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Jamming of frictional spheres and random loose packing

Leonardo E. Silbert∗

Department of Physics, Southern Illinois University, Carbondale, IL, USA.

The role of friction coefficient, µ, on the jamming properties of disordered, particle packings
is studied using computer simulations. Compressed, soft-sphere packings are brought towards the
jamming transition - the point where a packing loses mechanical stability - by decreasing the packing
fraction. The values of the packing fraction at the jamming transition, φµ

c , gradually decrease from
the random close packing point for zero friction, to a value coincident with random loose packing
as the friction coefficient is increased over several orders of magnitude. This is accompanied by a
decrease in the coordination number at the jamming transition, zµc , which varies from approximately
six to four with increasing friction. Universal power law scaling is observed in the pressure and
coordination number as a function of distance from the generalised, friction-dependent jamming
point. Various power laws are also reported between the φµ

c , zµc , and µ. Dependence on preparation
history of the packings is also investigated.

PACS numbers: 45.70.-n 83.80.Fg 61.43.-j 64.70.ps

Introduction

Granular packings can exist over a range of densities
generally depending on the generation protocol and the
nature of the grain-grain interactions. For frictionless

spheres, where the particle friction coefficient µ = 0,
random close packing (rcp), or the maximally random
jammed state, describes the densest possible packing of
dry, cohesionless, spheres whose structure contains no
long-range order [1–8]. Random close packing is well-
defined in the sense that it represents a reproducible
packing state as observed in numerous experiments and
simulations of frictionless sphere packings of hard par-
ticles that interact primarily through excluded volume
effects [9]. All such studies agree that random close pack-
ing occurs at a packing fraction, φrcp ≈ 0.64. This is in
contrast to frictional packings, µ > 0, which can exist
over a substantial range in packing fraction from φrcp all
the way down to φrlp ≈ 0.55, the value often quoted
as random loose packing [10, 11]. Although, in real-
ity, it is actually quite difficult to generate loose packed
states. Consequently, random loose packing is a much
less well-developed concept than random close packing.
The strong history dependence and characterisation of
frictional packings persists as an experimental issue thus
opening the door for simulations to shed light on the na-
ture of random loose packing of frictional particles.

Frictionless sphere-packings and the rcp state have
received much focus in terms of jamming - the tran-
sition from a jammed, rigid, solid-like state, with fi-
nite shear and bulk moduli, to an unjammed, liquid-
like state [6, 12–14]. The simplest system exhibiting
such a transition occurs in a packing of over-compressed,
purely-repulsive, soft, frictionless spheres, at zero tem-
perature in the absence of gravity. As the packing frac-
tion, φ, is decreased, the packing undergoes a transition
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at φc, between jammed and unjammed phases that oc-
curs abruptly at φc = φrcp. Approaching the jamming
transition from above, φ → φ+

c , the average number
of contacting neighbours per particle - the coordination
number z - approaches the minimal value required for
mechanical stability ziso, also known as isostaticity. For
frictionless spheres, zµ=0

iso = 6 (in 3D, = 4 in 2D) [15–
17]. Thus, the interplay between mechanical stability and
maximally random [4], in some sense, provides a mean-
ingful operational definition of the rcp state. Although
it is worthwhile to note that the particle positions are
disordered - no long range order exists - but they are
not completely random as they must satisfy mechanical
equilibrium.

The question now arises, to what extent do these devel-
oping ideas of jamming apply more generally in systems
with non-central force laws, such as frictional, granular
packings? The identification of the jamming threshold in
frictionless sphere packings to the well-known rcp state
begs the question, can these same ideas lead to a more
concrete definition of the random loose packing state for
frictional spheres? These concerns are investigated here
by studying how interparticle friction affects the jamming
properties of monodisperse spheres. Here it is shown that
the extrapolated values of the packing fraction φµ

c , and
the coordination number zµc , at the jamming transition
depend on the friction coefficient µ, as presented in I
and 1, in agreement with conclusions of recent experi-
ments [11] and theory [5, 18–22], and that φc → φrlp

and zc → zµ=∞

iso = 4 (in 3D, = 3 in 2D) in the limit of
large friction. Here, zµ=∞

iso represents the isostatic state
for frictional spheres, corresponding to the minimally re-
quired coordination number for infinitely hard, frictional
spheres [23]. Although the main focus of this study is
three dimensional packings, for completeness, some in-
formation for 2D packings is also provided in 1 and I.

To date, the influence of friction has been studied
in the context of three dimensional granular packings
[18, 24–26], and, to some extent, their jamming prop-
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TABLE I: Extrapolated values of the packing fraction φµ
c ,

and coordination number zµc , at the jamming transition for
different friction coefficient µ for 3D monodisperse spheres
(top) and 2D bidisperse discs (bottom). The associated errors
on these estimates range from less than 1% for small µ to 4%
at larger values of µ.

3D

µ 0 0.001 0.01 0.1 0.2 0.5 1 10

φµ
c 0.639 0.638 0.634 0.614 0.595 0.574 0.556 0.544

zµc 5.96 5.93 5.76 5.17 4.60 4.22 3.98 3.88

2D

µ 0 0.001 0.01 0.1 0.2 0.5 1 10

φµ
c 0.843 0.843 0.842 0.0.836 0.827 0.801 0.779 0.767

zµc 3.96 3.86 3.85 3.73 3.59 3.15 2.91 2.97

erties [5, 19, 22]. Makse and co-workers [22] recently
made significant contributions to our understanding of
frictional packings from a theoretical point of view and
the results presented here are fully consistent with these
previous studies. In saying that, however, most earlier
studies have not accurately addressed the issue as to
whether frictional packings jam in the same way as fric-
tionless ones nor has the issue of history dependence been
seriously considered. These are the two principal themes
investigated in this study.
What is apparent is that the computational mod-

els employed are fully relevant to address realistic sys-
tems. In particular, experiments [27, 28] and simula-
tions [21, 29, 30] of pseudo-2D, jammed, disc packings
show good agreement suggesting that the phenomenon
of jamming seems to be applicable to real, frictional ma-
terials. Here, it is shown that friction does indeed play
an essential role in determining the jamming transition
for 3D sphere-packings as is the case in two dimensional
simulations of the Leiden group [21, 30]. The principal
result is the contention that the concept of the random
loose packing state becomes a friction-dependent prop-
erty. The commonly quoted value for φrlp ≈ 0.55, is only
realised in the limit of large friction. Moreover, power
law scaling is observed in the pressure and excess coordi-
nation relative to the friction-dependent jamming transi-
tion and that these critical values also exhibit power law
behaviour with friction coefficient.

Simulation Model

The simulation technique used here employs N = 1024
monodisperse, inelastic, soft-spheres of diameter d = 1
and mass m = 1, within a cubic simulation box with pe-
riodic boundary conditions without gravity. Particles in-
teract only on contact when they overlap, at which point
they are considered to be contacting neighbours, through
a repulsive, linear spring-dashpot. The repulsive force is
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FIG. 1: Dependence of the critical values of the packing frac-
tion φµ

c (filled circles), and coordination number zµc (open
squares), on the particle friction coefficient µ, for monodis-
perse spheres in 3D (upper panel) and bidisperse discs in 2D
(lower panel). The insets are parametric plots of φµ

c against
zµc . Symbol size is representative of sample-to-sample fluctu-
ations and error bars.

characterised by the particle stiffness kn,t, and inelastic-
ity by the coefficient of restitution en,t, in the normal (n)
and tangential (t) directions with respect to the contact
surfaces. Unless otherwise stated, for µ > 0, a static
friction law tracks the history of the friction forces over
the lifetime of a contact that satisfies the Coulomb yield
criterion [18, 31–33]. In this work, the particle Poisson
ratio, ν = 1−λ

4+λ = 0[34], where the ratio of the tangential

to the normal particle stiffness is denoted by, λ ≡ kt

kn
= 1,

for this study.

The initial configurations were generated by taking a
dilute assembly of particles in a disordered, liquid-like
configuration, then instantaneously quenching these con-
figurations into over-compressed, jammed packed states
at φi = 0.65. After this rapid compression the config-
urations were then allowed to relax into a mechanically
stable state. Unless otherwise stated, during this initial
compression friction was switched off. In an alternative
protocol to be discussed later, friction was switched on
during the initial quench to the over-compressed state.
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The packing fraction of these mechanically stable pack-
ings were then incrementally decreased towards the jam-
ming threshold with the friction coefficient set at the de-
sired value. After each incremental change in the packing
fraction, the packing was rapidly quenched back into a
mechanically stable state by setting en,t ≈ 0. This pro-
cedure was continued until the difference in the potential
energy between successive increments . 10−16, at which
point the simulation run terminates. To improve statisti-
cal uncertainty, all results are averaged over at least five
independent realisations.

Results and discussion

The jamming transition is identified as the point at
which the pressure p, computed from the contact stresses,
goes to zero. The jamming transition packing fraction φc,
is obtained as a fitting parameter by extrapolating the
φ − p curve to p = 0. Likewise, the coordination num-
ber at the transition, zc, is similarly obtained by fitting
the (p, z) data to the functional form used for frictionless
spheres [14] and bubbles [35]: p ∝ (z− zc)

1/2. This same
power law exponent has also been used to fit experimen-
tal [28] and numerical data [19, 21] of frictional systems.

(a) (b) (c)

FIG. 2: Snapshots of the normal force networks for three
different friction coefficients at approximately the same pres-
sures or equivalently the same ∆φµ ≈ 10−4; (a) µ = 0, (b)
µ = 0.1, and (c) µ = 1. Lines represent the normal forces
between particles in contact. Thicker, darker lines indicate
larger forces. Particles not shown for clarity.
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FIG. 3: Distributions, P (fn,t), of the, (a) normal Fn, and
(b) tangential Ft, contact forces, normalised by their re-
spective mean values. Data at approximately the same
∆φµ ≈ 10−4 for four different friction coefficients are shown:
µ = 0.001, 0.1, 0.25, 1. The data at µ = 0.25 is emphasised.

The transition values, φµ
c and zµc , for different µ, are

shown in I and plotted in 1. The insets in 1 represent the

boundary between stable and unstable states. For 3D,
monodisperse spheres with µ = 0, φµ=0

c = 0.64 ± 0.001
and zµ=0

c = 5.96 ± 0.05, are indistinguishable from pre-
vious studies that used similar and different algorithms
[7, 14, 18, 19, 36]. These results are consistent with φrcp

and zµ=0
iso . As µ increases, {φµ

c , z
µ
c } decrease. In the limit

of large friction, µ ≥ 1, these values saturate at about,
φµ=∞

c ≈ 0.55 and zµ=∞

c ≈ 4, which coincide with the
values of φrlp and zµ=∞

iso . To check that these values do
indeed correspond to the hard-particle limit, the parti-
cle stiffnesses were varied over five orders of magnitude
keeping their ratio λ = 1. The resulting critical val-
ues obtained were all indistinguishable within statistical
error. For completeness data for two dimensional, bidis-
perse disc packings (with particle size ratio 1:1.4) is also
shown in 1 and I. The 2D data are consistent with other
jamming results [21], simulations of sheared granular ma-
terials [37], and studies on force indeterminacy [20].

This behaviour can be reasoned by the following argu-
ments. For small friction coefficients the tangential forces
do not contribute significantly to the stability of the pack-
ing and hence the packings are not that different from
frictionless systems. This behaviour persists, as shown
in 1, up to friction coefficients approaching order unity
where the typical tangential force first becomes compara-
ble to the normal force. Hence, the friction forces start to
play a significant role in stabilising the packing. The pre-
cise value of the friction coefficient where this transition
occurs is likely to depend on the particle Poisson ratio
ν. In the work presented here ν = 0. Preliminary data
with both negative and positive values of ν indicate a
possible dependence of the critical values on ν, but these
differences are practically within statistical uncertainty.
Other granular simulations [18] with ν = 1

6 find similar
behaviour in the packing fraction and coordination num-
ber indicating that the data presented here is a general
stability property of frictional systems.

Associated changes in the structural properties of the
packings with friction are highlighted in 2 and 3, where
force network information is presented. 2 shows the nor-
mal force networks where the normal forces between par-
ticles in contact are represented by lines connecting the
centres of the particles. Thicker, darker line shading in-
dicate forces with increasing magnitude. As the criti-
cal packing fractions and coordination numbers decrease
with increasing friction then density of contacts likewise
decreases as is seen in these snapshots. It is also worth
pointing out that although the global force network by
necessity pervades the system, there is little indication of
long-ranged, correlated, force chain structures in the nor-
mal forces. 3 shows the distributions of the magnitudes
of the normal and tangential forces for packings close to
the critical states for different friction coefficients. In all
cases, the distributions are characterised by exponential-
like tails at larger forces. However, there are some subtle
changes occurring at the small force plateau-peak region.
Notably, on careful inspection of the data at µ = 0.25,
which has been emphasised in the figures and corresponds
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to a value of the friction coefficient the smallest forces
only for friction coefficients where the critical values are
decreasing with friction in 1, both the normal and tan-
gential distributions exhibit an upturn at the smallest
forces. Thus indicating that the decrease in the critical
values indicated in 1 is correlated with the fraction of
small forces in the system.

Scaling

Motivated by earlier studies on frictionless systems, it
is possible to rescale all the data for different µ, by using
the measure ∆φ ≡ φ−φµ

c , as the distance for each system
for a given µ, from their respective jamming transitions,
i.e. it is now not appropriate to measure the distance to
the jamming transition using just the zero-friction value
φµ=0
c , for different µ. 4 shows the power-law scaling,

data collapse for the pressure and the excess coordination
number ∆z ≡ z − zµc , for all friction coefficients:

P ∝ ∆φ,

∆z ∝ (∆φ)1/2.
(1)

This result shows that jamming frictional spheres look
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FIG. 4: Power law scaling of the pressure p, and excess co-
ordination number ∆z, as a function of the excess packing
fraction, ∆φ, over and above the extrapolated values at the
jamming threshold {zµc , φ

µ
c }. Different symbols represent dif-

ferent friction coefficients: µ = 0 (♦), 0.001 (◦), 0.01 (�), 0.1
(+), 0.5 (∗), 1 (△), and 10 (grey ◦). The solid lines represent
power laws with exponents 0.5 and 1 as indicated.

like jamming frictionless spheres provided one identifies
the friction-specific jamming threshold values φµ

c and zµc .
Furthermore, the jamming thresholds for the pack-

ing fractions and coordination numbers exhibit several
power-law relationships as a function of the friction coef-
ficient, as shown in 5 and 6. Up to the large-friction limit,
where both φµ

c and zµc practically saturate, the transition

values relative to the µ = 0 values, scale as,

∆φc,0 ≡ (φµ=0
c − φµ

c ) ∼ µ0.74[9],

∆zc,0 ≡ (zµ=0
c − zµc ) ∼ µ0.64[4].

(2)

The corresponding measures, ∆φc,∞ ≡ (φµ
c − φµ=∞

c )
and ∆zc,∞ ≡ (zµc − zµ=∞

c ), relative to the infinite fric-
tion limit do not exhibit similar relations, however, the
following power laws are also observed:

∆φc,0 ∼ (∆zc,0)
1.23[10]

,

∆φc,∞ ∼ (∆zc,∞)
0.65[8]

,
(3)

It is not clear as to the origin of Eq. 2, although the first
relation in Eq. 2 is consistent with Eq. 1. These results
are similar to two dimensional systems [21], where the
corresponding four power law exponents were obtained:
0.77, 0.70, 1.1, and 0.59, and thus hints at some possi-
ble underlying universal properties of frictional packings
irrespective of dimensionality.
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FIG. 5: Power laws for, ∆φc,0 ≡ (φµ=0

c − φc) (•), the pack-
ing fraction, and ∆zc,0 ≡ (zµ=0

c − zc) (�), the coordination
number, at jamming relative to the zero friction values, over
several orders of magnitude in µ. Solid lines are power law
fits to data described in Eq. 2, with power law exponents
0.74 ± 0.09 and 0.64 ± 0.04 in (a) and (b) respectively.

The results presented thus far have implications re-
garding the statistical mechanical ensemble formulation
of granular (random) packings espoused by Edwards [38]
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FIG. 6: Power laws between; (a) ∆φc,0 ≡ (φµ=0

c − φc), and
∆zc,0 ≡ (zµ=0

c − zc), the jamming values relative to the zero-
friction state, and (b) ∆φc,∞ ≡ (φc − φµ=∞

c ) and ∆zc,∞ ≡
(zc − zµ=∞

c ), the jamming values relative to the large-friction
state. Solid lines are power law fits to data described by Eq. 3,
with power law exponents 0.82 ± 0.06 and 1.54 ± 0.08 in (a)
and (b) respectively.
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and has been extensively explored by Makse and co-
workers [22] and others [39]. Edwards revision of sta-
tistical mechanics proposes that the properties of a gran-
ular packing can be computed from a statistical average
over equally probable configurations. For infinitely hard
and frictional particles the partition function entering the
analogue of the canonical ensemble is summed over the
full range of all possible states compatible with mechani-
cal stability, from random loose packing, φrlp = 0.55, up
to φrcp = 0.64 [40]. However, the results presented here
suggest that generalising to finite friction requires one
to take into account friction-dependent constraints: the
sum-over-states should only include those mechanically
stable states compatible with the value of µ, i.e. project
onto the sum of states from all possible configurations
only the mechanically stable ones [41]. Practically, this
may be achieved by cutting-off the sum-over-states at the

appropriate value of φµ
c [42]:

∫ φ

φrlp
dφ′ →

∫ φ

φµ
c
dφ′; or in the

microcanonical formalism, states with z < zµc should be
given zero weight. This is precisely the approach taken by
Makse and co-workers who deduced a frictional packing
phase diagram [22] which is consistent with the results
presented in 1.

Protocol Dependence

The simulation protocol implemented here generates
sphere packings that are statistically identical to other
works [6, 19–22], resulting in similar values for the tran-
sition packing fraction φµ

c , and coordination number zµc ,
as presented in 1 and I. These values correspond to the
hard sphere limit where the particles are just touching
at the point of jamming. This can be seen by compar-
ing the various interaction and simulation models (linear-
spring or Hertzian interaction forces, molecular dynamics
or contact dynamics simulations) [18, 20–22, 36]. How-
ever, the path taken to arrive at the jamming transition
may differ, particularly when friction is present. Because
of the hysteretic nature of the frictional forces the pre-
cise force configurations explored during this path will
depend on the preparation history of the packings.
The major factor influencing the frictional forces are

the fraction of slipping contacts ns. The plasticity in-
dex is defined by [18], ζ ≡ Ft/µFn, where Fn,t are the
magnitudes of the {normal,tangential} forces. Here, slip-
ping contacts are identified as those contacts at or on the
verge of yielding: ζ ≥ 0.95. The qualitative nature of
the results are not sensitive to the precise definition of
slipping contacts. The data of 7 shows how the proba-
bility distributions P (ζ) depend of friction coefficient for
packings prepared very close to the jamming threshold.
For small friction coefficients µ < 0.2, the distributions
are dominated by a large fraction of contacts that are
close to yielding, ζ > 0.9. These systems correspond to
points in 1 just before the rapid decrease in φµ

c with µ.
However, for larger friction coefficients, µ > 0.5, where
the transition values begin to saturate, the weight of the

0 0.5 1
ζ

0

0.1

0.2

P(ζ)

µ = 0.001
µ = 0.01
µ = 0.1
µ = 1

FIG. 7: Distributions, P (ζ), of the plasticity index, ζ ≡
Ft/µFn, where Fn,t are the magnitudes of the normal and
tangential forces, for different friction coefficients µ, within
10−4 of the jamming threshold.
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FIG. 8: Fraction of slipping contacts ns at ∆φ(µ) ≈ 10−3 −
10−4 over a large range in friction coefficients. By definition,
ns(µ = 0) = 1. The two sets of data represent two slightly
different protocols as discussed in the text. Differences at
small friction values diminish at larger friction coefficients for
the two protocols.

distribution shifts to smaller ζ. Hence, a majority of con-
tacts become stabilised as seen by the growth of a hump
at ζ ≈ 0.25 for µ = 1 in 7. Similar changes in P (ζ) have
been seen in simulations of confined packings [43] and
two dimensional systems [21].

Although the qualitative features of the distributions
shown in 7 are robust over different protocols, the actual
numbers of slipping contacts depends on the preparation
history of the packings. To illustrate this point 8 shows
the fraction, ns, of slipping contacts over a wide range
of friction coefficients for packings that are close to the
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jamming threshold. The two sets of data correspond to
slightly different packing preparation histories. The open
symbols are for the protocol used throughout this work to
generate the previously shown data: a dilute packing was
over-compressed with friction initially set to zero prior to
the decompression procedure. The filled symbols, on the
other hand, are for packings where friction was set to the
desired value during the initial over-compression stage.
The differences between the two protocols clearly show
up at the lower friction coefficients where the newly mod-
ified protocol exhibits a much larger fraction of slipping
contacts. The rapid compression with friction leads to a
build up of the frictional forces that quickly causes con-
tacts to reach the Coulomb yield criterion as the system is
decompressed towards the jamming threshold. However,
these differences diminish for larger friction coefficients.
The exact nature of the frictional build up and relax-
ation is currently under investigation. It is also worth
pointing out that the extrapolated jamming thresholds
are identical within statistical uncertainty between the
two protocols. Thus, the protocol dependence does not
seem to affect the geometrical properties of the packing,
but will likely have an effect on mechanical properties,
such as yielding under flow or the application of external
forces.

To probe the nature of protocol dependence further,
the algorithm used to generate the packings was also
modified in the following ways: In one case a dynamic
friction model was used that depends only on the in-
stantaneous friction force. For this system the jamming
threshold lies much closer to the frictionless limit. In the
other data, the history of the contacts was reset at dif-
ferent intervals during the simulation procedure thereby
suppressing the build-up of frictional forces. The cor-
responding evolution of the coordination number with
packing fraction is shown in 9 for packings these pack-
ings where the contact history and frictional forces were
treated differently.

Thus, erasing the history of the frictional forces be-
tween particles in contact can have a profound effect on
the resulting evolution of the packing. What 9 demon-
strates is that friction strongly influences the jamming
thresholds and hence the possible range of mechanically
stable states for a given friction coefficient. This may
therefore explain, in part, the observation why real, fric-
tional granular materials, more often than not, tend to
form packings that are intermediate between the random
close and random loose limits: even minor rearrange-
ments that cause the particles to momentarily come out
of contact will erase the history of frictional contacts and
thus the system will appear to be composed of particles
of a lower friction coefficient that their actual values.
This aspect of the history dependence of the frictional
forces has been utilised recently in experiments on real,
frictional, granular particles made to mimic frictionless
systems [44].

0.56 0.58 0.6 0.62 0.64
φ

4

5

6

7

z 0.63 0.64 0.65
5

6

7

FIG. 9: Evolution of the coordination number, z, with de-
creasing packing fraction, φ. Line styles represent differ-
ent friction models: frictionless (µ = 0, solid line); history-
dependent static friction model (dotted), static-friction model
reset at different rates (dot-dash and dash), and dynamic
instantaneous friction model with no contact history (long-
dash), µ = 1.0. Inset shows the random close packing region.

Conclusions

In summary, cohesionless, frictional spheres that inter-
act only on contact, exhibit a jamming transition that
shares many similarities with that for frictionless sys-
tems, provided one identifies the appropriate friction-
dependent jamming transition packing fraction φµ

c , and
coordination number zµc . Using these friction-dependent
quantities rather than just the frictionless and frictional
isostatic values may lead to a better understanding of ex-
isting scaling results [30, 45]. In saying that, the role of
packing generation protocol and friction-induced history
dependence persists as a topic that has received relatively
little attention to date. Understanding how packings tra-
verse the packing stability diagram of 1 will likely help
resolve some of these issues.
Random loose packing, φrlp ≈ 0.55, appears to be a

state that can only be achieved in the large-friction limit.
These results, however, do not preclude the fact that even
lower values of φrlp may be obtained using different proto-
cols, such as sedimenting particles in a fluid [46], or tun-
ing the particle interactions to include additional forces,
such as cohesion [47, 48].
The power-law dependence on µ of both φc and zc, rel-

ative to the frictionless system hints at a more universal
behaviour. The origin of these scalings remain unclear al-
though one possible explanation for the results of 5 and
6 might lie in spatial correlations between the frictional
forces. As shown in 8, there is a systematic decrease in
the fraction of slipping contacts with increasing friction.
One might therefore expect that for small friction coeffi-
cients there are large spatial regions of contacts that are
slipping, whereas for large friction, these are replaced by
non-mobilised contacts. Hence, fluctuations are small in
either case. However, intermediate between these two
extreme states, large-scale, fluctuating regions might oc-
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cur. Preliminary data suggests that there is indeed an
increase in correlations that follow these arguments and
such ideas are currently being pursued.
Applications of the results presented here could po-

tentially pave the way towards a generalised formulation
of an equation of state for granular materials. Progress
along these lines has been made recently [22]. However,
the hysteretic nature of the frictional forces can have a
significant effect on the properties of the packing. It is
interesting to note that the friction coefficients of many
materials lie in the range 0.01 ≤ µ ≤ 1. Coincidentally,
these values of µ correspond to the region of mechan-
ically stable states where small changes in µ can lead
to large changes in the packing fraction and coordina-
tion number of the packing. Hence, any processes that
cause changes in the surface friction of the constituent

particles, such as roughening or polishing, can result in
packings with dramatically different stability properties.
Alternatively, materials could be designed with varying
mechanical properties based on their frictional proper-
ties.
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