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INTRODUCTION

Combinatorics is a rapidly growing area of mathematics due to the many useful

applications to other fields in the sciences including algebra, probability and statis-

tics, computer science, industrial and electrical engineering, biology, and chemistry,

etc. This paper will explore two branches of combinatorics: Design Theory and

Graph Theory, having roots in some of the oldest discoveries in combinatorics includ-

ing Euler’s Latin Squares dating from the 18th century, and Kirkman’s Schoolgirl

Problem proposed by Thomas Kirkman in 1850.

In the first chapter, general definitions and properties of double-change covering

designs are introduced, as well as examples and useful applications. We will also

give main results that lead into the next two chapters.

Chapters 2 and 3 explore for what v tight, circular double-change designs exist

when k = 2 and k = 3. We find that when k = 2, non-trivial tight, circular designs

exist for v ≥ 6 using a direct construction. Using constructions for Steiner triple

systems, we find that tight, circular, double-change designs are possible for v ≡ 1

or 3 (mod 6) when k = 3. However, economical designs can be constructed for

v ≡ 0, 2, 4, 5 (mod 6) (not discussed in this paper).

1



CHAPTER 1

DOUBLE-CHANGE COVERING DESIGNS

1.1 INTRODUCTION TO COMBINATORIAL COVERING DE-

SIGNS AND BLOCK DESIGNS

A combinatorial covering design is a selection and/or construction of subsets

from a finite set that satisfy certain properties, mainly intersection conditions. For

instance, a chef at a restaurant has nine different specialty entrées, and prepares

three of them each day for twelve consecutive days. Is it possible to schedule the

menu in a way such that: (1) each entrée must be made at least once; (2) two entrées

made on the same day cannot be made together on the same day again, i.e. each

pair of entrées is made together on the same day exactly once; (3) and each day

differs from the day previous by exactly two entrées, i.e. exactly one of the entrees

is made two days in a row? Answers to questions such as this one will be revealed

in this paper.

A specific type of covering design called a block design will provide the back-

bone for this paper. We reference Brualdi [2] for the following example: Suppose a

company wishes to ask a random pool of its consumers to compare a certain num-

ber, say v, of varieties of a product that are being tested for acceptability in the

marketplace. It would be expensive and time consuming if each consumer compared

all v varieties, so the company decides to have each consumer compare a portion of

the varieties. In this scenario, the number of varieties being tested must equal the

number of consumers making comparisons, in this case v. So the company forms

subsets of the v varieties into blocks, say B1, B2, . . . , Bv, to distribute to the v

consumers. Thus a consumer can make comparisons of each pair of varieties in the

given block; but in order to be efficient, we wish that each pair of varieties is tested
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exactly once. Hence each pair of varieties must appear in only one block.

“Let X be any set of v elements, called varieties, and let B be a collection B1,

B2, . . . , Bb of k-element subsets of X called blocks. Then B is a balanced block design

on X, provided that each pair of elements of X occurs together in exactly λ blocks.”

[2] Here we assume k, λ, v ∈ Z+ and 2 ≤ k ≤ v. When a balanced block design is

complete, k = v, and all varieties appear in each block; or in other words, every

consumer compares all v varieties. However, when k < v, we say B is a balanced

incomplete block design (BIBD).

1.2 APPLICATIONS

A valuable “real-world” application of combinatorial designs was seen as far

back as the 1930’s as discussed by F. Yates and R.A. Fisher, who were largely inter-

ested in agricultural field trials. Suppose a new crop is introduced to a certain region

of a country. “What is the right way to set about determining the best varieties

and the appropriate manuring and cultivations?” When there are a large number of

varieties to be compared, the problem of physical arrangement becomes apparent.

When plots contain all varieties, it is difficult to efficiently determine which envi-

ronmental factors are affecting the crops, such as soil fertility, different fertilizers,

or even interaction between varieties. So they selected a certain number of vari-

eties to be controls, and divided the remaining varieties into sets, “each set being

arranged with the controls in a number of randomised blocks”, so that randomly as-

signed treatments (for example, nitrogen fertilizer versus phosphate fertilizer) could

be tested. Thus when comparing a certain selection of plots with fairly consistent

environments, “accuracy of the treatment comparisons is considerably enhanced...”

“The process of random arrangement within the blocks ensures that no treatment

shall be unduly favoured, and, moreover, enables an unbiased estimate of experi-

mental error to be obtained, which is itself the basis of valid tests of significance.”
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Since all varieties do not appear in the same plot, and the probabilities of seeing

certain treatments are fairly consistent, we see that this construction is actually a

balanced incomplete block design. [12]

We see another useful application in combatibility testing of electrical compo-

nents. Suppose there are v different electrical components that need to be tested,

i.e. {1,2,. . . ,v-1,v}, such that each component must be tested with every other com-

ponent. A number of components, say for example {1,2,3,4,5}, are loaded into a

testing device and tested concurrently; hence, the components in the device together

form a block.

At the completion of the test, a certain quantity, say two, of the components are

removed and replaced with two other components, thus forming the second block.

Here we see the blocks are ordered, so we call this construction an ordered covering
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design. We continue the process until all v electrical components have been tested

against each other. In this example, we switched out two components at a time, with

the blocks forming a double-change design. Because the removal and insertion of the

components requires the employment of either a human or computerized operator,

unnecessary and redundant testing can be costly. Thus an optimized, minimal cost

design is desired for the testing.

1.3 DOUBLE-CHANGE DESIGNS

A double-change covering design (dccd) is an ordered set of blocks, each block

of size k consisting of unordered elements from the set [v] = {1, 2, ..., v}, and which

follow the rules: (1) each block after the first differs from the previous block by

changing exactly two elements, and (2) every pair in [v] appears in at least one

block. Note that within each block the elements are unordered, but the blocks

themselves are ordered.

We say an element is introduced in a block if it is one of the two new elements

changed in the block. We say that a pair is covered if it appears in at least one

block of the dccd. We write blocks horizontally as rows, and will leave unchanged

elements in their original positions. We define:

• v as the number of varieties tested, taken from [v] = {1, 2, ..., v}, and v ≥ k;

• b as the number of blocks in the design;

• k as the block size, i.e. the number of elements in each block, and k ≤ v;

• λ as the number of times each pair (i, j) appears, i ∈ {1, 2, . . . , v − 1}, j ∈

{2, 3, . . . , v}

If λ = 1 for all pairs, then each pair is covered exactly once, and we call the

dccd tight. However, if repeated pairs are necessary, then we call the dccd economical
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if we can construct the design with a minimal number of blocks. If we can change

exactly two elements of the last block of a dccd to return to the first block, producing

a loop, we call this dccd circular.

For example, a dccd with (v, k) = (5, 2) is

3 4

1 2

4 5

1 3

2 5

1 4

2 3

1 5

2 4

3 5

This example is tight, since there are no repeated pairs.

Now consider the following double change covering design with (v, k) = (7, 5):

1 2 3 4 5

1 2 3 6 7

1 4 5 6 7

Note that it is economical and circular, but not tight since the pairs 12, 13, 23, 14,

15 and 45 are repeated.

Finally consider the dccd with (v, k) = (7, 3). We can see that it is both tight and

circular:
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1 2 3

1 4 6

1 5 7

3 5 4

2 5 6

3 7 6

2 7 4

1.4 MAIN RESULTS

Theorem 1.4.1. The number of blocks, b, in a tight, double-change covering design

is

b =

(
v
2

)
−
(
k
2

)
2k − 3

+ 1 (1.1)

Proof. In a double-change covering design, there are
(
v
2

)
pairs to be covered, and

every pair is covered at least once. Let b be the number of blocks in a dccd. The

first block of a dccd(v, k) has
(
k
2

)
pairs, and each of the subsequent (b−1) blocks has

2(k−2)+1 pairs. We see this is true since each new element introduced forms pairs

with the rest of the elements in the block except itself and the other new element,

so (k − 2), likewise for the other new element introduced, 2(k − 2). Also, the two

new elements form a pair, thus we have 2(k − 2) + 1 pairs. Hence,

(
v

2

)
=

(
k

2

)
+ (b− 1)[2(k − 2) + 1]

Therefore we see,

b =

(
v
2

)
−
(
k
2

)
2k − 3

+ 1
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If the number of blocks in a dccd equal (1.1), then the dccd is tight. If we can

find a design that meets the following bound:

b =

⌈(
v
2

)
−
(
k
2

)
2k − 3

+ 1

⌉
(1.2)

then the design is economical.

Note that it is necessary that either v = k or v ≥ k + 2. The first is the trivial

complete case where the dccd(v = k, k) is 1 2 . . . v = k. To illustrate why

v ≥ k + 2, suppose we wish to construct a dccd(v, k) where k = v − 1. Suppose the

first block is (1, 2, . . . , v − 2, v − 1). However, there is just one more element to

introduce in the next block, and introducing only it would violate the definition of

a dccd.

This brings us to permissible values of v and k. Using (1.1), if k = 2, we see

that
(
v
2

)
= b, so v(v − 1) = 2b. Since the product of any two consecutive integers is

always even, we see that as long as v ≥ 4 since v must be greater than or equal to

k + 2, the permissible values of v are 4, 5, 6, 7, . . . . Again using (1.1) for k = 3, we

see v ≥ 5 and
(
v
2

)
must be divisible by 3; thus v is restricted to the values 6, 7, 9,

10, 12, 13, 15, 16, 18, 19, . . . . For k = 4, we have v restricted to 7, 9, 12, 14, 17,

19, 22, 24, 27, 29, . . . ; for k = 5, we have v restricted to 10, 12, 17, 19, 24, 26, 31,

. . . ; and for k = 6, we have v restricted to 13, 15, 22, 24, 31, . . . .
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CHAPTER 2

DOUBLE-CHANGE DESIGNS WITH K = 2

2.1 DIRECT CONSTRUCTION

Each pair, (i, j), where i = 1, 2, . . . , v − 1 and j = 2, 3, . . . , v, is a block in a

dccd(v, 2), and any given two consecutive blocks are disjoint. Note that each variety

appears v − 1 times in the design, since each x ∈ {1, 2, . . . , v} is paired with every

variety but itself.

The trivial case when v = 2 is dccd(2, 2) = 1 2. The dccd(3, 2) does not exist

by the above argument that 3 6≥ k + 2 = 2 + 2 = 4. Nevertheless, double change

designs do not exist for v = 4 when k = 2. For example, choose 2 elements from

V = {1, 2, 3, 4} for the first block, leaving the two remaining elements of V for the

second block. However, the only possibility for the third block will be identical to

the first block. Thus it is possible for only two out of the
(
4
2

)
= 6 pairs to be covered.

Tight double-change designs exist for v = 5, but none of which are circular.

The construction for dccd(5, 2) will be given at the end of this section.

Tight, circular designs exist for v ≥ 6. How can we construct a dccd(v, 2)

when v ≥ 6 in general? Consider all pairs of V = {1, 2, . . . v}, and some arbitrary

pair (i, j) in a dccd(v, 2), where i, i = 1, 2, . . . , v − 1, represents the element from

an arbitrary row and j, j = 2, 3, . . . v, represents the element from an arbitrary

column. Write each pair of V , lining up identical j′s by column and identical i′s by

row, as illustrated on the next page.
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12 13 14 15 . . . 1v

23 24 25 . . . 2v

34 35 . . . 3v

45 . . . 4v

. . . 5v

. . .
...

(v-1)v

(2.1)

Note that for any odd or even v, we always have i < j and i+1 ≤ j ≤ v. Notice

that if we choose an arbitrary pair (i, j) for the first block; then for the second block,

we cannot take from:

Columns: Rows:

If i = 1, from column i If j = v, from row j − 1

If i > 1, from column i− 1 If j < v, from row j

And from column j − 1 And from row i

Here we have four possible cases, but we see there are
(
v−2
2

)
choices for the

second block in every case. To illustrate, take all
(
v
2

)
pairs and subtract the pairs

that it cannot be adjacent to (noting again that each variety appears v− 1 times in

the design), and add one for itself. Thus(
v

2

)
− 2(v − 1) + 1 ⇔

(
v − 2

2

)
The question arises: Can we construct a dccd using this triangular structure?

Let us call the farthest left diagonal the main diagonal. Examining a diagonal

that starts from the top left to the bottom right, except for the main diagonal, e.g.
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(1,3), (2,4), (3,5), . . . , (v− 2, v), we see that each pair is distinct from the previous.

Or in other words, choosing some arbitrary pair (i, j), the pair (i + 1, j + 1) is its

subsequent block, and the two are always distinct, that is i 6= i+ 1 6= j 6= j + 1 for

any i, j since:

1. i + 1 6= i, for if they were equal, these two blocks would be in the same row,

and hence could not be on a diagonal;

2. j + 1 6= i, since j > i implies j + 1 > i+ 1, ∀ i, j;

3. i + 1 6= j, for if they were equal, the pair (j, j + 1) is produced, so that we

have the blocks (i, j) then (j, j + 1), which are always on the main diagonal;

4. j+1 6= j, for if they were equal, these two blocks would be in the same column,

and hence could not be on a diagonal.

Now examining the main diagonal, i.e. (1,2), (2,3), (3,4), . . . , (v− 1, v), notice that

for any arbitrary pair (i, j), its subsequent pair is (j, j + 1). Also note that every

other pair, i.e. (i, j) and (i+ 2, j + 2), are always distinct by a similar argument as

above.

Since odd v and even v must be constructed slightly differently, we break our

direct constructions into the two cases.

2.1.1 Construction of dccd(v, 2) with odd v

1. To construct a dccd when v is odd, start on the main diagonal at the pair

(1, 2).

2. Each subsequent block should be every other pair from left to right along the

main diagonal. So for any block (i, j) along the main diagonal, its consecutive

block will be the pair (i+ 2, j + 2).

11



3. When we reach the pair (v− 2, v− 1), this will be the last pair from the main

diagonal used in the dccd for the time being; and the next block will be the

pair (1, bv
2
c), or in words, go back up to the beginning of the diagonal above

the first diagonal.

4. Now we go straight down each diagonal from left to right so that for any block

(i, j) on the diagonal, its subsequent block will be the pair (i+ 1, j + 1).

5. When we come to some arbitrary (i, v), such that i 6= v − 1 and i 6= 2, the

next block will always be (1, v− i+2). In other words, taking pairs diagonally

from left to right, when we come to the bottom of one, we go up to the top of

the one above it.

6. When we come to (2, v), where v ≥ 6, the next block cannot be (1, v) since

this would violate the definition of a dccd. Thus we go back to the main

diagonal, but skipping over (2,3), which is also not permissible. Thus starting

with (4, 5) is permissible, since v ≥ 6.

7. We are now on the main diagonal again, so we take every other pair (the

remaining pairs along the diagonal) until we reach (v − 1, v).

8. Looping back to the top of the main diagonal, the next block should be (2, 3);

and finally the last block in the design is (1, v).

This procedure will construct a linear dccd every time for any odd v ≥ 7, and to

get a circular dccd, just interchange the first two blocks.

For example, let v = 7. We first create our triangular structure, and then

following the above procedure for odd v, we construct the dccd(7, 2).

12



12 13 14 15 16 17 1 2 4 7

23 24 25 26 27 3 4 1 5

34 35 36 37 5 6 2 6

45 46 47 1 3 3 7

56 57 2 4 1 6

67 3 5 2 7

4 6 4 5

5 7 6 7

1 4 2 3

2 5 1 7

3 6

This tight dccd is linear, and we could interchange the first two pairs to get a

circular dccd.

2.1.2 Construction of dccd(v, 2) with even v

1. To construct a dccd when v is even, start on the main diagonal at the pair

(1, 2).

2. Each subsequent block should be every other pair from left to right along the

main diagonal. So for any block (i, j) along the main diagonal, its consecutive

block will be the pair (i+ 2, j + 2).

3. When we reach the pair (v − 1, v), this will be the last pair from the main

diagonal used in the dccd for the time being; and the next block will be the

pair (1, v − i + 2), or in words, go back up to the beginning of the diagonal

13



above the first diagonal.

4. Now similar to the odd case, we take pairs diagonally from left to right, so

that for any block (i, j) on the diagonal, its subsequent block will be the pair

(i+ 1, j + 1).

5. When we come to the bottom of one diagonal, we go up to the top of the one

above it (except in one instance). Usually when we come to some arbitrary

(i, v), such that i 6= 2, the next block will be (1, v− i+ 1) since we see that for

all but one arbitrary (i, v), i 6= v− i+ 2; however, when i = v
2

+ 1, i = v− i+ 2

so that these two pairs are not distinct. Hence, when we get to (v
2

+ 1, v), we

must skip over (1, v
2

+ 1). We continue the process of taking pairs along the

diagonals until we reach (2, v).

6. When we come to (2, v) the next block cannot be (1, v) since this would violate

the definition of a dccd, so we now place the pair we originally skipped over,

(1, v
2

+ 1), since 2 6= v 6= 1 6= v
2

+ 1 for any v ≥ 6.

7. Notice that for any v ≥ 6, 2 < v
2

+ 1, so we now go back to the main diagonal

starting from (2, 3), since the two pairs are indeed distinct. We are now on

the main diagonal again, so we take every other pair (the remaining pairs),

the last one being (v − 2, v − 1).

8. Finally, the last block in the design is (1, v).

This procedure produces a tight linear dccd for any v ≥ 6, and we can interchange

the first two pairs to get a circular dccd. To illustrate, let v = 8.
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12 13 14 15 16 17 18 1 2 1 4 3 8

23 24 25 26 27 28 3 4 2 5 1 7

34 35 36 37 38 5 6 3 6 2 8

45 46 47 48 7 8 4 7 1 5

56 57 58 1 3 5 8 2 3

67 68 2 4 2 6 4 5

78 3 5 3 7 6 7

4 6 4 8 1 8

5 7 1 6

6 8 2 7

Again, we started with our triangular structure, and followed the above procedure

for even v to construct the dccd. This tight dccd is linear, and we could interchange

the first two pairs to get a circular dccd.

2.1.3 Construction of dccd(5, 2)

Lastly, let us construct a double-change design when v = 5. We will again use

the triangular structure, but instead of beginning on the main diagonal, let us start

on the diagonal above it, with the first block being (1,3). We go down this diagonal,

then up to the one above it, and then down that one until we get to (2,5). Then we

go back to the main diagonal starting with (3,4) and then taking every other pair

from the bottom up (although the only other pair will be (1,2)). Next, go back to

the bottom of the main diagonal. The next block after (1,2) will be (4,5), and then

again we take every other pair (although the only pair left will be (2,3)). Lastly,

the last block in the design is (1,5).
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12 13 14 15 1 3

23 24 25 2 4

34 35 3 5

45 1 4

2 5

3 4

1 2

4 5

2 3

1 5

2.2 HAMILTONIAN CYCLES IN DOUBLE-CHANGE GRAPHS

We reference Chartrand’s Corollary 6.7 (Dirac’s Theorem): “Let G be a graph

of order n ≥ 3. If deg v ≥ n/2 for each vertex v of G, then G is Hamiltonian.”

[4] A graph contains a Hamiltonian cycle if there exists a cycle in G in which every

vertex is visited exactly once (except for the first and last), and starts and finishes

at the same vertex. If we can visit each vertex once, but cannot start and end at the

same vertex, then the graph has a Hamiltonian path. We wish to explore for what

double-change graphs when k = 2, DCG(v, 2), does a Hamiltonian cycle exist?

If the dccd is circular, then it potentially has a Hamiltonian cycle, but if the

dccd is linear, it potentially has a Hamiltonian path. For DCG(v, 2), i.e. when

k = 2, each vertex is a pair, and we form edges between pairs that are disjoint. The

order of the graph is
(
v
2

)
, and we see the degree of each vertex is

(
v−2
2

)
. To illustrate,

take all
(
v
2

)
pairs and subtract the pairs that it cannot be adjacent to, and add one
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for itself. Thus we see the degree of each vertex is(
v

2

)
− 2(v − 1) + 1 ⇔

(
v − 2

2

)
(2.2)

Theorem 2.2.1. Hamiltonian cycles exist for DCG(v, 2) where v ≥ 6.

Proof. Using Dirac’s Theorem, if
(
v−2
2

)
≥ (v

2)
2

, or equivalently, if
(
v
2

)
−2(v−1) + 1 ≥

(v
2)
2

, then DCG(v, 2) has a Hamiltonian cycle.

v(v − 1)

2
− 2(v − 1) + 1 ≥

(
v
2

)
2

v(v − 1)− 4(v − 1) + 2 ≥ v(v − 1)

2

2v(v − 1)− 8(v − 1) + 4 ≥ v(v − 1)

2v − 8 +
4

v − 1
≥ v

v − 8 +
4

v − 1
≥ 0

The inequality is true for v ≥ 8. Thus, Dirac’s Theorem implies a circular dccd ex-

ists, which implies that a linear dccd exists. Dirac’s Theorem is a sufficient condition

for the presence of a Hamiltonian cycle, but not necessary. For example, if v = 6

or v = 7, we see
(
v−2
2

)
6≥ (v

2)
2

, but DCG(6, 2) and DCG(7, 2) still have Hamiltonian

cycles.

Here we see DCG(6, 2) and DCG(7, 2), with Hamiltonian cycles starting and

finishing at vertex 12:
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CHAPTER 3

DOUBLE-CHANGE DESIGNS WITH K = 3

3.1 STEINER TRIPLE SYSTEMS

Steiner triple systems originate from Reverand Thomas Kirkman’s question

posed in 1850, which is now known as “Kirkman’s schoolgirl problem”: “Fifteen

young ladies in a school walk out three abreast for seven days in succession: it is

required to arrange them daily, so that no two shall walk twice abreast.” [10] In

other words, is it possible to arrange the fifteen girls in five rows, three girls in each

row, so that no two girls walk in the same triple more than once? This problem

asks for a Steiner triple system with λ = 1 and v = 15.

A Steiner triple system STS(V) based on V = {1, 2, ..., v} is a collection of

b 3-sets or triples from V such that λ = 1, and every pair from V occurs exactly

once in some triple. A triple, say xyz, covers three pairs: xy, xz, and yz. So

3b = λ
(
v
2

)
= 1 ·

(
v
2

)
implies that b =

(v
2)
3

= v(v−1)
6

. Hence this last term must be an

integer in order for a STS(V ) to be possible.

For instance, let v = 3, then V = {1, 2, 3}. We see b = 3·2
6

= 1 ∈ Z, so we

should be able to construct STS(3) in one block. Indeed it is possible: STS(3) =

1 2 3. If v = 4, then V = {1, 2, 3, 4}, and b = 4·3
6

= 2 ∈ Z, but exhaustive

analysis shows that we are unable to construct a STS(4) in two blocks since one

pair is never covered. For example, STS(4) 6= (123)(423) because the pair (1,4) is

missing. Therefore, STS(4) does not exist. We use similar arguments that STS(5)

and STS(6) do not exist.

We saw that it is necessary that v(v−1)
6
∈ Z, but we also must have v−1

2
∈ Z

since in a STS(V ) each x ∈ V lies in n−1
2

blocks. To illustrate, there are v − 1

elements in V \ {x} and x must appear in a triple exactly once with each of these

n−1 elements. There are two other elements in each block with x, so it follows that
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twice the number of blocks containing each variety is v−1. Thus we see each variety

must lie in exactly v−1
2

triples. Note that this necessary condition also proves that

STS(4) does not exist since 4−1
2
6∈ Z.

For which v does a STS(v) exist? We use a well known theorem:

A STS(V ) exists if and only if v ≡ 1 or 3 (mod 6).

The proof of this theorem follows from the implications of both of the above two

necessary requirements. If v−1
2

must be an integer, then v has to be odd, i.e. v =

2s+1, where s = 0, 1, 2, . . . ; thus we have v ≡ 1, 3, or 5 (mod 6). But suppose v ≡ 5

(mod 6), then v = 6s+5. This implies that b = n(n−1)
6

= (6s+5)(6s+4)
3·2 = (6s+5)(3s+2)

3
6∈

Z since 3 cannot divide 5. Thus both necessities imply v ≡ 1 or 3 (mod 6). It is

true that for a STS(V ) to exist, it is necessary that v ≡ 1 or 3 (mod 6), but if

we have a v such that v ≡ 1 or 3 (mod 6), then it is a sufficient condition for the

existence of a STS(V ).

The STS(V ) for v ≡ 1 (mod 6) and v ≡ 3 (mod 6) must be constructed

differently, so let us look at each case separately.

3.2 THE KIRKMAN/STEINER CONSTRUCTION OF A STS(V ≡ 3

(MOD 6))

Consider v ≡ 3 (mod 6) and Z6 = {0, 1, 2, 3, 4, 5}. For a fixed k ∈ Z6, the

equation i + j = k has six solutions, e.g. k = 4, i + j = 4 : 4 + 0 = 4; 3 + 1 =

4; 2 + 2 = 4; 1 + 3 = 4; 0 + 4 = 4; 5 + 5 = 4 in modulo 6. If you are given two of the

i, j, or k, is the third uniquely determined?

Consider now i + j = 2k in Z6. If i = 0 and j = 4, 0 + 4 = 2k, which implies

k = 2, 5. So given two of i, j, k the third is not uniquely determined. Thus the

statement is not true for this equation in Z6. However, let us consider i + j = 2k

in Z5. Again, if i = 0 and j = 4, 0 + 4 = 2k implies k = 2. The statement is true

here. Hence we see that if given two of i, j, k in Zm, m odd, the third is uniquely
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determined. In general, i+ j = t · k in Zm has this property when t and m have no

common factors (in the even case, t and m have 2 as a common factor).

So if v ≡ 3 (mod 6), then let m = 2s + 1, s = 0, 1, 2, . . . , so that v =

6s + 3 = 3(2s + 1) = 3m, where m is of course odd. Let us reference Cameron

[3] for the following construction. We consider Zm = {0, 1, . . . ,m − 1}. Define

V = {a0, a1, . . . , am−1, b0, b1, . . . , bm−1, c0, c1, . . . , cm−1}. The triples (blocks) in the

construction will be of two types:

1. (a) aiajbk, i 6= j, i+ j ≡ 2k in Zm

(b) bibjck, i 6= j, i+ j ≡ 2k in Zm

(c) cicjak, i 6= j, i+ j ≡ 2k in Zm

2. aibici, i ∈ Z.

So as an example, let us construct a STS(9), where v = 9, and m = 3. Here

V = {1, 2, 3, 4, 5, 6, 7, 8, 9} = {a0, a1, a2, b0, b1, b2, c0, c1, c2}. The first block will be

a0a1bk, and we solve the linear equation 0 + 1 = 2k to find k. We see that k = 2, so

our first block is a0a1b2. Similarly, the second block is a0a2bk, and we solve 0+2 = 2k

for k. We get k = 1, so our block becomes a0a2b1. Our third block is a1a2bk, and

again solving the equation for k, we get a0a1b0. These 3 blocks form Type 1a. We

form blocks similarly for Types 1b, 1c, and 2, producing the following Steiner triple

system. Then we substitute for each variable.
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a0 a1 b2 1 2 6

a0 a2 b1 1 3 5

a1 a2 b0 2 3 4

b0 b1 c2 4 5 9

b0 b2 c1 4 6 8

b1 b2 c0 5 6 7

c0 c1 a2 7 8 3

c0 c2 a1 7 9 2

c1 c2 a0 8 9 1

a0 b0 c0 1 4 7

a1 b1 c1 2 5 8

a2 b2 c2 3 6 9

Let us now verify that each pair only appears once by checking the number of

blocks. There are
(
m
2

)
ways to choose an arbitrary pair aibj, and k will be uniquely

determined. There are three of these types, and m of Type 2. So we have:(
m

2

)
· 1 · 3 +m =

3m(m− 1)

2
+m =

3m(3m− 1)

6
=
n(n− 1)

6

Next, let us check that every pair occurs at least once in a triple:

1. (i) aiaj where i 6= j occurs in aiajbk where k is unique;

(ii) bibj is similar;

(iii) cicj is similar;
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2. (i) aibi occurs in aibici, but also could possibly occur in Type 1a if i = k.

If aibi ⊂ aiajbk, then i = k, but i + j = 2k = 2i implies that j = i.

Contradiction. So aibi occurs only in aibici. For example, the block

a3a4b3 is impossible: if 3 + 4 = 2 · 3, then 3 + 4 = 3 + 3 which implies

4 = 3. Contradiction;

(ii) aici similar;

(iii) bici similar;

3. (i) aibk where i 6= k (and also i 6= j), occurs in aiajbk where i+ j = 2k;

(ii) aick similar;

(iii) bick similar.

Thus we have constructed a Steiner triple system in which every pair appears exactly

once. Can we construct a double-change design from this STS(V = 3 (mod 6))?

3.2.1 Construction of a dccd(v, 3) with v ≡ 3 (mod 6)

We can construct the double-change design by rearranging the blocks of the

STS(V ≡ 3 (mod 6)) and using the triangular structure we used for constructing

dccd(v, 2). Looking at just the first two columns of the STS(V ) we have constructed,

we notice that we can construct a single-change design. We will first arrange the

blocks in such a way that the first two columns form a single-change design (while

ignoring the third column, but not removing it). We use the triangular structure:
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01 02 03 04 . . . 0(m-1)

12 13 14 . . . 1(m-1)

23 24 . . . 2(m-1)

34 . . . 3(m-1)

. . . 4(m-1)

. . .
...

(m-2)(m-1)

This procedure will take care of the blocks in the form 1a; and we construct 1b and

1c in the same manner.

1. Starting at the top left corner with (0,1), a0a1bk1 , we move horizontally along

the first row, stopping at (0,m− 1), a0am−1bk2 .

2. Next we go down the last column, starting with (,m − 1), a1am−1bk3 , and

ending with (m− 2,m− 1), am−2am−1bk4 .

3. Next we go up to the second entry of the column to the left of the last column,

(1,m − 2), a1am−2bk5 , and go straight down this column until we get to the

bottom. Then we go up to the next column.

4. We continue this process until we finally reach (1, 2), a1a2bkr .

Thus we have covered every pair in {0, 1, ..., m-1}. For example, with v = 15,m = 5,

the blocks in the form 1a will be:

24



a0 a1 b3

a0 a2 b1

a0 a3 b4

a0 a4 b2

a1 a4 b0

a2 a4 b3

a3 a4 b1

a1 a3 b2

a2 a3 b0

a1 a2 b4

(3.1)

The blocks in the form 1b and 1c will have the same subscripts.

By constructing this “single-change” design, we have in fact created a double-

change design within each of the three forms. Notice in (3.1), that as we go from

block to block, each bk is distinct from the previous, thus creating a double-change

design. This is true in general, for if we have two blocks, aiajbk and aiaj′bk′ say,

where j 6= j′; if k = k′, then 2k = 2k′, which implies that i + j = i + j′ and hence

j = j′. Contradiction. Thus each b is distinct. This is also true for the c′s in 1b

and the a′s in 1c.

Now we join up our constructions for 1b, 1c, and the three blocks of type 2,

aibici, ajbjcj, akbkck, at the end of 1a. After doing this, you can see that we do

not quite have a complete double-change design; however, we can again rearrange

blocks to produce one.

1. First insert the block a1b1c1 in between 1a and 1b. This can always be done
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since the last block in 1a is a1a2bk′ and the first block in 1b is b0b1ck′′ .

2. Now if we interchange the last two blocks of 1b, i.e. b2b3ck′′′ and b1b2ckiv , we

can insert a block aibici where i = 0, 3, 4, ...,m− 1, but i 6= 1, 2, after b2b3ck′′′ .

Since m ≥ 5, k must be less than 1, i.e. 0; or greater than 2. If k = 1, then

2 + 3 = 2k gives us that 5=2. Likewise for k = 2, we get 5=4. But if m ≥ 5,

2 will always equal 2, and 4 will always equal 4 in modulo m ≥ 5.

3. Next insert the block a2b2c2 after 1c. This can always be done since we end

with the block c1c2akv .

4. Lastly we can insert the remaining m − 3 blocks in the form aibici into the

design where they fit. The m − 3 blocks will fit actually in just 1a since

there are
(
m
2

)
−1 =

(
m−2
2

)
slots available, and (m−2)(m−1)

2
≥ m − 3 for m ≥ 1.

Remember we constructed these blocks using the triangular structure by going

across the top row and then down each column from right to left. If the block

that needs to be inserted is a0b0c0 then place it into the design where we were

going along the top row. Place the block ajbjcj into the design where the

respective pair in the triangular structure is (i, j).

5. Now to get a circular design, we can interchange the very first two blocks in

1a.

Thus for m = 5, we have the tight, circular double-change design:
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a0 a2 b1 b0 b1 c3 c0 c1 a3

a0 a1 b3 b0 b2 c1 c0 c2 a1

a0 a3 b4 b0 b3 c4 c0 c3 a4

a0 a4 b2 b0 b4 c2 c0 c4 a2

a4 b4 c4 b1 b4 c0 c1 c4 a0

a1 a4 b0 b2 b4 c3 c2 c4 a3

a2 a4 b3 b3 b4 c1 c3 c4 a1

a3 a4 b1 b1 b3 c2 c1 c3 a2

a3 b3 c3 b1 b2 c4 c2 c3 a0

a1 a3 b2 b2 b3 c0 c1 c2 a4

a2 a3 b0 a0 b0 c0 a2 b2 c2

a1 a2 b4

a1 b1 c1

Eulerian Circuit within a dccd(v, 3) with v ≡ 3 (mod 6)

Quoting Wallis, Yucas, and Zhang, “When k = 2, we may interpret the ele-

ments as vertices and the blocks as edges of a complete graph on v vertices, and

a single-change covering design is provided by a walk through the graph which

covers every edge.” [11] We can thus always find an Eulerian Circuit within our

“single-change” design described for our example (3.1) using the triangular struc-

ture described. This procedure is useful since it allows us to keep track of edges

covered.

1. First, let every pair in the triangle represent an edge between two vertices.

Starting with (0,1) at the top left corner of the main diagonal, we connect

27



vertices 0 and 1 in our graph. Now we take each pair all the way down to the

last pair on the main diagonal, (m− 2,m− 1), connecting respective edges.

2. Now we go up to (0,m − 1) at the top of this column, i.e. the farthest right

column, and start a zig-zag pattern. In words, this pattern will be: left, down,

right, down, left, down, right, down, etc. So beginning with (0,m − 1), we

go left to (0,m − 2), then down to (1,m − 2), right to (1,m − 1), down to

(2,m−1), left to (2,m−2), down, right, . . . , until we get down to the bottom

to (m − 3,m − 1). This zig-zag pattern never covers more than two columns

at a time and assures us that we have a single-change from pair to pair. For

instance, take the four pairs from the triangular structure

(i, j) (i, j+1)

(i+1, j) (i+1, j+1)

There is always a single-change between two blocks in the same row; and

there is always a single change between two blocks in the same column. Thus

for any arbitrary pair of columns in this zig-zag pattern, we always have a

single-change design.

3. Now we go up to the top of the next column to the left, beginning with

(0,m− 3), and repeat the same zig-zag pattern.

4. Continue the pattern until we reach (0, 2), in which case we are finished.

Hence we began our walk through the edges of the graph at vertex 0, and ended

at vertex 0, thus indeed producing an Eulerian Circuit. For example, when m = 7,
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we begin at vertex (0,1) and draw edges in the following order:

01 25

12 35

23 36

34 46

45 04

56 03

06 13

05 14

15 24

16 02

26

3.3 THE SKOLEM CONSTRUCTION OF A STS(V ≡ 1 (MOD 6))

We reference Lindner [7] for the Skolem Construction of a STS(V ) when v ≡ 1

(mod 6). Let v = 6n+ 1, and construct a half-idempotent commutative quasigroup

of order 2n. Recall that a latin square is an n × n array in which each element

appears exactly once in each column and exactly once in each row. “A quasigroup

of order n is a pair (Q, ◦), where Q is a set of size n and “◦” is a binary operation on

Q such that for every pair of elements a, b ∈ Q, the equations a◦x = b and y ◦a = b

have unique solutions.” [7] An idempotent quasigroup is one in which for 1 ≤ i ≤ n

entry (i, i) contains i, and the quasi-group is commutative if for all i ≥ 1, j ≤ n,

entries (i, j) and (j, i) contain the same element. So a half-idempotent commutative

quasigroup is one in which for all i ≥ 1, j ≤ n, entries (i, j) and (j, i) contain the

same element, and the entries (i, i) and (n+ i, n+ i) for 1 ≤ i ≤ n contain the same
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element.

Let the elements of the STS be {∞, a1, a2, ..., a2n, b1, b2, ..., b2n}. The triples

(blocks) of the STS will be of three types:

Type 1: for 1 ≤ i ≤ n,

aibici

Type 2: for 1 ≤ i ≤ n,

∞an+ibi We shall call this Type 2 form 1

∞bn+ici Type 2 form 2

∞cn+iai Type 2 form 3

Type 3: for 1 ≤ i < j ≤ 2n,

aiajbi◦j Type 3 form 1

bibjci◦j Type 3 form 2

cicjai◦j Type 3 form 3

To illustrate the construction, let us construct a STS(13) where n = 2. First

we construct a half-idempotent commutative quasigroup of order 4, and then we

construct the three types of blocks.

◦ 1 2 3 4

1 1 3 2 4

2 3 2 4 1

3 2 4 1 3

4 4 1 3 2

30



a1 b1 c1 a1 a2 b3 b1 b2 c3 c1 c2 a3

a2 b2 c2 a1 a3 b2 b1 b3 c2 c1 c3 a2

∞ a3 b1 a1 a4 b4 b1 b4 c4 c1 c4 a4

∞ a4 b2 a2 a3 b4 b2 b3 c4 c2 c3 a4

∞ b3 c1 a2 a4 b1 b2 b4 c1 c2 c4 a1

∞ b4 c2 a3 a4 b3 b3 b4 c3 c3 c4 a3

∞ c3 a1

∞ c4 a2

Let us now check that every pair occurs at least once in a triple:

1. (i) aibi occurs in aibici;

(ii) aici is similar;

(iii) bici is similar;

2. (i) ∞ai occurs in ∞cn+iai

∞an+i occurs in ∞an+ibi

(ii) ∞bi is similar;

∞bn+i is similar;

(iii) ∞ci is similar;

∞cn+i is similar;

3. (i) aiaj where i 6= j occurs in aiajbi◦j;

(ii) bibj is similar;

(iii) cicj is similar;

4. (i) aibi◦j occurs in aiajbi◦j;
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(ii) bici◦j is similar;

(iii) ciai◦j is similar;

5. (i) ajbi◦j occurs in aiajbi◦j;

(ii) bjci◦j is similar;

(iii) cjai◦j is similar.

Next, let us verify that each pair only appears once by checking the number of

blocks. There are n blocks of Type 1, and 3n blocks of Type 2. Also, there are three

forms of Type 3 blocks, in which there are
(
2n
2

)
of each form. So we have:

n+ 3n+ 3
˙(

2n

2

)
=

(6n+ 1)(6n)

6
=
v(v − 1)

6

Thus we conclude that we have constructed a Steiner triple system in which each

pair occurs exactly once in the design. Can we construct a double-change design

from this construction?

3.3.1 Construction of a dccd(v, 3) with v ≡ 1 (mod 6)

We break the construction into three cases, since the larger n is, the more

blocks we have to work with. For n = 1, the construction described above already

gives a circular double-change design:

a1 b1 c1

∞ a2 b1

∞ b2 c1

∞ c2 a1

a1 a2 b2

b1 b2 c2

c1 c2 a2
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For n = 2:

1. The first block will be a1b1c1 from the Type 1 blocks.

2. Next, we place the Type 2 blocks since the first block in Type 2 will be

∞an+1b1. Notice that the blocks of Type 2 are already in a double-change

design, with ∞ being a constant element. It is true in general that for two

blocks of this type, without loss of generality say ∞an+ibi and ∞an+i′bi′ , that

i 6= n + i 6= i′ 6= n + i′. It is clear that with n ≥ 1, i 6= n + i and i′ 6= n + i′.

In our two blocks we assume n+ i 6= n+ i′, but suppose that i = i′, then this

implies that n + i = n + i′. Contradiction. Hence, there is a double-change

within our two arbitrary blocks.

3. Next we will begin to place the first of the Type 3 blocks, but let us first

rearrange each of the three forms of Type 3 blocks in the same fashion we did

for dccd(v ≡ 3 (mod 6), 3). Using the triangular structure, we go across the

first row, and then down each column from right to left, forming a “single-

change” design within the first two columns of the blocks, and thus creating

a double-change design within each of the three forms.

4. Since we end the Type 2 blocks with ∞c2nan, i.e. ∞c4a2, we can now place

the blocks of the first form of Type 3 after Type 2, since the first form of Type

3 begins with a1a2b3.

5. Next, we see that we end this first form of Type 3 with a2a3b4, and the second

form begins with b1b2c3, so we may place a2b2c2 in between the two forms.

6. We do not need to do anything to Type 3 form 2, but we do need to arrange

Type 3 form 3. Move the block c2c4a1 to the top of the form 3 blocks, and

move c1c4a4 to the very bottom to get a circular design.
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a1 b1 c1 b1 b2 c3

∞ a3 b1 b1 b3 c2

∞ a4 b2 b1 b4 c4

∞ b3 c1 b2 b4 c1

∞ b4 c2 b3 b4 c3

∞ c3 a1 b2 b3 c4

∞ c4 a2 c2 c4 a1

a1 a2 b3 c1 c2 a3

a1 a3 b2 c1 c3 a2

a1 a4 b4 c3 c4 a3

a2 a4 b1 c2 c3 a4

a3 a4 b3 c1 c4 a4

a2 a3 b4

a2 b2 c2

For n ≥ 3:

1. The first block will be a1b1c1 from the Type 1 blocks.

2. Next, we place the Type 2 blocks since the first block in Type 2 will be

∞an+1b1. Notice that the blocks of Type 2 are already in a double-change

design, with ∞ being a constant element. It is true in general that for two

blocks of this type, without loss of generality say ∞an+ibi and ∞an+i′bi′ , that

i 6= n + i 6= i′ 6= n + i′. It is clear that with n ≥ 1, i 6= n + i and i′ 6= n + i′.

In our two blocks we assume n+ i 6= n+ i′, but suppose that i = i′, then this

implies that n + i = n + i′. Contradiction. Hence, there is a double-change
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within our two arbitrary blocks.

3. Next we will begin to place the first of the Type 3 blocks, but let us first

rearrange the three forms of Type 3 blocks in the same fashion we did for

dccd(v ≡ 3 (mod 6), 3). Using the triangular structure, we go across the first

row, and then down each column from right to left, forming a “single-change”

design within the first two columns of the blocks, and thus creating a double-

change design within each of the three forms.

4. We now place the blocks of the first form of Type 3 after Type 2, but first

place the block a1anbk at the top of Type 3 form 1. Since we end the Type 2

blocks with∞c2nan, this guarantees that we will have a smooth double-change

design from one type to the next.

5. Next, we see that we end this first form of Type 3 with a2a3bk′ , and the second

form begins with b1b2ck′′ , where k 6= 2, so we may place a2b2c2 in between the

two forms.

6. Similarly, we end the second form of Type 3 with b2b3ck′′′ and begin the third

form with c1c2akiv , so let us place c1c3akv before c1c2akiv so that we may insert

a3b3c3 in between.

7. For the remaining n−3 blocks of Type 1, we may place them where they fit in

the design, particularly in the same fashion we did for dccd(v ≡ 3 (mod 6), 3).

These n−3 blocks will fit into the Type 3 form 1 blocks since there are
(
2n
2

)
−1

possible slots, and
(
2n
2

)
−1 ≥ n− 3 for all n ≥ 1.

8. To get a circular design, move the block c1c2akiv to the very bottom.
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a1 b1 c1 a1 a6 b6 b1 b4 c5 c1 c3 a2

∞ a4 b1 a2 a6 b1 b1 b5 c3 c1 c4 a5

∞ a5 b2 a3 a6 b4 b1 b6 c6 c1 c5 a3

∞ a6 b3 a4 a6 b2 b2 b6 c1 c1 c6 a6

∞ b4 c1 a5 a6 b5 b3 b6 c4 c2 c6 a1

∞ b5 c2 a2 a5 b6 b4 b6 c2 c3 c6 a4

∞ b6 c3 a3 a5 b1 b5 b6 c5 c4 c6 a2

∞ c4 a1 a4 a5 b4 b2 b5 c6 c5 c6 a5

∞ c5 a2 a2 a4 b3 b3 b5 c1 c2 c5 a6

∞ c6 a3 a3 a4 b6 b5 b4 c4 c3 c5 a1

a1 a3 b2 a2 a3 b5 b2 b4 c3 c4 c5 a4

a1 a2 b4 a2 b2 c2 b3 b4 c6 c2 c4 a3

a1 a4 b5 b1 b2 c4 b2 b3 c5 c3 c4 a6

a1 a5 b3 b1 b3 c2 a3 b3 c3 c2 c3 a5

c1 c2 a4

3.4 CONCLUSION

To answer the question given in the first section of the paper about the chef

and his menu, we see that his proposed design is possible, since his problem asks to

construct a dccd(9, 3). We see that 9 ≡ 3 (mod 6), so we use the Kirkman/Steiner

construction for STS(9), and then arrange the blocks using the method described

to get a double-change design. Also using (1.1), we see the number of blocks, b, in

this design should be 12. So if the chef has nine entrées {1, 2, 3, 4, 5, 6, 7, 8, 9},
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we get the following double-change design with twelve blocks:

1 3 5

1 2 6

2 3 4

1 4 7

4 5 9

4 6 8

5 6 7

2 5 8

7 8 3

8 9 1

7 9 2

3 6 9

Since this design is circular, the chef could seamlessly and efficiently start the de-

signed menu over again on the 13th day while still fulfilling his requirements.
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