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ABSTRACT 

Climate change mitigation calls for energy systems minimising end-use demands, optimising 
the fuel efficiency of conversion systems, increasing the use of renewable energy sources and 
exploiting synergies wherever possible. In parallel, global fresh water resources are strained 
due to amongst others population and wealth increase and competitive water uses from 
agriculture and industry is causing many nations to turn to desalination technologies.  This 
paper investigates a Jordanian energy scenario with two different desalination technologies; 
reverse osmosis (RO) driven by electricity and Multi Stage Flash (MSF) desalination driven 
by Cogeneration of Heat and Power (CHP). The two systems impact the energy systems in 
different ways due to the technologies’ particular characteristics. The systems are analyses in 
energy systems analysis model EnergyPLAN to determine the impacts on energy systems 
performance. Results indicate that RO and MSF are similar in fuel use. While there is no use 
of waste heat from condensing mode plants, efficiencies for CHP and MSF are not 
sufficiently good to result in lower fuel usage than RO. The Jordanian energy system is 
somewhat inflexible giving cause to Critical Excess Electricity Production (CEEP) even at 
relatively modest wind power penetrations. Here RO assists the energy system in decreasing 
CEEP – and even more if water storage is applied. 
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1 INTRODUCTION 

Jordan is a nearly land-locked country of approximately 89000 km2 in the Middle East with a 
population of approximately 6.5 million[1]. The country is nearly 100 per cent dependent on 
imported fossil fuels (cf Section 4) affecting both security of supply, the balance of trade and 
contributing to the enhanced greenhouse effect.  
 
In terms of water, the country may be characterised as being semi-arid desert, prone to 
drought and with fresh water resources being strained and with fresh water exploitation 
exceeding sustainable levels (cf section 5). Water use is particularly high in the agricultural 
sector, standing at 72 per cent of the water demand in 2005 [2].  
 
As with many other countries with similar fresh water resource issues, Jordan is 
contemplating desalination as a means for providing adequate fresh water resources in the 
future, however desalination is associated with significant energy demands and will thus have 
an impact on Primary Energy Supply (PES). 
 
In general, there are two main categories of desalination plants; plants based on distillation 
processes and plants based on RO. The former is primarily dependent on heat while the latter 
is dependent on electricity. The heat may be supplied from different technologies including 
purpose built boilers but also excess heat from thermal power generation (Cogeneration of 
Heat and Power (CHP) plants) and heat from solar collectors. From an energy systems 
perspective, these thus have different characteristics. Electricity use for desalination is 
typically grid-based and thus affects the energy systems as other large scale electricity 
demands. 
 
In order to reduce the climate change impact of desalination, and to improve the balance of 
trade and security of supply, focus should be brought to energy efficient desalination which 
should optimally exploit locally available renewable energy sources. 
 
Work has been done on the potential of geothermal energy in Jordan [3], solar energy [4-6], 
wind power [7-9] and biomass resources [10] as well as on sectorial energy demands and 
savings potentials.  
 
In addition to a large body of literature on the technical aspects of desalination [11-20], and a 
substantial body of work specifically on desalination in Jordan [21-29] there is some work 
probing into the energy – water connection mainly from a unit perspective  [30,31] and limi-
ted work putting the water – energy connection into a larger energy systems perspective [32].   
 
This paper explores the field of energy systems impact of the water-energy connection even 
further with a focus on different technologies’ effects on the energy system and the energy 
system dynamics.  
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The scope is thus to establish the energy systems impacts of two different types of 
desalination technologies; electricity-based RO and  CHP steam-based thermal desalination in 
terms of PES on thermal power generation plants and the adaptability of the energy system to 
integrate wind power measure in terms of Critical Excess Electricity Generation. 
 
The paper starts by describing the two mentioned desalination methods with a particular focus 
on their energy characteristics. Secondly, the EnergyPLAN model is introduced – with a 
particular section on the modelling of desalination systems in EnergyPLAN. Reference 
energy and water systems for Jordan are established, and scenarios for alternative water 
supply schemes are established. These are subsequently modelled in the EnergyPLAN model. 
Lastly, the three systems’ energy performance and ability to integrate wind power is analysed. 

2 DESALINATION METHODS 

As mentioned in the introduction, the paper will focus on two different desalination 
technologies. This section briefly outlines the mode of operation with a focus on their energy 
requirements in terms of energy source (electricity, steam at a given temperature, other) as 
well as in terms of per unit energy use (kWh electricity, MJ steam or other per cubic metre of 
desalinated water).  

2.1 RO desalination 

Desalination based on RO exploits the partial-pressure difference between a volume of fresh 
water and a volume of salt water. The partial pressure difference will inherently seek to 
equalize the salt concentration difference between the two bodies of water as long as the 
bodies of water are connected through a membrane permeable to water. Hence, in such a 
system, the salt water body will lower its salt concentration by attracting water from the other 
reservoir through the process of osmoses. In RO, an externally applied pressure changes the 
partial pressure and thus reverses the flow direction of water through the membrane, thus 
producing fresh water. 

This process requires mechanical power and maybe be used in sizes ranging from hand-held 
emergency devices up to the Israeli plant at Ashkelon which is reported as being the world’s 
largest [33] at 330,000 m3/day [34] corresponding to approx. 120 M m3/year.  

The mechanical power is typically supplied as electricity, and the demand is potentially large. 
Peñata & Garcia-Rodriguez report electricity consumptions for state-of-the art applications of 
seawater RO desalination plants down to 1.8-2.2 kWh / m3 [35] and more typical specific 
electricity demands in the range of 2.2-2.5 kWh / m3 for actual medium and large scale plants. 

The Energy Technology Systems Analysis Program (ETSAP) under the International Energy 
Agency (IEA) reports electricity demands from 3.5 to 5.0 kWh/m3 for large scale RO [36].  

2.2 MSF desalination 

Most desalination plants in the word are based on thermal processes utilising the circumstance 
that water vapours are free from minerals – including salt – so inducing evaporation and 
subsequent condensation of water vapours result in desalinated water. Making the phase 
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change is energy intensive, so different applications are applied to obtain the optimal 
performance. In MSF a series of stages involving vaporization and condensation follow one 
another making used of the condensing heat in heating up feed water.  

Semiat reports energy demand for MSF of 55-80 kWh/m3 plus electricity demands “claimed 
to be around” 1.2−4.5 kWh/m3  [37] while reviewing and referencing work with a wider span 
from 25 to 120 kWh/m3 plus electricity demands ranging from 2 to 5 kWh/m3. For CHP based 
MSF plants, electricity production drops due to the required temperature of the heat for the 
MSF plant, causing an indirect electricity consumption of 4-7 kWh/m3 [37]. 

The ETSAP-IEA reports electricity demands in the 2.5 to 3.5 kWh/m3 range for MSF plants 
plus an additional heat demand of 80.6 kWh/m3 [36], which are both within the ranges 
reported by Semiat. 

3 THE ENERGYPLAN MODEL 

The analyses of the energy system are carried out using the EnergyPLAN model, which is a 
model that have been used for regional, national and international energy systems analyses 
and energy scenario design, as well as for analyses of particular technologies within the 
energy systems. 

3.1 Energy systems analyses in the EnergyPLAN model 

The EnergyPLAN model is an energy systems analyses model able to model entire energy 
systems with electricity, heat, cooling, transportation, and industrial fuel demands. The model 
has specifically been created to enable hourly analyses of energy systems characterised by 
different energy demands, production units that are either dispatchable or non-dispatchable, 
and complex correlations between the different energy units and between different energy 
demands – e.g. heat and electricity. The model is documented in [38]. 
 
The model has been applied to numerous analyses including analyses of particular focal 
points in energy systems such as heat pumps, wind power, CHP plants, energy savings, 
transportation as well as to more holistic work on scenario development for local areas [39-
42], nations [43] or transnational regions. The model has also been applied to provide 
technology-specific production and consumption data for more detailed analyses of e.g. 
electric vehicle systems [44,45] and transmission systems [46-49] and has in a few instances 
been applied to systems with desalination [32,50].  
 
EnergyPLAN models one year in hourly steps based on a user-defined energy system 
composition with dispatchable production units characterised by efficiencies and installed 
capacities, non-dispatchable production units characterised by installed capacities, efficiencies 
(where relevant) and yearly distribution profiles with relative productions for each hour of a 
leap year; i.e. 8784 values. 
  
Heat, electricity, and transportation demands are included as aggregate annual demands 
combined with hourly distribution profiles for an entire year to disaggregate demands to the 
hourly level. 
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The model has an endogenous priority of productions, giving highest priority to use-it or lose 
it technologies whether this is renewable energy technologies following a climatically given 
production profile, industrial surplus generation of heat and power or related hereto, 
electricity and heat production from waste incineration plants. Second follows CHP units due 
to their high total efficiency and lastly follows condensing mode power generation, in the case 
of electricity, or boilers, in the case of heat demands that needs to be covered. A number of 
technologies add flexibility to the system. Apart from the dispatchable production – and 
consumption – units, these include storage systems (including vehicle to grid technology), 
heat pumps, electric and heaters.  
 
The model has two general approaches to optimising the modelled system; two so-called 
Regulation Strategies. In the one, the system is optimising its performance against an external 
electricity market, i.e. increasing production of electricity with export in mind when deemed 
economically attractive and conversely, decreasing production when this is deemed 
favourable. The other general approach consists of a number of technical regulation strategies, 
where focus is on small CHP units function in the system; whether they operate solely 
according to the heat demand, whether they operate according to a fixed electricity production 
schedule or whether they are actively dispatched to ensure the optimal balance for both 
heating and electricity systems. 

3.2 Desalination in the EnergyPLAN model 

The two forms of desalination technologies described in Section 2 are to varying extents 
integrated into the EnergyPLAN model. 
 
Thermal processes using CHP plants to generate steam of super-heated water for desalination 
such as multi-stage flash is not modelled explicitly, however such systems may be modelled 
in the same manner as other CHP applications and thus the CHP District heating combination 
that is integrated in the EnergyPLAN model. 
 
The system may both be modelled as back pressure system or an extraction system with the 
added system flexibility. For the back pressure system, the CHP plant is modelled with 
electric and heat efficiencies, aggregate annual heat demands, hourly heat distribution data, 
and heat storage size. Using this facility for desalination of water entails establishing the 
correct ratio between water demands and proxy heat demands. 
 
For extraction plants, the system may be perceived as a back pressure plant combined with a 
condensing mode plant, where hourly system balance requirements determine the exact 
operating mode.  
 
RO is implemented into the EnergyPLAN model. A fresh water demand is given as an annual 
aggregate, combined with hourly distribution and a fresh water reservoir. The modelling of 
RO is further refined through coexistence with a pumped hydro plant running on the brine 
from the desalination unit, although is facility is not employed in the analyses in this paper.  
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4 REFERENCE ENERGY SCENARIO FOR JORDAN 

The current energy system of Jordan is characterised by a high reliance on fossil energy 
sources - exclusively oil products and natural gas – supplemented by small shares of 
renewable energy sources, see Fig 1. Out of total Primary Energy Supply, the electricity 
sector accounts for 46 % including all natural gas use (based on [51]). 
 

 
Figure 1: Primary Energy Supply (outer Circle) and Electricity Generation (inner circle), 

Jordan 2009. Data source [51] 
 
International Energy Agency statistics does not list any energy uses or productions on CHP 
units or heat plants in Jordan, so there is not centralised heating in the country – and nor is the 
system characterised by dependencies between different energy carriers or the synergies that 
this might unveil.  

4.1 Generating equipment in the Jordanian energy system 

Electricity generation in the Jordanian energy system is characterised by condensing mode 
power plants based on either natural gas or electricity with smaller fractions of from hydro, 
wind power and biogas, see Table 1. Conversion efficiencies are relatively low, averaging at a 
modest 35.6 per cent for all oil and natural-based production. 
 

Table 1: PES, electricity production and conversion efficiencies in Jordanian power plants. 
Data in columns 2 & 4 from [51]; columns 3 & 5 are calculated 

 
Fuel PES 

[IEA units]  
PES 
[GWh LCV*] 

Electricity 
production 
[GWh] 

Conversion 
efficiency 
[%] 

Gas oil/ Diesel 15 kt 174.6 (Included below)  
Fuel oil  332 kt 3744.2 1633 41.7 
Natural gas 143542 TJ GCV† 36018.9 12570 34.9 
All oil and gas  39937.7 14203 35.6 
Hydro 59 TJ 16.4 16.4 100.0 
Wind 3 TJ 0.8 0.8 100.0 
Biogas 7 TJ 1.9 n.a. n.a. 
* Lower Calorific Value    † Gross Calorific Value 

Oil
11%

Natural Gas
88%

RE
1%

Oil
57%

Natural Gas
41%

RE
2%
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Jordan currently has minor wind farms with approximately 1.5 MW installed capacity, 
however the Updated Jordan Master Strategy of Energy Sector in Jordan for the period 
(2007-2020) recommends a substantial increase by 600 MW before 2020, as well as 
expansion in the use of solar cells, and electricity generation from waste [52]. 
 
In addition to renewable energy, the master Strategy also recommends expanding thermal 
power generation based on oil shale and natural gas as well as commencing the erection of a 
nuclear power plant. Different sizes are contemplated for oil, oil shale, natural gas and nuclear 
based power generation but for the reference scenario, 600 MW is included. Oil, oil-shale and 
natural based power generation is not  

4.2 Electricity demand of Jordan and electricity distribution 

The 2009 electricity demand in Jordan was 14.5 TWh [51], but it is expected to grow by 7.4% 
annually in the next decade [52], giving a year 2020 demand of 31.8 TWh. 
  
The hourly demand variation is as shown in Fig 2 with lows in the night and peaks in the day. 
This variation is applied in the energy systems analyses, and it is thus assumed that the 
current profile also will be valid in a future situation with a higher electricity demand and i.e. 
that the increase in electricity demand is not due to the addition of particular technologies 
with unusual demand profiles. 

 
Figure 2: Electricity demand variation for the first 15 days of the year. Based on data from 

[53] and [51]. 
 

4.2 Distribution profile of wind power generation 

The yearly distribution profile of wind power is a prerequisite for energy systems analyses of 
Wind power production. This production profile is estimated using satellite-derived MERRA 
data combined with a wind turbine production profile. This gives the production profile 
indicated in Figure 3. 
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Figure 3: Wind power production the first 15 days of the year in Jordan. Based on 

WindPRO[54] analyses using MERRA data. 
 

5 WATER SUPPLY IN JORDAN 

Jordan is in a semi-arid region with rainfall in the capital of Amman of only approx. 273 
mm/year [55] or less than half the rainfall of e.g. Copenhagen. Fresh water demand from the 
growing population is mainly covered by ground water or aquifers at 54% of the total annual 
demand, where extraction is approximately twice the sustainable replenishing rate [56]. 
Another 37% is covered [56] by surface waters and the remainder by treated waste water and 
by desalination [56]. Irrigation is by far the largest fresh water consumer at 72%, industrial 
demands at 3% and domestic, commercial and tourist industry at 25%[56].  
 
In addition to the unsustainable use of water, Jordan is also facing a series of problems in 
water supply ranging from illegal wells and un-monitored extraction levels to pollution of 
aquifers. 

5.1 Water demand in Jordan 

The Jordanian Ministry of Water and Irrigation projects that demand will increase in the 
future from a 1505 Mm3 2007 level of up to 1635 Mm3 in year 2022 putting emphasis on the 
need for sustainable water supply.  One of the means that the Jordanian authorities investigate 
is the use of desalination, where present plant with annual production of 10 Mm3 should 
increase to of 20 Mm3 and new plants of 500 Mm3 should be established based on brackish or 
on sea water. This would correspond to establishing four plants of Ashkelon size. 

5.2 Distribution of water demand in Jordan 

In order to conduct energy systems analyses of the impact of desalination on energy system 
performance, it is required to have the hourly distribution of the fresh water demand over the 
year, however this data is not available, so a qualitative assessment has been made of the 
distribution of the three consumption categories; agriculture, municipal and industry for a 24 
h cycle as well as for the yearly cycle; see Figures 5 & 6. 
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Figure 4: Hourly variation of fresh water demand in Jordan. 

 

 
Figure 5: Monthly variation in fresh water demand in Jordan. 

 
These hourly and monthly distribution are applied to the actual demands of the three 
consumption sectors to generate the aggregated water profile  

6 ENERGY SYSTEMS MODELLING OF DESALINATION ALTERNATIVES 

The Jordanian year 2020 system is modelled in the EnergyPLAN model. For the analyses, it 
is assumed that the efficiency of condensing mode thermal plants will increase from the 
present level up to 40 %, but with the same distribution of fuels as in the present situation.  
 
For CHP units, as noted earlier, the electric efficiency may drop slightly due to the required 
stead data. CADDET IEA [57] lists an efficiency drop from 40% down to approximately 38% 
for modest steam data of 5 bar. This value is used in these analyses and with a total efficiency 
of 90% for the plant. 
 
The expansion of wind, solar and waste is not included – the two latter are not quantified in 
detail and the former is rather used as a factor to vary in the analyses. 
 
The 600 MW nuclear is modelled as having a constant input. For grid stability reasons, 
EnergyPLAN modellers typically apply a minimum production on condensing mode or on 
CHP plants as well as a minimum production of 30% from grid supporting technologies. In 
this case, nuclear will cover the minimum production. The latter restriction is of lesser 
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importance as large-scale CHP units, condensing mode plants as well as wind turbines are 
assumed grid supporting in the future.  
 
 The variation of the electricity demand is assumed having the same distribution profile as the 
present system – apart from the new demands introduced from desalination.  
For the analyses, an annual production of 520 Mm3 is modelled. The existing small-scale 
desalination plant as well as the expansion of this plant is treated congruously with the new 
plants. 
 
In EnergyPLAN, a Regulation Strategy 2 is applied, in which the model seeks to ensure 
balance in both electricity and heat. 
 
The specific electricity demand for RO is modelled as 3.5 kWh/m3 and demands for MSF of 
80 kWh heat and 2.5 kWh electricity per m3 is applied. With the annual fresh water 
production, this gives an aggregated electricity demand of 1.82 TWh for RO and 1.30 TWh 
for MSF together with 41.60 TWh of heat.  

 
EnergyPLAN does not permit the modelling of desalination with both heat and electricity 
demands, so MSF is modelled as a district heating demand of 31.60 TWh and the electric 
efficiency of the CHP units are reduced by 2.3% to accommodate for the electricity demand 
of 1.30 TWh 
 

7 RESULTS OF ENERGY SYSTEMS MODELLING WITH INCREASING WIND 

In the energy systems modelling, wind power is increased from 0 to 6000 MW corresponding 
to approximately 20% of the Jordanian electricity demand – excl. demands for desalination. 
 
Results show how well the different systems are adapted to increasing levels of fluctuating 
power in terms of the electricity production that cannot be used within the system in the form 
of Critical Excess Electricity Production as well as the effects on Primary Energy Supply 
(PES) for power generation – excluding RES-based PES (see also [58]). Results are included 
for MSF and RO respectively and in both case without any fresh water storage as well as with 
fresh water storage corresponding to four weeks of water use  
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Figure 6: PES for electricity generation – excluding renewable energy sources – as a function 

of increasing wind power penetration. 
 
PES for electricity generation decreases with higher penetration of wind power as wind power 
replaces fossil fuel-based power generation, as shown in Fig 6. The two curves for MSF and 
RO are very close with a slightly lower PES for the RO alternative. 
 
The performance in terms of CEEP shows an increasing trend as a consequence of increasing 
wind power penetration as shown in Fig 7. It is notable that from as low as 2500 MW – or 
7.5% wind power penetration - the systems starts to exhibit CEEP.  

 
Figure 7: CEEP as a function of increasing wind power penetration. 

 
In the case of MSF, the storage will be filled by shifting electricity production from 
condensing mode operation plants to desalination CHP units and again be discharged by 
reducing desalination CHP operation and running demands on storage contents. Reducing 
CHP operation is applied to limit Critical Excess Electricity Generation (CEEP) and thus 
occurs only in hours with CEEP. However, in these hours, CHP production is already at a 
minimum in the modelled system, hence the storage cannot discharge – and hence, storage 
size is inconsequential to the operation of the energy system. 
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In general, CEEP is larger with MSF than with RO due to the extra restriction imposed by the 
operation of CHP plants that creates an additional electricity generation – as opposed to the 
RO case, where basically an extra electricity demand is included; an electricity demand which 
may be more or less flexible depending on the storage included. 

8 CONCLUSION 

This paper has analysed the effects of large scale desalination on the Jordanian energy system 
with a particular focus on the energy systems impacts of the simultaneous large scale 
introduction of wind power into the energy system. 
 
The Jordanian PES with MSF as well as with RO are of a similar magnitude  – particularly 
when considering the uncertainty in terms of efficiencies of the two technologies, where 
literature shows large variations in specific electricity and heat demands for desalination. 
 
In terms of the ability to integrate wind power into the power system, the two cases exhibit 
some difference though. In general, CEEP starts between 2500 and 3000 MW wind power. A 
contributing fact to the CEEP is the modelled 600 MW nuclear power plant, which is included 
with a constant production throughout the year. If this was replaced by dispatchable 
condensing mode power plants, CEEP would be more than halved in the RO No Storage 
Case. 
 
Water storage has some implication for the system’s ability to integrate wind power. For the 
MSF case, there is no call for operating the storage, however in the RO case, CEEP is reduced 
by approximately 15%.  
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