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AN ABSTRACT OF THE THESIS OF 
 

Andrew Fleming, for the Master of Science degree in Geography and Environmental 
Resources, presented on March 25, 2011, at Southern Illinois University Carbondale.  
 
TITLE:  FOREST CARBON MAPPING AND SPATIAL UNCERTAINTY 
ANALYSIS: COMBINING NATIONAL FOREST INVENTORY DATA AND 
LANDSAT TM IMAGES 
 
MAJOR PROFESSOR:  Dr. Guangxing Wang 

Being able to accurately map forest carbon is a critical step in the global carbon 

cycle modeling and management process.  This project is aimed at enhancing the current 

methodologies used for forest carbon mapping, and applying a method to account for any 

errors produced.  By doing so, more accurate decisions can be made based on the 

knowledge gained from forest carbon maps; such as policy decisions on how to manage 

forests, or how to mitigate climate change.  The use of remotely sensed images, in 

combination with Forest Inventory and Analysis (FIA) data, is one such way of doing 

this.  This study compared three different methods; including linear regression, 

cosimulation, and up-scaled cosimulation to interpolate forest carbon based on a defined 

relationship between sample plots of national FIA data and satellite images.  An 

uncertainty analysis was completed in an effort to quantify, and separate the different 

sources of error produced within a cosimulation mapping effort.   

The results indicated that the band ratio of TM4 / TM5 + TM4 / TM7 had the 

highest correlation coefficient, around 0.56, with the FIA forest carbon values.  At a 

resolution of 90 m × 90 m, co-simulation predicted carbon values from about 14 Mg/ha, 

to 135 Mg/ha.  The regression model, at the same resolution, estimated carbon values 

from about -17 Mg/ha, to 2,400 Mg/ha.  Up-scaled cosimulation at a resolution of 990 m 

× 990 m, predicted carbon values of ranging from 16 Mg/ha, to 133 Mg/ha.  The 
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uncertainty analysis was unable to produce any statistically significant results, with all R2 

values below 0.1.   These results showed that using a linear regression produced some 

impossible estimates, while cosimulation led to more realistic values.  However, no 

conclusion can be made when comparing the methods based on the map validation 

techniques used.  Although limited validation of the results was conducted, using both the 

FIA data and some independent sampling data; further work that focuses on validation is 

recommended. 
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CHAPTER 1 

INTRODUCTION 

BACKGROUND 

The anthropogenic effects on global climate change are of key interest to the 

scientific community, and the general public right now.  As such much of the global 

community is looking for ways to help control the anthropogenic consequences of global 

climate change from further worsening.  Forest carbon sinks are one such way to do this.  

It is well known that CO2 is one of the major greenhouses gasses, and is contributing to 

global climate change (Nowak and Crane 2002).  Through the process of photosynthesis, 

forests and other vegetation pull carbon out of the atmosphere and sequester it within 

their woody biomass (Neilson et al. 2007; Nowak and Crane 2002).  This carbon path 

does not stop when carbon is sequestered within a plant.  Plants also act as a conduit by 

which carbon is incorporated into the soil.  As leaf litter and other vegetation falls to the 

forest floor, it can become incorporated into the soil or inserted via rhizodeposition.  The 

decomposition of soil organic matter releases carbon back to the atmosphere, as do fires 

(Jandl et al. 2007; Tomlinson 2005).  As such, soil too is a viable carbon sink, but adds 

additional complications.  Generally, it is the estimation of a tree’s biomass that 

researchers use to generate forest carbon estimates (Hall et al. 2006).  Forests can either 

be forest carbon sinks, or sources.  A growing forest is a carbon sink, whereas a dying 

and/or deforested forest is a carbon source (Neilson et al. 2007; Tan et al. 2007). 

Ideally, the delineation of forest carbon sinks will be an all-encompassing 

process, that not only involves an estimation of the amount of carbon contained within 
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the trees of the forest, but also the amount of carbon contained below ground.  While this 

study will not be able to quantify all the carbon pools including: soil, belowground root 

carbon, ground surface carbon, and aboveground tree carbon, it does create estimates and 

predicted values for the carbon contained within trees (both above and belowground).  

Nonetheless, the different ways in which carbon can be sequestered is a process that 

needs to be understood as thoroughly as possible if accurate estimates of the world's 

carbon are to be obtained. 

Ocean carbon and soil carbon also have an important place in the world of carbon 

sequestration.  Carbon is sequestered within oceans via the burial of marine sediments 

and is directly related to plankton productivity (Mollenhauer et al. 2004; Ruddiman 

2008). It has been observed that the chlorophyll-like pigments produced where plankton 

productivity occurs is correlated with the amount of carbon being stored in the oceans 

(Mollenhauer et al. 2004). On the other hand, Feng et al. (2006) has found that the 

reflectance of soil can be correlated specifically to the amount of soil organic carbon 

(SOC) within the soil.  By use of sediment cores procured via grid sampling, they 

determined that an accurate recreation of SOC was possible when using a satellite image 

with these cores.  But, this methodology is not easily reproduced in forested areas, since 

the sediment cores that were linked to imagery where not from forests. It should also be 

pointed out that ocean and soil carbon sinks are not only very difficult to estimate, but 

even more difficult to manage. Although forest carbon is just one part of the total global 

carbon sink, it poses the greatest potential in being accurately mapped and managed for 

the purposes of carbon sequestration. 
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It is estimated that temperate and boreal regions of the earth hold 1-2 gigatons of 

carbon (Bousquent et al. 2001), which is approximately equal 15-30% of the annual 

anthropogenic carbon emissions (Dong et al. 2003).  Forests, in general, hold 60-85% of 

the aboveground terrestrial carbon (Dong et al. 2003; Tan et al. 2007), and temperate and 

boreal forests cover 1.4-1.5 billion hectares (ha) (Dong et al. 2003).  Of that 1.5 billion 

ha, 60% percent of the active carbon sink is found in North America (Woodbury et al. 

2007).  As one can see, forests have the ability to sequester a large amount of carbon (800 

gigatons within the forest and soil (Sohngen and Mendelsohn 2003)), and to pull even 

more from the atmosphere (87 gigatons) (Sohngen and Mendelsohn 2003).  Therefore, 

there is potential for humans to manage forests in a way to help mitigate the effects of 

global climate change.  To do this however, it is necessary to understand the dynamics 

and patterns of forest carbon sequestration (Blackard et al. 2008; Chen et al. 2003; Dong 

et al. 2003; Hall et al. 2006; Wang et al. 2009). 

The potential environmental consequences from global climate change have 

attracted the attention of scientists and policy makers from around the world. The 

scientific community is facing a great challenge on how to reduce carbon sources without 

a significant loss in gross domestic productivity. A potential resource that couple be 

deployed to reduce the human carbon footprint is to develop a forest carbon market. 

Obviously, this requires accurate assessment maps of global forest carbon. 
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STUDY OBJECTIVES 

 Based on the large proportion of land that is covered by forests, and the ability of 

these forests to hold vast amounts of carbon; it is quite apparent that more work is needed 

to better understand the processes of carbon sequestration in a global context.  More 

importantly, there is a need to be able to locate potential carbon sinks.  This pilot study 

attempts to do this by using existing Forest Inventory and Analysis (FIA) plot data in 

tandem with Landsat Thematic Mapper (TM) images to generate forest carbon maps in 

the United States for the years 2004 and 2005.  Three different methods will be used to 

generate these forest carbon maps, and will be compared to see which one is the most 

accurate.  The methodologies are: a regression model, sequential Gaussian co-simulation, 

and up-scaled sequential Gaussian co-simulation.  Lastly, this study will attempt to 

conduct an uncertainty analysis using a polynomial regression, so that the various sources 

of uncertainties can be separated and analyzed.  Within the uncertainty analysis, 

measurement error will be calculated from additional field data collected specifically for 

that purpose. 

 

JUSTIFICATION 

 The purpose of this pilot study is to try to fill in some of the gaps that are 

associated with forest carbon mapping.  For instance, the quantification of the spatial 

patterns and distribution of forest carbon is one such major gap (Wang et al. 2009). 

Although there is a significant amount of literature pertaining to different methods used 

to map forest carbon; no real consensus has been reached in the terms of a valid and 
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reliable method.  Scaling up point data, or data from smaller map units to larger map 

units or regions, is another major problem associated with carbon mapping (Chen et al. 

2007; Wang et al. 2009).  Data that is gathered at large scales is often broad, and misses 

the spatial variability of the landscape.   Also budget, or cost, limitations usually limit the 

collection of field observations at larger scales (Wang et al. 2009).  On the other hand, 

data that are collected at a fine scale will only work on small or regional levels unless it is 

scaled up (or aggregated) to cover larger areas, in which case this brings about additional 

uncertainties and errors.  Consequently, there is a need to find a way to generate accurate 

carbon maps, and scale up the spatial data. This study plans to answer this challenge with 

the comparison of the different map generation methodologies and an uncertainty 

analysis. 

 The uncertainties associated with forest carbon mapping often have to do with the 

techniques used to evaluate and interpolate the data, and the quality of the data used 

(Wang et al. 2009).  These have obvious effects on the outcomes of the forest carbon map 

estimates that are generated.  Additionally, there is also a disconnect between the 

physiological processes of forests, and the models that are being used to generate the 

forest carbon maps (Wang et al. 2009).  Some studies try to handle this problem by 

attempting to duplicate every environmental factor and variable they can locate, and 

quantify it.  While this is a good idea in theory, it too has its fair share of problems 

(which will be discusses later in this thesis).  This proposed study plans to overcome 

some of these issues.  The dissection of the different errors and uncertainties that are 

introduced and produced throughout the study, should help in the creation of more 

accurate methods in the long run. 
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 Additionally, there is also a basic need to generate carbon maps for the United 

States.  There have been a few studies that have attempted this (e.g. Birdsey 1992; 

Birdsey and Heath 1995; Brown et al. 1999; Meng et al. 2009; Woodbury et al. 2007, 

Zheng et al. 2008), but none so far has filled the gaps mentioned above.  So, in addition 

to scaling up maps, this study will also be satisfying the basic knowledge gaps of forest 

carbon sink mapping within the United States while using adequate interpolation 

techniques, which propagate uncertainties when maps are up-scaled.  Lastly this study 

will include methods that can be used for conducting uncertainty budgets. This need is 

well justified by the large proportion of the global temperate forests in the U.S. 

(Woodbury et al. 2007). 

 

RESEARCH QUESTIONS AND HYPOTHESES 

This study aims to fill some of the gaps associated with mapping forest carbon 

sinks, and will attempt to answer the following questions: 

1) How should the US FIA plot data be combined with Landsat TM images when the 

sample plots do not match the image pixels in size?  

2) Are the co-simulation based interpolation methods more accurate than traditional 

regression modeling to generate forest carbon maps, when combining the FIA data 

and TM images?  
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3) Will the measurement errors of forest variables contribute more to the 

uncertainties of forest carbon estimates, than the variation of forest carbon and 

spectral variables? 

In researching these questions, this study poses these hypotheses: 

1) Landsat TM images used in tandem with FIA data will not provide linkage 

between forest carbon from sampled locations, to unobserved locations. 

2) Co-simulation and the regression based modeling will produce maps with equal 

errors while attempting to reproduce the spatial variability of forest carbon. 

3) Uncertainties from the error associated with FIA produced forest carbon will not 

contribute more to the uncertainties of forest carbon estimates, than Landsat TM 

images. 

4)  Measurement errors will not make a significant contribution to the total 

uncertainty within the study. 
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CHAPTER 2 

LITERATURE REVIEW 

FOREST CARBON MAPPING METHODS 

 A large amount of literature exists on forest carbon that needs to be taken into 

consideration when developing a methodology that proposes to solve many of the 

problems that are associated with this type of multi-faceted project.  This literature 

review attempts to demonstrate the need for this pilot study by pointing out several key 

aspects that are important for the creation of this study.  The identification of what has 

been done in the past is the first step, followed by identifying the problems and gaps that 

are associated with the past studies.  This literature review covers the topics of; general 

forest carbon mapping methodology, the gaps that are associated with forest carbon 

mapping, and the different types of interpolation algorithms that are available.  Lastly, it 

discusses the uncertainty analysis.   

There are a number of ways to generate forest carbon sink maps, including the 

conversion of forest inventory plot data straight into carbon estimates (Fang et al. 2001; 

Nowak and Crane 2002; Peltoniemi et al. 2006); the use of forest growth models to 

generate carbon estimates (Neilson et al. 2007; Ryan 1991); the use of process models 

(Chen et al. 2007; Chen et al. 2000a; Chen et al. 2003; Chen et al. 2000b; Running et al. 

1989; Running 1994); and the use of remote sensing imagery coupled with forest 

inventory plot data (Dong et al. 2003; Gibbs et al. 2007; Myneni et al. 2001; Tan et al. 

2007; Wang et al. 2009; Zheng et al. 2007).  All of these methods have their own 

negative and positive aspects. 
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 The conversion of forest inventory plot data directly into carbon estimates is a 

method that provides excellent local spatial resolution (Fang et al. 2001), and quite often 

excellent temporal resolution (Fang et al. 2001; Peltoniemi et al. 2006).  This method is 

relatively simple and only requires forest inventory data.  However, there are several 

flaws with this method.  For instance, field data needs to be reevaluated year to year to 

determine if any changes have occurred (Peltoniemi et al. 2006).  There are also many 

unknown uncertainties associated with the conversion factors from volumes to biomass, 

and further from biomass to carbon (Wang et al. 2009).  Additionally, this methodology 

is onlyt spatially explicit for the areas in which forest variables are observed (Wang et al. 

2009).  All of the natural spatial variability that occurs in forests, particularly in different 

terrains and regions, cannot be accurately accounted for with just ground data for one 

location, or region. 

 Forest growth models are a similar technique to direct conversion, except that 

modeling of tree growth processes is attempted.  In Ryan’s (1991) study, the main focus 

was on the rates of photosynthesis and respiration of the forested area being studied.  He 

could then use these parameters to generate estimates of how much carbon would be 

flowing in and out of a forest ecosystem.  Neilson et al. (2007) used a similar 

methodological paradigm, in that he too focused on how forests grow.  In this case, 

however, they used their high caliber inventory data and plugged it into various 

simulators to produce their estimates.  The carbon estimates created by these studies give 

excellent temporal resolution (Neilson et al. 2007), but their focus on particular areas to 

get the detailed data that was required, limits these studies spatially (Wang et al. 2009).  

Neilson et al. (2007) said that their studies results could be only regionally accurate based 
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on the tree species composition of that area, compared to others.  Furthermore, there are 

also uncertainties created by these models and simulations that are difficult to identify 

(Wang et al. 2009). 

 The use of process models is another method that can be used to generate carbon 

estimates.  These models often incorporate hundreds of parameters (Wang et al. 2009), 

and attempt to account for all the regional characteristics that make up an ecosystem.  

This method has a strong following because of its paradigm, which in theory can create a 

very accurate carbon estimate.  Unfortunately, there are too many uncertainties associated 

with the different parameters used in these models, and these will greatly reduce the 

accuracy of the results (Wang et al. 2009).  For instance, in Chen et al. (2003), they state 

that forests grow more slowly in colder climates, or in Running (1989) where he 

discusses the need to get snow melt coefficients.  These examples are just two of the 

parameters that need to be taken into consideration when using a process model, and 

exemplifies the difficulty in applying such a model to a continental or even global scale. 

There are just too many factors that must be considered, and too much accumulating 

uncertainty.  To use this method to generate carbon estimates for the entire globe on any 

kind of annual timeframe would require the input and measurement of so many different 

variables that it would be unusable, both financially and temporally. 

 One other methodology that is commonly used is the combination of forest 

inventory plot data with remotely sensed images.  This method is promising because it 

has the potential to be both spatially and temporally explicit (Wang et al. 2009).  The use 

of forest inventory data, along with satellite image data greatly increases the utility of the 

dataset (Zheng et al. 2007).  While many studies do not get the anticipated accuracy (Tan 
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et al. 2007; Zheng et al. 2007), there is a lot of potential for this method in general, which 

is why this pilot study will be utilizing it.  Ideally, with the use of a proper interpolation 

technique, an accurate forest carbon sink map will be produced.  Also, this methodology 

has great replication potential, depending on the source of data.  Forest inventory 

programs have existed in many countries for several decades. The use of free data means 

that it is inexpensive, and the cost-effectiveness of the method, along with the simplicity 

of the data (Wang et al. 2009), will enable more studies to be conducted using this 

method. 

 In general, there are still many gaps and uncertainties associated with forest 

carbon mapping.   Many studies are trying to replicate the complex physiological 

processes of plants, and are just too complicated for practical use (e.g. Chen et al. 2003; 

Running et al. 1989; Running 1994; Ryan 1991).  Other studies have had sample sizes 

that are too small to be statistically valid (e.g. Zheng et al. 2007), or satellite images that 

had spatial resolution that was too coarse (e.g. Dong et al. 2003; Tan et al. 2007) or poor 

quality.  There have been many different types of statistical methodologies used to create 

the carbon estimates.  The nearest neighbor technique (Kimes et al. 1999) is one such 

example, as well as various types of regressions (Brown et al. 1999; Dong et al. 2003; 

Woodbury et al. 2007 and others).  However, these methods lack the ability to propagate 

uncertainties of a forest landscape over multiple scales (Wang et al. 2009).  Many studies 

have also ignored an uncertainty analysis (e.g. Chen et al. 2003; Chen et al. 2007; 

Woodbury et al. 2007; among others).  This is real need for the proper examination of the 

forest carbon map results, and a need to be able to increase the performance of the 

models. 
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 Therefore, there is a true need to fill these gaps.  Statistically sound forest 

inventory data with direct field measurements (Fang et al. 2001) needs to be used, and 

has been shown to correlate well with Landsat images (Zheng et al. 2007).  The use of a 

methodology to accurately scale up image and field data is vital for the generation of 

forest carbon maps.  The identification of uncertainties in a quantifiable manner to reveal 

their relative contributions is also very important for delivering forest carbon products 

(Wang et al. 2009).  To this point, it can be said that there simply is a basic need to 

improve forest carbon sink mapping methods (Wang et al. 2009). 

 

USE OF REMOTELY SENSED IMAGES 

 The use of remotely sensed images, particularly satellite images is well justified.  

These images provide land cover types and biophysical parameters (Chen et al. 2003) on 

a reliable temporal and spatial scale (Myneni et al. 2001; Running et al. 1989; Tan et al. 

2007).  Biophysical parameters such as Leaf Area Index (LAI) and Normalized 

Difference Vegetation Index (NDVI) are commonly used as surrogates to correlate the 

satellite imagery to the forest inventory measured biomass (Chen et al. 2003; Dong et al. 

2003; Myneni et al. 2001; Tan et al. 2007; Zheng et al. 2007).  NDVI is the measure of 

the contrast between red and near infrared solar reflection, and as such is a measure of 

greenness. Many studies have shown that there is a strong correlation between NDVI and 

biomass (Dong et al. 2003; Tan et al. 2007).  NDVI does have a tendency to saturate in 

dense canopies, such as the canopies of tropical and old growth forests (Dong et al. 2003; 

Myneni et al. 2001; Zheng et al. 2007).  In addition to this tendency, reflectance curves of 
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leaves of different species and age vary, and so there is added uncertainty from the 

foliage optical properties.  However this added uncertainty is debatable depending on the 

variance thresholds being used (Knyazikhin et al. 1999).   

These flaws imply the need for other methods, for example, identification and use 

of forest types, to get strong correlations between the different parameters (Zheng et al. 

2007).  Using remote sensing images, with some assistance from biophysical parameters 

can determine the forest cover types (Brown et al. 1999; Gibbs et al. 2007; Knyazikhin et 

al. 1999; Myneni et al. 2001; Neilson et al. 2007; Tan et al. 2007; Zheng et al. 2007).  

Land cover categories are important to help distinguish between the different carbon 

amounts that are present in different forest types.  The most common categories are: 

broadleaf forests, needle leaf forests, mixed forests, and woody savannas (Dong et al. 

2003; Myneni et al. 2001) with some basic alterations depending on the study area (Tan 

et al. 2007).  Because satellites cannot directly measure forest carbon, the combination of 

ground data (In Gibbs et al. 2007) and the information acquired from satellite images is 

an important part of increasing the accuracy of forest carbon estimates.  

 

INTERPOLATION TECHNIQUES 

 There are many interpolation mapping algorithms that are used to generate the 

forest carbon maps; however, none so far have solved many of the gaps associated with 

this practice.  In the mapping algorithm world, there is a need for a methodology that 

creates maps with unbiased population and local estimates (Wang et al. 2002).  In other 

words, there is a need for a method which will reproduce the natural variety that is found 
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in vegetation cover (Meng et al. 2009).  A way to measure the uncertainty produced from 

the mapping is also needed (Wang et al. 2002; 2009).  There have been studies that have 

attempted to do so, but rarely do they attempt to estimate relevant forest variables, such 

as carbon content (Meng et al. 2009).   

Essentially, interpolation algorithms that use two sources of data: primary data 

and secondary; data provide the potential to increase the accuracy of forest carbon 

estimates.  Previously there were many problems associated with the integration of two 

sources of data (Mowrer 1997), but in Recent years these problems have been dealt with 

through the use of new techniques (Berterretche et al. 2005; Meng et al. 2009).  Using 

remotely sensed images (serving as a secondary variable), it is possible to create a link 

between observed locations, and un-observed locations when a high correlation is found 

between the two sources of data, and this increases the accuracy of the predicted values 

(Gertner et al. 2002).  The regression, co-simulation, and up-scaled co-simulation are 

three interpolation techniques that use primary and secondary data. 

Regressions are a common aspatial technique used to predict spatial forest 

variables (Meng et al. 2009).  Regressions have been used in the past to model 

relationships between spectral indices and primary variables (Berterretche et al. 2005), 

while maintaining spatial heterogeneity within the estimated carbon maps (Gertner et al. 

2002).  In fact, a study by Zirlewagen et al. (2007) stated that no validation techniques 

are needed for a multiple regression if the coefficient of determination is close to 100%, 

and if all of the requirements are given (Zirlewagen et al. 2007).  Zirlewagen et al. (2007) 

even preferred the regression to other geostatistical techniques.  However, there are a 

number of problems with the regression.  It only works well if the relationship between 
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the variables is highly significant (Wang et al. 2005). Moreover, the maps generated by 

regression do not preserve the covariance structure of the variables.  That is to say, the 

regression is unable to replicate or track the natural variability that is found within a 

landscape, and how this transcends when paired with a secondary variable. Lastly, no 

uncertainties are generated for the mapped values when using the regression (Gertner et 

al. 2002).   

On the other hand, co-simulation and up-scaled co-simulation (to be discussed 

later) produce unbiased results with minimal error variances and corresponding variance 

maps; and so are excellent ways to fill the gaps mentioned above (Wang et al. 2002).  

However, these two techniques are not widely used.  Therefore there is a need to explore 

their utility as interpolation techniques for forest carbon mapping, and to further 

investigate the advantages and disadvantages.  For instance, co-simulation is based on a 

semivariogram and Gaussian distribution (Berterretche et al. 2005), which reproduces the 

spatial variability of the primary variable, but does not necessarily produce the best 

individual predictions (Wang et al. 2002).  Most importantly, the co-simulation 

techniques provide spatially explicit predicted values, and spatial uncertainty measures of 

the predicted values (Wang et al. 2009). 

 There are many problems associated with the up-scaling of forest carbon to large 

scales as well.  The problems begin with the nonlinearity of the variables that each pixel 

contain (Wang et al. 2009), so that when values are aggregated to a coarser scale, 

variability found at the smaller scale is often lost (Chen et al. 2007).  A methodology is 

needed to tackle this portion of the problem.  There are several methods that are used to 

do this, such as the K-nearest neighbor method (Kimes et al. 1999; Tomppo et al. 2008), 
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block averaging, and block co-simulation (Wang et al. 2009).  K-nearest neighbor and 

block averaging lack the ability to derive and propagate the uncertainties of the estimates 

from finer spatial resolutions to coarser ones, whilst block co-simulation is capable of 

such tasks.   

 

UNCERTAINTY ANALYSIS 

  Just as there is a need to create more accurate estimates of forest carbon, there is 

also a need to conduct uncertainty and error budgets for the resulting maps.  Forest 

carbon sinks can be presumed to be highly uncertain (Peltoniemi et al. 2006), and the 

need for a measure of reliability has been recognized (Sales et al. 2007; Wang et al. 

2009).  Uncertainty and error budgets can be used to calculate the relative variance 

contributions from different sources of error in a way similar to that of an ANOVA table 

(Gertner et al. 2002).  By providing uncertainty budgets, studies can better inform their 

audiences (Heath and Smith 2000) by improving ecological interpretation, helping assess 

errors in a spatial context, and decreasing the losses and risks in policy and management 

decision making (Berterretche et al. 2005).   

Several methods have been used to assess uncertainty, such as the Monte Carlo 

methods (Heath and Smith 2000; Mowrer 1997), Fourier Amplitude Sensitivity Test 

(FAST), Taylor series, Sobol’s method (Wang et al. 2005), cross validation (Berterretche 

et al. 2005; Meng et al. 2009; Zirlewagen et al. 2007), Bayesian statistics (Deckmyn et al. 

2009; Tang and Zhuang 2009) and the polynomial regression (Gertner et al. 2002).  

However, many of these are not actually designed for an uncertainty analysis, and few 



17 

 

 

 

have the ability to calculate relative uncertainty (Wang et al. 2005).  Of these methods, 

the polynomial regression has the ability to partition the error components down to their 

sources (Gertner et al. 2002; Wang et al. 2005).  Additionally, uncertainties can be 

tracked as they propagate through the model (Gertner et al. 2002; Heath and Smith 2000).  

In this way, an error budget can be produced to show the relative errors of the individual 

sources, and future studies can focus their efforts on the portions of the methodology that 

need the most improvement (Heath and Smith 2000; Wang et al. 2009). 
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CHAPTER 3 

STUDY AREA AND DATASETS 

STUDY AREA 

 This study took place in Shawnee National Forest (SNF; defined by U.S. 

Department of Agriculture, Forest Service (d) 2009; Figure 1).  This area is located in the 

Southern Illinois - Illinois Ozark or Shawnee Hills section of Illinois, and resides atop 

unglaciated soil resulting in greater topographical variation than Illinois is traditionally 

known for (USDA Forest Service (c) 2009).  This area ranges in elevation from 89 meters 

(m) to 312 m, and has slopes ranging from 0 to 46 degrees (Illinois Natural Resources 

Geospatial Data Clearinghouse).  The average winter temperature for the area is 2.2 

degrees Celsius, and the average summer temperature is 24.4 degrees Celsius.  Average 

rainfall for the winter is 290 millimeter (mm), and average summer precipitation is 310 

mm (winter defined as December through February, and summer as June through August; 

Illinois State Water Survey).  Shawnee National Forest consists predominantly of oak-

hickory stands, and cover about 107,000 ha located across 11 counties (USDA Forest 

Service (c) 2009), including Alexander, Gallatin, Hardin, Jackson, Johnson, Massac, 

Pope, Pulaski, Saline, Union, and Williamson.  
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Figure 1: The study area is in Shawnee National Forest, located in southern Illinois. 

 

FIA SAMPLING AND MEASURING PROCEDURS 

Within this area, there are on average 40 National FIA sample plots that are 

measured each year and can be used to map forest carbon sinks.  The FIA datasets were 

provided by the U.S. Department of Agriculture, Forest Service Datamart website ((a) 

2009). The sampling design of FIA was described in detail by Bechtold and Patterson 

(2005). The FIA subdivides the total land area of the U.S. into mutually exclusive 

populations defined by county boundaries. A double sampling stratification system, that 

is, photo points or satellite pixels as the first stratum with field permanent plots as the 
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second stratum, is used. The sampling framework is based on a triangular grid, but the 

cells surrounding each point on a triangular grid form a hexagonal shape. Thus, the 

sampling framework is a network of hexagons, and each hexagon represents an area of 

2,403 ha. The centers of the hexagons in a given panel form a triangular pattern of 

equidistant points for a five-panel rotation designed to accommodate the measurement 

frequency of 20 percent per year. The re-visiting time is five years. Therefore, FIA is a 

systematic national forest inventory sampling program with periodic measurements of 

forest variables and provides the potential to monitoring forest carbon dynamics. 

Each FIA plots consists of four subplots with a tri-areal design. That is, one 

subplot is central with three surrounding subplots located 36.6 m from center to center, 

and at azimuths of 0, 120, and 240 degrees from the central plot, respectively. Each 

subplot has a 7.3 m radius, and the four subplots total 0.07 ha in size.  Within each 

subplot, trees with a diameter at breast height (DBH) greater than 12.7 centimeters (cm) 

are measured.  Tree species, state of health (living or dead), distance from centroid of 

plot, and azimuth from centroid of the plot is also measured.  Tree height is measured on 

some trees, depending on how many trees are located within each plot.  In each of the 

subplots there is also a microplot offset from the center of each subplot by 3.7 m , at an 

azimuth of 90 degrees.  The 4 microplots together cover a total of 0.005 ha.  In each 

microplot, trees with a DBH of 2.54 – 12.6 cm- are measured to the same degree as in the 

subplots.   

The FIA plot data was downloaded from the national FIA database.  Forty-one 

plots were obtained for the year 2004, and 38 plots for the year 2005.  Each dataset 

contained tree heights and diameters, as well as pre-calculated volumes, biomass values, 
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and aboveground and belowground carbon content for the corresponding locations for the 

years 2004 and 2005.  Normally, the released FIA plot locations are only approximate, 

because the Forest Service is required by law not to release the exact locations of the 

plots to maintain the privacy of plots on private land, and the integrity of the plots 

themselves (McRoberts et al. 2005).  However, for the purposes of this study, we 

acquired the unaltered GPS coordinates for the FIA plot locations.   

 

ADDITIONAL FIELD PLOTS 

In order to quantify measurement errors and their contributions of the total 

uncertainty for the entire model, additional field plot data were collected in 2009. The 

additional field plots were designed and measured according to FIA sampling procedures 

(Bechtold and Patterson 2005).  Two 1 km × 1 km blocks were selected at two different 

locations in this study area.  Within each of these blocks are 9 plots laid out in grid 

formation with 250 m intervals, and each plot consists of 4 subplots laid out in a tri-areal 

design as in FIA program. Within each subplot, the forest variables were measured 

according to FIA sampling procedures. Within the two blocks, a total of 18 plots were 

measured and could be used to conduct primary validation of forest carbon estimates. It 

was anticipated that more additional field plots would be measured for the validation; 

however this was limited because of cost. In addition, within one block the 9th plot that 

consisted of 4 subplots was measured 9 times so that measurement errors of tree diameter 

and height could be calculated.   
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LANDSAT TM IMAGES 

Landsat Thematic Mapper (TM) images of Southern Illinois were downloaded for 

the years 2004 and 2005 (U.S. Department of the Interior, U.S. Geological Survey). The 

study area is covered by two scenes of Landsat TM satellite images, so at least two 

images for each year are collected.  The images were taken between the months of July 

and October, with a focus on the month of September.  Cloud cover is not more than 10% 

in any image. For each year, two images, an east and a west, were selected with the least 

amount of cloud cover, and the so that the date taken was as close to one another as 

possible. The Landsat TM images used consist of six bands at spatial resolution of 30 m, 

including band 1: 0.450-0.515μm, band 2: 0.525-0.605μm, band 3: 0.630-0.690μm, band 

4: 0.76-0.90μm, band 5: 1.55-1.75μm, and band 7: 2.09-2.35μm, and one band at spatial 

resolution of 120m (band 6): 10.4-12.5μm.  
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CHAPTER 4 

METHODS 

 This study aims to reduce many of the gaps and uncertainties that are associated 

with mapping forest carbon.  To do this, existing FIA data will be used together with 

Landsat TM images to create forest carbon sink maps.  The Landsat TM images provide 

the basis for the interpolation of forest carbon in sampled locations, to the locations that 

have not been sampled. To create the maps, three different interpolation methods will be 

used and compared to one another to try and discern the best methodology.  Also, an 

uncertainty analysis will be performed using a polynomial regression to link the input 

uncertainty with the output uncertainty, and in doing so be able to calculate the relative 

contributions of the errors involved.                                                                                                               

 

CALCULATION OF TREE CARBON 

 The acquired FIA plots had pre-calculated carbon values, but since this was not 

the case for the additional field plots; a recreation of the carbon calculation process was 

required.  To do this, FIA volume and biomass equations from the FIA Database: 

Database Description and Users manual Version 4.0 for Phase 2 (Table 1;                                                  

US Department of Agriculture, Forest Service (b) 2009), were used to calculate the total 

aboveground volumes for the trees based on the DBH and height.  The tree biomass 

equations were based on species group specific parameters (Table 2; Jenkins et al. 2004), 

which make for more accurate biomass calculations than using tree type (coniferous or 

deciduous).  The carbon content was calculated from the biomass using the widely used
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coefficient of 0.5 (Blackard et al. 2008; Dong et al. 2003; Gibbs et al. 2007; Peltoniemi et al. 2006; Tan et al. 2007), which the FIA 

also uses.                    

 

Table 1: FIA biomass equations. 

Tree Part   Equation 

Bole Biomass  =  (VOLCFSND * (BARK_VOL_PCT/100.0) * (BARK_SPGR_GREENVOL_DRYWT * 
62.4) ) + (VOLCFSND * (WOOD_SPGR_GREENVOL_DRYWT * 62.4) )   

Crown Biomass  =  (total_agb – (total_agb * (stem_ratio + bark_ratio + foliage_ratio)) - stump_biomass)  
* AdjFac   

Stump Biomass  =  stump_biomass * Adjustment Factor 
Root Biomass  =  total_agb * root_ratio   

Sapling Biomass  =  (total_agb – (total_agb * foliage_ratio) ) * JENKINS_SAPLING_ADJUSTMENT   
Adjustment Factor  = Bole Biomass / (total_agb * (stem_ratio + bark_ratio))   
Total Tree Biomass  = Bole Biomass + Top Biomass + Stump Biomass + Root Biomass 

  
  
 agb = aboveground biomass 

    
For further explanation of equations, see citation US Department of Agriculture, Forest  
Service (b) 2009 

 



25 

 

 

 

 

 

 

Table 2: Species group specific parameters used for tree biomass calculations. 

Jenkins SPGRCD 
  Parameters 
  total b1 total b2 stem wood b1 stem wood b2 bark b1 bark b2 foliage b1 foliage b2

CL -2.0336 2.2592 -0.3737 -1.8055 -2.098 -1.1432 -2.9584 4.4766 
PI -2.5356 2.4349 -0.3737 -1.8055 -2.098 -1.1432 -2.9584 4.4766 

MH -2.48 2.4835 -0.3065 -5.424 -2.0129 -1.6805 -4.0813 5.8816 
MO -2.0127 2.4342 -0.3065 -5.424 -2.0129 -1.6805 -4.0813 5.8816 

Jenkins SPGRCD Parameters (cont) 
root b1 root b2 sap adj stump DO stump b1 stump b2 Wood SpGr Bark Sp Gr Bark % 

CL -1.5619 0.6614 0.63086 0.12667 0.914 0.11975 0.4 0.4 14.5 
PI -1.5619 0.6614 0.45789 0.08091 0.90698 0.08469 0.43 0.4 16.15 

MH -1.6911 0.816 0.79248 0.12766 0.91979 0.12152 0.5 0.51 14.35 
MO -1.6911 0.816 0.76989 0.12798 0.92267 0.12506 0.6 0.59 18.06 
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However, because species specific tree information was not collected, a 

reconstructed species group composition profile for the additional field data had to be 

created (Figure 2).  This was done using the FIA provided species specific data (Jenkins 

et al. 2004, US Department of Agriculture, Forest Service (a) 2009, US Department of 

Agriculture, Forest Service (b) 2009).  Each species from the SNF FIA data was grouped 

into the standard FIA species groups, from which the group percentage of the total was 

calculated, to see what groups were dominant (Table 3).  The two most prevalent species 

groups for both deciduous and coniferous trees were chosen.  Mixed Hardwoods (MH) 

and Hard Maple/Oak/Hickory/Beech (MO) were given equal representation among the 

deciduous trees; while Pine (PI) was given 66% of the coniferous representation, leaving 

Cedar/Larch (CL) with 33%.  Biomass was then calculated for each species group for 

every measurement value using the appropriate parameters (Table 2).   

 

Table 3: Percent species group representation from FIA SNF data, grouped by FIA 
approved species groups. 

Jenkins SPGRP Name Jenkins SP % 
Mixed Hardwoods 43.61% 

Hard Maple/Oak/Hickory/Beech 38.66% 
Soft Maple/Birch 6.72% 

Pine 6.53% 
Cedar/Larch 2.54% 

Aspen/Alder/Cottonwood-willow 1.92% 
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Figure 2: Flow chart representation of how carbon content was calculated for the 

measurement data. 

 

Once total tree biomass was obtained for every tree and tree group, random 

numbers were assigned to each tree corresponding to the likelihood of that particular tree 

group being selected (Table 3).  Deciduous trees received a random value of 1, or 2.  A 

“1” was used to represent MH, while a “2” was used to represent MO.  Coniferous trees 

received random values between 3 and 5.  Three and “4” were used to represent PI, and 

“5” was used to represent CL.  An Excel “IF” function was then written that would select 

which ever biomass total was specified depending on if the tree was deciduous or 
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coniferous, which random number was assigned to that tree, and whether or not the tree 

was recorded as living or dead.  At this point the carbon content could then be calculated 

by multiplying the final biomass by the standard coefficient of 0.5 (Blackard et al. 2008; 

Dong et al. 2003; Gibbs et al. 2007; Peltoniemi et al. 2006; Tan et al. 2007).  This data 

was then used for the measurement error tabulation, and map accuracy assessment.  

 

IMAGE PROCESSING AND ENHANCEMENT 

 The Landsat TM image processing started with selecting and merging two images 

covering the study area for each year (Figure 3). Each east and west image, for each year 

was cropped from the original Landsat TM image so that only the greater Shawnee 

National Forest area remained. Geometric correction was done for each image, using 

ArcMap and topographic images obtained from Illinois Natural Resources Geospatial 

Data Clearinghouse (University of Illinois at Urbana-Champaign) as the reference image. 

The topographic maps were at a 1:100,000 scale, in Digital Raster Graphic format, and 

obtained from the US Geological Survey.  The maps were projected in the WGS 1984 

UTM Zone 16N coordinate system.  The resultant geometrically corrected images had a 

root mean square error of 15 meters, or half a pixel size; which is an acceptable amount 

of error. 
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Figure 3: False color composite Landsat TM image for the year 2004.  Forests and other 

vegetation appears as dark red, agricultural land is bright red and light blue; and water is 

dark blue in most cases. 

 

Radiometric correction (haze reduction and empirical line calibration) was 

performed on each image, band by band.  Band 6, the far-infrared band or thermal band, 

and was discarded.  The bands were then put back together using the Layer Stack 

function from ERDAS Imagine (the same function that separated them).  ERDAS 

Imagine was used to complete Haze Reduction, which uses a Tasseled Cap 

transformation and an absolute atmospheric correction method to remove the haze.  The 
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layer stack function was again used to separate all the bands from each image, and 

Empirical Line Calibration was also conducted band by band.  Empirical line calibration 

converted the original digital numbers of the image to reflectance values, based on the 

selected known white and dark bodies an each image.  This too was done using ERDAS 

Imagine on each band of each image. 

 The bands were then put back together, to form one image for east, and one image 

for west, and were then merged together using mosaic function in ERDAS Imagine.  The 

combined images were then subsetted (clipped) again so that all images had the same 

dimensions (Figure 4).  The bands from each image were once again removed, and 

ArcMap was used to resample the image, which changed the pixel size of each image 

from 30 m × 30 m to 90 m × 90 m using a window average function.  The resulting 

images, with a pixel size of 90 m × 90 m most closely matched the size of one FIA plot; 

and thus it was expected that the effects of scale would be reduced (Wang et al. 2001).   
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Figure 4: 2005 Landsat TM image post haze reduction, empirical line calibration, and 

clipped to uniform size.  Forests and other vegetation appear as dark red, agricultural land 

is bright red and light blue; and water is dark blue in most cases. 

 

The Landsat TM images were enhanced by creating band ratios from the different 

spectral bands.  Various band ratios such as the Normalized Difference Vegetation Index 

(band 4 - band 3 / band 4 + band 3), Simple Vegetation Index (band 4 / band 3), and 

others were calculated (Table 4).  In addition, principle components analysis (PCA) was 

performed on the images, and the same ratios were calculated using these images.  PCA 

was used on the images to try and reduce the number of bands that would be needed, and 
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isolate the most important variables within each image.  PCA transforms an original 

image into a smaller dataset of uncorrelated variables which represent the majority of the 

information from the original images.  The first component accounts for the maximum 

proportion of the variance of the original image, with the second orthogonal component 

accounting for the next largest amount of variance, and so on (Jensen 2005).  Thus PCA 

would ideally be able to isolate the most important spectral information from the original 

images, and these too could be used for band ratios. The information with the most 

variance, representing the largest amount of information could increase the correlation 

found between the FIA data and image, because more of the variance recorded by the 

satellite of the ground, could be attributed to the variance on the ground, as measured by 

the FIA.  The images with the highest correlation to the sample plot carbon content were 

used for interpolation. 

 

Table 4: Coefficients of correlation between band ratio combinations and FIA carbon 

values at FIA locations. 

Landsat TM Band Correlation 
2004 2005 

tm1 -0.342 -0.514 
tm 2 -0.214 -0.265 
tm 3 -0.254 -0.379 
tm 4 0.223 0.135 
tm 5 -0.374 -0.363 
tm 7 -0.444 -0.485 

(4-3)/(4+3) (NDVI) 0.363 0.541 
4/3 (SR) 0.346 0.55 
2+3+5/7 0.476 0.336 

4/3+5 (SLAVI) 0.504 0.566 
(1+2+3)/(4+5+7) -0.031 -0.408 
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Table 4 (cont): Coefficients of correlation between band ratio combinations and FIA 

carbon values at FIA locations. 

Landsat TM Band 
(cont) 

Correlation 
(cont) 

2004 2005 
1*5/7 0.163 -0.127 

4/7 0.553 0.559 
4/5 0.55 0.555 

4/7*5 0.403 0.217 
2/4 -0.362 -0.507 

4/5+4/7 0.562 0.568 
4-5/4+5 0.545 0.549 

7/4 -0.519 -0.521 
5/4 -0.54 -0.529 
4/2 0.347 0.482 

5/4*2 -0.44 -0.444 
2/4+4/7 0.553 0.541 
4/5+2/4 0.553 0.536 
4/7+2/4 0.553 0.541 

(4/5)/(4/7) -0.422 -0.352 
2/7*4 0.534 0.21 
4/5*7 -0.211 -0.152 
7/2*5 -0.453 -0.463 
4*5 -0.161 -0.173 

(2+4+5)/7 0.534 0.496 
(4-7)/(4+7) 0.531 0.542 

pca tm 1 -0.355 -0.32 
pca tm 2 -0.271 0.306 
pca tm 3 -0.466 -0.234 
pca tm 4 -0.093 0.244 
pca tm 5 -0.277 -0.314 
pca tm 7 0.261 -0.341 

pca (4-3)/(4+3) 0.177 -0.018 
pca 3/4 0.179 -0.219 

pca (2+3+5)/7 0.355 0.377 
pca 1/2 0.496 -0.503 
pca 2/3 -0.109 -0.049 
pca 2/4 -0.154 0.189 

pca (1+7)/(1+5) 0.07 0.196 
pca 1/7+1/5 0.078 0.163 
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REGRESSION MODEL 

 Three different methods were used to generate forest carbon maps from the FIA 

data and Landsat TM images.  The first method was the linear regression model.  This 

method took the pixel values that have co-locations with the FIA plot tree carbon values, 

and generated a linear model that was used to assign carbon values to un-observed pixels.  

The equation y = 19,841.39x - 21,107.50 was defined for the year 2004, and the equation    

y = 19,147.19x - 25,948.08 for 2005.  These equations use the image ratio pixel values as 

the independent variable, and the FIA carbon values as the dependent variable.  This 

model has reversed the previously defined relationship between FIA carbon values and 

band ration pixel values, so that the image values can then be used to estimate carbon for 

areas where no FIA data is available.  The model will therefore be estimating carbon 

Megagrams (Mg)/ha values based on what the image value is, at the location the estimate 

is being made.  This modeling was done using MatLab, and produced the first version of 

the forest carbon maps.  

 

SEQUENTIAL GAUSSIAN COSIMULATION 

 Gaussian cosimulation is a geostatistical method that was used to produce a forest 

carbon map.  This methodology assigns each pixel a predicted value of forest carbon 

(Mg/ha) based on the spatial autocorrelation of forest carbon values from both the known 

FIA carbon values and selected satellite image.  The spatial autocorrelation was 

calculated using semivariograms (variograms) by determining the variance of forest 

carbon between any two sample locations separated by a vector called lag h (distance).  
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These values were then graphed with the distance between the locations as the x-axis and 

the variance as the y-axis: this is how the autocorrelation was calculated.  The nugget, 

range, and partial sill of the variogram model were obtained by fitting a spheric variance 

model to the sample data in the graph. The nugget value indicates the within plot 

variation of forest carbon, while the partial sill indicates the spatial variation of forest 

carbon across the study area. The range suggests a maximum distance of spatial 

autocorrelation, and beyond this distance the data values are considered to be 

independent from each other. The range can be used to determine a neighborhood within 

which sample data can be used for predicting forest carbon for each of the unknown 

locations. 

The forest carbon values for unknown locations were calculated by weighting 

each known sample plot within a given neighborhood, based on the spatial 

autocorrelation of forest carbon.  The weighted average from the obtained values was 

then calculated.  Within this neighborhood the predicted values, if any, were also taken 

into account. In addition, the image value of the co-located pixel was weighted. The 

obtained weights were then used to calculate a variance for the predicted value of this 

unknown location. A Gaussian distribution graph was created based on these predicted 

values and variances.  A random value was then derived from the Gaussian distribution 

of the individual pixel, based on the probability of the Gaussian distribution.  A ‘random 

path’ function was applied, to move the process on to the next pixel, until the entire 

image was processed. 

This entire process was repeated 400 (L) times with different random paths.  The 

number of simulations (L) was determined from the relationship between the variance of 
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the block estimates, and the number of simulations. Usually, when more simulations are 

used, less variance is associated with the average of the predicted values from all of the 

maps.  The number of simulations chosen should be the proper balance between a smaller 

degree of variance, and shorter program run time (Wang et al. 2009).  In this case, it was 

400 simulations.  To generate the final map from the hundreds of simulated maps, the 

average of each pixel was calculated, leading to an E-type, or final predicted value map 

of forest carbon.   

Concurrently, the variance of the E-type predicted values for each pixel was 

calculated.  This variance reveals the uncertainty of the predicted values, not only from 

the configuration of the sample data in relation to the location to be estimated, but also 

from the local variation of the data themselves based on the variograms.  This is a 

measure of the true uncertainty for the predicted value at that specific location. In this 

study, it was assumed that forest carbon had a normal distribution.  However, the 

presence of a normal distribution within the data was not verified.  A normal score 

transformation was performed on the FIA plot and image data to ensure it existed, which 

helps to ensure autocorreation is found within the variogram.  Autocorrelation is often not 

found, if sample sizes are small (as in the case of the FIA data).  Ensuring that the data is 

normally distributed allows for autocorrelation to be found, if it is present. 

 

UP-SCALED SEQUENTIAL GAUSSIAN COSIMULATION 

 Up-scaling, or aggregation, means that spatial data is scaled up, or aggregated 

from a finer spatial resolutions to coarser ones. This process is needed when national 
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forest carbon maps have to be generated with large pixel sizes, (e.g. 1 km × 1 km) using 

the FIA sample plot data collected at smaller measurement units (e.g. 90 m × 90 m). In 

this study, the up-scaled forest carbon map was created using ‘block co-simulation’.  This 

method is fundamentally the same as the regular co-simulation method described above.  

However, the neighborhood defined not only incorporates the value of the FIA data, but 

also the values of the image kernel.  The image kernel defines the size of the up-scaling 

that will occur (so a 3 × 3 kernal will up-scale an image pixel size three times).  The 

neighborhood with the FIA values, and kernel image values, is then used to produce the 

variogram and Gaussian distribution, just like in sequential Gaussian cosimulation. The 

processes from here on out is the same, except that the final predicted value is assigned to 

the up-scaled block size, instead of the center kernel pixel. In this study, this block co-

simulation was done with a kernel of 11 × 11 pixels, that is, a window of 990 m × 990 m. 

The kernal’s size depends on how large a pixel is required for the final up-scaled map 

result.  

 

ACCURACY ASSESSMENT 

 The next step was to conduct an accuracy assessment and uncertainty analysis.  

Validation was used to determine the estimation error of the different methods, using two 

sources of data.   One validation was done by comparing the FIA values used to create 

the maps, with their collocated pixel values.  A known location was presumed to be 

unknown and estimated, or predicted, using one of the previously mentioned methods 

(Sales et al. 2007).  The known values and predicted values were then compared.  This 
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was done for all of the FIA plot locations using each of the three methods.  The second 

validation was done in a similar manner, by comparing the additional field plot values of 

forest carbon to their corresponding pixel estimates or predicted values.  Because the 

additional field plot values were collected in 2009, 4 to 5 years of carbon accumulation 

had to be subtracted from the values so that they could accurately be compared to the 

carbon estimation maps.  The figure of 1,188 kg/ha/yr of carbon accumulation was used, 

which is an average amount of carbon accumulation per year in Illinois forests (Birdsey 

1992).  The accuracies of the maps from the three methods were then compared.   

  

UNCERTAINTY ANALYSIS 

A polynomial regression was developed to create a relationship between the 

uncertainties from the input datasets to the uncertainties of the output estimates.  Three 

different primary sources of error were taken into account: measurement error, the 

variation of forest carbon observations within the FIA data, and the variance from the 

Landsat TM band ratio images.  The different sources of error were quantified by using a 

Fortran program that calculated the variance between pixel values or sample plots.  The 

image variance of each pixel for the map at pixel size of 90 m was calculated using the 

pixel values at the resolution of 30m × 30m within a window of 3 × 3 pixels. The input 

forest carbon variance of each pixel was derived using 3 to 5 sample plots depending on 

how many sample plots were used for predicting this location.  This program could be 

run directly on the band ratio images, and the FIA plot data.  However, additional steps 

had to be taken to produce the raster variance image output for the measurement error. 
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The measurement error data were collected from one small plot, so it could not be 

used directly for the entire study area.  Instead, a relationship was defined between the 

average tree diameter, and the variance from the carbon content of those trees (Figure 5), 

with values beyond one standard error removed. The defined relationship could then be 

used to extrapolate the measurement errors to FIA plot data locations.  At this point, the 

variance between the measurement error values at the FIA plot locations could be 

calculated using the same Fortran program used on the other two sources of error.   

 

Figure 5: Relationship between the average tree diameter and tree carbon variance, which 

was used to extrapolate the localized data to the FIA data. 

  

A random grid consisting of 379 points was then created to cover all of southern 

Illinois.  For each of the random points, the three errors mentioned above were extracted 
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(Figure 6).  The same random points were also used to extract the variances of predicted 

forest carbon values from the co-simulation variance maps.  The different sources of 

input error were then used as independent variables to create a polynomial regression 

with the output variance as a dependent variable.  In this way, the defined relationship 

was used to calculate the relative contributions of the input uncertainties to the output 

uncertainties. 

 

 

Figure 6: Figure and caption continue on the next page. 

a) b) 

c) d) 
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Figure 6 (cont): Random grid, and images from which the uncertainty analysis data were 

collected from. Image (a) displays the 2004 measurement variance, (b) the 2005 

measurement variance, (c) the 2004 FIA plot variance, (d) the 2005 FIA plot variance, (e) 

the 2004 TM image band ratio variance, and (f) the 2005 TM image band ratio variance.  

The TM image band ratio variance is displayed using histogram equalization, which 

emphasizes the variance so that it can be seen. 

 

The above methodology was used to produce three different forest carbon maps, 

and two forest carbon uncertainty maps per year; as well as an uncertainty analysis.  

These were then compared to calculate the relative differences between the techniques.  

The uncertainty analysis, or budget, with the help of the technique comparison can then 

allow for an improvement in the forest carbon mapping methodologies, providing 

reinforcement to the use of co-simulation and up-scaled co-simulation as an accurate way 

to produce carbon maps by combining forest inventory data and remotely sensed images. 

e) f) 
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CHAPTER 5 

RESULTS 

CORRELATION BETWEEN IMAGES AND PLOT FOREST CARBON 

 Based on Table 4, from all the original and transformed band ratio images, the 

band ratio: (band 4 / band 5 + band 4 / band 7) had the highest correlation coefficient 

with plot forest carbon for both years 2004 and 2005. The correlation coefficient for the 

year 2004 was 0.562, which is statistically significantly different from zero using the 

equation 
)2( 2

2

α

α
α tn

tr
+−

=   at α = 5%, and n = 41.  The correlation coefficient for the 

year 2005 was 0.568, which is also statistically significant at the 5% significant level 

using the same equation, but when n = 38.  The images produced from the band ratios are 

shown in Figures 7 and 8.  Significant correlations were found because the bands used are 

in the infrared spectrum, which is a spectrum has often correlates well with vegetation 

(Jensen 2005).  Vegetation, particularly tree leaves, reflect significantly more infrared 

light then visible light (Jensen 2005), so by using bands with these properties; more 

ground characteristics of vegetation could be extrapolated out of the pixel values.  It is 

likely that this ratio was able to discern forest density and age from the reflectance pixel 

values which, which could be attributed to why a significant correlation was found. 
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 Figure 7: 2004 band ratio image displaying band combination (band 4 / band 5 + band 4 

/ band 7). 
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Figure 8: 2005 band ratio image displaying band combination (band 4 / band 5 + band 4 / 

band 7). 

 

REGRESSION MODELS 

 The initial step in the usage of the regression model was the calculation of the 

relationship that existed between the FIA plot forest carbon values and the collocated 

image pixel values (Figures 9 and 10).  This relationship, as defined in the previous 

results section, is significantly different from zero.  This means that relationship is 

significant enough to proceed with the regression modeling.  This will be done however, 

knowing that this relationship does not explain about 70% of the variance. 
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Figure 9: The relationship between forest carbon (kg/ha) and the image ratio, which 

represents the regression model used to create a forest carbon map for the year 2004. 
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Figure 10: The relationship between carbon (kg/ha) and the image ratio, which represents 

the regression model used to create a forest carbon map for the year 2005. 

 

 The regression outputs for both years (Figure 11) depicted a visually agreeable 

representation of the Southern Illinois forests.  High levels of forest carbon were 

estimated for areas where there are dense forests, and low levels of carbon were 

estimated for areas that are dominated by crops.  However, some of the actual values 

estimated by the regression model do not appear as reliable.  The highest estimated 

carbon was almost 1,700 Mg/ha for the year 2004, and over 2,400 Mg/ha for the year 

2005.  Additionally, this method’s estimated low values were negative; with -9 Mg/ha for 

2004, and -17 Mg/ha for 2005.  Obviously these extreme values are not physically 

possible.  In the 2004 result, these extreme values do not seem actually represent the 

average values corresponding to forest landcover or agricultural landcover, but to 
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extraneous places such as a small lake or edge of a river.  However the 2005 map does 

have negative values associated with a fair amount of agricultural land.  Ad hoc averages 

of the high carbon estimated areas (forests) ranged between 60 to 100 Mg/ha, and around 

2.4 Mg/ha for low carbon estimates (agricultural fields). 

 

Figure 11: 2004 and 2005 regression based spatial distribution of forest carbon. 

 

Figure 12: 2004 and 2005 cosimulation based spatial distribution of forest carbon. 
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Figure 13: 2004 and 2005 up-scaled cosimulation based spatial distribution of forest 

carbon. 

 

COSIMULATION 

 An important component of the cosimulation of forest carbon was the creation of 

a variogram for each image; from which the forest carbon maps were partially generated.    

Figure 14 depicts the omnidirectional, standardized variogram for the year 2004.  A large 

nugget (0.85) was observed, indicating that there is a high degree of variance within the 

sample plots, regardless of distance between the plots.  This indication of high 

‘background’ variance was supported by the presence of both a short partial sill (0.15), 

and short range (13,200 m): indicating that only a small amount of autocorrelation exists 

between the FIA plot points. This large nugget was partly caused by large distances 

between the FIA sample plots, and partly by the FIA plot configuration.  Because the FIA 

sampling procedure is based around the measurement of trees within subplots and plots 

that are equal distances apart; it cuts back on the amount of autocorrelation that can be 
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found.  That is it say, with so few differences in the distances between plots, a standard 

autocorrelation trend is difficult to measure.  This is not made easier by the fact that the 

FIA plots are spaced widely apart, which gives the models a kind of “all or nothing” sort 

of data. Still, the year 2005 variogram (Figure 15) showed a smaller nugget (0.36), and a 

larger partial sill (0.64), which indicated that greater autocorrelation within a range of 

14,400 m was observed. 

 

Figure 14: Standardized variogram representing the autocorrelation present between 

forest carbon plots in the year 2004.  “h” represents distance in meters. 
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Figure 15: Standardized variogram representing the autocorrelation present between 

forest carbon plots in the year 2005.  “h” represents distance in meters. 

 

 The cosimulation outputs (Figure 12) also produced carbon representations that 

mimicked the spatial variability of Shawnee National Forest.  Here however, as compared 

to the regression outputs, the predicted minimum and maximum carbon values are within 

reason.  The ad hoc average of forest carbon from the cosimulation outputs ranged from 

100 to 112 Mg/ha for the heavily forested areas, and were around 17 to 22 Mg/ha for the 

dense agriculture areas.  

Uncertainty maps were produced for each cosimulation predicted value map.  

These maps (Figures 16) show the standard deviation (Mg/ha) of each predicted value.  

Low standard deviations occur in areas with extremely low or high predicted values (e.g., 

dense forests tracks or highly agricultural areas).  More moderate to high standard 

deviations are seen in areas with average predicted values.  This larger uncertainty could 
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be because of the mixed vegetation cover that dominates southern Illinois, and the lack 

FIA data to extend the image to ground correlation, to this type of ground cover.  The 

map for 2005 depicts low variances associated with low and high predicted values more 

strongly than does the 2004 map, which likely corresponds to more autocorrelation being 

found within the 2005 variogram. 

 

Figure 16: 2004 and 2005 cosimulation based spatial distribution of forest carbon 

predicted value standard deviations. 

 

Figure 17: 2004 and 2005 up-scaled cosimulation based spatial distribution of forest 

carbon predicted value standard deviations. 
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UP-SCALED COSIMULATION 

 The up-scaled cosimulation maps (Figure 13) produced results very similar to 

cosimulation without up-scaling.  This does not come as a real surprise since the methods 

are so similar.  These maps, up-scaled to nearly 1 km resolution (990 m) are still able to 

reproduce the natural spatial variability of forest carbon, just as the maps without up-

scaling did.  The resulting forest carbon predicted values are very similar to that of the 

non up-scaled maps. 

 The up-scaled cosimulation standard deviation output maps (Figure 17) also 

resemble the non up-scaled cosimulation outputs.  However, it is worth noting that the 

2004 standard deviations have noticeably lower variability, with respect to the high 

values recorded in the 2005 map (for example, 14 Mg/ha in 2004, compared to 26 Mg/ha 

in 2005).  Additionally, low variability is observed not only in areas where extreme 

values are predicted, but also across the entire Shawnee National Forest study area.  The 

2005 standard deviation map has similar spatial patterns to 2004, but the spatial 

variability is more extreme. 

 These maps of predicted forest carbon values provide insight into the spatial 

distribution of forest carbon, which can enhance our ability to make rational decisions for 

forest management.  If the error produced by these maps is brought to an insignificant 

level, they will provide the ability to track the changes in forest carbon sequestration over 

time; which will greatly enhance our understanding.  In addition, the output variance 

maps of predicted carbon values can be used for conducting uncertainty analysis to 

further this understanding. 
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ANNUAL CARBON SEQUESTRATION 

 To assess any potential gain in carbon sequestration, the forest carbon maps were 

subtracted from one another (2005-2004).  This process reveals how much carbon is lost 

or gained in one year.  All three interpolation techniques produced annual carbon 

accumulation maps that were comprised of losses and gains in forest carbon (Figure 18-

20).   All three maps show the western edge of SNF to have lost carbon, and the eastern 

portion of SNF to have gained carbon.  The areas where forests dominate, seem to have 

generally had an increase in carbon, while the areas dominated by agriculture seem to 

have lost carbon.  However, these results are only displayed for demonstrational 

purposes, since the error associated with the estimated and predicted values of the forest 

carbon maps could very well account for the changes measured here.  To be able to 

accurately measure the changes in the amount of carbon stored in sinks, more sample 

plots are needed to produce accurate maps. 
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Figure 18: Changes of forest carbon between the years 2005 and 2004 based on the 

regression interpolation technique. 

 

Figure 19: Changes of forest carbon between the years 2005 and 2004 based on the 

cosimulation interpolation technique. 
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Figure 20: Changes of forest carbon between the years 2005 and 2004 based on the up-

scaled cosimualtion interpolation technique. 

 

ACCURACY ASSESSMENT 

 Two kinds of validation were calculated on the maps produced by this study.  

Validation was performed using the FIA plots used for the interpolation (Figure 21), and 

from the additional field plots collected by students at Southern Illinois University 

(Figure 22).  The validation using the FIA plots and validation using the additional field 

data yielded similar, yet contrasting results.  Validation using the FIA plots estimated an 

average regression bias of 1.8% for the two years the maps were produced.  Bias is 

defined as the percent difference between the actual values of the FIA plots, and the 

estimated values.  A small bias indicates a small error associated with the created 

estimates.  Thus the regression model produced accurate maps according to the bias 
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produced from the validation using FIA data.  The cosimulation and up-scaled 

cosimulation produced overall averaged biases of 28.6% and 28.7%.  The overall 

averaged standard errors for the regression model, cosimulation, and up-scaled 

cosimulation were 5.6, 4.3, and 8.3 Mg/ha, respectively.   

 

Figure 21: Validation by use of the FIA plot data. 
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Figure 22: Validation by use of the additional field plot data. 

 

 The validation results using the additional field plot data reveal an overall average 

bias of 15.5% for the regression, 11.8% for the cosimulation, and 9.4% for the up-scaled 

cosimulation.  The up-scaled cosimulation, although limited in collocated pixels to 

compare in the validation; still allows a limited accuracy assessment to be made.  It is 

also worth noting that the cosimulation techniques are the most accurate based on the 

validation using the additional plot data.  The standard error for the regression model was 

9.9 Mg/ha, 6.6 Mg/ha for cosimulation, and 4.3 Mg/ha for up-scaled cosimulation.   

 Finally, an absolute bias was calculated to assess each of the interpolation 

techniques. The absolute bias is defined as the percent absolute difference between the 

measurements and the predicted values in the maps.  In this way, absolute bias does not 
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allow the negative and positive differences between the ground truth and predicted values 

to cancel one another out.  When comparing the absolute biases, both validations using 

FIA data and the additional field plot data yield similar results.  Validation using FIA 

data’s absolute bias of the regression model, cosimulation, and up-scaled cosimulation 

was 25.4%, 33.1%, and 35.1%, respectively.  Similarly, the validation using the 

additional field plot data resulted in absolute bias of 27.8%, 32.7%, and 31.9% for the 

regression model, cosimulation, and up-scaled cosimulation, respectively.   

 

UNCERTAINTY ANALYSIS 

 A correlation coefficient of 0.579 between the average tree diameter and tree 

carbon variance in Figure 5 was found to be statistically significant at the 95% 

confidence level with n = 29.  Thus, this model was used to extrapolate the measurement 

error to the FIA plot locations. 

The uncertainties from the input measurement variance, FIA plot variance, and 

TM band ratio image variance were used as independent variables, and the variance of 

the predicted forest carbon values produced via cosimulation were used as the dependent 

variable. A four order polynomial regression was attempted. The resulting regression 

model had an R2 value of 0.0042 for year 2004 (Figure 23) and 0.0036 for year 2005 

(Figure 24).  In an attempt to improve the results, the points that fell outside of two 

standard errors, and then one standard error, were removed.  This increased the 2004 

model’s R2 value to 0.0109 with two standard errors and 0.0329 with one standard error 
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(Figure 25) for year 2004.  Similar improvements were observed for year 2005 (Figure 

26).  However, none of the results were significant at a risk level of p = 0.05.  

 

Figure 23: A 4th order polynomial regression of the input variances with the output 

variances for 2004 uncertainty analysis. 

 

 

0 
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Figure 24: A 4th order polynomial regression of the input variances with the output 

variances for 2005 uncertainty analysis. 

 

Figure 25: A 4th order polynomial regression of the input variances with the output 

variances for 2004 uncertainty analysis when the values outside of one standard error 

were removed. 

0 

0 
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Figure 26: A 4th order polynomial regression of the input variances with the output 

variances for 2005 uncertainty analysis when the values outside of one standard error 

were removed.

0 
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CHAPTER 6 

DISCUSSION AND CONCLUSION 

INTERPOLATION METHODOLOGIES 

The various interpolation methodologies all produced reasonable spatial patterns 

of forest carbon stocks, and the results are similar to those of other forest carbon studies 

(e.g., Nowak and Crane 2002; Wang et al 2009; Zheng et al. 2007, Zheng et al. 2008).  

The validation techniques reveal estimated and predicted values that are similar to the 

ground observations. This indicates that the methods provide the potential to generate 

forest carbon maps by combination of FIA plot and Landsat TM image data. However, 

the methods differ in their interpolation abilities. 

The regression methodology, while up to 98% accurate according to the 

validation using the FIA plot data, does have the large fault of creating extremely large 

and negative values.  Additionally, the regression estimates have a bias of 13% and 18% 

for the years 2004, and 2005, respectively, according to the validation using the 

additional plot data.  This is arguably more realistic in terms of the validation, because 

these additional plots were not used to develop the regression model, as was the case with 

the FIA plots.  On the other hand, the additional plots were located in two local areas, 

where as the FIA plots were spread throughout the entire study area.  There is also the 

potential that the lack of species specific data for the additional plots, and the resultant 

tree species group approximation that was calculated; might also have led to the 

differences in validation techniques.  Not only does the lack of species data make it 

difficult to be confident in the accuracy assessment, but also the fact that four to five 
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years of approximate annual carbon accumulation had to be subtracted from the 

additional plot data as well due to their time differences from FIA plots.    

As a result, the two conflicting validation techniques are inconclusive and no 

significant results can be determined from them.  However, the map outputs do provide 

another method of drawing a conclusion.  The regression methodology, whilst potentially 

accurate in meaningful areas; does have the significant drawback of estimating large and 

negative values.  Despite the fact that these erroneous values are not representative to the 

method as a while; they do impact the reliability and there is nothing that can be done to 

prevent such estimates from being created.  They are simply a byproduct of using a 

regression model. 

On the other hand, the 2004 cosimulation and up-scaling cosimulation outputs 

produced a bias below 5% which is significant at the 95% confidence interval.  The low 

validation bias is contradicted by the higher FIA cross validation results.  The 

interpretation of these results is dependent on the relative weight given to the various 

validation techniques, which unfortunately are inconclusive.  In either case the 

cosimulation outputs have the distinct advantage of creating carbon maps where all the 

predicted values are reasonable.  This gives cosimulation the potential to be a more 

functional methodology, but further validation of these methods is needed to clarify this. 

The real significance of the up-scaled cosimulation maps is the demonstration of 

their feasibility.  Producing an up-scaled map at this regional scale is not, strictly 

speaking, necessary because the processing time for an image of greater resolution is still 

within normal capabilities.  The reason this study produced the up-scaled cosimulation 
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maps, was to demonstrate the viability of using this methodology at larger geographic 

scales.  The objective of attempting the up-scaling methodology in this study is to 

demonstrate that it can produce reasonable values of forest carbon, which indicates that 

the up-scaling would be appropriate to use at the national or even global scales. 

 

UNCERTAINTY ANALYSIS 

 The uncertainty analysis did not produce the expected results; with R2 values 

below 0.1, there was no significance to any kind of errors that can be quantified from 

these equations.  This was mainly due to the large spread of the input and output 

variances.  By further investigation, it was found that these variances had three different 

categories.  The average variance of 2004 TM image was 1.15, the average variance 

associated with the measurement errors was 35.66 kg, and the average variance from the 

FIA plots data was about 112,000 Mg/ha. These large differences led to the large spread 

of the uncertainties and made it impossible to establish a relationship between the input 

uncertainties and output uncertainties. This result might be caused by using the smaller 

and different units of the variables. Potential improvement may be achieved by 

standardization of the input variances.   

 The manner in which the uncertainty analysis data values were collected may also 

have contributed to the failure to reject the hypothesis that a polynomial regression could 

be used to account for the variance.  Many of the values collected were sampled from 

outside of SNF.  Both the FIA plot uncertainty and measurement error uncertainty were 

calculated from within SNF, which means that all variance values used in the uncertainty 
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analysis outside of SNF will have much more error associated with the accuracy of these 

values. 

 Additionally, the regression model that was used to extrapolate the measurement 

variance from the additional plot data locations, to the FIA plot locations may not have 

been ideal.  The defined relationship was significantly different from zero, but it only 

accounted for about 30% of the variance found with measurement error.  A much 

stronger relationship is needed to extrapolate data, because these values were calculated 

for FIA plot locations which unfortunately were not all that numerous to begin with.  The 

small FIA sample size therefore not only influenced the accuracy of the carbon maps, but 

also the accuracy of the uncertainty analysis.  The calculation of forest carbon mapping 

input variances is a complex process, and is something that future studies should 

investigate further. 

 

RESEARCH QUESTIONS AND HYPOTHSES REVISETED 

 This study aimed at closing some of the gaps associated with forest carbon 

mapping, and correspondingly posed some key questions that it attempted to answer.  

The first question to be answered, dealt with how to match Landsat TM images with the 

FIA sample plot data in terms of different spatial resolution. In this study, the Landsat 

TM images were re-sampled using a window average method to increase their pixel size 

from 30 m × 30 m, to 90 m × 90 m which approximated the area covered by one FIA 

sample plot.  The use of re-sampling allowed changes to be made to the spatial resolution 

of images, so that the sample plots and image pixels matched each other and represented 
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approximately the same area.  This reduced the error associated with the predicted values 

made using the plot data and TM images. This was one way in which this study managed 

the effects of scale.  The use of the up-scaling cosimulation technique in this study also 

provided the potential to mitigate the effects of scale because it allowed the forest carbon 

maps to be produced at any spatial resolution desired. Thus, this method is very flexible 

because it is possible to combine FIA sample plots and remotely sensed images at any 

spatial resolutions for generation of forest carbon maps. 

 In response to question 2, the regression and cosimulation techniques both proved 

to be about equal in their abilities to generate accurate forest carbon maps; when judged 

using the results from both validation using FIA data, and validation using the additional 

field plots.  The validation using the additional field plot data had a greater potential to 

provide unbiased results of how accurate the outputs were.  However, because the 

additional field plots used in this study were spatially limited, the validation results did 

not provide the evidence needed for a conclusion to be made, and therefore a failure to 

reject hypothesis two.  More measurement error or validation based field plots are 

needed, and at the same time the plots should be more widely spread throughout the study 

area.  Despite the lack of conclusion based on the validation techniques; it has to be 

pointed out that the regression methodology falls short of the cosimulation techniques 

because of its inability to produce maps with reasonable low and high values.  These 

extreme low and high values from the regression method are not possible, which means 

the forest carbon maps created are useless without image post-processing. In addition, the 

co-simulation methods produced, not only more reasonable predicted values of forest 
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carbon, but also produced predicted carbon variances, that could provide useful 

information for forest carbon management relevant decision making. 

 The third and fourth questions pertained to the contribution of the different 

sources of error.  This study attempted to develop the polynomial regression that linked 

the input variances with the uncertainties of the estimates. Unfortunately, the obtained 

polynomial regression model was not statistically significant and thus no partitioning of 

the different sources of error could be completed.  This therefore means that no 

conclusions can be made about measurement error contribution from the uncertainty 

analysis.  However, it is observable that the overall and maximum standard deviation 

contribution to measurement error is 1.64% and 13.68%, respectively (Table 5).  This 

error contribution was calculated by dividing the standard deviation of the measured 

diameters, by the diameter.  This creates a percent value that should indicate how much 

of an effect measurement error would have on that particular measurement.  An average 

measurement error percentage of 1.64 is very small, thus it is unlikely that the 

measurement errors would contribute much to the total uncertainties involved. 

 

 

 

 

 



68 

 

 

 

Table 5: Tree diameter measurement error contribution as a percentage of itself. 

Subplot Tree 
# 

Diameter 
StDev 

Diameter 
Variance 

Average Diameter 
(cm) 

stdev/avg 
diameter 

1 1 0.046 0.002 14.257 0.32% 
1 2 0.076 0.006 10.663 0.72% 
1 3 0.258 0.066 13.093 1.97% 
1 4 0.367 0.135 34.08 1.08% 
1 5 2.178 4.742 15.912 13.68% 
1 6 0.129 0.017 24.574 0.53% 
1 7 0.248 0.061 25.376 0.98% 
1 8 0.066 0.004 9.532 0.69% 
1 9 1.06 1.124 14.766 7.18% 
1 10 0.117 0.014 47.531 0.25% 
2 1 0.299 0.09 33.539 0.89% 
2 2 0.058 0.003 15.951 0.37% 
2 3 0.073 0.005 12.98 0.56% 
2 4 0.125 0.016 3.784 3.30% 
2 5 0.032 0.001 2.6 1.22% 
2 6 0.076 0.006 2.366 3.23% 
2 7 0.073 0.005 6.985 1.05% 
3 1 0.309 0.096 40.521 0.76% 
3 2 0.3 0.09 20.223 1.48% 
3 3 0.132 0.017 13.525 0.97% 
3 4 0.159 0.025 36.705 0.43% 
3 5 0.059 0.003 10.752 0.55% 
3 6 0.174 0.03 10.419 1.67% 
3 7 0.073 0.005 3.586 2.03% 
3 8 0.034 0.001 2.861 1.17% 
4 1 0.15 0.023 39.46 0.38% 
4 2 0.204 0.042 24.655 0.83% 
4 3 0.419 0.176 51.63 0.81% 
4 4 0.212 0.045 37.483 0.57% 
4 5 0.097 0.009 11.427 0.85% 
4 6 0.085 0.007 9.111 0.94% 
4 7 0.053 0.003 4.944 1.07% 
    Average: 1.64% 

 

 

 Landsat TM images, when used in tandem with FIA data; did provide adequate 

linkage of forest carbon from the sampled locations to unobserved locations (Hypothesis 

1).  Statistically significant correlations were found between the band ratio (band 4 /  
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band 5 + band 4 / band 7) and the FIA data, which indicated that this hypothesis was 

rejected.  However, a greater correlation is achievable.  There were a relatively small 

number of FIA plots used in this study, and the FIA plot data used had a relatively small 

range of forest carbon values; this compared to the number of image pixels and the range 

of pixel values.  The reason was mainly because the forest carbon values were associated 

with forest types, this study area was relatively small and flat, and thus the forest types 

were very simple.  These characteristics limited the ability of the obtained regression 

model, and made it easy to create an output with extremely low and high pixel values.  

The ways to improve this correlation would begin with using a larger sample size of FIA 

plots.  The use of more plots will increase the representation of the spatial variability 

within a forest area such as Shawnee.  Additionally it will give the results more statistical 

confidence and increase the spatial autocorrelation.   

Therefore, adding more forest types would be quite useful.  This would force the 

regression trend line to have a wide range by adding forest carbon values from the forests 

that have very low and high productivity, especially those that are located in a 

complicated topography.  This would create more collocated pixel locations over the 

study area and increase the confidence of the models.  Overcoming the shortcomings that 

exist in this current study would without doubt increase the user’s confidence with these 

methods. 
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CONCLUSION AND RECOMMENDATIONS 

In conclusion, this study found that both cosimulation based interpolation 

techniques were more accurate in creating forest carbon maps than the regression 

method, based solely on the map outputs.  However, all three different methods still 

posed significant errors when examining the validation results.  These methods could be 

improved with the use of more FIA sample plots, as well as more diversity present within 

the these data.  The results could also be interpreted with more confidence if more 

validation data were available.  The uncertainty analysis proved to be invalid as a result 

of the large variation within the data used.  More work is needed to investigate the 

impacts of the various input errors on the uncertainties of the map outputs. 

 This study did effectively demonstrate how forest carbon sink maps could be 

produced using free FIA plot data and Landsat TM images, and with some ways of 

tracking the propagation of uncertainty associated with the creation of the maps; although 

the ability to model the propagation of uncertainty eluded us.  Additionally, the creation 

of the maps did provide a starting point for determining the need and scope of forest 

management plans to increase the amount of forest carbon being stored within a region.  

 Future studies may want to investigate the use of landcover classification on the 

images being used, with the above methods.  If landcover classification is used, it will 

add some sources of uncertainty; these being related to the accuracy of the classification, 

but should reduce the errors involved in the estimation or prediction of carbon values.  

However, by doing landcover classification; forest carbon, and even soil carbon, could be 

more accurately interpolated.  Landcover classification would allow for more accurate 
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carbon estimates by classifying an image into various landcover types, such as bare 

ground, prairie, forest, and even forests types.  The pixels associated with these 

classifications could then be extracted so that a relationship between image pixel values, 

and ground truth values could be calculated exclusively based on that landcover type.  

This method would allow for more specific correlations to be calculated per landcover 

type, and allow for more landcover types to be used.  As Feng et al. (2006) mentioned, 

SOC has been found to correlate with satellite imagery.  Therefore, this method could not 

only map forest carbon, but potentially soil and other ground sources of carbon; and all at 

the same time, visible on the same map.  It is therefore recommended that landcover 

classification be used in conjunction with an interpolation technique such as 

cosimulation, and this could greatly enhance the accuracy of carbon sink mapping. 

 Basic management strategies could be based on an economic study of forest 

carbon sequestration according to Sohngen and Mendelsohn (2003), in which the most 

effective global management strategy was determined to be land use change.  Results 

varied by region, but by reducing the amount of deforestation taking place, particularly in 

low and bottomland forests; significant amounts of additional carbon could be 

sequestered.  Increasing the time between crop rotations, or harvesting, is the next most 

successful economically produced method of increasing carbon sequestration (Sohngen 

and Mendelsohn 2003).  Although the processes of carbon sequestration is by no means 

cheap; both timber and carbon markets could be sustainable when managing with carbon 

sequestration in mind (Sohngen and Mendelsohn 2003; Jandl et al. 2007).   

 Slowing deforestation will allow more trees to remain within a forest as a carbon 

stock, and allow for additional growth (Sohngen and Mendelsohn 2003).  Not only will 



72 

 

 

 

this aid in forest carbon sequestration, but also in soil carbon sequestration.  Soil carbon 

is primarily lost through disturbances, such as tillage (Farage et al. 2007).  When 

deforestation occurs, not only is the carbon stored within the trees lost, but when the 

ground is tilled for crops, additional carbon is lost (Farage et al. 2007).  Tilling the soil is 

not the only way in which soil carbon is lost either.  The act of harvesting trees also 

disturbs the soil enough that significant amounts of carbon can be lost here as well.  Thus 

it is important, if carbon sequestration is to be maximized, both above and belowground; 

to harvest only when necessary, and reduce the disturbances to the soil as much as 

possible (Jandl et al. 2007). 

 Similarly to slowing deforestation, afforestation has obvious benefits in regards to 

forest carbon sequestration.  Places where trees were not present before are often 

excellent places for afforestation to occur, but not all places are ideal.  For example, 

pasture land typically has a significant amount of carbon stored within the soil and roots.  

The process of planting more trees may actually decrease net carbon sequestration 

because of the disturbance to the soil.  Former cropland on the other hand, is an excellent 

candidate (Jandl et al. 2007). 

Also, by increasing the length of time between harvesting rotations, a tree has 

more time to grow and sequester more carbon.  Typically, a tree is harvested at peak 

economic maturity, which happens to often coincide with a period of substantial growth.  

By allowing for more time to elapse between harvests, the forest will have sequestered 

more carbon and have produced larger trees.  Essentially, over time the timber industry 

will be able to produce more wood from longer rotational periods, and simultaneously be 

able to sequester more carbon (Sohngen and Mendelsohn 2003).  The effects of fire 
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however, can counteract some of the advantages associated with increased stand rotation.  

Because fires release 0.5 gigatons of carbon, or 4% of the annual US emissions a year 

(Daigneault et al. 2010); it poses a significant threat to a forest carbon sequestration and 

wood production management strategy.  In essence, longer stand rotations will increase 

the likelihood that a fire will occur, and thus shorter stand rotations are ideal in areas 

where fire is more prevalent (Daigneault et al. 2010).  It is therefore important to take 

into consideration the climate in which carbon sequestration is being attempted, for areas 

with a higher fire risk will be less ideal then those with a lower risk (Daigneault et al. 

2010).  

Although fire does play a risk in some areas, there are additional reasons that 

longer rotations between harvests can help sequester more carbon.  Not only does a 

longer rotational period increase the amount a tree can grow above ground, but some 

evidence indicates that more mature trees will sequester more carbon within their roots.  

This is also one of the primary ways in which carbon is sequestered within the soil.  

Longer rotational periods also allow for fewer soil disturbances, which allows for more 

carbon to remain within the soil.  Lastly, by increasing stand rotation, more time is given 

to carbon on the forest floor to be converted into a more stable mineral carbon that can 

remain within the soil, and act as a more long term sink (Jandl et al. 2007).  Therefore, 

there are many advantages associated with longer stand rotation periods. 

Forest carbon sequestration based management is a complex mix of balancing 

economic profit produced by the land, and the amount of carbon that can be sequestered.  

However, since current climate models are suggesting that mitigation is truly necessary 

(Karl and Trenberth 2003), the cost of sequestration should become less of an issue 
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(Sohngen and Mendelsohn 2003).  The maps produced in this study provide a carbon sink 

base, from which management plans can be constructed.   

The delineation of Illinois, the United States, and even the world forest carbon 

sinks is a topic of great importance.  The described methodology can be used to assist 

with the important policy decisions that need to be made in regards to global climate 

change; as well as providing another resource for managing global climate change as 

defined by the Kyoto protocol (Dong et al. 2003; Gibbs et al. 2007; Peltoniemi et al. 

2006; Wang et al. 2009).  This study provides a methodology that utilizes free data to be 

processed in a simple format (Wang et al. 2009), and creates spatially explicit estimates 

of forest carbon amounts, as well as uncertainty values (in the case of the cosimulation 

maps). This methodology is easy replicated, which should allow for different regions of 

the world to determine the extent of their forest carbon resource.  This study contributes 

to the scientific knowledge of forest carbon allocation, and to global political needs of the 

country and world.  Lastly, it provides a starting point from which future work can 

expand and improve the methodologies described within this study. 
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APPENDIX A 

Measurement error calculation data.  Live/Dead and Deciduous/Coniferous categories removed because all trees in this plot were live 
and deciduous. 

Diameter   Live, Dead 8 9 1 4 Final Total Biomass Carbon 
cm Rand # L=1, D=3 Mix Hard Maple Oak Ced Lar Pine Excluding Dead Trees kg 

39.44 1 1 1697.27 2259.53 1163.2 1342.89 1951.64 442.63 
24.61 2 1 525.9 716.59 400.65 425.75 782.53 177.47 
51.34 2 1 3267.89 4294.24 2110.94 2552.65 4491.96 1018.76 
37.34 1 1 1481.53 1977.64 1027.89 1175.32 1711.06 388.06 
11.33 1 1 76.67 108.54 69.51 64.45 100.15 22.71 
9.14 2 1 44.9 64.24 42.72 38.14 60.82 13.79 
4.93 2 1 9.72 14.34 10.62 8.51 13.55 3.07 
39.5 1 1 1704.08 2268.41 1167.45 1348.18 1959.23 444.34 
24.8 2 1 536.09 730.2 407.71 433.84 796.98 180.75 
51.03 2 1 3217.81 4229.73 2081.49 2514.29 4425.86 1003.77 
37.66 1 1 1513.09 2018.94 1047.79 1199.87 1746.32 396.06 
11.46 1 1 78.83 111.54 71.28 66.23 102.82 23.32 
9.17 2 1 45.29 64.79 43.06 38.47 61.34 13.91 
4.9 2 1 9.57 14.12 10.47 8.38 13.33 3.02 

39.53 1 1 1707.49 2272.87 1169.57 1350.83 1963.02 445.21 
24.8 2 1 536.09 730.2 407.71 433.84 796.98 180.75 
51.38 2 1 3272.93 4300.73 2113.89 2556.51 4498.6 1020.26 
37.31 1 1 1478.39 1973.54 1025.91 1172.88 1707.56 387.27 
11.36 1 1 77.21 109.29 69.95 64.9 100.81 22.86 
9.26 2 1 46.47 66.45 44.08 39.45 62.9 14.27 
4.93 2 1 9.72 14.34 10.62 8.51 13.55 3.07 
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Diameter   Live, Dead 8 9 1 4 Final Total Biomass Carbon 
cm Rand # L=1, D=3 Mix Hard Maple Oak Ced Lar Pine Excluding Dead Trees kg 

39.15 1 1 1666.81 2219.78 1144.2 1319.27 1917.73 434.93 
24.29 2 1 509.16 694.23 389.03 412.46 758.78 172.09 
51.41 2 1 3277.96 4307.22 2116.85 2560.36 4505.24 1021.77 
9.07 2 1 44.13 63.16 42.05 37.5 59.79 13.56 
4.93 2 1 9.72 14.34 10.62 8.51 13.55 3.07 
39.6 1 1 1714.33 2281.79 1173.83 1356.13 1970.63 446.93 

24.51 2 1 520.84 709.84 397.14 421.73 775.36 175.85 
51.34 2 1 3267.89 4294.24 2110.94 2552.65 4491.96 1018.76 
37.27 1 1 1475.26 1969.45 1023.93 1170.45 1704.06 386.47 
11.33 1 1 76.67 108.54 69.51 64.45 100.15 22.71 
9.14 2 1 44.9 64.24 42.72 38.14 60.82 13.79 
4.9 2 1 9.57 14.12 10.47 8.38 13.33 3.02 

39.5 1 1 1704.08 2268.41 1167.45 1348.18 1959.23 444.34 
24.92 2 1 542.96 739.36 412.45 439.28 806.7 182.96 
51.95 2 1 3364.33 4418.41 2167.53 2626.48 4619.12 1047.6 
37.88 1 1 1535.43 2048.14 1061.85 1217.23 1771.25 401.71 
11.55 1 1 80.47 113.81 72.63 67.58 104.85 23.78 
8.98 2 1 42.98 61.55 41.06 36.55 58.27 13.22 
5.06 2 1 10.36 15.26 11.25 9.06 14.42 3.27 

39.28 1 1 1680.31 2237.39 1152.62 1329.74 1932.76 438.34 
24.54 2 1 522.53 712.08 398.31 423.07 777.74 176.39 
51.92 2 1 3359.21 4411.83 2164.53 2622.57 4612.37 1046.07 
37.37 1 1 1484.67 1981.75 1029.87 1177.76 1714.57 388.86 
11.59 1 1 81.02 114.58 73.08 68.04 105.53 23.93 
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Diameter   Live, Dead 8 9 1 4 Final Total Biomass Carbon 
cm Rand # L=1, D=3 Mix Hard Maple Oak Ced Lar Pine Excluding Dead Trees kg 
9.01 2 1 43.36 62.09 41.39 36.86 58.78 13.33 
4.9 2 1 9.57 14.12 10.47 8.38 13.33 3.02 

39.53 1 1 1707.49 2272.87 1169.57 1350.83 1963.02 445.21 
37.62 1 1 1509.92 2014.78 1045.79 1197.4 1742.77 395.25 
11.46 1 1 78.83 111.54 71.28 66.23 102.82 23.32 
9.14 2 1 44.9 64.24 42.72 38.14 60.82 13.79 
4.93 2 1 9.72 14.34 10.62 8.51 13.55 3.07 
39.6 1 1 1714.33 2281.79 1173.83 1356.13 1970.63 446.93 

24.57 2 1 524.21 714.33 399.48 424.41 780.13 176.93 
52.27 2 1 3415.76 4484.61 2197.65 2665.84 4686.88 1062.97 
37.59 1 1 1506.75 2010.64 1043.79 1194.93 1739.23 394.45 
11.43 1 1 78.29 110.78 70.84 65.78 102.15 23.17 

9.1 2 1 44.51 63.7 42.38 37.82 60.31 13.68 
5 2 1 10.04 14.8 10.93 8.78 13.98 3.17 
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