(t) + ﬁ /_OO h,4(t — T)n(T)dr (2.18)
where
0(t)
a(t) = | 0(t) (2.19)
7, (1)
0 1 0
A= |- 0 —ip, (220
0 b, A,

SDWED Deliverable 4.2



2.2 Solving the dynamic model 13

In Eqn.(2.18) the control momenit,.(¢) has been omitted. The method has been illustrated
below for the absorber defined in Fig. 2.2 with the numeriaues in Tab. 3.1, using the
relatively low order filter(m,n) = (4,5). In Fig. 2.6 and Fig. 2.6 the resulting frequency
response functions has been compared with the correspptadget frequency response function
calculated by the BEM program WAMIT, (WAMIT 2012).

T T Approx. 3th order
Approx. 3th order Approx. 4th order
Approx. 4th order L Approx. 5th order ||
0.9 Approx. 5th order |- : WAMIT
— WAMIT

0.8

= 0.7}

Imag(HmJ )

0.6

L L 1 L 0 5 10 15 20 25
0 5 10 15 20 25 w [rad/s]
 [rad/s]

Fvigure 2.7 Piecewise linear approximation of the nonlinear

Figure 2.6 Imaginary part of the frequency response Cuhydrostatic restoring moment

2.2 Solving the dynamic model

The time-domain analysis of a floating structure involvesdhlculation of a convolution integral
between the impulse response function of the radiatiorefantl the unknown body velocity due
to an external force. The convolution integral can be seemraesmory effect where the system
response in the past affects the response in the future. ifigostht time-domain models will be
presented.

The first one is based on a discretization of the convolutidegral. The calculation of the
convolution integral is performed at each time step regaslof the chosen numerical scheme.
In the second model the convolutionintegral is replaceddystem of linear ordinary differential
equations. The formulation of the state-space model isrgdgaous regarding the computational
effort and the robustness of the solver. Another importaature is the linear-time invariance
of the system. In a next step the influence of the nonlineardstdtic behavior of the float is
investigated by using a simplified formulation.

2.2.1 Truncation of the convolution integral

Let us consider the following dynamic equilibrium equatmfrthe WEC device shown in Fig.
2.2.

oo

(J +720)6(t) + /0 h,g(t — T)0(T)dT + RO(t) + cprob(t) = / hey(t — T)n(t)dr  (2.21)

— 00

January 17, 2013



14 Chapter 2 — Description of the numerical model

The convolution integral in Eqn. 2.21 can be expressed bynmeba sum:

t

/0 hg(t —7)0(r)dr = ALY " h,4(t —7)0(r) (2.22)

7=0

Expanding the sum in Eqn. 2.22, we get the following expoessi

t
AL ho(t—7)0(7) = At[h,4(£)0(0) + h,g(t — 1)O(1) + .. + b, 45(0)0(t)] (2.23)
=0
The equation of motion can then be written as follows:

oo

(T+572)0(0)+h. 5 (0)8(8) + RO(E) +F120(t) = /

— 00

Bt —)n(t)dr /0 h ot =7)0(r)dr
(2.24)

The numerical integration of Eqn. 2.24 only requires thewaltion of the integral at the
preceding time-steps and can therefore be considered aswankquantity. A fourth order Runge
Kutta scheme with a constant time st&p has been used to evaluate the linear equation of mo-
tion given in Eqn. 2.24. Drawbacks of this method gréme consumingi) the convolution
integral needs to be calculated at each time gig¢phe impulse response function needs to be
interpolated with the samAt as the time integration, which is not very convenient. Trsailts
are shown in the last page of this chapter. Fairly good ageetran be observed when com-
paring the numerical discretization of the convolutioregrial with an analytical calculation for
regular waves, i.e. when a constant damping coefficient eaasbumed.

Comparison between the two different integration techescare presented in the workshop
paper of the IWWWFB workshop held in 2012 in Copenhagen, pperadix A.

2.2.2 State space model

The state space approximation of the convolution integiay tve directly calculated from the
frequency domain coefficients. The convolution integrabipressed as follows:

t
/ h,4(t —7)0(r)dr = g(I) (2.25)
0
whereg(I) are the new state variables.

I =n(1,0) (2.26)

The approximation of the convolution integral using thefioents of the polynomial P(s),
introduced in Egn. 2.9, gives us then:

SDWED Deliverable 4.2



2.2 Solving the dynamic model 15

/OhTe(t—T)é(T)dm[po pr o pnoa I(1) (2.27)

where the derivatives of the new states are given as:

—q1 —Qq2
(1) o(t) (2.28)
0

—q

. 0
i) = .
1

oS oo

q
1
0
0

Having defined the new state veciior we assemble and get:

9
Y= 6 (2.29)
I;

The equation of motion is then rewritten in an ODE of first arde

Y = F(t,1) (2.30)
]

F(t,I): ( (] +]oo 1 fO t—T ( )dT—Re—f—FdTag—i-FpTo) ) (231)
I;

The state space form of the equations above may be formwdated

i = Az + Bu (2.32)
Assuming the geometry in Fig. 2.2 and based on the hydrodynamefficients shown in

Fig. 2.6 and Fig. 2.7 we get the following numerical valuesibiyg the inbuild invfregs function
in Matlab.

—14.69 —124.78 —124.79 —14.56 1
. : : 1 :
i=AryBi) = i) = | | 0 ’ N ROFS R
0 0 1 0 0
(2.34)

y = /t h,s(t —7)0(T)dr ~ Cx + DO(t) = [ 35.13 60.57 10.71 0 | I(t)+00(t) (2.35)
0

January 17, 2013



16 Chapter 2 — Description of the numerical model

The above equations are solved in MATLAB. The Figures 2.81d 28how the comparison
between the convolution of the impulse response functiah wisinusoidal function and the
approximation of the convolution integral with the statacsp model presented in Eqn. 2.34
and 2.35. The MATLAB commentonv(K, X (t)) - At is used. Figures 2.12 and 2.13 compare
the two methods i.e. the truncation and the approximatioth@fconvolution integral for two
different damping coefficients.

x 10
T T T -1 T T T
<+ 4th order polynomial approximation +++ 4th order polynomial approximation
- - —Cc ion K(Y) with dX 1 b — — = Convolution K(t) with dX 7]
T [ ‘},y
3t Mf
—al ,‘}}
8 8 d
ol e
e
-7t P ”
-8t g s
100 7930 36.2 3(; 4 3(;.6 3(;,8 31
Time [sec] Time [sec]
Figure 2.8 Convolution of the impulse response func- Figure 2.9 Convolution of the impulse response func-
tion with asin(t) signal tion with asin(t) signal - zoom
x10° x 10"
4 T T T T 16
+++ 4th order polynomial Approximation -
3k - = = Convolution K(t) with dX pe 25 oY <
i 1ar ’ o
! i e Vo
2 p ! 12 2. v
i | s v
14 i 7 \
] i ! § 101 P A
RN i B v
S |4 1 S st e
-1 —:, 1 v
5 7',' 6 +.++++ 4th order polynomial Approximation \\', 1
‘1 = = = Convolution K(t) with dX \‘
Sl af ¥
-4 L L . ; 2 i i i i
0 20 40 60 80 100 30 30.2 30.4 30.6 30.8 31
Time [sec] Time [sec]
Figure 2.10 Convolution of the impulse response Figure 2.11 Convolution of the impulse response
function with a zero mean random noise signal function with a zero mean random noise signal
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Figure 2.12 Comparison between direct numerical integration and a-sace approximation of the radiation kernel,
cpto = ANm/rad/s
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Figure 2.13 Comparison between direct numerical integration and a-saéce approximation of the radiation kernel,
cpto = 12Nm/rad/s

The comparison between the experiments and the numericalaton has been presented
in a OMAE conference in 2012 in Rio de Janeiro, see appendbhB.experimental results will
be discussed in chapter 4. The comparison is carried outégpassive damped case.
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18 Chapter 2 — Description of the numerical model

2.2.3 State space model of the wave excitation force

The block diagram in Fig. 2.14 shows the procedure which @iegh hereafter in order to cal-
culate the wave excitation moment in the time domdi¥i(¢) is a zero mean random process
known as withe noisel,, (w) is the frequency response function of the wave spectr(n),
corresponds to the wave elevatidn, (t) is the impulse response function of the wave excitation
moment andV/, (¢) is the wave excitation moment.

Figure 2.14 Block diagram for the calculation of the excitation forcettiie time domain

The wave excitation moment is expressed as follows:

M (t) = /OO hen(t — n)n(T)dr (2.36)

— 00

The related frequency response function is:

Hep(w) = / b e " he, (t)dt (2.37)

— 00

Furthermore the following relation holds:

Me(w) = |Mc|e™™ = Hep(w)n(w) (2.38)
| M. | is the modulus (amplitude) andis the negative argument of the fourier transforma-
tion andn(w) is the fourier transformation of the sea-surface elevatigh

The real and imaginary part of the frequency response fomeie shown in Fig. 2.15
and Fig. 2.16. The corresponding impulse response fun@tiRff) is shown in Fig. 2.17. In a
next step we split the IRF function into a causal and non-aigoert respectively. The fourier
transformations of Eqn. 2.39 and Egn. 2.39 are shown in Fig8 2and Fig. 2.19 and are
compared with the original frequency response functioewated with a Boundary Element
method (BEM). From Fig. 2.19 one can see the difference tatwiee full frequency response
function based on the BEM calculation and only the causalgfat. It can be concluded that,
for the calculation of the wave excitation force based oretsaries of the wave elevation, cf.
Egn. 2.36 one has to convolute with the non-causal impulggorese function rather than only
the causal parti.e. red curve in Fig. 2.17.

HJ (w) = /O e “'nt (t)dt (2.41)
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Figure 2.15 Real part, frequency response function
of the excitation force Ré{c,, )(w))
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Figure 2.17 Impulse response function of the excita-
tion force, he, (¢), blue curve: non-causal, red curve:
causal part
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Figure 2.16 Imaginary part, frequency response
function of the excitation force Im{c,)(w))

hen(—t) if £ <0,
ey = a(=) <0 (2.39)
" 0 if t > 0.

ben (T if t >0,
bt = hen(t) 120, (2.40)
& 0 if £t <0.

(2.42)

The wave spectrum is divided int¥ parts by the frequency band widthf. This means that

the irregular wave is composed &f linear waves.

The variance of each linear wave is:

Sﬁ(fl)Af = %a?a

The amplitude is:

i=1,2,...,N

(2.43)
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Figure 2.18 Non Causal-part frequency response Figure 2.19 Causal-part frequency response function
function H,, (w) Ha) (W)

a; = \/2Sn(fi)Afa L= 1,2,...,N (244)

and the angular frequency is:

2
w; = ?” =2rf;, i=1,2,..,N (2.45)

The wave elevation is then a discrete sum over all the anfrelauencies and amplitudes:

N

N
n(t) = Z ni(t) = Z a;cos(wit + &;)
i=1

=1

2.3 Control moment

The control force moment/.(t) is work conjugated to the contraction of the piston arm BE, se
Fig. 2.2 and is used to control the motion of the WEC in a waydhaaximum power outtake is
obtained. The following parameterized feed-back conawlis assumed, (S.R.K. Nielsen 2012):

o0
Mo(t) = mobi(t) + cob(t) + keb(t) + be / ho(t — 7)0(r) dr (2.46)
—0o0

m. denotes the gain factor for the control force componentgntignal to the acceleration,
c. signifies the gain factor for the control force componenppirtional to the velocity ané. de-
notes the gain factor for the control force component prigioal to the rotational displacement
0, b. is a number between zero and one. In control theory the fargonents proportional to
the displacement and the velocity are referred to as prigp@itand derivative control, respec-
tively. m. andk. may attain positive as well as negative values.is always positive in the
present application. The last term in Eqn. 2.46 represaetsieighted influence on the control
force of previous and future velocities. Accordingly, thgiulse response function is not causal.
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2.3 Control moment 21

2.3.1 Optimal control of a linear point absorber

The following derivations and equations are taken from trgs(Nielsen 2012). The material
was presented during a PhD course which was held at Aalboirgetsity in 2011. The goal
was to highlight the application of stochastic methods tlindethe optimal control parameters
of a wave energy point absorber in irregular waves. With #miproach the optimal damping
coefficient is calculated to be a function of the auto-caieh coefficient of the given wave ex-
citation process. An analytical expression for the optideahping coefficient will be presented.
It will be shown that, the closer the oscillator moves inteaance with the incoming waves the
smaller becomes the ideal damping coefficient. This meaatsthie system experiences higher
oscillations therefore also higher inertial forces at ehbigenergy absorbtion rate. The question
which urges from this observation is: Are there control paters which can also reduce the
structural forces and still keep the energy production attiost highest level ? To answer this
question the model must be extended and ideally an adeqiped model has to be introduced
to account for the effect of structural loads in functiontod tontrol loads.

The dynamic response of the wave energy converter in presgneaves is assumed to be
a stationary Gaussian random process with zero mean value.ofitimal control parameters
are depending on the frequency spectrum in the waves. Hendadgular waves the control
becomes difficult to establish and often simplified assuomsthave to be made. The first unre-
alistic assumption is connected with the oscillator. Inesrid have an optimal controlled power
absorber the velocity of the oscillator has to be in phask thi incoming wave excitation force.
Assuming that this condition can be achieved physicallydgdfng enough power into the sys-
tem and hoping that there is more power to be harvested, titeottaw can be formulated as
follows:

M, (t) = 2¢.0(t) (2.47)

The control law in Eq. (2.47) is theoretical and has no phatsiteaning unless constraints
are implemented in the control algorithm. Furthermore gmartant issue is related with the effi-
ciency factors of the generator in both directions. In thespnt case the power is absorbed solely
by the damping coefficiert.. The following calculations are based on the assumpticaistie
oscillator is in resonance with the incoming wave frequelmgy wave to wave resolution and
the input and output time series are two stationary Gaugsizeesses. The dynamic response is
expressed in function of the wave excitation force assurntiagesonance condition:

L]\/fez(t) 5 @(t) = 210 /t Mew (7') dr (248)

O(t) =

The instantaneous power is given as:

P.(t) = E[O(t)M,(t)] (2.49)

where E[] is the mathematical expectation of the random process isdhare brackets.
The response of the system is assumed to be stochastic sacisttiol moment, (S.R.K. Nielsen
2012):
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22 Chapter 2 — Description of the numerical model

M.(t) = MO(t) + c.O(t) + KO(t) + / h ho(t —1)O(T)dT (2.50)

In order to fulfill the condition given in Eq. 2.47 the coeféais in equation Eq. 2.50 have
to be chosen accordingly:

M=-J (2.51)
K = —k. (2.52)
heo(t —7) = —h.g(t—7) (2.53)

By inserting Eq. 2.50 into Eq. 2.49 we get

< P.(t) >= E[O(t)M,(t)] = ~ME[O(t)0(t)] + c.E[6%(1)] (2.54)
~KE[0(t)O(t)] - / h,s(t — T)E[O1)O(7)] dr (2.55)

— 00

The variablesO(t), ©(t) and O(t) are statistically independent random variables with
E[O(t)] = E[6(t)] = E[O(t)] = 0 (zero mean). According to the properties of the mean value
operator of two independent random variables X and Y, (08B0}, E[XY]| = E[X]E[Y], the
first terms in Eq. (2.54) and Eq. (2.54) are vanishing, £ (¢)O(t)] = 0 andE[O(t)O(t)] =
0.

The expressio[O(t)?] is actually the variance of the random variablg) and is denoted
aso? .. Note that the mean value of the procéssis zero due to the fact that in presence of no
waves the float is in its static equilibrium position, and tethe movements are zero. The vari-
ance is defined as the second order moment of the randomeexidte. F[(X — u)?] = 0% -

The last term in Eq. (2.54) is known as the autocovariancetiom. Normally the auto-
covariance function is evaluated by the time average of @asignd by its time shift of. The
definition is given byRx x (1) = E[X (¢t)X (¢ + 7)]. The convolution in Eq. (2.54) is a time
shift in the past, i.e. it is also known as the memory effe¢hefsystem because it does account
the behavior in the previous time step. In our case we caewRit x (7 — t) = E[X (¢) X (7)]
and thereforerg, (t — 7) = E[O(t)O(7)]. Note thatRx x is an even function, i.eRx x (—7) =
Rx x (7). Another important characteristic is the amplitude of theoacovariance function for
T=0,i.e. Rxx(0) = E[(X(t)?)] = 0% x-

Summarized the above and applied to our case, we can write:

1 1
_Mem(t)Mem (t)} = @ 0']2\/[”]\4635

(2.56)

E[O1)O()] = kee(T — 1) = kge(t —7) = % KMo M., (t —T)
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It is hereby shown that based on the stationarity assumpfidhe instantaneous power
we can express the process by two well known quantities nabyethe variance and the auto-
covariance function of the stochastic process. In ordeptdicue we are going to introduce a
few more useful relationships which are common in a stoahpsbcess analysis.

The variancer?  of a stochastic process can be calculated by setting 0 for the auto-
covariance function or by simply integrating the energycspen Sx x (w) in the frequency
domain. Thus we write:

U%X = RX)((O) = ‘/700 Sxx(w)dw (257)

Sx x(w) can therefore be seen as a distribution of variances ovdrafjgency spectrum.
In our case the energy spectrum is expressed by the frequesggnse function of the wave
excitation moment, i.e.:

Smom, (w) = |Hen(w)|25nn(w) (2.58)

whereH., (w) is the frequency response function of the excitation fofdeis function is
complex and is calculated by a BEM (Boundary Element Metlpad@ntial solver, like WAMIT
or AQWA. The function consists of an amplitude and a phasde Kt with Eq. (2.58) only the
amplitude information is kept whereas the phase informasdlost”. In Eq. (2.58) the double
sided spectrum is used, however negative frequencies blat&ely low physical meaning.
The relationship between the auto-covariance fundii@r (7) and the energy spectruix x (w)
is widely known as the Wiener-Khintchine Theorem and defietbllows:

Sxx(w) = %/OO Rxx(T)eiiWTdT (259)

— 00

and to the auto-covariance function is then defined as:

1 [ .
Rxx(r) = 5/ Sxx(w)e“ dw (2.60)

Applied to the wave excitation force process:

KM,y M., (T) = / e“T S, (W) dw (2.61)

— 00

The relationship between the auto-covariance and the@rtelation function is given by
division of the variance?, , i.e.:

KMo, M., (T
Pt (7) = TMeeMee (7) (2.62)
O-A'IemMer
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By inserting the stochastic relations (variance and aot@dance function) into the Eq.
(2.54) we get the following

_ 1 1t
PCZQ_CCO—]QWS_E/ hm‘,(t—T)F&Me]we(t—T)dT =

c — 00

i (o0 1 | patan hos( (2.63)

2. 4

pu.. M., (T) denotes the auto-correlation coefficient function of therevaxcitation pro-
cess. The qualitative variation pfy;, »s, (7) has been shown on Fig. 2.20 for monochromatic,
narrow-banded stochastic and broad-banded stochastie exaitation forces. In order to make
comparison meaningful, the separation timéas been normalized with respect to the mean
zero-upcrossing periafl of the stochastic processes.

» 05
[T
¢ of .
a

-0.5

pFeFe

1 T T T T
o 05Ff i
[T
d? 0
_0-5 i 1 1 1 1 1 ]
-6 -4 -2 0 2 4 6

Figure 2.20 Autocorrelation coefficient function of the wave excitatiforce. a) Monochromatic wave excitation force.
b) Narrow-banded stochastic excitation force (swellsBrjad-banded stochastic wave excitation force (wind waves

Now as we have expressed the power by two stochastic vasiahle ». . (7) and the damp-
ing coefficientc, we are interested if an optimal damping coefficient existe défrive the ex-
pression in Eq. (2.61) and set it to zero:
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1 1

SP. - 5 [T
—= =0=0}y, ., (“C P4t / PMey Mes (U)heﬁ(u)du> (2.64)
0

dce
Eq. 2.64 has three roots, i.€; = 0, c.o = 0 and the third one is

Ce3 = / Py, (w)hes (u) du (2.65)
0

Figure 2.23 shows the power in function of the damping cdefiits. If Eq. (2.65) is inserted
into the expression for the energy we get.

103
,opt —
P 4 c.

P, (2.66)

0B -

04| o -

pMea:Mea:
o
T

0 5 10 15

Figure 2.21 Auto-correlation function of the given wave process.
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Figure 2.22 Corresponding power function in function of the dampingfficient - resonance control (Brutto power,
energy which has been fed in by negative spring coefficienvisonsideredgop: = 0.7 = cc3.
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Figure 2.23 Corresponding power function in function of the dampingfficient - resonance control (Brutto power,
energy which has been fed in by negative spring coefficienvigonsideredgop: = 0.7 = c¢3.
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Figure 2.24 Corresponding power function in function of the dampingfficient - only passive control.
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2.3.2 Performance of a WEC

The efficiency of a wave energy converter can be expressdtelnyon-dimensional performance
index (NDI) which is given as:

Pabs

Pwaue : dactiue

n= (2.67)
whereP,;, is the absorbed wave energy by the device. This can be inthedfpneumatic,
hydraulic or mechanical energ¥,;s has the unit§i¥’] and is also referred t&,,,,,, Or Pey), in
this document. The generated power is referred as the mieahpower for the present device.
Puave COrresponds to the available energy in the waves and hasitsspower per unit width,
[W/m]. In the present case the calculationff,.. is based on the wave elevation time series
which is measured at the center of the float when the devicenoam the water. The active
width of the structure is referred @s..;,.. In the case of the WS absorber the active width is
equal to the diameter of the float.
The transported wave power per unit width of the wave froot,flane progressive irregular
waves in finite water depth is given as:

Pyave = 2pg/ Sy (W) eg(w)dw (2.68)
0

wherep is the water density is the acceleration of gravity,, (w) is the one sided wave
spectrum, and,(w) is the group velocity, which is a function of the wave freqoew and the
water depthh. The multiplication of the group velocity with the wave sfree in Eqn. (2.68)
results from the fact that the wave energy travels with thaugrvelocity rather than with the
phase velocity.

The non dimensional performance index (NDI) indicates tiiwent of energy which is
absorbed by the device in a unit width of wave front relativés geometry. This coefficient may
be in principle larger than one. Figure 2.25 indicates tldiferent cases where the coefficient
is smaller, equal or bigger than one.

¢ 1 < 1.0 The absorbed energy is smaller than the wave energy trgvelithe active width
zone of the device.

¢ 1 = 1.0 The absorbed energy is equal to the wave energy ™.

¢ 1 > 1.0 The absorbed energy is larger than the wave energy ™.
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dactiv
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Figure 2.25 Non dimensional performance indgx
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o CHAPTER 3
Description of the experimental

setup

Contents:

¢ Experimental setup.

4 Optimal damping coefficient.

3.1 Introduction

The dynamical behavior of a point absorber wave energy etewvieas been extensively inves-
tigated analytically and numerically during the past haftry. The theoretical groundwork
of wave power absorption considering simple geometriesaxdsymmetric bodies oscillating
in one mode was described by Evans, Mei and Newman in the $&t@sl Budal and Falnes
have presented pioneering work in the beginning of the 188G@&xperimental studies of a point
absorber considering phase control. It was found that irrot@ apply optimum control it is
necessary to predict an irregular wave some distance inttuthre.

More recent studies on advanced control strategies nanmelgepand amplitude control were
carried out by Hals, Barbarit and Clement. A common chargstie of these models is the as-
sumption of linear fluid structure interaction based on thedr wave-diffraction theory. Wave
forces and corresponding dynamical responses are modsieg first order potential theory
which satisfies the Laplacet's equation in the bulk of thedflBoundary conditions are formu-
lated at the free surface by means of linearized Euler-Bélimressure terms. A considerable
drawback of this method, despite all the magnificent adgggdies in the assumption of small
waves heights and small body motions, two conditions whighirbe violated for many opera-
tional sea states.

3.2 Experimental setup

Experimental tests on a point absorber wave energy comagearried out in the wave tank of
Aalborg University. The tank has a length of 15 m, a width of &md a maximum water depth
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of 0.7 m. The wave paddles are driven by a total of 15 hydraigitons moving in the horizontal
direction. The distance from the center of the float and thadles is 5 m. A constant water
depth of 0.65 m is chosen during all the tests. After 10 m theewaeach the slope of the beach.
No active absorption is applied on the incoming waves thualeer short duration of the time
series has been chosen to avoid influences of any standireswanding up in the wave tank.
The test setup consists of a floating body in the shape of adpémie connected with a lever
arm. The device rotates around a fixed point which is locat88 th above the mean water
level. Pitch is the corresponding degree of freedom arch@téaring point. The hydrodynamic
parameters are therefore formulated as moments rathefditas or masses. The laboratory de-
vice is similar to the well-known Wavestar float located ie fhanish North Sea. The test setup
is modeled on a scale 20:1 compared to the prototype. A mhgmacteristic of the laboratory
model is the power take off system which consists of a lineaegator based on the electromag-
netic principle. This setup has a number of advantages. dhieal of the actuator can be either
force control or motion control. In the following test sexiboth configurations were applied.
The experimental setup is shown in Fig. 3.1.

Figure 3.1 Experimental setup of the laboratory device.
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3.2.1 Data acquisition

Force and displacement measurements were carried out atetiee. Furthermore five wave
gauges were placed in the vicinity of the float in order to meathe effective wave field, gener-
ated by the wave makers and oscillations by the device.it8atbntrol program was developed
in Simulink which was run on a different computer than the ased for the data acquisition.
The control algorithm was programmed in Matlab and send g¢octintroller via the Simulink
model. The unfiltered force and displacement signals wesedezed simultaneously through
the use of an A/D converter. The sample frequency was 100@Hhé& entire test runs. Down
sampling of the time series was applied whenever neededdier oo compare the results with
the numerical calculations.

3.2.2 Design parameters

The design parameters of the laboratory scaled model avensindTable 3.1. The applied scale
law is 20:1 compared to the prototype model located in Hahsth The shape of the buoy
corresponds to a Hemisphere where the sidewalls are §lighlhrged.

Table 3.1 Design parameters of the laboratory model.

Description: Symbol; Value: Unit;
Length of the float arm: L 0.680 m
Diameter of the float: D, 0.254 m
Lever arm initial: c 0.200 m
Piston displacement: I(t) var. m
Mass moment of Inertia: J 0.96 kgm?
Hydrostatic stiffness: Th 87.04 Nm
Added mass at infinitely high frequencies: j;° 0.41  kgm?
Water depth: h 0.650 m
Draught: d 0.104 m
Wavelength: A var. m
Eigenfrequency: Wn, 7.95 rad/s

3.2.3 Power-take off system

The wave energy absorber is equipped with an electric poaregmtor via a linear actuator based
on the electromagnetic principle. A linear movement, fdrbg the waves, generates a direct
electromagnetic force without the use of mechanical devéteh as cams, belts or gearboxes.
The motor consists of two main parts: the slider and the staitee slider is a precision assembly

that consists of a stainless steel tube, which is filled w&hdymium magnets. The stator, also
called the bearing of the slider, contains the positionsenand a microprocessor board.
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3.3 Sea states in the laboratory

Experimental tests on the point absorber have been camiiefboregular and irregular waves.
The waves were generated by the wave maker based on a Piecskowltz spectrum. For the
present analysis ten different irregular wave states amsidered. The waves are unidirectional,
two dimensional, longcrested waves. Two types of wavesraablyaed; the first five waves states
have a steepness ratio of 0.02 whereas the ratio for the dggonp is 0.04. An overview of the
tested waves is shown in Table 3.2.

The analysis of the wave gauge signals is performed withdfteare programme Wavelab,
(Wavelab 2012). It was found that the measured wave heighiteitank are slightly smaller than
the target wave heights. The measured periods howeverspomd rather good with the target
ones. It must be emphasized that the reliability of thg, andT), is small since they are based
on a short time series of approx. 300 sec. The measured laregave signals are used as input
in the numerical time domain model. Thus the accuracy of #reegated and measured waves
does not affect the comparison between the experimentalateat numerical calculation which
will be shown later.

Table 3.2 Measured significant wave heigh#$,,,o and measured peak perio%, total wave powerPyqve, Wave

steepneséf;#o, non dimensional performance index for the ten analyzedwtates. The absorbed power was measured
p

applying passive control by means of a linear damping caefffic optimized for each sea state

Wave stated H,0 | Tp | Puoave | 222 | 7

Ap

[m] | o] |W/m]| [-] | []

IRA1 0.027 | 0.8 | 0.374 | 0.02 | 0.53
IRA2 0.044 | 1.25 | 1.174 | 0.02 | 0.37
IRA3 0.062 | 1.3 | 3.137 | 0.02 | 0.20
IRA4 0.080 | 2.5 | 6.024 | 0.02 | 0.19
IRA5 0.12 | 3.0 | 14.42 | 0.02 | 0.13
IRB1 0.055 | 0.85 | 1.520 | 0.04 | 0.52
IRB2 0.090 | 1.30 | 5.287 | 0.04 | 0.32
IRB3 0.115 | 1.35 | 10.83 | 0.04 | 0.23
IRB4 0.155 | 2.5 | 22.89 | 0.04 | 0.17
IRB5 0.232 | 3.0 | 51.36 | 0.04 | 0.12

The wave excitation moment is computed from the solutiorhefradiation problem. The
latter relation is also known as the Haskind relation (HagkL953) and is considered to be
computationally efficient because a single radiation smtu¢an be used to compute the excit-
ing moment for multiple angles of wave incidence withouvgtd any additional hydrodynamic
problems. In order to calculate the exact incident wavetatton moment, the undisturbed wave
field at the center of the float had to be measured.

In a next step the same waves were run when the float was fixée &iquilibrium posi-
tion. In this configuration the wave excitation moment wasasuged by a load transducer and
compared with the wave excitation based on the linear waweryh For moderate sea-states
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wave excitation moment and the measurement are almost fach@greement, see Fig. 3.2.
For steeper waves, where partial submergence and oventpppithe float was observed, the
force sensor was unable to measure the signal accuratellfjge3.3. The numerical excitation
moment was calculated by means of a convolution integrad. fbhowing linear relationship is
assumed:

M, = /0 e (t = 7)1l (£)dT (3.1)

wheren,, (t) is the measured wave elevation at the position of the flodthanis the linear
impulse response function of the excitation moment.

Measured moment
Numerical calculation Eqn. 1|

Measured moment
Numerical calculation Eqn. 1 200\

M, (0 (Nm)
M, (0 (Nm)

-15 \ J

20 21 22 23 24 25 20 21 22 23 24 25
Time (s) Time (s)

Figure 3.2 Measured moment by the load cell when Eigure 3.3 Measured moment by the load cell when the
device is fixed compared with the calculated wave exd®vce is fixed compared with the calculated wave excitation
tion moment based on the measured wave elevations mioement based on the measured wave elevations when the
the float was taken out of the water in moderate sea dtatd,was taken out of the water in extreme séRB5 :
IRA4 : Hpo = 0.08m, T, = 2.5sec. Hpo = 0.232m, T, = 3.0sec.

3.4 Optimal damping coefficient

In the previous chapter a stochastic analysis of the wave B&s been presented. It was dis-
cussed that the maximum power can be extracted from the wawes the device oscillates in
resonance with the incoming wave excitation process. Thetias well as the output were as-
sumed to be a stationary process. Assuming that the devaikates in resonance with the
incoming wave frequency, the optimal damping coefficientdmes a function of the auto-
correlation coefficient function of the wave excitation pess and the impulse response function
of the radiation force.

In this section the equations in chapter 2 will be appliedtii@rwave states which are an-
alyzed in the laboratory, see Table 3.2. The calculatiomefaptimal damping coefficient for a
given irregular wave state based on Eqn. (2.65) requirearhdysis of the wave elevation time
series.

The signal shown in Fig. 3.4 corresponds to the wave elavatithe center of the absorber
when measured without the absorber in the water. A FFT aisalysarried out using a home
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made function which returns the power spectrum as a fundiitihe angular frequencay. The
analysis is carried out for all the measured wave elevatgmass, see Fig. 3.6 to Fig. 3.24. One
of the main features of the FFT analysis is the conservati@mergy of the original time series.
The energy in the signal can be expressed by the varianceatitefFFT spectrum it is the area
under the curve, i.e. the zero’th moment. The calculateinee and zero’th moment are listed
in Table 3.3. In order to smooth the power spectrum the WAFEkage has been used which
has an inbuilt function for performing FFT with a desired ambof smoothing. The smoothing
is controlled by the parameter L (maximum lag size of the wimdunction). For lower values
of L, increased smoothing is applied. For each of the terfit power spectrums two different
smoothing parameters have been applied, i.e. L=300 andQG:18n top of the three power
spectrums which were based on the measured data sets, @nReoskowitz spectrum has been
plotted in order to compare the discrepancy to the targetevalt was found, that the variance
of the wave signals in the tank is remarkably smaller tharitireretical one. This problem has
already been discussed and is due to the fact that the satificave heights in the tank differ
from the target wave heights.

n(t) from IRB2 WG3

FFT without smoothing
FFT smoothed L=300
——— FFT smoothed L=1500
Pierson Moskowitz

n()

Spectral density

20 40 60 80 100 120 140 160 o 5 10 15 20
Time [s] ©lradis]

Figure 3.4 Wave elevation at the center of the float with@ijure 3.5 FFT with two different degrees of smoothing
the absorber in the water for a Pierson Moskowdt,o0 = compared to the non-smoothed FFT spectrum of the wave

0.092m, Tp = 1.25sec. elevation.
IRB2 WG3
Variance:| 4.6507 - 10~%
mo: 4.6502 - 104

Table 3.3 Variance of the time series and zero’'th moment of responsetisp

The optimal damping value is then calculated by means ofe@hasiic analysis. Based on
the frequency response functiéf,, .,y of the excitation moment, the auto-covariance function
can be calculated as follows:

o0

KM, M, (T) = / eiWTSI\,{eMC (w) dw = / eiw‘r|Hen (w)|2 Sm](w) dw (32)

where S,,,(w) is the equivalent to the power spectrum of the measured weaess a
smoothing factor of L=300 has been used, see previous pldts.auto-correlation coefficient
reads:
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paton, () = “2edtelT) 33)

2
O,

The optimal damping coefficient is then calculated as fodlowef. to Chapter 2.6:
o= [ paas, @y g(0) du (3.4)
0

Table 3.4 Evaluation of equation (40) for two different incident wawegles.

Strategy Ce Ce
[Nm/rad/s?) | [Nm/rad/s?]

90deg Odeg
IRA1 2.031 1.820
IRA2 1.601 1.356
IRA3 1.303 0.879
IRA4 0.948 0.668
IRAS 0.651 0.632
IRB1 1.975 1.799
IRB2 1.581 1.332
IRB3 1.280 0.864
IRB4 0.928 0.662
IRB5 0.651 0.665

The plots of the power spectrums of each wave state are shelaw.b

x10

FFT without smoothing
FFT smoothed L=300
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JONSWAP y=1.0
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Figure 3.7 Fastfourier analysis of IRA1 for different

Figure 3.6 Time series of IRAL. smoothing levels.
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Figure 3.9 Fastfourier analysis of IRA2 for different

Figure 3.8 Time series of IRA2. smoothing levels.
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Figure 3.10 Time series of IRA3.
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Figure 3.14 Time series of IRAS.
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Figure 3.11 Fastfourier analysis of IRA3 for different

smoothing levels.
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Figure 3.13 Fastfourier analysis
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Figure 3.15 Fastfourier analysis
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Figure 3.17 Fastfourier analysis of IRB1 for different

Figure 3.16 Time series of IRB1. smoothing levels.
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Figure 3.19 Fastfourier analysis of IRB2 for different

Figure 3.18 Time series of IRB2. smoothing levels.
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Figure 3.21 Fastfourier analysis of IRB3 for different

Figure 3.20 Time series of IRB3. smoothing levels.
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Figure 3.25 Fastfourier analysis of IRB5 for different

Figure 3.24 Time series of IRB5. smoothing levels.
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CHAPTER 4
Results

Contents:

¢ Defining control strategies A to D.

4 Annual power production at the test site in Hanstholm.

4.1 Control Strategies A-D

Four different control strategies are tested and are ddrageA, B, C and D. The aim is to
continuously approach the optimal situation where the veeitation force is in phase with the
bodys velocity. With each strategy an additional term isodticed in the control moment of
Eqn. 4.1 until the optimal is reached. The following tablensoaries the results when the device
is situated parallel to the incoming waves, i.e. @baleg incident wave angle. Time series are
shown for each strategy in the next chapters. The control @mbiin its general form is given
below:

M (t) = meB(t) + c.O(t) + keH(t) + b, / hs(t — T)0(T) dr (4.1)
A — Only the gain factor,. proportional to the velocity is varied, in a way that a maximu

electrical power can be absorbed by the generator. The cieeffis optimized for irregular
waves by considering a regular wave train with the peak gesfdhe spectrum.

B — The damping:. and the stiffness coefficients are varied. The power is maximized by
optimizing the coefficients with two variable optimizatioriterion.

C — The control moment involves a mass moment of inertja a stiffness coefficient. and a

damping coefficient.. The derivative gain factat, is determined by an optimality criterion
for the absorbed mean power of the control force under thengiea state.

— 43 —



44

Chapter 4 — Results

D — Strategy D involves all the four coefficients in the contrament, namelyn,, c., k. and
b.. Under this condition the applied control law enforces theasber into phase with the

wave excitation moment.

The table 4.1 show the results for three different contnaltegies, namely A, B and C
for four selected wave states. The results show clearlyttigagfficiency of the device can be
increased by a control strategy which enforces the float ¢dla® in resonance with the peak
period. The power productioni.®;, ; is always expressed as the net energy flow, i.e. the energy
which has been pumped into the system is subtracted fronm#itentaneous power production.

Table 4.1 Overview of the non-dimensional performance index, maxinmstantaneous mechanical power for: Strategy
A; passive control i.e. linear damping coefficient, StratBg reactive control with a linear negative spring stiffeesd
Strategy C; with a damping coefficient, negative spring andgative mass moment of inertia for the measured irregular

wave states (selection).

Measured waves: A B C
HmO [m] Tp [S] n ['] Pinst [VV] 7 ['] Pinst [W] U ['] Pinst [VV]
IRA1 0.031 1.0 | 0.53 0.6 0.6 1.0 0.8 2.8
IRA2 0.046 1.25( 0.37 1.2 0.7 9.5 0.9 14.7
IRB 1 0.06 1.0 | 0.52 2.3 0.62 5.1 0.88 20.2
IRB 2 0.09 1.25( 0.32 5.06 0.67 34.4 0.88 54.8
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4.1.1 Numerical results of each wave state
In the following, the numerical values are shown for eachenstate.
Table 4.2 Control strategies A-D: IRA1
IRAL me e ke be | Pabs | 0 | Pine | et | ot
[Nm/rad/s?] | [Nm/rad/s] | [Nm/rad] | [-] | W] |[-]| W] | [ [-]
A 0 4.0 0 0 [ 0.051|{ 05| 0.6 11 3.8
B 0 3.0 -31.9 0 [ 0.060 |06 1.0 17 3.9
C -1.0 2.2 -71.4 0 (008108 2.8 34 3.9
D -0.96 2.0 - 0008709 —
Table 4.3 Control strategies A-D: IRA2
IRA2 me Ce kc bc Pabs n Pins 1;;:;: ];\2227:
[Nm/rad/s?] | [Nm/rad/s] | [Nm/rad] | [[] | W] | [-] | (W] | [l [-]
A 0 4.0 0 0(010|03| 1.2 | 115 3.8
B 0 2.0 -51.4 0(023]|07]| 95 | 41.6 4.2
C -1.1 2.0 -79.2 0(029]|09]14.7 | 49.6 4.0
D -0.96 1.6 -76.6 0(03]11] —
Table 4.4 Control strategies A-D: IRA3
IRA3 me Ce ke | be | Pavs | 0 | Pins | Bz | gpine
[Nm/rad/s?] | [Nm/rad/s] | [Nm/rad] | [[] | W] | [=]| W] | [ [-]
A 0 9.0 0 0 (018 02| 19 | 121 3.8
B 0 2.0 -61.82 0 | 0.64]| 0.8] 28.07| 43.54| 3.9
D -0.96 1.3 - 0089 1.2 —
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Table 4.5 Control strategies A-D: IRA4

IRA4 me Ce ke | be | Pavs | 0 | Pins | et | et
[Nm/rad/s?] | [Nm/rad/s] | [Nm/rad] | [ | W] | [=] | W] | [ []
A 0 15.0 0 0029|0.19| 40 | 13.6 3.4
B 0 1.0 -72.5 0|(242] 16 | 435 | 180 4.5
D -0.96 0.95 - 0314 20 —
Table 4.6 Control strategies A-D: IRA5
IRAS me Ce kc bc Pabs n Pins Pi;ll: ]}\22:::
[Nm/rad/s?] | [Nm/rad/s] | [Nm/rad] | [-] | W] | [-] | W] | [] []
A 0 25.0 0 0| 059|014 84 | 141 4.8
A 0 1.0 -77.7 0 | 11.30| 3.13| 2310| 204 | 3.85
D -0.96 0.595 - 0| 169 | 4.6 —
Table 4.7 Control strategies A-D: IRB1
IRB1 me e ke [ be | Paps | n | P | Do | T
[Nm/rad/s?] | [Nm/rad/s] | [Nm/rad] | [-] | W] | [=] | W] | [] []
A 0 4.0 0 0 {020 053] 23 | 141 4.8
B 0 3.0 -31.4 0 | 025|062 51 | 205 4.5
C -1.1 1.97 -76.4 0 | 0.34] 0.88( 20.18| 59.1 5.1
D -0.96 1.97 - 0 |036]092| -
Table 4.8 Control strategies A-D: IRB2
IRB2 me Ce kc bc Pabs n Pins 1;;:[: %
[Nm/rad/s?] | [Nm/rad/s] | [Nm/rad] | [-] | W] | [=] | W] | [] []
A 0 7.0 0 0 [ 0.44]0.33| 5.06 | 134 4.3
B 0 2.0 -51.4 0 | 0.90]| 0.67| 34.4 | 38.0 3.8
C -1.1 1.97 -76.4 0 | 0.34] 0.88( 20.18| 59.1 5.1
D -0.96 1.6 - 0| 1.3]096| -
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Table 4.9 Control strategies A-D: IRB3
Pinst Alc,inst
IRBS me Ce kc bc Pabs n Pins Pobs m
[Nm/rad/s?] | [Nm/rad/s] | [Nm/rad] | [1 | [W] | [=] | W] | [ [-]
A 0 7.0 0 0 |064]0.23]| 6.75| 11.0 4.0
B 0 2.0 -61.9 0 | 2.33]0.85| 152 | 65.3 4.0
D -0.96 1.3 - 0| 33118 —
Table 4.10 Control strategies A-D: IRB4
IRB4 me Ce kc bc Pabs n Pins % H
[Nm/rad/s?] | [Nm/rad/s] | [Nm/rad] | [] | [W] | [=] | W] | [] [-]
A 0 15.0 0 0| 1.12)0.19| 11.3|10.13| 4.0
B 0 2.0 -69.5 0 | 8.37|1.44| 579 69 4.0
D -0.96 0.93 - 0 |11.9]205| —
Table 4.11 Control strategies A-D: IRB5
IRB5 me e ke be | Pabs | | Pins | Bzt | Tt
[Nm/rad/s?] | [Nm/rad/s] | [Nm/rad] | [-] | W] | [-] | W] | [ [-]
A 0 20.0 0 0 | 202]0.15| 32.7| 16.2 5.2
B 0 20.0 0 0 | 2.02]0.15| 32.7| 16.2 5.2
D -0.96 0.93 O |48.7]|3.73| —
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4.1.2 Strategy A - Time series

For this control strategy only the gain factgrproportional to the velocity is varied, in a way
that a maximum electrical power can be absorbed by the gemefBhe optimization ot is
done for ten different irregular wave states. Figure 4.2Figd 4.1 show the time series for one
irregular wave state with a wave height&f,, = 0.055m and a wave period df,, = 0.85sec
i.e. IRB1. Note that the instantaneous peak of the mechlaeneagy is approximately 2.3 [W]
compared to an average power of 0.2 [W]. The load factor isiddfas the average power divided
by the instantaneous peak power. Thus, a load fact@sfcan be calculated for this wave state.

The capture width ratio for this wave statenis= 0.53. The average power in function of
the damping coefficient are shown in Fig. 4.3 and Fig. 4.4 amdpared with the experimental
data from the tests. For the passive damped case the compheasveen the numerical and ex-
perimental tests are in very good agreement. The buoysagdispient is shown in Fig. 4.1. The
maximum rotational angle is 0.1089 rad. This correspondsvertical displacement of 0.0523
m which is smaller than the draft of the float. Hence the floatosexpected to rise out of the
water thus the linear model may be applied.

Next, the velocity and the excitation force are comparedviar wave states. For the first
case the peak period of the waves is close to the naturalcpefite oscillator thus the velocity
and the excitation force is almost in phase without apply@agtive control, see Figu. The
power absorbtion is maximized in this situation. For theosecwave state the peak period is
higher than the natural period which leads to a small phafteo$the velocity and the excitation
force, see Figure 4.6.

~
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Figure 4.1 Strategy A, blue line corresponds to the free

float, whereas the red line is the passive damped oscil Ca't%fi ;\lffn /it;f;\lt/esgykA,_p%wgr, ie%d?s;i moment,. = 0,
me =0,cc =4Nm/rad/s, ke = 0, be = 0, IRB1 c= v ke = 0,0c =0,
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Figure 4.3 Average power in function of the damping deigure 4.4 Average power in function of the damping co-
efficient, comparison between numerical model and expéicient, comparison between numerical model and experi-
mental results - IRB1 mental results - IRB2
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. - . Ing - passive optimal control, velocity and excitationder
is almost the same as the natural period, velocity and excita
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Annual energy production for a discrete number of wave state S

The annual energy production (AEP) is calculated for thedttasim wave conditions. A se-
lected number of wave states are considered for this caionlae. the standardized wave states
describing the energy content in the Danish seas. Tableigld@sed on a review of the existing
data on the wave condition at Hanstholm harbour, Ref. (Mexiihi 2012).

The wave states are Froude-scaled with a model parameteP@f The water depth in
Hanstholm where the device is located is approximately 8 rareds the water depth in the
laboratory is at 0.65 m. The annual energy production of aleratory model considering an
incident wave angle dd0 deg is 0.54 [W]. For a full scale model the annual energy output pe
float is equal to 19 [KW]. This value is an upper bond becausgtbe favorable incident wave
angle is considered in the calculation. In reality the wames3D. Table 4.12 gives the results
of the analysis for the given wave states. The irregular Seres were calculated based on a
Pierson Moskowitz spectrum. The damping value is optimfee@ach irregular wave state by a
simple optimality criterion and is listed in the last coluwirthe table.

It can be seen that the damping coefficient does not vary deradbly with the peak period
resulting in a very flat power curve. The last wave state isd@meme event for which the device
will not be in operation.

Table 4.12 Performance calculation for the standardized wave statdarstholm harbour, control strategy A, selected
wave states.

Selected wave statdsH,,o | T, | Pprob. | Pabs f&ﬂ;[} Pabs * Prob. Copt
Hanstholm m | s | = | | W] [Nm/rad/s?]
1 0.045 | 1.051 | 0.545 | 0.242 | 0.026 0.13 4
2 0.075 | 1.163 | 0.182 | 0.658 | 0.036 0.11 4
3 0.100 | 1.230 | 0.107 | 1.167 | 0.043 0.12 5
4 0.125 | 1.319 | 0.052 | 1.790 | 0.047 0.08 5
5 0.150 | 1.431 | 0.027 | 2.460 | 0.049 0.05 6
6 0.190 | 1.610 | 0.018 | 3.577 | 0.052 0.05 7
7 0.260 | 1.901 | 0.001 — 0.055 0 —
Total AEP 0.54
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Annual energy production for a full scatter diagram

The annual energy production is calculated for the fulltecatiagram at the Hanstholm test site.
The applied control strategy is simple and efficient i.e.spa&sdamping has been applied. The
damping coefficient is optimized for each irregular wavéesta

In Fig. 4.7 the optimal damping coefficient is given in thetfaslumn for each peak period
of the scatter diagram. The red numbers indicate the watesdiar which the linear numerical
model is not appropriate to calculate the dynamical resparfighe float. In other words the
experiments have shown that the linear fluid-structurerapsion is only valid for a steepness
factor smaller than 0.05. The maximum wave height for whiatrgy can still be produced is
3.5 m. For wave states above this level the structure entgrsiprotection mode.

The annual energy production for the laboratory model is@amately 0.58 [W]. Note that
this value is approximately the same as we have found in ta@qurs calculation however the
computational burden is much higher when considering alliave states in a scatter diagram.
In this calculation the damping coefficient has been op#ahiior each peak period of the scatter
diagram. Keeping the damping coefficient constant at a \@i@Nm/rad/s, for instance, would
reduce the the annual power production to about 0.5442 [@/]minus 7 % compared to the case
where the damping coefficient is changed to each each wai@lpé&rhe power matrix for the
situation where the damping coefficient is held constarti@své in Figure 4.10. The difference
is visible in the maximum value of the power production irdéxd at the colorbar on the right
hand side.

Scale 1:20 c_opt [Nm/rad/s 2]

HmMO/AmO 9 9 7 5 4 4 4 5 5 6 7 8 9 9 9 10 13 14 15 16 17
Hm0 - Tm01 025 056 067 078 08 101 1,12 1,23 1,34 145 157 168 1,79 190 201 212 224 235 246 2,557 3,58
0,01 006 o001 001 001 001 0,00 000 000 0,00 000 000 000 000 000 000 000 000 000 000 000 0,00
0,03 0,31 006 0,04 003 002 002 002 001 001 001 001 001 001 001 001 001 001 001 001 000 0,00
- 0,05 051 0,10 0,07 005 004 003 003 002 002 002 002 001 001 001 001 001 001 001 001 001 0,01
—8 0,08 082 016 0,11 0,08 0,06 005 0,04 0,04 003 003 002 002 002 002 002 002 002 001 001 001 0,01
% 0,10 1,02 020 014 0,11 0,08 0,06 0,05 004 004 003 003 003 003 002 002 002 002 002 002 0,02 0,01
g 0,13 1,33 027 019 0,14 0,11 0,08 007 006 005 004 004 004 003 003 003 003 003 002 002 002 0,02
- 0,15 1,54 0,31 0,21 0,16 0,12 0,10 0,08 0,07 006 005 005 004 004 004 003 003 003 003 003 002 0,02
0,18 1,84 037 02 0,19 0,15 011 00s 0,08 007 006 006 005 005 004 004 004 003 003 003 003 0,02
0,20 2,05 041 0,23 0,21 0,16 0,13 0,10 0,09 008 007 006 006 005 005 004 004 004 004 003 003 0,02
° 0,23 2,35 047 0,33 0,24 0,19 015 0,12 0,10 009 008 0,07 006 006 005 005 005 004 004 004 004 0,03
B 0,25 256 051 0,36 0,26 0,20 0,16 0,13 0,11 0,10 0,09 008 0,07 006 006 006 005 005 005 004 004 003
g 0,28 2,87 057 040 0,29 0,23 0,18 0,15 0,12 0,11 0,10 009 0,08 007 0,07 006 006 00 005 005 0,05 0,03
E 0,30 3,07 061 043 032 024 019 016 0,13 0,12 0,10 0,09 0,08 0,08 007 0,07 006 006 00 005 005 0,04
0,33 3,38 0,67 047 0,35 027 021 0,17 015 013 0,11 0,10 009 008 0,08 007 007 006 006 006 005 004

Figure 4.7 In the matrix above the steepness factors are indicatechfilr wave state of the scatter diagram.

Influence of the non-linear hydrostatic behavior on the AEP

The influence of the non-linear hydrostatic restoring motepractically negligible.

4.1.3 Strategy B - Time series

The damping:. and the stiffness coefficienks are varied. The two coefficients are optimized
for each wave state by maximizing the average power absorbtihe average power is increased
by 20% from 0.2 [W] to 0.25 [W] compared with the control Strategy@n the other hand the
load factor decreases to 0.049. Note that the instantapenuer P(t) can be negative, see Fig.
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Figure 4.8 Power production for a linearly damped systétigure 4.9 Probability of occurrence for Hanstholm scatter
damping coefficient is optimized for each wave state. diagram.

Power production

Power production [W] 0.2 ‘ '
05 1 15 2

w]
} . 45
} 4
. v 35
: 35
’ 3
- 3
25 )
! 25
2 : 2
X 15 : 15
! i 1
’ 0.5 05
} 25 3 35
05 1 15 2 25 3 35
T

Figure 4.10 Power production matrix for the case wht'e:r'gure 411 Power production matrix for a linearly damped
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4.25 indicating that energy is feed into the system. The tegapring stiffness must be taken
into account for the calculation of the average power, this ieasonable to talk about a net-
energy from the point on when power is feed into the systene. sthiface plots below show the
optimum average power in function of the two control pararefor the different wave series.
The increase in power production is considerably highen foathe previous waves i.e72%,
the load factor decreases and is now 0.01587%). Note the two different shapes of the power
surface. For peak periods away from the natural period thfaseiturns out to be more peaky.
The negative pto-stiffness increases due to the fact tha¢ mergy is needed to force the os-
cillator to resonate with the incoming waves. The optimahgang coefficient decreases. The
two latter facts are relatively disadvantageous for thesgmewave energy converter. Reactive
control applied to a point absorber results in a system wisitiighly sensible to changes of the
optimal control coefficients. A small change of the ptofsttsk,. will significantly reduce the
power for the situation where the wave period is away fronmideiral period. If the peak period
is close to the natural period the power surface plot is mom@othed.
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Hence, it is important to know for what purpose reactive paris applied. A differentiation
could be as follows: i) in the first case one could be intetkstenaximizing the power for each
wave state, on the other hand it could be beneficial to chosseategy to maintain a constant
capture width ratio, lets say for the majority of the waveaestaby changing the natural period of
the system. It is probably clear that, applying a negativingps always connected with feeding
in electrical power. Another method could be to passivenge the mass moment of inertia by
introducing a moveable mass a long the brace arm.

The load factor compared with other renewable energy tdoies is normally in the range
of 0.1 -0.6. For WEPTOS, a load factor of 0.3 was measurechduank testing, assuming
constant/linear damping.

X: -30.91

X: -54.09
Y2

2:02275

Figure 4.12 Average power in function of the damping aRdjure 4.13 Average power in function of the damping and
the stiffness coefficient - IRA1 the stiffness coefficient - IRA2

Power

0
-100

Figure 4.14 Average power in function of the damping ahtgure 4.15 Average power in function of the damping and
the stiffness coefficient - IRA3 the stiffness coefficient - IRA4
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Figure 4.18 Average power in function of the damping aR@jure 4.19 Average power in function of the damping and
the stiffness coefficient - IRB1 the stiffness coefficient - IRB2
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Figure 4.20 Average power in function of the damping aRdjure 4.21 Average power in function of the damping and
the stiffness coefficient - IRB3 the stiffness coefficient - IRB4
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Figure 4.22 Average power in function of the damping aRdjure 4.23 Average power in function of the damping and
the stiffness coefficient - IRB5 the stiffness coefficient - IRB5
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Figure 4.24 Average power in function of the damping ahigure 4.25 Strategy B,m. = 0, cc = 3Nm/rad/s,
the stiffness coefficient - IRB5 ke = —31.94Nm/rad, b, = 0, for the waves IRB1
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Annual energy production applying reactive control

In this section the energy production is calculated by iditig a reactive control strategy. The
spring stiffness is calculated for each peak frequency lvhgpears in the scatter diagram. This
control strategy enforces the motions of the WEC to be in @hath the incoming waves without
the need for wave prediction. However the control strategyiil considered to be linear as long
as no amplitude or force constraints are implemented.

It must be noted that by introducing a force or amplitude tast the oscillator becomes out
of phase again and the energy production is reduced. On tiee loand if there are no force or
amplitude constraints, the displacementsi.e. the ratatidgll become too high and the float will
rise out of the water and hence the linear fluid-structuratdtion would not be valid any more.
In the following two graphs the velocity and the wave exaitatforce are compared for two
different control strategies: i) In the left graph, reaettontrol has been applied, the damping
and stiffness coefficient were optimized for the particulave state i.e. for a peak period of
T, = 1.45sec. by a two-parameter optimization algorithm, the calculatitas shown that the
optimal control parameters are; = 2Nm/rad/s andk. = —49.3Nm/rad. These values may
change slightly if the intervals of the the optimizationaiighm is refined. Note that the velocity
and excitation moment is almost in phase. ii) on the righe $lté situation is somehow more
unfavorable regarding the energy absorbtion. Only pasiweping is applied, i.e. no reactive
control, the velocity and the excitation moment are out ciggh The amplitude of the velocity
is approximately three times smaller than in the previoss ¢a
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Figure 4.26 The blue curve 1 the veloc_:lty_ of the bu@(%ure 4.27 Velocity and wave excitation moment out of
whereas the green curve is the wave excitation momenth I-

vided by a factor of 3.H,,0 = 0.05m, T, = 1.45secP aseHmo = 0.05m, Tp = 1.45sec, applying passive
applying reactive controlP,,. = 0.541W. control, Poye = 0.2714W.
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Figure 4.28 Average power matrix applying reactive con-

trol including a PTO-load constraint, the annual energy pigure 4.29 Instantanous maximum peaks for each wave
duction is estimated to b@&6103W, i.e. an increase of 1dtate - no constraint.
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4.1.4 Strategy C

We assume that the wave excitation momeit¢) is completely observable from measurements
of the sea-state elevatiojft), the following sub-optimal control law was implemented:

M (t) = —J 6(t) + 2¢. O(t) — RO(2) (4.2)

wherem,. = —J, ¢, replaced byc,, k. = —R. The derivative gain factdr, is determined
by an optimality criterion for the absorbed mean power ofdbetrol force under the given sea-
state:

o= [ oran ()bl d (4.3)

pu. . (T) denotes auto-correlation coefficient function for the wexeitation moment, cf.
Eqn.(61).
The average power becomes:

1 (T . . .
Pabs = 7 /0 (mcO(t) + cO(t) + kO(t))0(t)dt (4.4)

In Figure 4.30 the velocity is plotted in blue and the waveitaion force is plotted in red.
The velocity of the float is nearly in phase with the excitatiorce. In this case a large amount
of wave excitation force can be transformed into electrgz@rgy. However still a small phase
difference is present.

<clearpage
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Figure 4.30 Velocity of the float in blue line and the wave excitation f@iio red line are in phase with each other.
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Figure 4.31 Strategy C,m¢ = —1.1, ¢, =Figure 4.32 Strategy C, m¢ = -1.1, c. =
1.97Nm/rad/s, ke = —87.04Nm/rad, b. = 0, for the1.97TNm/rad/s, ke = —87.04Nm/rad, b. = 0, for the
waves IRB1 waves IRB1
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4.1.5 Strategy D

Strategy D involves all the components in the control monmamelym. = —J, c. is replaced
by 2¢c., k. = —R andh_4(t) = —h,4(t). The derivative gain factokc, is determined by an
optimality criterion for the absorbed mean power of the parforce under the given sea-state,
see Eqn. 3.4. Under this condition the applied control lafees the absorber into phase with
the wave excitation moment.
The optimal damping value is calculated by means of a sttichasalysis of the given wave
elevation data.
For practical applications optimal control comes alondwitiiet a number of uncertainties. First
of all the prediction of the incoming waves is difficult to abt and for most cases inaccurate
when dealing with real-sea waves. For the present case n@finformation of the wave state
is required which indicates that the control strategy issehuFor the case where the float is
oscillating close to its resonance period the motion rotatf the brace is very large and may
be unrealistic. In reality the displacement and the powke @ff force is restricted by i) the
geometry of the device and ii) characteristics of the poake Dff system.
In (Li 2011) an end-stop system is included which limitates heave displacement at a certain
level. The method which is used is as simple as introduciraglesn stiffness-damper system
on top of the power take off which is able to damp the extrem#ans. By applying reactive
control a very high pto force is required. The generatedf@®often much higher than the linear
generator can provide thus the pto force needs to be restrict well. The paper of (Li 2011)
describes a simulation of the reactive causal control wigpldcement limits and then a method
of choosing an appropriate limit on the available power taffdorce. The model is build in
Simulink.

The numerical values for Strategy D for all the ten wave state given in Table 4.14.

Table 4.13 Control strategy D, resonance condition

Strategy Me Ce k. be || Peopt ccjs Puave n

C [Nm/rad/s?) | [Nm/rad/s] | [Nm/rad] | [-] (W] | [Nm/rad/s] | W/m] | [-]
IRA1 -1.36 2.026 -86 1 || 0.0872 2.014 0.47 | 0.729
IRA2 -1.36 1.601 -86 1 ]| 0.3273 2.626 1.30 | 0.995
IRA3 -1.36 1.300 -86 1 || 0.8898 1.323 2.73 |1.281
IRA4 -1.36 0.951 -86 1 || 3.140 0.929 7.94 | 1.557
IRAS -1.36 0.595 -86 1 || 16.925 0.616 30.48 | 2.186
IRB1 -1.36 1.971 -86 1 || 0.3567 2.014 1.88 | 0.746
IRB2 -1.36 1.579 -86 1 || 1.2858 1.626 5.18 | 0.976
IRB3 -1.36 1.276 -86 1 3.265 1.323 10.94 | 1.175
IRB4 -1.36 0.932 -86 1 || 11.916 0.929 31.75 | 1.478
IRB5 -1.36 0.651 -86 1 || 48.659 0.616 115.25 | 1.662
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Insertingo3, = s, ar, (0) into equation of the autocorrelation function we get théoio
ing expression for the optimal power absorbtion:

_ 1 o0
Propt = ” /0 |H€n(o.;)|2 S (w) dw (4.5)

A reformulation of the equation introduced in Chapter 2 gitlee following equation to
express the non dimensional performance index. The nual@dtues are given in Table 4.14.

L )P d
deepgD [ cq(w)dw

(4.6)

x10

¢ (w) [m/s]

9

0 10 20 30 40 50 0 10 20 30 40 50
o [rad/s] w [rad/s]

Figure 4.35 Excitation momente,, (w)? Figure 4.36 Group velocityc,

Table 4.14 Control strategy D, resonance condition

Strategy| Fopr | 07 | 7
D W] | [-] [-]

IRA1 0.087 | 0.917 | 0.6815
IRA2 0.327 | 1.098 | 0.8624
IRA3 0.890 | 1.117 | 1.0614
IRA4 3.140 | 2.052 | 1.4519
IRAS 16.92 | 4.621 | 2.3207
IRB1 0.357 | 0.924 | 0.7005
IRB2 1.286 | 0.957 | 0.8745
IRB3 3.265 | 1.187 | 1.0821
IRB4 | 11.916| 2.050 | 1.4815
IRB5 | 48.659| 3.730 | 2.1210
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Numerical time integration methods
for a point absorber wave energy converter

A.S. Zurkinden' & M.M. Kramer
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Department of Civil Engineering,
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email: az@civil.aau.dk, mts@civil.aau.dk

Keywords: Wave energy converters, point absorber, time integration, state-space model, nonlinear
hydrostatic behavior.

1 Background

The objective of this abstract is to provide a review of models for motion simulation of marine
structures with a special emphasis on wave energy converters. The time-domain model is applied to a
point absorber system working in pitch mode only. The device is similar to the well-known Wavestar
float located in the Danish North Sea. The main objective is to produce a tool that can accurately
simulate the dynamics of a floating structure with an arbitrary geometry provided the frequency
domain coefficients are calculated beforehand. The latter calculation is based on linear fluid structure
interaction (small deformations of the fluid surface and body), inviscid incompressible, irrotational
flow and a linearized Euler-Bernoulli formulation of the fluid pressure.

The time-domain analysis of a floating structure involves the calculation of a convolution integral
between the impulse response function of the radiation force and the unknown body velocity due
to an external force. The convolution integral can be seen as a memory effect where the system
response in the past affects the response in the future. Two different time-domain models will be
presented. The first one is based on a discretization of the convolution integral. The calculation of the
convolution integral is performed at each time step regardless of the chosen numerical scheme. In the
second model the convolution integral is replaced by a system of linear ordinary differential equations.
The formulation of the state-space model is advantageous regarding the computational effort and the
robustness of the solver. Another important feature is the linear-time invariance of the system. In
a next step the influence of the nonlinear hydrostatic behavior of the float is investigated by using a
simplified formulation.

2 Problem formulation

2.1 Truncation of the convolution integral

The equation of motion for the analyzed geometry can be formulated by a momentum equilibrium
condition around the fixed point, see Fig. 1, which leads to the following equation:

(Mys + agy)pa(t) + /o Kua(t — 7)pa(7)dT + Caaipa(t) + Ppa(t) = /OO ha(t — T)n(t)dr (1)

— 00

Pitch @4(t) is the corresponding degree of freedom around the bearing, indicated with the indices
i =4, j = 4. My corresponds to the mass moment of inertia, a3y is the added mass at infinite
high frequencies, K44(t) is the impulse response function of the radiation force, Cyy is the hydrostatic
stiffness coefficient, cP!® is a constant damping coefficient, representing the linear power take off
system, h4(t) is the impulse response function of the excitation force and 7(t) corresponds to the

Ipresenting author



surface elevation. The impulse response function of the radiation force can be seen as the system
identity. If we know the response to an impulse, then we know the response to any excitation by
convolution with the impulse response function. The basic work for this formulation of the problem
was laid by W.E. Cummings (1962) [1]. The convolution integral in Eqn. 1 can be expressed by means
of a sum:

/0 Kua(t = 7)pa(T)dr = At Y " Kaa(t — 7)a(7) (2)

7=0

Expanding the sum in Eqn. 2, we get the following expression:

t

At Z Kyt — T)gb4(7') = At[K44(t)gb4(0) + Kt — 1)(/74(1) + ...+ K44(0)<,b4(t)] (3)
7=0

The equation of motion can then be written:

o0

h4(t—T)77(t)dT—/0 Kyy(t—7)pa(7)dr
(4)

The numerical integration of Eqn. 4 only requires the calculation of the integral at the preceding
time-steps and can therefore be considered as a known quantity. A fourth order Runge Kutta scheme
with a constant time step At has been used to evaluate the linear equation of motion given in Eqn. 4.
Drawbacks of this method are i) time consuming i) the convolution integral needs to be calculated
at each time step iii) the impulse response function needs to be interpolated with the same At as
the time integration, which is not very convenient. The results are shown in the last page of this
abstract. Fairly good agreement can be observed when comparing the numerical discretization of the
convolution integral with an analytical calculation for regular waves, i.e. when a constant damping
coefficient can be assumed.

(Mas+a33)Ga(t)+ Kaa(0)pa(t) +Caapa (t) + P pu(t) = /

— 00

2.2 Rational approximation to the radiation force

In this section a method is applied to circumvent the drawbacks of the discretization, presented in the
previous chapter. The convolution integral is replaced by an equivalent system of coupled first order
differential equations, which are solved along with the equations of motion of the absorber, S.R.K
Nielsen [2]. The method is based on an initial replacement of the actual frequency response function
of the floating body H,,,(w) which was calculated by the software WAMIT, [3]. The approximating
rational function is given in the form

(5)

P(s)  pos™ '+ pi1s™t + L+ Dmos .
~ = S = W
Q(s) P4+ qs" T+ 4 g

The unknowns are the coefficients of polynomials P and Q. The parameters pg, p1,..., Pm—1 and qo,
q1,---, qn denotes the poles and the zeros of the rational approximation and are all real. The order
of the filter as given by the pair n, m may be chosen freely with the only restriction that m < n.
A rational causal approximation for H,,, can be obtained by the MATLAB control toolbox [4] or
the MSS FDI toolbox [5]. Next, the convolution integral is approximated with the product of the
constants pg, p1,--., Pm—1 and the new unknowns i.e the additional state vectors I(t).



t
| Kult=nsu0hir~ [0 p1 e poea 110 )
0
where the time derivation of I(t) is given as follows:

1 2 3 (4n

1 —G2 —q 1
. 1 0 0 0 0| .
0 0 1 0 0
We are now able to approximate the convolution integral of the radiation force by inserting Eqn. 6
into Eqn. 1. As a result we end up in having a time-invariant system for the radiation force which is

advantageous regarding computational time and storage requirements.

o0

(Mag+aZ)da(t) + [ po p1 oo Pma ]I(t)+044w4(t)+cpt°¢4(t):/ ha(t —T)n(t)dr (8)

— 0o

2.3 Nonlinear hydrostatic behavior

The change of the hydrostatic pressure at each instantaneous position of the float below the water
plane can be characterized by taking into account a nonlinear hydrostatic behavior. This effect can
be observed at the two extremities of the red curve, see Fig. 2. On the upper left corner, the
float successively dips into the water and on the lower right end of the curve the float starts to
be fully submerged by the water. In between, the derivation of the wetted surface is small, hence
a linear approximation of the hydrostatic moment becomes justifiable. The red curve is a result
of experiments which were carried out at the Hydraulic Laboratory at Aalborg University. In the
following model a simplified formulation of the nonlinear hydrostatic effect is presented, where the
red curve is approximated by a piecewise trilinear curve, see Fig. 2. The nonlinear force is computed
by implementing a displacement control algorithm, i.e. it is assumed that the wave amplitude is zero
in the vicinity of the float.

—— Hydrostatic experiments
— = — Piecewiese linear approx.

Hydrostatic restoring moment [Nm]

-==_>

~20 i i i i i
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
@ Rotation around the bearing [rad]

Figure 2: Hydrostatic restoring moment,

Figure 1: Wawvestar lab model, froude scaled piecewise linear approzimation

1:20



3 Results: Wavestar float - lab model scale 1:20
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ABSTRACT

Currently, a number of wave energy converters are being an-
alyzed by means of numerical models in order to predict the-el
trical power generation under given wave conditions. A camm
characteristic of this procedure is to integrate the loagrfrom
the hydrodynamics, power take-off and mooring systemsainto
central wave to wire model. The power production then depend
on the control strategy which is applied to the device. The ob
jective of this paper is to develop numerical methods forionot
analysis of marine structures with a special emphasis onewav
energy converters. Two different time domain models are ap-
plied to a point absorber system working in pitch mode onhe T
device is similar to the well-known Wavestar prototype tedan
the Danish North Sea. A laboratory model has been set up in or-
der to validate the numerical simulations of the dynamicavaV
Excitation force and the response of the device for regutat a
irregular waves were measured. Good correspondence isdfoun
between the numerical and the physical model for relatinglgl
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Marco Alves
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to underestimate the response of the device due to its lihgdr
structure interaction assumption and linearized equattbmo-
tion. The region over which the numerical model is valid will
be presented in terms of non-dimensional parameters dBsgri
the different wave states.

1 Introduction

The idea of extracting energy from ocean waves is rela
tively old and many WECs have been proposed during the las
decades [1]. These have initiated commercial WEC projests u
ing devices such as different buoy concepts, Oscillatirgery
Column (OWC) plants like Pico [2], the Pelamis [3], overtop-
ping WEC types like the Wave Dragon [4], the point absorber
approach used for the SEAREV [5] and the Wave Star device [6]
see Fig. 1. Oscillating devices and notably point absorbans
stitute an important class of wave energy converters peatily
with regard to offshore deployment.

The main objective of this paper is to produce a tool that car

wave conditions. For higher waves the numerical model seems accurately simulate the dynamics of a floating structuré ait

1

Copyright © 2012 by ASME



arbitrary geometry provided the frequency domain coefficie efficiency of a wave energy converter can be considerably im
are calculated beforehand. The latter calculation is based  proved by adopting a more advanced control strategy [12fefWh

linear fluid structure interaction i.e. small deformatiaighe a point absorber is left uncontrolled, the simplest but pebway
fluid surface and body, inviscid incompressible, irrotatib to optimize the power-take-off is to tune the natural fragme
flow and a linearized Euler-Bernoulli formulation of the #ui to a characteristic frequency in the local sea state sucheas t

pressure. The time-domain analysis of a floating structure peak frequency in the wave spectrum at the site where theelevi
involves the calculation of a convolution integral between will be deployed. Maximum power transfer between the wave
the impulse response function of the radiation force and the and the device will occur, when the natural period of these-co
unknown body velocity. The convolution integral can be seen  cides, so the absorber is oscillating at resonance, [1urm this

a memory effect where the system response in the past affectsmeans the velocity of the absorber is in phase with the dimita
the response in the future whereas the corresponding impuls wave force at any time, and hence a maximum kinetic is sup
response function is causal. Two different time-domain et®d plied to the WEC. At excitation frequencies away the resopan
will be presented. The first one is based on a discretization frequency a phase difference is present, and the poweikeltta
of the convolution integral [7] and [8]. The calculation diet correspondingly reduced. Evans [13] pointed out in 197&ftita
convolution integral is performed at each time step regssll heaving bodies, operating in resonance with the natur&gef

of the chosen numerical scheme. In the second model the the waves may require negative applied springs due to the rel
convolution integral is replaced by a system of linear cadyn tive high inbuilt hydrostatic stiffness. Keeping this obgion
differential equations, [9] and [10]. The formulation ofeth in mind, the following suboptimal control law has been used.

state-space model is advantageous regarding the congmathti A feed-back force is introduced by the actuator to control
effort and the robustness of the solver [11]. Another imgairt the motions of the float in a way which maximizes the power ab-
feature is the linear-time invariance of the system. sorption. Reactive control is applied by means of a propoéti-

derivative (PD) control algorithm. For monochromatic watiee
optimal control law can be calculated in advance by maxingjzi
the power function [14]. The latter assumption is only valiten
the excitation force or at least its phase is known in advatce
each time step. For irregular waves, on the other hand, the oj
timal control becomes non-causal [14] and [16]. For thegmes
case a causal sub-optimal feed-back control law has bedieapp
which is based on the assumption that a wave energy convert
with favorable response characteristics in regular wavide
good in irregular waves as well. Thus the damping coeffisient
are optimized for a number of relevant sea states repregenti
the Danish Sector of the North Sea. A common characteriftic c
applying reactive control to a wave energy converter is that
motions of the device can be damped or accelerated, or a cor
bination of both by the feed-back force. In the latter case th
controller i.e. the generator force transmits energy ihtogys-
tem in form of negative spring stiffness whereas in the farme
case, energy is absorbed by the damping coefficient. Regar
less of the control strategy, any numerical model can sitaula
both cases with equal accuracy for the given range wherarline
fluid structure interaction can be adopted. When considenn
perimental tests or real sea tests the control situatioorbes
slightly more complex. By introducing negative springfsigfss

In order to compare the numerical results with measured the system becomes more sensitive to incoming waves hitteng
data, a laboratory model has been set up. The experimental de body. As a result, slamming or wave overtopping effects bccu
vice is to some extent a reproduction of the Wavestar prpty  more often. It is clear that these effects violate the assiomp
device which is located out in Hanstholm off the Northweststo in the numerical model stated above. However by introduaing
of Denmark. The model is scaled to a factor of 1:20 compared to negative spring stiffness the optimal damping coefficiemt be
the prototype. It consists of a float which is attached to am ar decreased, whereas the power production is increased doe to
and equipped with a linear power-take off system (PTO) based increase of the bodies’ velocity. Experiments on the pyqet
on the electromagnetic principle. It is well understood tiha have shown that the net energy production for the cases whe

FIGURE 1. WAVESTAR PROTOTYPE DEVICE, TEST SITE IN
HANSTHOLM, DENMARK
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negative spring stiffness was applied increased, [12]. Upper
limit of this control strategy lies in the stroke restrigtiof the
hydraulic cylinders or in the case of a linear generator tgy th
strokes in the slider and the stator.

The present results were carried out for zero spring stfmaly.

A more detailed study on the prototype applying negativangpr
stiffness can be found in [12].

2 The dynamic model

The equation of motion will be described for the single de-
gree of freedom point absorber, equipped with a linear power
take-off system, shown in Fig. 2. The lever arm is assumeéto b
infinitely rigid and is constrained to move around the fixethpo
A. The motion is positive in the counter clockwise directidime
equation of motion is obtained by formulating the momentum
equilibrium condition around point A:

) 110 R 11 L 1WA 11 V11 L 11

. t .
(Maa+ ag,) @u(t) + / Kaa(t — T)@u(1)dT + Caaqu(t) FIGURE 2. DEFINITION OF THE LABORATORY MODEL
70 o REPRESENTING THE WAVESTAR PROTOTYPE MODEL IN
+ Mc(t) = / hq,4(t — T)r](T)dT Q) HANSTHOLM, REF. FIG. 1, STATIC REFERENTIAL STATE
TABLE 1. NUMERICAL VALUES OF THE LAB MODEL
Pitch gu(t) is the corresponding degree of freedom around Description: Symbol:  Value:  Unit:
the bearing, indicated with the ind.icé&_ 4, j=4. M44.cor— . Mass of the float: my 2972 kg
responds to the mass moment of inertia around the fixed point
of the float mass and the lever araf;, is the added mass at Mass of the float arm: ma 0851 kg
infinitely high fre_quencied,<44_(t) is the impuls_e response fun(_:- Length of the float arm: L 0.680 m
tion of the radiation forceC,4 is the hydrostatic stiffness coeffi- .
cient,Mc(t) represents the control force moment from the power Diameter of the float: Do 0254 m
take-off systemhy(t) is the impulse response function of the ex- Lever arm initial: c 0.200 m

citation force andj (1) corresponds to the surface elevation of . .
the waves. In the following experiment two-dimensionaluag Piston displacement: I(t) var m

and irregular waves are considered, propagating in thdip®si Mass moment of Inertia: J 0778 kgn?
y-direction relative to(x,y, z)-coordinate system defined in Fig.

2. Hydrostatic stiffness: h 8600 Nm
The impulse response function of the radiation force carebe s Water depth: h 0.650 m
as the system identity. If we know the response to an impulse,

then we know the response to any excitation by convolutigh wi Draught: d 0104 m
the impulse response function. The basic work for this fermu Wavelength: A var. m
lation of the problem was laid by W.E. Cummins [17]. In the

following section two approaches will be compared to sohee t Eigenfrequency: GWh 7.95 rad/s
convolution integral in Egn.(1). PTO velocity gain: Ce var  Ns/m

2.1 Truncation of the convolution integral

The convolution integral in Eqn.(1) can be expressed by

means of a sum: m

/'t Kaa(t — T)@u(1)dT = At S Kaa((M— )AL gu(iAt),t = mAt
70 i=0  Copyright (©) 2012 by AS%)E



Equation (1) can be rearranged as:

(Mag + 85) @4 (t) + Kaa(0) g (t) + Caag(t) + Mc(t)

= [ ht-niydr- /Ot* Kealt—T)@(1)dT (3)

The right hand side of Eqn.(3) only requires calculation of
the integral at the preceding time-steps and can thereéocei-
sidered as a known quantity. A fourth order Runge Kutta sehem

freely with the only restriction that < n, and that all poles have
negative real part, i.e.

Repj) <0, ji=1,..,n @)

Eqn. (7) ensures that the filter $sableandcausal Corre-
spondingly, the indicated approach only applies to frequee-
sponse functions. A rational causal approximationHpy, can
be obtained by th®IATLAB control toolbox18] or theMSS FDI
toolbox[11]. Next, the convolution integrd¥; o(t) is obtained

with a constant time step has been used to evaluate the linearas output of the following system of differential equations

equation of motion given in Eqn.(3). The drawbacks of this
method are i) it is time consuming, ii) the convolution irag
needs to be calculated at each time step, iii) the impulgorese
function needs to be interpolated with the same time stepeaas t
time integration, which is not very convenient. In Fig. 4 two
independent solutions are given for the rotational displaent
subjected to irregular waves. Note that the damping coefftci
is zero for the sake of comparison of the two solvers.

2.2 Rational approximation of the radiation force
The radiation force mome, (t) is given, cf. Eqn. (1)

M (t) = —agaqu(t) —Mro(t) (4)

where

Mro(t) = /0 Kt~ T)gu(1)dT (5)

The idea in this section is to replace the convolution irdegr
by an equivalent system of coupled first order differentiplae
tions, which are solved numerically along with the equatioh
motion of the absorber. The method is based on an initiahoep|
ment of the actual frequency response funcﬁp@(w) with an

approximatingational functionlfir@(w) given in the form

_P(s) _ pos™+ p1S™ L+ 4 Pmo1S+ Pm N
B S+ 40 1S+ [
(6)
The unknowns are the coefficients of polynomials P and Q.
The parametergg,pi,---Pm-1,Pm and qi,...gn-1 qn define the
polesand thezerosof the rational approximation and are all real.
The order of the filter as given by the pair,if)) may be chosen

4

dmy dm—ly dy
Mro(t) = Pogm + PLggmes T+ Pm-1gp +Pmy (8)
dny dnfly dy .
gin TGt o Onerg Ty = () )

wherey(t) is an auxiliary variable, which cannot be related
with any physical interpretation. Eqn. (9) may be writteritie
following state vector form

Z:(t) = Arz:(t) + brgu(t) (10)
where:
oy ] roT
ay(t) 0
d2
e Yt 0
Z(t) = “‘2.() , b= (11)
n-2
gy 0
n-1
C?tn—l (t)_ _1_
0 1 0 0O O
0 0 1 0O O
0 0 o --- 0 1

—0On —On-1 —On—2 - —02 — Q1
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Similarly, Eqn.(5) may be written on the vector form

3 T T T T

Mr,o(t) =prz(t) (13)

Pr=[PmPm-1--- PLPoO - O (14)

By rearranging the equations above the equation of motion
can now be rewritten in a state space model as follows:

10 20 30 40 50
w [rad/s]

? FIGURE 3. RATIONAL APPROXIMATION TO Re(Hr@(w)) OF

Sa(t) = Azt) + | asamy /m hea(t—T)n(T)dT  (15)  ORDER(mn)— (4,5)
0 J —00

0.3

where
0.2
0.1r
@)
z(t) = | (D) (16) g °
Z (t) s -0.1
-0.21 H
-0.3 : : Discretization of convolution|. . 4
0 1 o 1 Rational approximation
C 1 . ‘ ‘ ‘ ‘ ; ‘ ‘
A=~ (M44i4af4) 0 - (Mag+agy) Pr (17) " ° 10 * Tin?: sl * % * 0
0 br Ar

FIGURE 4. COMPARISON OF TWO TIME INTEGRATION

In Eqn.(15) the control momeri(t) has been omitted. =~ METHODS FOR A JONSWAP SPECTRUNHs = 0.1m Tp = 2.19),
The method has been illustrated below for the absorber define 1) DISCRETIZATION OF THE CONVOLUTION INTEGRAL ii) RA-
in Fig. 2 with the numerical values in Tab. 1, using the rel- TIONAL APPROXIMATION OF THE CONVOLUTION INTEGRAL
atively low order filter(m,n) = (4,5). In Fig. 3 the resulting
frequency response function has been compared with the-corr 2.3 control moment

sponding target frequency response function calculatethey The control force momen¥l.(t) is work conjugated to the
BEM program WAMIT, [19]. Note that only the real part of the  ¢ontraction of the piston arm BC and is used to control the mo
frequency response function has been displayed, i.e th@tlyd  tjon of the WEC in a way that a maximum power outtake is ob-

namic damping coefficient of the float. The two time integmati  tained. The following rather general parameterized festkb
methods were compared with each other. A constant time step control law is presumed:

of At = 0.01s has been assumed for all the calculations. The

wave excitation force is calculated for a JONSWAP spectrum

with a significant wave height dfis = 0.1m and a peak period . : roo :

of T, = 2.1s, the peak enhancement factoryis- 3.3. It can be Me(t) = Mequ(t) + Cotu(t) + keu(t) + /700 heg, (t = T)eu(1) dt

seen from Fig. 4 that the time domain implementation based on (18)
a state-space and a direct convolution evaluation givdtsesti m. denotes the gain factor for the control force componen
similar quality. Similar results were found by [7]. proportional to the acceleration; signifies the gain factor for

5 Copyright © 2012 by ASME



the control force component proportional to the velocitd &g
denotes the gain factor for the control force componentqrop
tional to the rotational displaceme. In control theory the
force components proportional to the displacement and #ie v
locity are referred to as proportional and derivative colntre-
spectively.m. andk; may attain positive as well as negative val-
ues. c; is always positive in the present application. The last
term in Egn. (18) represents the weighted influence on the con
trol force of previous and future velocities. Accordinglye im-
pulse response function is not causal. It should be notitad t
for the practical implementation of the control law in theoex
imentsmg, k. and hc¢4 has been set to be zero for the present
investigation.

3 Description of the experimental setup

The geometrical device shown in Fig. 2 is represented by
a physical model shown in Fig. 6. The wave energy absorber
is equipped with an electric power generator via a linear ac-
tuator based on the electromagnetic principle. A linear eaov
ment, forced by the waves, generates a direct electromagnet
force without the use of mechanical devices such as cants, bel
or gearboxes. The motor consists of two main parts: therslide
and the stator. The slider is a precision assembly that stnsi
of a stainless steel tube, which is filled with neodymium mag-
nets. The stator, also called the bearing of the slider,aiost
the position sensors and a microprocessor board. The device
supplemented by a force and a displacement transducer.igshe d
placement sensor consists of a laser measurement system whi
is mounted on top of the transducer. The unfiltered forceadign
and displacement signal were recorded at a sample frequéncy
1000 Hz through the use of A/D converter. In total 5 wave gauge
were placed around the float in order to accurately measere th
incoming waves produced by the wave makers in the tank. The
excitation moment was then calculated by means of a convolu-
tion integral between the measured wave elevayid(t) and the
linear impulse response function of the excitation montgat
which was previously calculated by the use of the BEM code
WAMIT, [19]. The following linear relationship was assunfed
calculating the excitation moment based on the measured wav
signal, Eqn. 19. This moment is then compared with the force
which was measured in the load transducer multiplied with th
lever arm. The results are plotted in Fig. 9, 11, 13 and 15 for
regular and irregular waves respectively. In order to mesathe
force, the float was kept in a fixed position. In this case tha-ac
ator is in the displacement control mode. The numericaldaic
tion of the excitation moment is given by:

Mex= [ Rpalt—)n"™(t)dr (19)

wheren™(t) is the measured wave elevation at the position
of the float, see Fig. 5. The numerical calculation of the ro-
tational displacement is then calculated by using the nredsu
time signal of the excitation moment. In this case the accumu
lated error is reduced.

TABLE 2. PLOTTED TIME SERIES, H=WAVE HEIGHT, T=WAVE
PERIOD,A=WAVE LENGTH, d=WATER DEPTH=0.65M

. H H d
Waves: 3 H T C i g7
H H d
B Mo T o o
-] [m [sed [kgnys  [-] (-]
Regular1l: 055 Q09 10 6 0.0096 0.066
Regular2: 0109 Q30 14 15 0.016 0.03
Irregular1: 002 014 30 20 0.0016 0.007
Irregular2: 004 028 30 20 0.003 0.007
15
10
sl
T
Ei 0

Regular 1
Regular 2
Irregular 1
Irregular 2

—10F

-15
15

20
Time [s]

25

FIGURE 5. WAVE MEASUREMENT AT THE FLOAT FOR THE
FOUR ANALYZED SIGNALS
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FIGURE 7. IRREGULAR WAVES 1,% =0.02

4 Results - Time series

Four different experimental time series were compared
with the numerical calculation. Tab. 2 gives an overviewahhi

waves have been considered for the comparison. The irregula the non dimensional parameter is quiet h

waves were calculated using a Pierson Moskowitz spectram. F

IRREGULAR WAVES 2,5 = 0.04

FIGURE 8.

position. In general good agreement was found between th
results from the time domain solver and the experimental.dat

Regular 1 The measured force signal and the excitation
moment based on the diffraction radiation theory are giver
in Fig. 9. The equation of motion is solved by using the
measured force signal as an input and is then compared wit
the experimental rotations measured directly at the device
see Fig. 10. The latter comparison seems to be in very goo
agreement. It must be emphasized that due to technical limi
tations in the laboratory it was not possible to simulateefur
linear waves which would require a factor <= 0.001
for intermediate depth [20]. Thus all the wave signals which
have been measured are described by higher order wavedaseori

Regular 2 The float is overtopped at each wave crest pass
ing the device, see Fig. 6. The force sensor is unable to measu
the signal accurately due to the submergence of the float, se
Fig. 11. Fig. 12 shows the rotational displacement, it can be
concluded that the numerical model underestimates thendyna
ics of the float for the given wave heights and periods. Nodé th
<=0.016. The
non linear shape of the waves can be observed in Fig. 5.

each wave state a number of runs have been analyzed varying

the damping factoc. to the value where the maximum power

Irregular 1 Next, irregular waves have been measured anc

was measured by the system. For the regular waves the simu-compared with the numerical calculations. The situatiak

lation time was approximately 60 sec, for irregular waves th

similar to the regular 1 wave, cf. first case. The excitatiomcé

measurement time was increased to 500 sec. In order to cempar based on the numerical calculation is accurately reprisgtite
the time series, only 4 to 5 periods are shown in the plots. The measured signal. Moreover the rotational displacememsée

numerical model is fed with the time series of the excitation

be in good agreement with the experiments. The assumptfons |

moment which was measured with the force transducer holding linear fluid-structure interaction can be adopted.

the float in the fixed position. In the case of the irregular egv
the data series of the wave elevations had to be stored imtarde

Irregular 2 In this case, irregular waves with a relative zero

reproduce the same signal when the device was in the floating moment height to peak wavelength ratio od4 were compared

7
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with the numerical model. The overtopping of the device does

not take place at each wave crest, compared to case 2 for steep

regular waves.

» [Nm]

ex

Excitation moment; M

— — — Numerical calculation, Eqn.(19)
Experimental data
T

T i
17 18
Time [s]

16

FIGURE 9. MEASURED MOMENT IN THE FIXED POSITION
COMPARED WITH THE NUMERICAL CALCULATION, H/A =
0.05

0.1

0.081

0.06 -

0.04

0.02

¢, [rad]
o

-0.02
-0.04
-0.06

-0.08 “

-0.1
15

— — — Numerical model, Eqn.(15)
Experimental data
i

i i i
17 18 19
Time [s]

16 20

FIGURE 10. MEASURED ROTATIONAL DISPLACEMENT
COMPARED WITH THE NUMERICAL MODEL,H/A = 0.05

. [Nm]

ex’

Excitation moment; M

[| = = = Numerical calculation, Eqn.(19)
Experimental data

-25
15

i i i
17 18 19
Time [s]

1‘8 20
FIGURE 11. MEASURED MOMENT IN THE FIXED POSITION

COMPARED WITH THE NUMERICAL CALCULATION, H/A =
0.10

¢, [rad]
o

S .
— — — Numerical model, Eqn.(15)
Experimental data

-0.15

-0.2
15

i i
18 19
Time [s]

I I
16 17 20

FIGURE 12. MEASURED ROTATIONAL DISPLACEMENT
COMPARED WITH THE NUMERICAL MODEL,H/A =0.10

5 Conclusions

Two time domain models have been implemented in MAT-
LAB describing the dynamics of the wave energy device showr
in Fig. 2. The equation of motion is described by Cummins
integro-differential equation which involves a convotutiinte-
gral of the radiation force. A simplified power take off syste
has been introduced by means of a linear velocity propaation
feedback force. The first method is based on a discretizafion
the convolution integral. The drawbacks of it are that itimset
consuming, the convolution integral needs to be calculated
each time step and the impulse response function needs e be |
terpolated with the same time step as the time integratioarse.

In the second model the convolution integral is replaced $ysa
tem of linear ordinary differential equations, which ardved
numerically along with the equations of motion of the absorb
The two methods were compared with each other and the outp

Copyright © 2012 by ASME



10 T 20

o 1N
o 1N

=)
T

51

Excitation moment; M
Excitation moment; M

-~10}

Experimental data Experimental data
15 7 -25 ;

15 20 25 15 20 25
Time [s] Time [s]

y)
= = = Numerical calculation, Eqn.(19) -zo«‘ = = = Numerical calculation, Eqn.(19)

FIGURE 13. MEASURED MOMENT IN THE FIXED POSITION FIGURE 15. MEASURED MOMENT IN THE FIXED POSITION
COMPARED WITH THE NUMERICAL CALCULATION ,Hpo/Ap = COMPARED WITH THE NUMERICAL CALCULATION, Hyp/Ap =
0.02 0.04

0.15

T
— — — Numerical model, Eqn.(15)
Experimental data

0.1

0.05

¢, [rad]

-0.05F

[| = = = Numerical model, Eqn.(15)
Experimental data

-01 i ! ‘
15 20 25 15 20 25
Time [s] Time [s]

FIGURE 14. MEASURED ROTATIONAL DISPLACEMENT FIGURE 16. MEASURED ROTATIONAL DISPLACEMENT
COMPARED WITH THE NUMERICAL MODEL,Hpg/Ap = 0.02 COMPARED WITH THE NUMERICAL MODEL,Hnp/Ap = 0.04

results are in good agreement. The performance of the numeri velocities and displacements of the float.
cal model was then validated by means of experimental esult

The comparison was carried out for four different waveskioo

ing at t_he force moment measurement and_ the response i.e. theACKNOWLEDGMENT
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