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Ion-beam treatment of materials is one of the very widely applied techniques for 

numerous research and industrial purposes. Along with traditional monomers, atomic or 

molecular clusters (aggregates of atoms or molecules) have attracted considerable attention 

during the last two decades [1-4]. For developing successful applications of clusters beams, a 

theory of cluster stopping in matter is required. Unfortunately, the existing theory for 

conventional ion implantation can be applied to cluster ions only for a very limited number of 

cases due to the fact that cluster is an aggregate of weakly bonded atoms or molecules 

providing multiple collision effect with target. Therefore, main emphasis of this paper is put 

on the development of scaling laws for cluster implantation.  

The main material under the discussion is graphite or highly ordered pyrolytic graphite 

(HOPG). Graphite is chosen for modelling and experiments because it has an atomically 

smooth surface that makes it easy to resolve very small features on the sub-nm scale. The 

surface is also relatively chemically inert, i.e. properties and structure of the deposited clusters 

are not much disturbed. Layered structure of graphite with strong covalent bonds in the 

graphene layers and very weak van der Waals interactions between them is an interesting type 

of crystalline arrangement for modelling of clusters implantation. The data on implantation 

into graphite are compared with the results of cluster implantation into diamond, another 

allotropic form of carbon with strong and directional covalent bonds. This material is of 

significant practical interest. Some of its electronic characteristics, for instance, the high 

mobility of electrons and holes, low noise and leakage current as well as extremely high 

thermal conductivity make this material attractive for high-power and high-frequency 

electronics [5]. Diamond also is a potential platform of solid-state quantum devices. 

Elastic collision of an accelerated monoatomic ion with lattice atoms causes a knock-on 

effect: the displaced atoms can be sputtered from the surface or become recoils contributing 

into the formation of a displacement cascade in the target [6]. Very often crater formation is 

observed on impact of energetic clusters [7, 8]. The efficiency of crater formation is 

dependent on cluster size and kinetic energy. Substrate material also plays an important role. 
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Higher density, melting (or sublimation) point and larger atomic displacement energies 

provide less favourable conditions for crater formation. Diamond is a good example of a 

material on which it is difficult to produce craters [9]. Graphite is another allotropic form of 

carbon, having a layered structure with strong covalent bonds (significant displacement 

energies of ca. 12-20 eV along c-axis are required) in graphene planes and weak van der 

Waals interactions between the layers. Therefore, the graphite structure responds very 

elastically to cluster impact: the collision induces oscillations of the graphene planes [10]. For 

the case of relatively small in size Arn (n = 16 and 41) colliding HOPG with energies up to 16 

keV/cluster, the oscillations have very little influence on the structure outside the immediate 

impact region with primary displacement cascades, although their amplitude could be as large 

as the distance between two neighbouring planes. Thus, a crater can be formed only at the 

initial stage of impact. The elastic behaviour of graphene sheets at a later stage causes 

efficient closure of the craters and only disordered areas are finally formed. These areas are 

found by STM as tiny bumps (Fig. 1a). Dimensions of these features are in good agreement 

with the lateral sizes of damaged areas predicted by molecular dynamics (MD) modelling. It 

is worth noting that craters can be formed on HOPG but the clusters should be larger and they 

should have high kinetic energies, in order to be able to provide high energy density transfer 

to the graphite target [11].  

a)  b)  

Figure 1. (a) STM image of HOPG implanted by Ar41
+ cluster ions with energy of 4.1 keV and          

(b) AFM image of diamond implanted by Ar27
+ cluster ions with energy of 12 keV. 

The threshold energy needed to displace a carbon atom in diamond is much higher 

(between 35-80 eV) [12] than in graphite. The simulations showed no indication for molten 

diamond under the impact at energies up to 21 keV for Ar27 [9]. Thus, there is a low 

probability for crater formation through the mechanism involving compression, local melting 

and following liquid flow as often the case in other materials [8]. The cluster bombardment of 

diamond can cause craters only through direct sputtering of the surface atoms. 

Experimentally, a few cases of craters with diameters of 5-7 nm were found using atomic 
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force microscopy (AFM) after the bombardment by Ar27
+ with energies up to 15 keV as 

shown in Fig. 1b. In some cases small hillocks with height of 0.5-2.0 nm and basal diameter 

of 10-15 nm were observed which could be unresolved (due to tip convolution effect) craters.  

We have shown previously that the projected ranges Rp of cluster constituents implanted 

with keV energies follow the square root of energy E1/2 dependence [13, 14]. Since cluster 

momentum p ∼ E1/2, it was suggested to scale Rp with momentum that ledto the linear scaling 

law. The use of momentum allows considering the cluster size (through its mass) together 

with the energy, thus, using only one physical quantity. However, as one can see in Fig. 2, the 

linear fits for different sizes of argon clusters have different slopes. Similar dependences were 

earlier observed for cobalt clusters [15]. This discrepancy can be removed by considering one 

more important parameter: an area of cluster-matter interaction. It can be found as a cross-

sectional area of the cluster projected on the surface. Dividing the cluster momentum by this 

area, allows to introduce the scaled momentum [13]. It was found that the experimental values 

of depth of radiation damage (which is approximately equal to Rp for keV energy clusters) for 

different cluster sizes and different cluster species fall on the same fit straight line vs scaled 

cluster momentum as shown in Fig. 3 for the implantation into HOPG [16]. This provides 

very strong support for the assertion that the cluster implantation depth is a linear function of 

momentum per unit surface area.  

  

Figure 2. Dependence of depth of radiation 

damage in HOPG on momentum of implanted 

size-selected Arn cluster ions. 

Figure 3. Dependence of depth of radiation 

damage in HOPG on scaled momentum of 

implanted size-selected Arn and Con cluster ions. 

It is worth mentioning that correct estimation of the cluster cross-section is an important 

point. For metal clusters a spherical cluster approximation works pretty well. It does not, 

however, provide a suitable approach for small rare gas clusters (Ar in our case) since the 
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charge changes the geometrical configuration of atoms in the cluster. It was suggested by 

Haberland and co-workers [17] that in argon cluster ions with n ≥ 6, the charge is distributed 

among 4 core atoms. This ion core is surrounded by rings or “crowns” of adatoms. 

Theoretical calculations showed that the bond length shrinks down to ca. 2.45-2.99 Å in the 

ion core [18, 19]. The atoms surrounding the charged core become polarized thus providing 

an additional attractive interaction reducing the bond length and distorting the shape of the 

cluster. For example, the Ar16
+ cluster ion is predicted to be slightly elongated along the 

charged core (see Fig. 4) [18]. For the Ar41
+ cluster ions, we used the lowest energy geometry 

for the Ar43
+ cluster ion suggested in [19]. In both cases the cluster shapes could be quite well 

approximated by ellipsoids. The mean cross-section values were found applying the 

orientations of the impacting cluster giving the smallest and the largest projected areas on the 

surface. Only through the consideration of “compressed” clusters with the distorted shape we 

were able to calculate the scaled momenta which could be fitted by one line shown in Fig. 3. 

 

 
 

Figure 4. Most stable structures of Ar16
+ (top) and 

Ar43
+ (bottom) cluster ions obtained from 

calculations including polarization effect. Dark 

circles show charged core. According to [17, 18].  

Figure 5. Calculated Rp and experimentally 

measured depth of damage on impact of Ar27 

clusters as a function of kinetic energy.  

Our recent experimental study of keV-energy argon cluster implantation in diamond 

showed that depth of radiation damage follow the E1/2 dependence [9, 20]. MD simulations 

also show (a +bE
1/2) fitting for Rp of cluster constituents, where a and b are the variables. 

Both curves can be seen in Fig. 5. The difference in depth between the experimental and 

simulated data is due to the fact that the depth of the etched pits (which were used to measure 

the depth) corresponds to strongly damaged areas of diamond (probably, fully amorphized 

ones), which is not the same as the mean depth of penetrated cluster constituents in the 

simulations. One can also see in the figure that experimental curve crosses the energy axis at 
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948 eV. Thus, we can suggest a displacement energy of ca. 35 eV/atom for Ar27 clusters 

impacting diamond.  

In conclusion, the results obtained on the implantation of argon clusters in diamond show 

strong similarity to the stopping behaviour of rare-gas, semiconductor, and metal clusters in 

graphite and demonstrate the same scaling law in which both depth of radiation damage and 

mean projected range of cluster constituents linearly depend on cluster momentum. 
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