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aDepartment of Computer and Information Science, The Norwegian University of Science and Technology,
Trondheim (Norway)
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Abstract

In this paper we investigate methods for learning hybrid Bayesian networks from data. First we
utilize a kernel density estimate of the data in order to translate the data into amixture of truncated
basis functions (MoTBF) representation using a convex optimization technique. When utilizing
a kernel density representation of the data, the estimation method relies on the specification of
a kernel bandwidth. We show that in most cases the method is robust wrt. the choice of band-
width, but for certain data sets the bandwidth has a strong impact on the result. Based on this
observation, we propose an alternative learning method that relies on the cumulative distribution
function of the data.

Empirical results demonstrate the usefulness of the approaches: Even though the methods
produce estimators that are slightly poorer than the state of the art (in terms of log-likelihood),
they are significantly faster, and therefore indicate that the MoTBF framework can be used for
inference and learning in reasonably sized domains. Furthermore, we show how a particular sub-
class of MoTBF potentials (learnable by the proposed methods) can be exploited to significantly
reduce complexity during inference.

1. Introduction

In domains involving both discrete and continuous variables, Bayesian networks with mixtures
of truncated exponentials (MTEs) (Moral et al., 2001) and mixtures of truncated polynomials
(MoPs) (Shenoy and West, 2011; Shenoy, 2012) have received increasing interest over the last
few years. A recent addition to the fold is the mixtures of truncated basis functions (MoTBFs)
framework (Langseth et al., 2012), which offers a unified theory for MTEs and MoPs. The MoTBF
framework allows discrete and continuous variables to co-exist in a Bayesian network without any
structural constraints, and since the family of MoTBFs is closed under addition, multiplication,
and integration, inference in an MoTBF network can be performed efficiently using the Shafer-
Shenoy architecture (Shafer and Shenoy, 1990; Cobb and Shenoy, 2006).

The problem of learning MoTBF models from data has been only scarcely considered (Romero
et al., 2006; Langseth et al., 2009, 2010; López-Cruz et al., 2012). Romero et al. (2006) used a
kernel estimator to represent the data distribution, and thereafter fitted an MTE to the kernel
using regression. Langseth et al. (2009, 2010) attempted to find maximum likelihood parameters
directly but since the maximum likelihood equations have no analytic solutions in general, they
instead proposed an iterative scheme utilizing Newton’s method and Lagrange multipliers. This
resulted in better estimators (in terms of likelihood on the training-set as well as on a hold-out
test-set), but at the cost of a steep increase in computational complexity. Finally, López-Cruz
et al. (2012) used B-splines for learning MoPs from data. Their focus was primarily on univariate
distributions and on continuous variables with only discrete parents.

The main idea of the learning scheme that we pursue in this paper is to use a translation
procedure (Langseth et al., 2012) that can, in principle, be used to approximate any distribution
by an MoTBF. Our first approach is to represent the data by a kernel density estimate, and then
translate this representation into an MoTBF. Motivated by preliminary empirical findings we,
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secondly, consider the related idea of approximating the cumulative density function by a function
that has an MoTBF potential as its derivative. The two approaches are compared empirically to
those of Langseth et al. (2009, 2010), and we find that although the new methods find parameters
that are slightly worse (in terms of likelihood on a test-set), they are more than an order of
magnitude faster than previous techniques. Finally, we consider a sub-class of MoTBF potentials
that support a computationally efficient inference scheme, and explore the use of these potentials
in a learning context.

The rest of the paper is organized as follows: We start with an introduction to the MoTBF
framework in Section 2. The simplified problem of learning univariate MoTBFs from data is
considered in Section 3, and we discuss learning conditional distributions in Section 4. We report
on some experiments in Section 5, and finally we conclude in Section 6.

2. The MoTBF model

2.1. Definition of the framework

The MoTBF framework is based on the abstract notion of real-valued basis functions ψ(·),
which includes both polynomial and exponential functions as special cases. The first building-block
of the framework is the marginal distribution: Let X be a continuous variable1 with (truncated)
domain ΩX ⊆ R and let ψi : R → R, for i = 0, . . . , k, define a collection of real basis functions.
We say that a function gk : ΩX 7→ R

+
0 is an MoTBF potential of level k wrt. Ψ = {ψ0, ψ1, . . . , ψk}

if gk can be written as

gk(x) =
k
∑

i=0

ai ψi (x) , (1)

where ai are real numbers. The potential is a density if
∫

ΩX
gk(x) dx = 1. Note that as opposed

to the MTE and MoP definitions (Moral et al., 2001; Shenoy and West, 2011), a marginal MoTBF
potential does not rely on a partitioning of ΩX to improve its expressive power.

Example 1. By letting the basis functions correspond to polynomial functions, ψi(x) = xi for
i = 0, 1, . . ., the MoTBF model reduces to an MoP model for univariate distributions. Similarly, if
we define the basis functions as ψi(x) = {1, exp(−x), exp(x), exp(−2x), exp(2x), . . .}, the MoTBF
model corresponds to an MTE model with the exception that the parameters in the exponential
functions are fixed. Notice, however, that in both situations the model does not rely on a partition-
ing of the interval over which the distribution is defined (as opposed to the standard definitions of
MoPs and MTEs).

Next, we turn to the MoTBF definition of conditional distributions, which mirrors the cor-
responding definition for MTEs. Thus, the influence a set of continuous parent variables Z has
on their child variable X is encoded only through the partitioning of the domain of Z, ΩZ , into
hyper-cubes, and not directly in the functional form of gk(x|z) inside the hyper-cubes Ωℓ

Z
. More

precisely, for a partitioning P = {Ω1
Z
, . . . ,Ωm

Z
} of ΩZ , the conditional MoTBF is defined for

z ∈ Ωj
Z
, 1 ≤ j ≤ m, as

g
(j)
k (x|z ∈ Ωj

Z
) =

k
∑

i=0

a
(j)
i ψ

(j)
i (x). (2)

Example 2. Figure 1 shows an MoTBF representation of the conditional linear Gaussian distri-
bution Y |{X = x} ∼ N(0.3 · x, 1.5). The representation was found using the translation procedure
by Langseth et al. (2012), which is further described below.

1In this paper we will often refer to MoTBF potentials defined over continuous variables only. Unless the contrary
is specified, all claims about these potentials are extensible to potentials also containing discrete variables in their
domains; the claims simply apply to each configuration of the discrete variables.
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(a) 2D-view (b) 3D-view

Figure 1: An MoTBF representation of the conditional linear Gaussian distribution Y |{X = x} ∼ N(0.3 · x, 1.5).
Part (a) shows X on the horizontal axis and Y on the vertical axis; the lighter the colors, the higher the value of
the density. Part (b) shows the same structure in three dimensions.

Finally, the joint MoTBF distribution over x = (x1, . . . , xn) is found using the usual factoriza-
tion, gk(x) =

∏n
i=1 gki

(xi|pa (xi)), where the marginal and conditional distributions are defined
using Equations (1) and (2), respectively.

Langseth et al. (2012) describe a “translation” procedure for efficiently finding an MoTBF
approximation of any density function f . The approximation procedure assumes that the basis
functions Ψ are both legal and orthonormal : Let Q be the set of all linear combinations of the
members of a set of basis functions Ψ = {ψi(·)}∞i=0. Then Ψ is said to be a legal set of basis
functions if the following conditions hold:

• ψ0 is constant in its argument.

• If φi ∈ Q and φj ∈ Q, then (φi · φj) ∈ Q.

• For any pair of real numbers s and t, there exists a function φ ∈ Q such that φ(s) 6= φ(t).

Working with a legal set of basis functions basically ensures that any target density function can
be approximated arbitrarily well (see Langseth et al. (2012) for details). It is straight-forward to
prove that both the polynomial and exponential basis functions defined in Example 1 are legal
sets of basis functions.2

When defining orthonormal basis functions, we focus on the space L2[a, b] of quadratically
integrable real functions over the finite interval Ω = [a, b]. For two functions φi and φj on Ω we
define their inner product as

〈φi, φj〉 =

∫

Ω

φi(x)φj(x)dx,

and say that two functions are orthonormal if and only if 〈φi, φj〉 = δij , where δij is the Kronecker
delta. A set of non-orthonormal basis functions can easily be orthonormalized using, for instance,
the Gram-Schmidt procedure (see, e.g., Fraleigh and Beauregard (1994)).

To set the scene for the translation procedure, we let f(x) be the (target) density, and let

gk(x) =
∑k

i=0 ai ·ψi(x) be an MoTBF of order k. The key idea of Langseth et al. (2012) is to see
the MoTBF expansion as a generalized Fourier series (Pennell, 1930) in order to find “optimal”
values for a0, . . . , ak; a generalized Fourier series (GFS) is a functional approximation defined as
a sum of basis functions. The GFS approach borrows ideas from approximations in vector-spaces,
where the best approximation in a subspace is found by projecting the target vector onto that
subspace. Since the basis functions are orthonormal, the GFS solution can be directly applied

2In the remainder of the paper we will use Ψ = {ψi(·)}
∞

i=0
to denote a legal set of basis functions.
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for functional approximations, which corresponds to choosing ai = 〈f, ψi〉. It can easily be shown
that while the GFS approximation up to degree k is guaranteed to minimize the L2 distance on
Ω,

error(f, gk) =

√

√

√

√

√

∫

x∈Ω

(f(x)− gk(x))
2
dx,

gk may not always be non-negative, and it is thus not a density approximation. A convex optimiza-
tion scheme (initialized with the GFS coefficients) was therefore employed to obtain parameters
guaranteeing that the resulting gk(x) is a density.

To motivate the optimization procedure, we consider the KL divergence between the target
density f and an MoTBF gk (Kullback and Leibler, 1951):

KL ( f ‖ gk ) =

∫

Ω

f(x) log

(

f(x)

gk(x)

)

dx.

It can be shown (Zeevi and Meir, 1997, Lemma 3.3) that the L2 distance on Ω defines an upper
bound for the KL divergence:

KL ( f ‖ gk ) ≤
(error(f, gk))

2

minx∈Ω gk
. (3)

The optimization procedure of Langseth et al. (2012) minimizes this upper bound of the KL
divergence. This results in the following specification, which determines the parameters (ξ,α):

Minimize
1

ξ
·

k
∑

i=0

(〈f, ψi〉 − αi)
2

Subject to

k
∑

i=0

αiψi(x) ≥ ξ, x ∈ Ω

α0 = 〈ψ0, f〉

The first constraint ensures that the function is non-negative on Ω. The second constraint forces
the constant term of the MoTBF to be equal to the constant term for the GFS, which, in turn,
ensures that

∫

x∈Ω
gk(x) dx =

∫

x∈Ω
f(x) dx (see Langseth et al. (2012)). Observe that this is a

convex optimization problem that can be solved by semi-definite programming (Vandenberghe
and Boyd, 1996)3 and that the approximation can be made arbitrarily tight simply by increasing

k. The solution to the program defines the MoTBF approximation gk(x|α) =
∑k

i=0 αi ψi(x) that
minimizes the upper-bound of the KL divergence (Equation (3)).

To conclude this part, Langseth et al. (2012) gives a procedure to “translate” a function f
defined on a finite interval Ω = [a, b] into an MoTBF with basis functions Ψ. For the translation

procedure to work, they assume that f ∈ L2[a, b], i.e., that
∫

x∈Ω (f(x))
2
dx < ∞. Further, Ψ

is constrained to be legal to guarantee that the approximation can be made arbitrarily tight.
Finally, to be able to use the GFS formulation, it is assumed, without loss of generality, that Ψ is
orthonormal. Our initial idea for learning MoTBF distributions is therefore to find a functional
representation for the training data, say h, with h ∈ L2[a, b], and then to approximate h with an
MoTBF using the above translation procedure. It is expected that if h ∈ L2[a, b] closely fits the
data, we can obtain an MoTBFs with a correspondingly good fit.

3We note that our implementation builds on Matlab’s Optimization Toolbox, where the positivity constraint
for each x ∈ Ω is approximated by a finite number of verification points.
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2.2. Inference with MoTBF-potentials

The MoTBF specifications of marginal and conditional distributions not only allow an accurate
translation procedure, but they also support an efficient inference scheme. For illustration, consider
an MoTBF network with two variables X and Y , where X is the parent of Y . We define the
following density functions:

f(x) =

k
∑

i=0

aiψi(x);

f(y|x) = fℓ(y|x ∈ ΩX
ℓ ), 1 ≤ ℓ ≤ m;

fℓ(y|x ∈ ΩX
ℓ ) =

k
∑

i=0

b
(ℓ)
i ψ

(ℓ)
i (y),

where m denotes the number of intervals for X ; for notational simplicity we assume the same
number k of basis functions for all the potentials. We proceed as follows to calculate the marginal
distribution for Y :

f(y) =

m
∑

ℓ=1

∫

x∈ΩX
ℓ

f(x)fℓ(y|x ∈ ΩX
ℓ ) dx

=

m
∑

ℓ=1

fℓ(y|x ∈ ΩX
ℓ )

∫

x∈ΩX
ℓ

f(x) dx

=

m
∑

ℓ=1

fℓ(y|x ∈ ΩX
ℓ ) · P (X ∈ ΩX

ℓ )

=

m
∑

ℓ=1

P (X ∈ ΩX
ℓ )

k
∑

i=0

b
(ℓ)
i ψ

(ℓ)
i (y)

=

k
∑

i=0

m
∑

ℓ=1

P (X ∈ ΩX
ℓ ) b

(ℓ)
i ψ

(ℓ)
i (y).

If the basis functions are defined over the same domain for all partitions of X , then we can drop
the index ℓ in the basis functions, and we therefore get

f(y) =

k
∑

i=0

(

m
∑

ℓ=1

P (X ∈ ΩX
ℓ ) · b

(ℓ)
i

)

ψi(y).

Intuitively, the resulting coefficients are the weighted averages of the coefficients for the different
intervals. From a complexity point of view, the marginalization operation above produces a new
potential over a single interval and with no increase in the number of basis functions or exponential
terms. This should be considered in contrast to the inference procedure described by, e.g., Moral
et al. (2001) and Rumı́ and Salmerón (2007), where the size of the potentials resulting from
marginalizations generally grows exponentially in the number of variables being marginalized out.

A key assumption to achieve this reduction in complexity is that the basis functions used in the
specification of Y are defined over the same domain for all values of the parent variable X . The
implication of this assumption is that the potentials will generally be specified over larger domains
and will typically require more basis functions. We will return to this problem in Section 5.

2.3. MoTBFs vs. mixtures of Gaussians

Mixtures of Gaussians (MoGs) have been previously used as a base model for representing
hybrid Bayesian networks (Shenoy, 2006), relying on the fact that mixtures of Gaussians can
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approximate any density function arbitrarily well (Titterington et al., 1985). However, MoGs
have a series of limitations that motivate the use of MoTBFs instead.

The first limitation is that MoGs are only compatible with networks in which discrete nodes
do not have continuous parents (Lauritzen and Jensen, 2001). It is possible, however, to transform
any hybrid Bayesian network into a form that meets this restriction through an arc reversal process
(Shenoy, 2006). Unfortunately, the price to pay is a significant increase in complexity compared
to the initial network as well as a loss of accuracy, as the conditional densities involved in the arc
reversals cannot be obtained in closed form and are instead approximated by MoGs.

Secondly, even though MoGs can approximate any density, reaching a satisfactory accuracy
level may require a high number of components in the mixture. An extreme case is the approx-
imation of a uniform density. It is naturally captured by a very compact MoTBF model (using
only the constant term), whilst an MoG approximation will require a high number of terms to
accurately represent it (Shenoy, 2006).4

3. Learning univariate distributions

While Langseth et al. (2012) defined their translation procedure as a means to create MoTBF
approximations of known distributions, this paper will utilize the translation for learning hybrid
BNs from data. The proposed learning algorithm displays shortcomings when learning from certain
scarce data sets (see also Section 5), and this observation has motivated a related but alternative
approach for learning MoTBFs. The alternative approach is discussed in Section 3.2.

3.1. Learning utilizing kernel density-based representations

The top-level algorithm is to i) approximate the data using a kernel-density, and ii) approxi-
mate the kernel density with an MoTBF parameterization. We discuss each step below, and start
by looking at univariate (marginal) distributions. We will move on to conditional distributions in
Section 4.

Assume that f(x) is the (unknown) density, which generated the univariate sample D =
{x1, . . . , xN}. Next, let hD (·|tw) be a kernel density estimator based on the samples D using
kernel function tw with bandwidth w. We define the kernel density estimator s.t. w approaches
zero as N →∞. The soundness of the approach now rests upon the following proposition:

Proposition 1. Let θ̃N be chosen to minimize KL
(

hD (x|tw) ‖ gk(x|θ̃N )
)

. Then θ̃N converges

to the maximum likelihood estimator of θ as N →∞.

Proof. First we note that since

KL (hD (x|tw) ‖ gk(x|θ) ) =

∫

x

hD(x|tw) log

(

hD(x|tw)

gk(x|θ)

)

dx,

minimizing KL (hD (x|tw) ‖ gk(x|θ) ) wrt. θ is equivalent to maximizing EhD
[log gk(X |θ)] wrt. θ;

the expectation is taken wrt. X , which is assumed to have density function hD (·|tw). Next, since
the bandwidth of hD (·|tw) decreases to 0 as N →∞, we have that

hD (x|tw)→
1

N

N
∑

ℓ=1

δ(x− xℓ)

as N →∞, where δ(·) is Dirac’s delta. Therefore,

EhD
[log gk(X |θ)]→

∫

x

N
∑

ℓ=1

1

N
δ(x− xℓ) · log gk(x|θ)dx =

1

N

N
∑

ℓ=1

log gk(xℓ|θ).

4Furthermore, the reverse argument does not favor MoGs over MoTBFs: A Gaussian distribution can accurately
be represented by an MoTBF using only a few basis functions (Langseth et al., 2012).
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It follows that the parameters that minimize the KL divergence are asymptotically also those that
maximize the likelihood. �

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2: BIC-based learning: 50 samples from a standard Gaussian (stars on the x-axis) are evaluated. The kernel
density estimator (thin dashed line) is the target of the MoTBF translations. g0 up to g10 are shown; g5 is the best
in terms of BIC-score, and is drawn with double line-width.

The MoTBF density gk(x|θ) uses k+2 parameters: We learn the interval of support (2 values),
then estimate the k “free” θi-values (θ0 is fixed to make sure the function integrates to one). Thus,
we can choose between different models using an (approximate) BIC-score (Schwarz, 1978):

BIC(gk;D) =
N
∑

ℓ=1

log gk(xℓ|θ̂N )−
k + 2

2
logN. (4)

In the experiments reported in Section 5 we have used a greedy approach starting from g0 and
stopping as soon as an approximation gk is better (in terms of BIC) than both gk+1 and gk+2.

5

Our greedy procedure is exemplified in Figure 2, where an MoTBF with polynomial basis functions
is learned from 50 samples from a standard Gaussian distribution (shown as stars on the x-axis).
The kernel density approximation is drawn with a dashed line, and the MoTBF approximations
from g0 up to g10 are shown; g5 is the best in terms of BIC-score, and is drawn with double
line-width.

To fully specify the learning approach above, we need to further analyze the use of kernel density
approximations as an intermediate representation between the data and the learned MoTBF. The
use of kernel estimators for learning MTEs was first proposed by Romero et al. (2006), and
further analyzed by Langseth et al. (2010). Previous attempts used Silverman’s rule of thumb
when selecting the bandwidth, tSw ≈ 1.06 · σ̂ ·N−1/5, where σ̂ is the empirical standard deviation
of the data set; based on preliminary experiments we chose the Gaussian kernel for the results
reported in this paper. By following this procedure, we get the results shown in Figure 3 (left-hand
part of the figure): a kernel density estimator is fitted to 50 samples from a χ2 distribution with
8 degrees of freedom, and the kernel density (drawn with the thin dashed line) is then used as a
starting point for the BIC-based MoTBF learning. The learned MoTBF representation is defined
using 2 basis functions. Visually, the MoTBF approximation is quite poor (it does not resemble
the density function that generated the data). We argue that the reason for the poor result is that

5Computationally more demanding procedures can also be devised, e.g., to compare all subsets of basis functions
from a fixed set {ψ0, ψ1, . . . , ψℓ}.
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using tSw is an unfortunate bandwidth choice, as it in principle leads us to smooth the data twice:
once when employing the kernel density, and once when the MoTBF is fitted to the kernel density.
Rather, we want the kernel density to be a faithful representation of the data. To illustrate the
effect, the right-hand part of Figure 3 shows the result of using the scaled bandwidth tSw/25. For
this bandwidth, the BIC-score is optimized using 6 basis functions. The results are visually more
appealing, and this is underlined when calculating the log likelihood of a hold-out test-set, giving
−2915.903 and −2828.781 for the two bandwidths, respectively.

We stress again that the role of the kernel density is to serve as a representation of the data
and not of the generating density. The idea is to use the kernel density solely as a representation of
the data so that it can become the target for the “translation procedure” (i.e., a function defined
on L2), and it is therefore not necessarily beneficial to find a bandwidth tw that gives a good
density estimator; see also Section 2.1. The idea can be further examined in Figure 2, where the
“noisy-looking” kernel estimator is in fact smoothed by the translation procedure. The MoTBFs
used in Figure 2 are polynomials, thus gk is simply a polynomial of order k. The kernel density is
the target for the MoTBF approximation, but using low-order polynomials enforces a smoothing
effect. Finally, note also that since the BIC-score rates the MoTBF’s fit with respect to the data,
the kernel density is not used in the evaluation of the model fit.

We have further investigated the effect the kernel’s bandwidth has on the learning results
by examining a range of different data sets, both small and large, as defined by Langseth et al.
(2010). For each data set, we have learned an MoTBF representation using the BIC score for
model selection and with a set of bandwidths defined by tw ← tSw/α, where α ∈ {1, 2, 5, 10, 25, 50}
is the bandwidth scale. Table 1 lists the results of the experiment in terms of the number of
basis functions that are selected as well as the obtained log likelihood on a hold-out test-set.
Generally, the results appear to be reasonably robust across the data sets as long as the band-
width is “sufficiently small” (say, using α = 25), but for some data sets the results are less stable
(see, e.g., Beta(.5,.5)). This latter observation has motivated an alternative learning approach
that attempts to avoid the double-smoothing effect (and the need for specifying a band-width
parameter) by instead relying on the empirical cumulative distribution function (CDF) for the
data rather than a kernel density estimate. This procedure is described next.

0 5 10 15 20 25
0

0.1

0.2

0 5 10 15 20 25
0

0.1

0.2

Figure 3: 50 samples from a χ2

8
distribution are learned using a kernel density. The kernel density is shown with a

thin dashed line, where the bandwidth is set using Silverman’s rule of thumb (left figure) and one twenty-fifth of
Silverman’s rule of thumb (right). The learned MoTBF representations are defined using 2 and 6 basis functions
in the left and right hand plots, respectively, and drawn in a thick line.

3.2. Learning utilizing a cumulative distribution function representation

The estimation procedure described above uses a kernel density estimate as a proxy for the
data (relying on a user specified scaling parameter), which can lead to a “double-smoothing” effect
of the data. One way to sidestep this problem is to use the empirical distribution function, defined

8



Distribution Scaler α N = 25 N = 50 N = 1000
#BF Logllik #BF Logllik #BF Loglik

MTE 1 2 -2557.420 3 -2470.686 5 -2349.280
2 3 -2481.669 5 -2352.511 9 -2315.446
5 3 -2481.669 5 -2352.511 9 -2315.446
10 3 -2481.669 5 -2352.511 12 -2308.048
25 3 -2481.669 5 -2352.511 12 -2308.048
50 3 -2481.669 5 -2352.511 12 -2308.048

Beta(.5,.5) 1 3 -1.878 5 169.211 9 253.910
2 3 -1.878 5 169.211 9 253.910
5 3 -1.878 5 169.211 9 253.910
10 3 -1.878 3 78.774 9 253.910
25 3 -1.878 3 78.774 9 253.910
50 1 0.000 1 0.000 9 253.910

χ2
8 1 2 -2915.903 2 -2915.903 5 -2724.892

2 3 -2858.830 3 -2858.821 5 -2724.892
5 3 -2858.830 6 -2828.781 6 -2724.121
10 3 -2858.830 6 -2828.781 10 -2714.062
25 3 -2858.830 6 -2828.781 10 -2714.062
50 3 -2858.830 6 -2828.781 10 -2714.062

Gauss(0, 1) 1 5 -1431.732 5 -1441.553 7 -1424.159
2 5 -1431.732 5 -1441.553 7 -1424.159
5 5 -1431.732 5 -1441.553 7 -1424.159
10 5 -1431.732 5 -1441.553 7 -1424.159
25 5 -1431.732 5 -1441.553 9 -1419.724
50 5 -1431.732 5 -1441.553 9 -1419.724

LN(0,1) 1 5 -1558.841 6 -1514.952 8 -1410.472
2 5 -1558.841 7 -1445.409 8 -1410.472
5 5 -1558.841 7 -1445.409 7 -1423.303
10 5 -1558.841 7 -1445.409 8 -1410.472
25 5 -1558.841 7 -1445.409 8 -1410.472
50 6 -1476.036 7 -1445.409 8 -1410.472

Table 1: The effect of the chosen bandwidth wrt. the log likelihood of a test-set. In general, we see that results for
“large” bandwidths (α = 1) can be poor due to “double smoothing”.
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for a sample D = {x1, . . . , xN} as

GN (x) =
1

N

N
∑

ℓ=1

1{xℓ ≤ x}, x ∈ R, (5)

where 1{·} is the indicator function.
The density and distribution functions of an MoTBF are tightly connected. Therefore, if we

can find an accurate approximation of the CDF, we can also get an accurate estimation of the
density. The next results establish the relation between the parameters of the density and the
CDF. We define η0 = 1 and let ηi denote the anti-derivative of the basis function ψi−1. Thus,
{η0, η1, . . .} is the set of functions that can be obtained from Ψ.

Lemma 1. Consider a random variable X with CDF

F (x) =

k
∑

i=0

ciηi(x). (6)

Then X has an MoTBF density.

Proof. The density of X is just the derivative of F ,

f(x) = F ′(x) =
k
∑

i=0

ci η
′
i(x) =

k
∑

i=1

ci ψi−1(x) =
k−1
∑

i=0

c̃i ψi(x),

which is an MoTBF. �

Taking Lemma 1 into account, we can formulate an optimization procedure for estimating
CDFs. The estimation of the parameters of a CDF, corresponding to an MoTBF on an interval
Ω = [a, b], consists of solving the program

minimize

N
∑

ℓ=1

(

GN (xℓ)−
k
∑

i=0

ciηi(xℓ)

)2

subject to

k−1
∑

i=0

ci ψi(x) ≥ 0 ∀x ∈ Ω, (7)

k
∑

i=0

ciηi(a) = 0, and

k
∑

i=0

ciηi(b) = 1,

where the first constraint ensures that the CDF is non-decreasing, whereas the second and third
constraints together ensures that the approximation will integrate to one. For this optimization
we will still require that the set of basis functions Ψ is legal, but as the program is neither
initialized with the GFS parameters nor are tied to them, we do not require the basis functions to
be orthonormal.

As an example, let us consider the polynomial basis functions. Since this procedure does not
require the basis functions to be orthonormal, we can simply use Ψ = {1, x, x2, x3, . . .}, which
entails that ηi = xi for i = 0, 1, 2, . . . Now the optimization problem is defined as follows:

minimize

N
∑

ℓ=1

(

GN (xℓ)−
k
∑

i=0

ci x
i
ℓ

)2

subject to

k
∑

i=1

i ci x
i−1 ≥ 0 ∀x ∈ Ω,

k
∑

i=0

ci a
i = 0 and

k
∑

i=0

ci b
i = 1.

The convergence of the densities estimated by the procedure described above is stated next.
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Proposition 2. Let f be an MoTBF density and let F be the corresponding CDF. Let X be a
random variable with CDF F and support Ω = [a, b]. Consider a sample of size N of variables
with the same distribution as X. Let GN be the empirical CDF, as defined in Equation (5). Then
F̂N (x), obtained by solving Program (7) is a consistent estimator of F (x) in terms of the mean
squared error for all x ∈ Ω.

Proof. Using Glivenko-Cantelli’s theorem, we have that |GN (x) − F (x)| → 0 as N → ∞. Now,
taking into account that F̂N is an MoTBF as well, it follows that F̂N is an M -estimator (Huber,
1964) of F , which leads to a linear regression problem. The consistency of M -estimators in
regression problems was analyzed, for instance, by Bai and Wu (1997). Thus,

lim
N→∞

E

[

(F̂N (x)− F (x))2
]

= 0 for all x ∈ [a, b].

�

Proposition 2 states the consistency of the least squares estimators under the assumption that
the target density is an MoTBF. In practice, this assumption is not too restrictive, as it is known
that MoTBFs are able to accurately represent any univariate probability distribution (Langseth
et al., 2010, 2012).

4. Learning conditional distributions

Recall that for a conditional MoTBF f(x|z), the variables Z influence X only through the
partitioning of ΩZ , see Equation (2). Learning a conditional MoTBF therefore amounts to finding

• a partitioning P of ΩZ , and

• a (univariate) MoTBF for each hyper-cube in the partitioning.

The algorithms for learning conditional MoTBFs proceed by iterating over the two steps above,
however, for a given partitioning of the parent variables, the two proposed learning algorithms differ
in how the conditional distribution is learned. With a fixed partitioning of the parent variables, the
CDF-based learning approach considers each partition in isolation and simply learns an MoTBF
model based on the data points consistent with that partition. For the kernel-based approach, the
estimation procedure is slightly more elaborate as detailed below.

4.1. Kernel-based learning with a fixed partitioning

For a given hyper-cube Ωl
Z
∈ P we start by approximating the conditional empirical distribu-

tion with a conditional kernel density estimate. For ease of exposition, consider a variable Y with
parent X for which we have a data sample D = {d1, . . . ,dN}, where di = (xi, yi). We now define
the conditional kernel density estimate for Y given X as

hD(y|x, twy
, twx

) =

∑N
i=1 hyi

(y|twy
)hxi

(x|twx
)

∑N
i=1 hxi

(x|twx
)

,

where hxi
(x|twx

) is a kernel density estimator based on xi only and with bandwidth twx
; hyi

(y|twy
)

is defined similarly. Given a conditional kernel density estimator hD(y|x, twy
, twx

) and a partition-
ing P of ΩX , we approximate hD(y|x, twy

, twx
) with an MoTBF potential f(y|x) (see Equation (2))

by following the procedure of Langseth et al. (2012). Thus, for all Ωl
X ∈ P, we seek

f(y|x ∈ Ωl
X) ∼ hD(y|x ∈ Ωl

X , twy
, twx

) =
∫

x

hD(y|x, twy
, twx

)hD(x|x ∈ Ωl
X , twx

)dx,

where the integral can be approximated by
∑τ

i=1 hD(y|xi, twy
, twx

)hD(xi|xi ∈ Ωl
X , twx

) using data
samples x1, . . . , xτ from D belonging to Ωl

X . That is, for a fixed partitioning of ΩX learning a
conditional MoTBF potential reduces to estimating a univariate MoTBF potential (as described
in Section 3) for each partition Ωl

X ∈ P .
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4.2. Finding a partitioning of the conditioning variables

In order to find a partitioning of ΩZ we employ a myopic strategy, where we in each step
consider a bisection of an existing partition along each Z ∈ Z. That is, for each partition Ωl

Z
∈ P

the algorithm evaluates the potential gain of splitting the partition along Z ∈ Z. After scoring the
candidate partitions the algorithm selects the highest scoring partition ΩBS

Z
and splitting variable

ZBS, and learns MoTBF representations of the two induced sub-partitions ΩBS,1
Z

and ΩBS,2
Z

. To
guide the selection of a candidate partition Ω′

Z
we consider the potential improvement in BIC

score resulting from splitting that partition:

BIC-Gain(Ω′
Z
, Z) = BIC(f ′,D)−BIC(f,D),

where f ′ is the conditional MoTBF potential defined over the partitioning {P\Ω′
Z
}∪{ΩZ,1

Z
,ΩZ,2

Z
}.

In principle, when scoring the model f ′ one would need to find the basis functions (and the corre-
sponding parameters) maximizing this score. This will, however, be computationally difficult, and
instead we lower-bound the improvement in BIC score by using the same set of basis functions as
was used for the parent partition Ω′

Z
. It should be noted that for the calculation of the improve-

ment in BIC score, we only need to consider the parts of the score relating to the partition Ω′
Z
,

since the contributions from the partitions for which f and f ′ agree cancel out; this property also
supports an efficient caching scheme for BIC-Gain. The overall procedure for learning conditional
MoTBFs is summarized in Algorithm 1. Note that when learning MoTBF potentials for different
intervals (Line 5 in Algorithm 1), the learning algorithm may chose different basis functions for
the different intervals.

Algorithm 1 Learning conditional MoTBFs.

1: P ← {ΩZ}
2: repeat

3: (ΩBS
Z
, ZBS)← argmaxΩ′

Z
∈P,Z∈Z BIC-Gain(Ω′

Z
, Z)

4: if BIC-Gain(ΩBS
Z
, ZBS) > 0 then

5: Learn MoTBF potentials for ΩBS,1
Z

and ΩBS,2
Z

.

6: P ←
{

P \ ΩBS
Z

}

∪
{

ΩBS,1
Z

,ΩBS,2
Z

}

.

7: else

8: terminate.
9: end if

10: until false

5. Experiments

In this section we report on a series of experimental studies undertaken to analyze the proposed
methods and compare them to their most immediate competitors.

5.1. Learning univariate probability distributions

In order to analyze the behavior of the algorithm when learning univariate distributions we
have sampled data sets from five different distributions: an MTE distribution (MTE ), a beta
distribution (Beta(0.5, 0.5)), a χ2 distribution with eight degrees of freedom (χ2

8), a standard
normal distribution (Gaussian), and a log-normal distribution with µ = 0 and σ = 1 (Log-
Normal). Specifically, for each distribution we have generated one data set of 1000 samples and
10 data sets of 25 samples and 50 samples, respectively, giving a total of 21 data sets for each of
the distributions. In order to test the predictive ability of the methods, a separate test-set of 1000
samples was also generated for each of the distributions.

When learning the models, we used the BIC-score as a model selection criteria. For illustration,
consider Figure 4 showing the MoTBF models learned using the kernel approach and based on
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Figure 4: The figure shows the MoTBF models learned based on 1000 samples from five different distributions
using the kernel-based approach. The dashed lines show the kernel density estimates and the solid lines show the
learned MoTBFs.

the data sets consisting of 1000 samples. The displayed MoTBFs correspond to the best scoring
models spanned by the first twelve (polynomial) basis functions.

In order to estimate the predictive performance of the algorithms we learned an MoTBF model
for each of the generated data sets and evaluated them in terms of their log-likelihood on the hold-
out test-set. The results for the data sets with 1000 samples are reported in Table 2. The
column named Baseline gives the test-set log-likelihoods obtained using the method by Langseth
et al. (2010) and, for ease of presentation, the remaining columns give the difference between the
baseline and the associated models. Here, a positive value corresponds to an improvement over
the baseline in terms of test-set log-likelihood, and a negative value indicates a decrease in quality.
For instance, Kernel/MoP obtained a likelihood score of −2315.45 on the MTE-data, which is
30.20 poorer than the baseline model.

Data set Baseline Kernel/MoP Kernel/MTE CDF/MoP CDF/MTE

MTE -2285.25 -30.20 -69.31 -50.90 -31.42
Beta(0.5, 0.5) 249.45 4.46 -38.24 2.16 -40.82
χ
2

8 -2702.67 -21.45 -18.83 -6.62 -4.06
Gaussian -1430.88 11.16 -156.85 -3.34 -1.56
Log-Normal -1358.38 -52.09 -50.86 -60.73 -37.46

Table 2: Difference in test-set log likelihood between the baseline (the method by Langseth et al. (2010)) and the
proposed estimators. The BIC score was used for model selection.

To determine whether the results reported in Table 2 discriminate among the different algo-
rithms, we have run Friedman’s test with significance level 0.05. The results indicate that there
are no significant differences among the learning methods used.

An analysis similar to the one above was performed for the data sets with 25 and 50 samples
each. The results are summarized in Figure 5 and Figure 6, showing box-plots generated from the
data sets with 50 and 25 samples, respectively.

For some of the data sets Friedman’s test indicated that there were significant differences
between the methods. In those cases we deployedWilcoxon-Nemenyi-McDonald-Thompson’s post-
hoc test (Hollander and Wolfe, 1999) to make a pair-wise comparison of the methods. The results

13



Kernel/MoP Kernel/MTE CDF/MoP CDF/MTE

−
24

60
−

24
20

−
23

80
−

23
40

Lo
g−

lik
el

ih
oo

d

(a) MTE

Kernel/MoP Kernel/MTE CDF/MoP CDF/MTE

0
50

10
0

15
0

Lo
g−

lik
el

ih
oo

d
(b) Beta

Kernel/MoP Kernel/MTE CDF/MoP CDF/MTE

−
30

00
−

29
00

−
28

00

Lo
g−

lik
el

ih
oo

d

(c) χ2

Kernel/MoP Kernel/MTE CDF/MoP CDF/MTE

−
18

00
−

16
00

Lo
g−

lik
el

ih
oo

d

(d) Gaussian

Kernel/MoP Kernel/MTE CDF/MoP CDF/MTE

−
15

50
−

15
00

−
14

50

Lo
g−

lik
el

ih
oo

d

(e) Log-normal

Figure 5: Boxplots for the 50 samples data sets.

of the these experiments are summarized in Table 3; see the appendix for more details about the
results.

MTE Beta(0.5, 0.5) χ2 Gaussian Log-norm

25 CDF/MoP≻CDF/MTE
CDF/MoP≻Kernel/MTE

No diff. CDF/MoP≻CDF/MTE No diff. No diff.

50 Kernel/MTE≻CDF/MTE CDF/MoP≻Kernel/MoP
CDF/MTE≻Kernel/MoP
CDF/MoP≻Kernel/MTE

No diff. No diff. No diff.

Table 3: Summary of the experimental results for the data sets with 25 and 50 samples. The table lists the
significant differences found using Wilcoxon-Nemenyi-McDonald-Thompson’s post-hoc test with significance level
0.05.

From the results we see that the CDF-based approach appears to have an advantage over
the kernel-based approach for smaller data sets. We hypothesize that this is due to the target-
distribution having relatively large areas of low density in these situations, which in turn means
that it requires a high number of basis functions to be faithfully captured. Due to our greedy model
evaluation strategy (based on the BIC-score, which penalizes model complexity), these volatile
model candidates are not considered, and the search strategy fails to find suitable representations.

As a last comment we would like to note that the speedup from the direct maximum likelihood
approach (Langseth et al., 2010) to our approaches is above a factor 10. The main contribution to
the speed increase is that while the previous technique was based on an iterative scheme, where
each potential solution (living in a very complicated likelihood-landscape) needed to be evaluated
using a computationally expensive procedure, the current approaches cast the learning problem
as convex optimization problems with much cheaper evaluations.
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Figure 6: Boxplots for the 25 samples data sets.

5.2. Learning conditional probability distributions

We exemplify the learning of conditional distributions by generating data from a model with
two variables X and Y , where X follows a standard Gaussian distribution and Y |{X = x} ∼
N (x/2, 1). Data sets containing 50, 500, 2500 and 5000 cases were generated as input to Algo-
rithm 1, which was instantiated using the two different methods for learning MoTBF distributions.

The conditional distributions produced by the kernel-based approach are shown in Figure 7,
with the parent variable displayed on the x-axis and the child variable on the y-axis. For the
smallest data set consisting of 50 cases, the BIC-score only gave support for a single split-point
that was inserted at the midpoint of the support interval for X . As the size of the training-
sets increases, the BIC score selects more and more refined models, allowing itself to use more
parameters to represent the correlation between X and Y as the correlation is more and more
clearly manifested in the training data. Notice that the algorithm uses more effort on refining the
part of the model, where the bulk of the data is found (i.e., around x ≈ 0). The results of learning
the conditional distribution using the CDF approach show the same behavior as in Figure 7.

Returning to the issue of inference as described in Section 2.2, we have analyzed the effect of
forcing all the basis functions for a conditional distribution to be defined over the same domain. As
mentioned in Section 2.2, the larger the domain of the density being approximated, the more basis
functions will usually be required in order to find good representations of the low density regions.
This is also reflected in Figure 8, which shows the results of learning a conditional MoTBF based
on the data described above, but this time using the CDF learning approach with the restriction
that the basis functions are defined over the same domain. Compared to Figure 7 we see that
fewer split points are inserted for the parent variable. This is due to the increase in the number
of basis functions that are needed to capture the behavior of the density in the extended regions,
thereby increasing the complexity of the overall model.

We have also experimented with learning these extended conditional distributions using the
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Sample size: N = 50 N = 500

N = 2500 N = 5000

Figure 7: Learning a conditional linear Gaussian distribution using the kernel-based method and polynomial basis
functions. Models were selected based on their BIC score. Note how finer model granularity is selected as the size
of the training-set grows, and how the discretization effort is kept to the area with the bulk of the data.

kernel-based method. As indicated by the results for the univariate distributions, the kernel-
based method appears to be less robust when learning from few data samples and, by hypothesis,
when learning distributions with larger low-density regions. This observation was also reflected in
the initial learning experiments with extended conditional densities, where the complexity of the
MoTBF models (i.e., the number of basis functions) dominated the overall model complexity so
that model selection using the BIC-score failed to divide the interval for the parent variable and,
in effect, did not capture the correlation between the variables.

5.3. Learning from real-world datasets

In order to test the performance of the proposed estimation procedure in real-world scenarios,
we conducted an experiment over a set of databases taken from the UCI machine learning reposi-
tory (Bache and Lichman, 2013). Details of the datasets are given in Table 4. In the experiments
we repeated the following steps for each database:

1. Discretize the variables in the database using equal width binning with three resulting values.

2. Use the PC algorithm (Spirtes et al., 1993) to obtain a Bayesian network structure from the
discretized database.

3. Estimate a conditional MoTBF density for each variable given its parents in the learned
network structure. The estimation procedure follows the scheme given in Section 4 combined
with the CDF approach for learning univariate densities.

The algorithms used in this experiment are denoted as follows.

• MTEi, with i = 2, 3, 4. The algorithm described in Section 4 particularized for MTEs
by using exponential functions as basis functions, and allowing the domain of the parent
variables in conditionals to be split at most i times.

• MOPi, with i = 2, 3, 4. Similar specification as above, but using polynomials as basis
functions instead of exponential functions.
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Sample size: N = 50 N = 500

N = 2500 N = 5000

Figure 8: Learning a conditional linear Gaussian distribution using the CDF-based approach and polynomial basis
functions. The models are learned with the constraint that the domain of all conditional distributions should be
the same (see Section 2.2). Note that the selected models typically are less refined than their counter-parts learned
without this restriction.
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dataset #instances #variables
diabetes 768 8
disclosure 662 4
ecoli 336 5
glass 163 7
iris 150 4
seeds 209 7
segmentation 210 16
slump 103 10
vertebral 310 6
waveform 5000 21

Table 4: Description of the databases used in the experiments

• Discretei, with i = 3, 6, 8, 10. The algorithm described in Section 4 dividing the domain of
each variable into i pieces by equal frequency binning and fitting a constant density to each
interval.

For each of the networks, we ran the above mentioned algorithms and computed the log-
likelihood and the BIC score for each database using a 5-fold cross validation scheme. Notice
that, as the likelihood is not comparable between discrete and continuous distributions due to
the fact that continuous densities are not bounded above, we have represented the distribution
of each discretized variable as a continuous density with a constant value in each of the regions
corresponding to the discrete values. For instance, assume a variable X with support [0, 3] is
discretized by equal width binning into three values 0, 1 and 2 corresponding to intervals [0, 1), [1, 2)
and [2, 3]. Assume also that P (X = 0) = 0.2, P (X = 1) = 0.5 and P (X = 2) = 0.3. The
distribution of X is then represented with a continuous density

f(x) =



















0.2 if 0 ≤ x < 1,

0.5 if 1 ≤ x < 2,

0.3 if 2 ≤ x ≤ 3,

0 otherwise.

The results are displayed in Tables 5 and 6. For each table, the column named Baseline
give the actual results of the Discrete3 algorithm, whereas the other columns give the difference
between that approach and Discrete3 (positive numbers indicate improvements). To determine
whether the results discriminate among the different algorithms, we have run Friedman’s test
with significance level 0.05. For the data sets where Friedman’s test indicated that there were
significant differences between the methods we carried out a pair-wise comparison using Wilcoxon-
Nemenyi-McDonald-Thompson’s post-hoc test (Hollander and Wolfe, 1999). The results of the
comparison are displayed in Table 7. The statistical analysis suggests that MoTBFs are superior to
discretization in terms of BIC score while no significant differences are found in terms of likelihood,
except for the simplest discrete model (Discrete3), that is outperformed by MOP3 and Discrete10.

We have conducted the same statistical tests but considering only three groups of results,
namely Discrete, MTE and MOP, where for each dataset, Discrete represents the best score
among those obtained by Discrete3, 6, 8 and 10, and equivalently for MTE and MOP. The result
of Friedman’s test indicates that there are no significant differences in terms of likelihood between
the three groups, with significance level 0.05. In what concerns BIC score, the only significant
difference found points at MOP algorithms outperforming the Discrete ones.

6. Conclusions

In this paper we have examined two techniques for learning the parameters of a hybrid Bayesian
network from data. In the first approach we find a kernel density estimate of the data and utilize an
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Database Baseline Discrete6 Discrete8 Discrete10 MTE2 MTE3 MTE4 MOP2 MOP3 MOP4
diabetes -2055.67 139.55 200.70 338.70 788.82 785.30 775.92 773.25 788.32 779.41
disclosure -960.68 6.66 9.77 14.37 210.61 210.61 210.61 210.47 210.47 210.47
ecoli -474.79 54.86 68.82 83.10 31.68 37.95 32.44 30.54 35.08 31.53
glass -316.58 55.68 70.80 68.98 40.14 43.04 39.28 58.09 61.11 61.85
iris -127.13 9.81 11.29 10.23 -17.88 -13.10 -16.85 -5.92 -3.86 -5.08
seeds -309.44 63.90 78.15 78.29 -20.02 -31.79 -33.37 -16.69 -25.06 -31.46
segmentation -775.69 143.50 192.22 228.89 248.76 247.27 236.30 316.45 308.20 313.18
slump -265.45 7.05 8.66 12.33 43.20 43.20 43.20 36.84 36.84 36.84
vertebral -542.91 62.92 97.22 110.47 63.47 62.33 56.37 68.83 64.88 61.49
waveform -35620.98 2291.83 3493.09 4436.38 7206.36 7005.30 6884.96 8081.11 7805.20 7559.40

Table 5: Average log-likelihood computed using 5-fold cross validation for the networks learned by the tested algorithms. The actual numbers are reported for the baseline
model, which is standard discretization using three states (Discrete3). For the other models we report their improvement wrt. the baseline. Boldfaced numbers indicate the
best algorithm for each data set.
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Algorithm Baseline Discrete6 Discrete8 Discrete10 MTE2 MTE3 MTE4 MOP2 MOP3 MOP4
diabetes -2169.45 -522.00 -1239.69 -1876.56 741.51 711.79 682.29 714.35 691.66 678.21
disclosure -986.09 -53.44 -105.07 -166.94 155.89 155.89 155.89 173.34 173.34 173.34

ecoli -527.82 -193.05 -420.27 -606.22 1.82 -8.74 -16.78 18.77 -9.51 -10.53
glass -384.17 -179.93 -317.82 -437.90 15.43 14.07 6.17 30.28 25.21 13.01
iris -150.25 -58.90 -120.34 -177.86 -30.82 -34.19 -32.50 -28.04 -22.92 -25.50
seeds -380.35 -285.08 -590.34 -915.64 -78.67 -80.74 -87.53 -52.18 -76.57 -68.06
segmentation -883.34 -197.37 -495.50 -901.37 107.48 93.29 83.81 191.99 166.92 161.43
slump -306.58 -93.91 -180.90 -278.49 2.06 2.06 2.06 6.89 6.89 6.89

vertebral -618.80 -370.55 -753.61 -849.30 13.98 12.02 4.41 32.96 26.94 25.20
waveform -36751.08 -9671.72 -21957.17 -34613.86 6929.35 6422.97 6154.81 7557.50 7243.59 7057.20

Table 6: Average BIC score computed computed using 5-fold cross validation for the networks learned by the tested algorithms. The actual numbers are reported for Discrete3
(denoted “Baseline”); for the others we report the improvement wrt. the baseline. Boldfaced numbers indicate the best algorithm for each data set.

2
0



Log-likelihood BIC
Discrete10 ≻ Discrete3 Discrete3 ≻ Discrete10
MOP3 ≻ Discrete3 MOP2 ≻ Discrete10

MOP3 ≻ Discrete10
MOP4 ≻ Discrete10
MTE2 ≻ Discrete10
MTE3 ≻ Discrete10
MOP2 ≻ Discrete6
MOP3 ≻ Discrete6
MOP4 ≻ Discrete6
MOP2 ≻ Discrete8
MOP3 ≻ Discrete8
MOP4 ≻ Discrete8
MTE2 ≻ Discrete8

Table 7: Summary of the experimental results for the real-world data sets. The table lists the significant differences
found using Wilcoxon-Nemenyi-McDonald-Thompson’s post-hoc test with significance level 0.05.

effective translation procedure designed for approximating any marginal or conditional distribution
function (in this case a kernel density) by an MoTBF distribution. The resulting parameters were
asymptotically shown to be the maximum likelihood estimators for the MoTBF model, and we
found promising results when learning from relatively large data sets. On the other hand, we
noted a lack of robustness when learning from small data sets, and this observation motivated a
second approach. Here we used the empirical cumulative distribution function as target for the
MoTBF approximation, and the empirical results point towards this strategy being more robust
when data are scarce.

Although both methods were found to be slightly worse than state-of-the-art techniques in
terms of the log-likelihood score, the speed-up over previous methods is substantial, and we are
currently investigating how the method scales to larger domains. Additionally, the types of con-
ditional distributions that can be learned seems to support an efficient inference scheme and will
be analyzed and further developed as part of future work.
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Appendix A. Detailed experimental results

Figure A.9 shows box-plots of the difference in the log-likelihood results for those data sets,
where Friedman’s test indicated a significant difference when comparing all the learning algorithms.
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Figure A.9: Box-plots of the log-likelihood differences for all pairwise comparisons of the learning algorithms. The
labels in the plots correspond to 1 - Kernel/MTE vs. Kernel/MoP 2 - CDF/MoP vs. Kernel/MoP , 3 - CDF/MTE
vs. Kernel/MoP , 4 - CDF/MoP vs. Kernel/MTE , 5 - CDF/MTE vs. Kernel/MTE , 6 - CDF/MTE vs. CDF/MoP.
The colored boxes indicate situations, where there is a significant difference the results according to Nemenyi’s test
with significance level 0.05.
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