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Abstract

Triclosan is an antimicrobial agent which is widely used in household and personal care 

products. Widespread use of this compound has led to the elevated concentrations of 

triclosan in wastewater, wastewater treatment plants (WWTPs) and receiving waters. To 

investigate the occurrence and fate of triclosan in the environment, analytical methods 

for the quantification of triclosan in wastewater, sludge and deposit were developed.  

The fate of triclosan in a wastewater treatment plant (biological degradation, 19%; 

sorption to sludge, 61%; input into the receiving surface water, 20%) was detected 

during a field study. From the laboratory-scaled experiment biodegradation products 

such as 2,4-dichlorophenol, 4-chlorocatechol, triclosan-methyl, monohydroxy-triclosan, 

dihydroxy-triclosan and triclosan O-sulfate have been identified. In an enrichment 

culture originated from activated sludge, Methylobacillus was identified as one of the 

active triclosan degraders. 

Furthermore, two technologies have been studied for further removal of triclosan in 

wastewater and sludge. Complete removal of triclosan from wastewater could be 

achieved by using ozone and more than 95% removal of triclosan from sludge could be 

found by using reed bed sludge treatment process.  
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Resumé (Abstract in Danish) 

Triclosan er et bakteriehæmmende middel, som ofte anvendes i husholdningsprodukter 

og produkter til personlig pleje. Den store anvendelse af stoffet har ført til forhøjede 

koncentrationer af triclosan i spildevand, rensningsanlæg og vandmiljøet nær udløb fra 

rensningsanlæg. For at undersøge triclosans forekomst og skæbne i naturen, blev der 

udviklet analytiske metoder til kvantificering af triclosan i spildevand, slam og 

sedimenter. Triclosans skæbne i et spildevandsanlæg (biologisk nedbrydning, 19%, 

absorbtion i slam, 61%, udledning til det modtagende vandmiljø, 20%) blev målt som en 

del af et feltstudie. I laboratorie eksperimenter er nedbrydningsprodukter såsom 2,4-

dichlorphenol, 4-chlorocatechol, triclosan-methyl, monohydroxy-triclosan, dihydroxy-

triclosan og triclosan O-sulfat efter biologisk nedbrydning blevet identificeret. I en 

beriget kultur, der stammede fra aktivt slam, blev Methylobacillus identificeret som en af 

de, der aktivt nedbryder triclosan. 

Desuden er to efterbehandlings-teknologier til at fjerne yderligere triclosan fra 

spildevand og slam blevet undersøgt. Fuldstændig fjernelse af triclosan fra spildevand 

kunne opnås ved hjælp af ozon og mere end 95% fjernelse af triclosan fra slammet kan 

undersøges ved anvendelse af en rodzone slam behandlingsproces. 
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Introduction

1. Triclosan: Usage and characterization 

Triclosan (2,4,4´-trichloro-2´hydroxydiphenylether) is a synthetic, lipid-soluble, broad 

spectrum antimicrobial agent which was first introduced in the health care industry in 

1972 and since 1985 as a compound added to toothpaste in Europe (Joens et al., 2000). 

It is also referred as Irgasan, DP300, FAT 80’023, CH 3565, and GP 41-353 in a 

number of toxicology studies. It is a chlorinated organic compound with functional 

groups representative of both ethers and phenols (Table 1). At normal room 

temperature, triclosan appears as a white to off-white crystalline powdered solid with a 

slight aromatic odor and is slightly soluble in water but readily soluble in most organic 

solvents due to its physicochemical properties which are shown in Table 1.  

Triclosan has a specific mechanism to inhibit bacteria activity, i.e. by inhibiting the 

enoyl-acyl carrier reductase enzyme to block the lipid synthesis, which is necessary for 

cell reproduction, and therefore prevents the bacteria from synthesizing new fatty acids 

and thereby stop building cell membranes as well as reproducing (McMurry et al., 1998; 

Heath et al., 1999).  
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Table 1. Physico-chemical parameters of triclosan (MS Search v2.0; EPI Suit 4.0). 

Molecular structure 

 

Chemical name 2,4,4’-trichloro, 2’-hydroxy-diphenylether 

Chemical abstracts service 

registry (CAS) number  

3380-34-5 

Synonyms 5-chloro-2-(2,4-dichlorophenoxy)phenol 

Trade names Irgasan; CH 3565, Irgasan CH 3565, Irgasan DP300, Ster-Zac, Tinosan 

AM110 Antimicrobial, Invasan DP 300R, Invasan DP 300 TEX, 

Irgaguard_RB 1000, VIV-20, Irgacare MP, Lexol 300, Cloxifenolum, 

Aquasept, Gamophen, Vinyzene DP 7000, Vinyzene SB- 30, Sanitized 

Brand, Microbanish R, Vikol THP, Ultra-Fresh, Microban Additive “B”, and 

AerisGuard. 

Molecular formula C12H7Cl3O2 

Molecular weight 290 g/mol 

Vapour pressure 0.00062 Pa 

Water solubility 4621 μg/L 

Boiling point 373.62 °C 

log Kow 4.2-4.76 

log Koc 4.265 

pKa 7.9 

 
It is known that triclosan in lower concentrations is recognized as bacteriostatic 

(Champlin et al., 2005), while it becomes bactericidal in higher concentrations (Suller 

and Russell, 2000; Russell, 2004). According to the results from Jones et al. (2000), 

O

Cl

Cl

C l 

OH
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personal care products which contain 1% of triclosan offers the ideal balance of 

antimicrobialeffectiveness and mildness for use in high-risk, high-frequency 

handwashing health care settings. It has shown to be highly active against some 

microorganisms, such as Staphylococcus, Streptococcus and Mycobacterium (Levy et 

al., 1999), as well as some fungi and protozoa (i.e. Plazmodium falciparium, 

Toxoplasma gonidii) (Yazdankhah et al., 2006). Effectiveness of triclosan is also based 

on the fact that it can stay on the skin for 12 hours after applied and continues killing 

bacteria (Glaser, 2004). 

In 1965, triclosan was produced by the specialty chemical company “Ciba” in 

Switzerland (Levy et al., 1999) and then was introduced into personal care products in 

the USA as an ingredient in deodorants and hand soaps. Due to the bactericidal 

property and the chemical stability, triclosan became popular as an antimicrobial 

substance in a wide range of applications and the demand of it has been growing 

rapidly in the last 40 years (Fiss et al., 2007).  

Nowadays, triclosan is used in 140 different types of consumer products including liquid 

hand soap, shower gels, hand lotions, toothpaste, mouthwashes, deodorants, as well as 

in the treatment of textiles and in plastic manufacture such as towels, mattresses, 

toothbrushes, phones, kitchenware and plastic food containers, shoes, clothing and 

children´s toys (Levy et al., 1999; Fiss et al., 2007). Triclosan has also been used in 

hospitals and medical products to control bacteria and the spread of disease (Bhargava 

et al., 1996; Singer et al., 2002).  

In the European Union (EU), about 85% of the total amount of triclosan is used in 

personal care products, compared to 5% in textiles and 10% in plastics and food 
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contact materials (SCCP/1192/08, 2009). The quantity used within the EU reached 

approximately 450 tons (as 100% active) in the year 2006 (SCCP/1192/08, 2009). 

2. Fate of triclosan in wastewater treatment plants 

Widespread use of triclosan provides a number of pathways to enter the wastewater 

and finally reach the wastewater treatment plants (WWTPs). Triclosan has been 

detected in the influent of WWTPs in concentrations from ng/L to μg/L (Table2). In 

WWTPs using activated sludge as secondary treatment process, about 42-99% removal 

was detected. The ways of elimination of triclosan in WWTPs include mineralization, 

transformation by oxidation or reduction and sorption to sludge (Latch, 2003; Bester, 

2003, 2005; Yu et al., 2006). In fact, both biodegradation and sorption to activated 

sludge may explain the removal fate of triclosan in WWTPs.  

Although triclosan is an bactericidal compound to many bacteria or fungi, some 

microorganisms are resistant to triclosan and even able to use it as a sole carbon 

source. In a continuous activated sludge system study in which the influent level of 

triclosan was increased from 40 μg/L to 2000 μg/L, removal of triclosan exceeded 98.5% 

(Federle et al., 2002). Similarly, Stasinakis et al. (2007) have reported that more than 90% 

removal of triclosan was detected in two continuous-flow activated sludge systems with 

received triclosan concentration in 500-2000 μg/L. Increasing levels of triclosan 

concentration had no major adverse on wastewater treatment process, including 

chemical oxygen demand, biological oxygen demand and ammonia removal (Federle et 

al., 2002). 
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Table 2. Fate of triclosan in different WWTPs. 

Country Inflow 

concentration 

(ng/L) 

Effluent 

concentration 

(ng/L) 

Sludge (ng/g 

DW) 

Removal 

rate 

Literature/Source 

USA 670-5115 40-1117  79-97% Thompson et al., 2005 

4700 1600 70 60 30000 11000 98 1% Heidler and Halden, 2007 

3800-16600 200-2700 500-15600 96% McAvoy et al., 2002 

18850 1036 515 95% Kumar et al., 2010 

13703 180 566 99% Kumar et al., 2010 

86161 5370 1611 94% Kumar et al., 2010 

32639 274 795 99% Kumar et al., 2010 

453-4530 36-212 - 92-97% Buth et al., 2011 

China 142 16.5 22.5 1.4 - 84% Wu et al., 2007 

Germany 1200 80 51 8 1200 130 95-96% Bester, 2003 

 7300 1500 300 100 - >95% Bester, 2005 

 4800 550 620 1500 - 87% Bester, 2005 

Japan 2680 262 19496 90% Nakada et al., 2010 

11890 269 - 98% Nakada et al., 2010 

Switzerland 600-1300 11-98 - 94% Singer et al., 2002 

500-1300 70-650 - 44-92% Lindström et al., 2002 

Australia 586-805 23-434  90-16790 72-93% Ying and Kookana, 2007 

 

In WWTPs about 30-50% of the triclosan could be recovered in sludge as triclosan is 

relatively lipophilic with log Kow of 4.2-4.8 and log Koc of 4.3 (Bester, 2003, 2005; 

Coogan et al., 2007; Heidler and Halden, 2007; Kumar et al., 2010; Nakada et al., 2010). 
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On the other hand, this means that most removal occurs due to biodegradation 

processes (Heidler and Halden, 2007; Kumar et al., 2010; Nakada et al., 2010).  

Due to the incomplete removal triclosan has also been found in the effluent of WWTPs 

in concentrations of 11-1117 ng/L, whereas typical concentrations of triclosan in sludge 

were 0.5-30 ng/g dry weight (DW) (Table 2). 

 

3. Occurrence of triclosan in the environment 

The widespread use and incomplete removal of triclosan in WWTPs provides a number 

of pathways to enter the environment. Previous reports described triclosan as one of the 

most commonly encountered substances in solid and water environmental 

compartments (Lindström et al., 2002; Singer et al., 2002; Wilson et al., 2003). The 

chemical properties of triclosan indicate that it may also bioaccumulate and persist in 

the environment, and laboratory tests have shown it to be toxic to aquatic species, with 

algae being one of the most sensitive species (Chlamydomonas, Scenedesmus, 

Navicula, Synedra ) (Wilson et al., 2003).  

Lindström et al. (2002) has detected that the concentrations for triclosan in lakes and a 

river in Switzerland were up to 70 ng/L. Whereas the concentrations of triclosan in the 

river Ruhr in Germany was ranged from <3 to 10 ng/L (Bester, 2005). Andresen et al. 

(2007) has reported that the concentration of triclosan were around 20 ng/L in Hamilton 

Harbor and approximately 1 ng/L in Lake Ontario. Wilson et al. (2009) have found an 

average water column concentration of 3  2 ng/L in the lower Hudson River Estuary. 

Urban wastewater discharge and industrial activities are identified as the main source 
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for triclosan as high values up to 11-98 ng/L were found in the rivers receiving WWTPs 

effluents (Bester, 2005).  

Triclosan can partition to sewage sludge during wastewater treatment and subsequently 

transfer to soil when applied to land. High concentrations of triclosan were found in a 

field receiving biosolid in land application (Langdon et al., 2012). Furthermore, triclosan 

has also been detected at concentrations of 5-27 ng/g in marine sediments of Barker 

Inlet, South Australia (Fernandes et al., 2011).  

In addition, several studies report that triclosan have been detected with 25-2444 ng/g 

in the indoor air, which is supposed to be associated with volatilization of liquid personal 

care products and diffusion from textiles and other materials treated with triclosan as 

bactericide (Canosa et al., 2007; Fan et al., 2010).  

4. Risks of triclosan in the environment 

Considering triclosan has been detected in environment compartments discussed in last 

subchapter, there is a potential risk of adverse effects in aquatic, terrestrial environment 

and humans. 

Ricart et al. (2010) has reported that triclosan affect both bacterial and algal 

communities, indicating that the potential environment risk of triclosan is high especially 

in rivers where water scarcity results in low dilution. Delorenzo et al. (2007) has 

suggested that triclosan shows low toxicity risk but high potential for chronic and 

sublethal effects to estuarine organisms. Lin et al. (2012) has reported that triclosan 

may have potential biochemical and genetic toxicity toward earthworms (Eisenia fetida). 

Considering the PNEC (Predicted No-Effect Concentration, 7ng/L) and NOEC (No 

Observed Effect Concentration, 700 ng/L) values of triclosan (Thompson et al., 2005), 
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the risk should be more related to chronic effect (due to the bioaccumulation) than acute 

impact.  

In soils, triclosan has been shown to increase dehydrogenase activity (Ying et al., 2007), 

and to affect microbial respiration rates (Waller and Kookana, 2009; Butler et al., 2011). 

The study of Butler et al. (2011) suggests that triclosan inhibits soil respiration but a 

subsequent acclimation of the microbial community occurs. 

Due to the widespread use of triclosan, there is potential for humans to receive 

exposure, and in fact, triclosan has been detected in human milk (Adolfsson-Eric et al., 

2002; Toms et al., 2011), urine (Sandborgh-Englund et al., 2006; Queckenberg et al., 

2010) and plasma (Hovander et al., 2002; Sandborgh-Englund et al., 2006), indicating 

that the human body can be influenced by an individual use of triclosan containing 

products. It is known that triclosan in lower concentrations may disrupt thyroid function 

and therefore be recognized as bacteriostatic (Champlin et al. 2005). Guo et al. (2012) 

has reported that triclosan inhibits adipocyte differentiation of human mesenchyme stem 

cells under concentrations that are not cytotoxic and in the range (0.1-8.1 μg/L, 

Sandborgh-Englund et al., 2006) observed in human blood. Additionally, triclosan has 

also been linked to a range of health effects, such as skin irritation, allergy susceptibility, 

liver and inhalation toxicity (Coogan et al., 2007). 

5. Transformation of triclosan in the environment 

Triclosan have triggered an increasing concern for several decades all over the world. It 

is toxic, last for a long time in the environment, and may travel long distances far from 

their sources of usage, release and emission. Under the aerobic condition normally 

present in the sub-surface layers of water, triclosan is expected to undergo primarily 
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photodegradation and biodegradation (Tixier et al., 2002, Bester, 2005). Triclosan can 

give derivatives which can be more persistent and more toxic than the parent compound. 

Furthermore, triclosan and its transformation products can accumulate in fatty tissues of 

living organism leading to undesirable effect to ecosystem and the human body. 

Photodegradation is the dominant degradation pathway for triclosan in surface waters. 

Tixier et al. (2002) found that direct phototransformation accounted for 80% of the 

observed total elimination of triclosan from the lake within two months. Degradation 

products such as chlorophenol, dichlorophenol and dioxin derivatives have been 

identified (Tixier et al., 2002; Ferrer et al., 2004; Aranami and Readman, 2007; Wong-

Wah-Chung et al., 2007; Chen et al., 2008; Son et al., 2009). The degradation products 

were formed also under environmental conditions in wastewater matrices, thus 

suggesting their presence in real wastewater treatment process and environmental 

aquatic systems (Ferrer et al., 2004). Half-life of triclosan photodegradation in the air is 

about 1 day (Halden and Paull, 2005). 

Biodegradation of triclosan has also been described by several investigators. Its half-life 

is calculated as 11 days in surface water (Bester, 2005), 18-107 days in sludge 

amended soil (Lozano et al., 2010; Ying et al., 2007; Wu et al., 2009; Waria et al., 2011), 

18-78 days in the silty clay loam (Waria et al., 2011; Kookana et al., 2011) and 421 days 

in the fine sand (Waria et al., 2011) depending on the initial concentration and the 

environmental factors (Stasinakis et al., 2007). Under these conditions, triclosan-methyl 

has been reported as the most often occurring transformation product, which presents a 

greater potential for bioaccumulation than triclosan due to its log kow 5.0 (Balmer et al., 

2004; Waria et al., 2011).  
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Triclosan-methyl was detected in various aquatic environments such as WWTPs, lakes 

and rivers (McAvoy et al. 2002; Lindström et al. 2002). Although the concentrations of 

triclosan-methyl were very low in surface waters with less than 1 ng/L (Balmer et al. 

2004), it is bio-accumulating to a high extent, and causes currently the dominating peak 

when analyzing lipophilic pollutants in fish from urban waters. The concentrations of 

triclosan-methyl were up to 35 ng/g (wet weight) and up to 365 ng/g on a lipid basis in 

the fish collected in Switzerland (Balmer et al., 2004). Additionally, occurrence of 

triclosan-methyl was detected at concentrations <11 ng/g in marine sediments of Barket 

Inlet, South Australia, which was linked to both wastewater discharges and biological 

methylation of triclosan (Fernandes et al., 2011). 

Biodegradation products such as hydroxycompounds (monohydroxy-triclosan and 

dihydroxy-triclosan) and the ether bond cleavage products (4-chlorophenol and 2,4-

dichlorophenol) have been reported by Kim et al., (2010) and Wu et al. (2010). Veetil et 

al. (2012) have found that triclosan could be biodegraded under aerobic, anaerobic and 

anoxic conditions and phenol, catechol and 2,4-dichlorophenol were among the 

products.  

Sonochemical degradation of triclosan in urban runoff and wastewater influent has been 

investigated by Sanchez-Prado et al. (2008) and suggesting a fast and complete 

conversion of triclosan without accompanied toxic by-products. Levy et al. (1999) found 

that under exposure to ozone the antibacterial activity of triclosan is derived primarily 

from its phenol ring, via van der Waals and hydrogen-bonding interactions with the 

bacterial enoyl-acyl carrier reductase enzyme.  
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Furthermore, there are reports that suggest incineration of textile products containing 

triclosan may result in the formation of dioxin-like substances (NICNAS, 2009). 

6. Objectives of the study 

Considering there is a severe lack of knowledge on the fate of triclosan in the 

environment, i.e. 1) by which process and in which part of the treatment plants is 

triclosan removed and 2) by which process is triclosan-methyl generated, 3) to what 

compounds is triclosan biodegraded and 4) are there some treatment technologies 

which can prevent the emission of triclosan to the environment. The primary goal for this 

project was to address these issues.   

1) The fate of triclosan in WWTPs was investigated through establishing a complete 

mass balance of triclosan in single process step analysis in a selected wastewater 

treatment plant. 

2) The formation as well as the mass balance of triclosan-methyl was measured in the 

same wastewater treatment plant. 

3) The biodegradation of triclosan was analysed through laboratory-scale experiments 

by using activated sludge bioreactors under aerobic, anaerobic and anoxic 

conditions.  

4) Two treatment technologies were involved in this study.  

The incomplete removal of triclosan in WWTPs leading to undesirable discharges of 

triclosan residuals to surface water. Thus experiment on ozonisation of triclosan was 

carried out to determine the removal rate and transformation products, as well as to 

assessing the potential of ozonisation as a post-treatment technology in elimination 

of triclosan in full-scale treatment plant. 
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Moreover, due to the high partition rate of triclosan to sewage sludge during 

wastewater treatment and high concentrations of triclosan in the field receiving 

sludge in land application, removal of triclosan in reed bed sludge treatment 

technology has been investigated. The goal of the study was to investigate how 

triclosan and other personal care products (PCPs) were removed and how the 

different conditions such as temperature, oxygen concentration, macrophytes may 

affect the triclosan removal in sludge reed beds.  

7. Technologies to remove triclosan after classical activated sludge 

treatment process 

7.1 Ozonation treatment process (for wastewater) 

As conventional wastewater treatment processes are unable to act as a reliable barrier 

concerning triclosan, it is discussed to introduce additional advanced treatment 

technologies in the areas where a persistent pollution problem has been recognized or 

anticipated. Ternes et al. (2003) and Ikehata et al. (2008) have evaluated different 

technologies including ozonation and advanced oxidation processes, membrane 

bioreactor, membrane filtration and activated carbon adsorption, suggesting that 

chemical oxidation using ozone is a highly effective treatment process for a wide 

spectrum of emerging organic pollutants, including pesticides, pharmaceuticals, 

personal care products, surfactants, microbial toxins and natural fatty acids.  

Ozone (O3) is a very powerful disinfecting and deodorizing gas. The ability of ozone to 

disinfect polluted water was recognized in 1886 by de Meritens (Laurie and Gilmore, 

2008). However, the widespread introduction of ozone in drinking water treatment 
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started in the 1960s (Landlais et al., 1991). For a long time ozone has been used in 

removal of bacteria, vira, algae and fungi as well as sulfur, thus also in eliminating taste 

and odor problems, as well as in oxidizing and mineralizing organic chemicals (Landlais 

et al., 1991). Nowadays ozonation followed by granular activated carbon filtration is 

already a standard method for the treatment of raw surface water to produce drinking 

water.  

However, the experience gained in the drinking water area can also be used in applying 

the method to wastewater treatment. Ozonation has recently emerged as an important 

technology for the oxidation and destruction of a wide range of organic pollutants in 

wastewater (Ikehata et al., 2006). It has been proven to be an effective post-treatment 

technique for pharmaceuticals and personal care products (Carballa et al., 2007; Ikhata 

et al., 2008; Wert et al., 2009). Figure 1 show an ozone reactor connected to a sand 

filter installed after the biological treatment step at the Wüeri WWTP in Regensdorf, 

Switzerland. Substances reacting fast with ozone, i.e. most of the micropollutants were 

brought to concentrations below the detection limit by an ozone dose of 0.47 g O3/g 

DOC (dissolved organic carbon) (Hollender et al., 2009; Zimmermann et al., 2011).  
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Figure 1. Configuration of the Wüeri WWTP in Regensdorf, Switzerland which has implemented 
an ozone treatment process. Ozone was produced from liquid oxygen and injected into the 
existing, but modified flocculation reactor between secondary clarifier and sandfiltration. 

 

Moreover, Suarez et al. (2007) reported that nearly 100% of triclosan depletion was 

achieved for a 4 mg/L O3 dose applied to a wastewater containing 7.5 mg/L of DOC, 

while Wert et al. (2009) reported that >95% triclosan removal was independent of water 

quality when the O3 exposure (  O3 dt) was measurable (0-0.8 mg min/L).  

7.2 Sludge reed bed treatment process (for sludge) 

Sewage sludge (also referred to biosolids) has been used as fertilizer on agricultural 

land because of its high content of phosphorous and nitrogen (Fytili and Zabaniotou, 

2008). This usage of sludge is controversial because of its high content of xenobiotics 

and heavy metals (Fytili and Zabaniotou, 2008). In 2005 ca. 10 million tons (dry matter) 

of sludge were produced by sewage treatment plants in Europe, of which approximately 

37% of that was used in agriculture (Fytili and Zabaniotou, 2008). Currently sludge in 
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urban regions is usually stabilised for 10-40 days in anaerobic digesters. However, for 

rural regions another method of sludge stabilisation has been developed, in which the 

sludge is treated for about ten years by reed beds to dewater and detoxify the sludge. 

The reed bed treatment plant is different to conventional dry beds and sludge polders 

with a new type technology, as 

A) The reed beds are equipped with Phragmites australis reeds, which influence the 

dewatering, and further stabilisation and the sanitizing of the sewage sludge. 

B) The treatment process takes place in dedicated beds, which are separated from 

the soil and the ground water by polyethylen foil (PE) to prevent the 

contamination of the soil and groundwater (Pauly et al., 2006). 

Reed beds facilities typically consist of several (often 7-10) beds (Figure 2). Each reed 

bed is lined with a drainage system to enhance the dewatering of the sludge. The 

leached water is then pumped back into the wastewater treatment plant. The sludge is 

pumped straight onto the beds throughout the year in pre-determined quantities and at 

preset intervals. Depending on plant design, the capacity of the beds is exhausted after 

6-12 years (Nielsen, 2003). After a resting phase of approximately one year, the 

individual beds are cleared and are then available again for a fresh loading cycle.  

Reed beds for sludge dewatering and mineralization offer an economically attractive 

alternative to pressure dewatering and centrifugation. Their primary advantages is that 

they are simple in design and operation, require low manpower (Cooper et al., 2004) 

and suitable for field or forest application as fertilizer as processed sludge residue 

complies with agriculture standards (Nielsen and Willoughby, 2007). Nowadays reed 

beds have been built in many European countries (Haber et al., 1995; Cooper et al., 
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Project conclusions 

This study was carried out to fill the gap in knowledge concerning the biodegradation 

and emission of triclosan in WWTPs and further removal of triclosan after the WWTPs. 

Full scale study (unpublished): In the case study of Aabybro WWTP, 77% of triclosan 

was removed by the WWTP, which is relatively low due to the low influent concentration. 

The WWTP was chosen because it has separated denitrification and nitrification 

process, to detect the removal of triclosan and formation of triclosan-methyl under 

different conditions. During the treatment process, approximate 23% of the triclosan 

was emitted to the environment by effluent water; 57% of the triclosan was adsorbed to 

sludge particles and approximate 20% was biodegraded, in which approximate 5% 

triclosan transformed into triclosan-methyl as shown in Figure 3. Most of the 

transformation process (triclosan to triclosan-methyl) occurred in the nitrification process 

under aerobic conditions. The sorption on sludge contributed significantly to triclosan 

removal.  
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Figure 3. Mass balance of triclosan in Aabybro WWTP. 

Laboratoty mechanistic study (published in paper 5 and 7): In static unfed laboratory-

scale activated sludge reactors under aerobic conditions within 7 days, the removal 

rates (pure biodegradation) of triclosan were relatively lower (75-86%) when the starting 

concentration was low ( 0.5 mg L-1), and reached higher values (>99%) when the 

starting concentration was high ( 1 mg L-1), while less removal was observed under 

anaerobic and anoxic conditions. The tentative half-life of triclosan degradation in 

sludge reactor under aerobic conditions was estimated to be 54-86 hours. One percent 

of the triclosan was converted to triclosan-methyl under aerobic conditions, less under 

anoxic (nitrate reducing) and none under anaerobic conditions. Under aerobic 

conditions, 10% of triclosan could be recovered in sludge (paper 5) and 7% was 

transformed into 2,4-dichlorophenol (paper 8). More transformation products such as 4-
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chlorocatechol, monohydroxy-triclosan, dihydroxy-triclosan and triclosan O-sulfate have 

been identified (Figure 4) (paper 8). In an enrichment culture originated from activated 

sludge, Methylobacillus was identified as one of the active triclosan degraders by using 

DNA based stable isotope probing (DNA-SIP) combined with microautoradiography-

fluorescence in situ hybridization (MAR-FISH) (paper 7).   
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Figure 4. Proposed biodegradation pathway of triclosan. 

Ozonisation study (published in paper 6): Contamination of surface water and ground 

water with triclosan is an emerging issue in environment due to the incomplete removal 

of triclosan in WWTPs. Additional ozonation treatment technology could be used for 

triclosan removal in drinking water, wastewater and surface water. The treatment 

process can remove triclosan completely and convert it into the products: 2,4-

dichlorophenol, chlorocatechol, monohydroxy-triclosan and dihydroxy-triclosan (paper 
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6). Increasing the ozone amounts in the reactions leads to decreased concentration of 

triclosan as well as its oxidation by-products, proving ability to remove triclosan by 

ozone treatment technology (Figure 5). The transformation product 2,4-dichlorophenol 

shows lower genotoxic effects than triclosan at the tested concentrations, but this 

compound is classified to be toxic to aquatic organisms. The other transformation 

products cannot be assessed up to now. 
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Figure 5. Chromatograms of samples by adding ozone into triclosan solution for 2, 4, 5 and 10 

minutes measured by GC/MS.  

Reed bed study (published in paper 1, 2, 3, 4). The reed bed sludge treatment study 

showed that the reed bed sludge treatment technology is able to reduce persistent 

organic pollutant such as bis(2-ethylhexyl) phthalate (DEHP), triclosan, and 1-(2,3,8,8-

tetramethyl-1,2,3,4,5,6,7,8-octahydro-naphthalen-2-yl) ethan-1-one (OTNE) significantly. 

In thirteen months of reed bed sludge treatment process, the concentrations of some 
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compounds such as OTNE, triclosan, and DEHP in this sludge reed bed treatment were 

decreased. However, concentrations of other compounds such as polycyclic musk 

compounds 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran 

(HHCB) and 7-acetyl-1,1,3,4,4,6 hexamethyl-1,2,3,4 tetrahydronaphthalene (AHTN) did 

not change during this experiment. OTNE and triclosan degraded faster in the bottom 

layer while DEHP degraded faster in the top layer, which indicates different regimes in 

the different layers and different degradation processes in the respective layers (Figure 

6) (paper 1, 2 and 4).  
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Figure 6. Concentration of triclosan during the experiment period in top layer (0-20 cm from 

surface), middle layer (20-40 cm from surface) and bottom layer (40-60 cm from surface) of the 

reed beds.  Error bars are from the stated uncertainty from the method development. 
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Considering half-lives of 300 to 900 days, this sludge reed bed can remove more than 

95% of triclosan in its 10 years production cycle. If the sludge is to be used as fertilizer 

in agriculture the use of reed bed treatments can help considerably to decrease the 

contamination of sludge. An accounting of material flows in addition showed that only a 

small fraction (<1%) of the target substances was washed out (leached) with the effluent 

and the uptake of personal care products into the biomass of the macrophytes can also 

be neglected.  
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Future perspectives 

In WWTPs using activated sludge as secondary treatment process, most of the removal 

occurred due to the adsorption and biodegradation in the activated sludge treatment 

process. In this study biodegradation of triclosan and formation of metabolites have 

been investigated in laboratory-scaled experiment. However, identification of the 

metabolites in real WWTPs is strongly needed. Further studies to address 

bioaccumulation and toxicity of the metabolites will also be required. 

Based on the available data, a significant part of triclosan in wastewater is expected to 

be removed by WWTPs, the residues could be removed by additional ozonation 

technology. Further research could be focused on assessment of the oxidation capacity 

of a full-scale ozonation step after the secondary wastewater effluent. Investigation on 

oxidation of micropullutant as well as formation and removal of byproducts will be 

necessary. 

Regarding the results from the reed bed sludge treatment process, more than 95% of 

triclosan is expected to be removed after 10 years life cycle. Further research could also 

be conducted to determine the effectiveness of reed bed technology on other organic 

micropollutants and the byproducts.  
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a b s t r a c t

Sewage sludge (also referred to as biosolids) has long been used as fertilizer on agricultural land. The
usage of sludge as fertilizer is controversial because of possible high concentration of xenobiotic com-
pounds, heavy metals as well as pathogens. In this study, the fate of the xenobiotic compounds triclosan
(5-chloro-2-(2,4-dichlorophenoxy)phenol), OTNE (1-(2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydro-
naphthalen-2-yl)ethan-1-one), HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-
benzopyran), HHCB-lactone, AHTN (7-acetyl-1,1,3,4,4,6 hexamethyl-1,2,3,4 tetrahydronaphthalene),
and DEHP (bis(2-ethylhexyl)phthalate) in advanced biological treatment of sludge was determined.
During 13 months of field-incubation of the sludge in reed beds, the xenobiotic compounds were ana-

lysed. The bactericide triclosan was reduced to 60%, 45%, and 32% of its original concentration in the top,
middle, and bottom layer. The fragrance OTNE was decreased to 42% in the top layer, 53% in the middle
layer, and 70% in the bottom layer, respectively. For DEHP a reduction of 70%, 71%, and 40% was observed
in the top, middle, and bottom layer, respectively. The polycyclic musk compounds HHCB, AHTN, and the
primary metabolite of HHCB, i.e., HHCB-lactone showed no degradation in 13 months during the exper-
imental period in this installation. Tentative half-lives of degradation of triclosan, OTNE and DEHP were
estimated to be 315–770 d, 237–630 d, and 289–578 d, respectively.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Sludge (also referred to biosolids) has been used as fertilizer on
agricultural landbecauseof itshighcontentofphosphorousandnitro-
gen (Fytili and Zabaniotou, 2008). This usage of sludge is controversial
because of its high content of xenobiotics and heavymetals (Fytili and
Zabaniotou, 2008). In 2005 ca. 10 million tons (dry matter) were
produced by sewage treatment plants in Europe. About 37% of that
was used in agriculture (Fytili and Zabaniotou, 2008). Currently
sludge in urban regions is usually stabilised for 10–40 d in anaerobic
digesters. However, for rural regions another method of sludge
stabilisation has been developed, in which the sludge is treated for
about 10 years by reed beds to dewater and detoxify the sludge.

The reed bed treatment plant is different to conventional dry
beds and sludge polders with a new type technology, as

(A) The reed beds are equipped with Phragmites australis reeds,
which influence the dewatering, and further stabilisation
and the sanitizing of the sewage sludge.

(B) The treatment process takes place in dedicated beds, which
are separated from the soil and the ground water by poly-
ethylen foil (PE) (Fig. 1) to prevent the contamination of
the soil and groundwater (Pauly et al., 2006).

Each reed bed is lined with a drainage system to enhance the
dewatering of the sludge. The leached water is then pumped back
into the wastewater treatment plant. The sludge is pumped straight
onto the beds throughout the year in pre-determined quantities
and at preset intervals. Depending on plant design, the capacity of
the beds is exhausted after 6–12 years (Nielsen, 2003). After a rest-
ing phase of approximately one year, the individual beds are cleared
and are then available again for a fresh loading cycle.

A similar technology as reed beds, i.e. soil filters, has been consid-
ered as a low cost and low contamination method considering sus-
pended solids and BOD5 removal in treating wastewater (Cooper
et al., 1999; Wood et al., 2007; Zhao et al., 2008). For the treatment
of sludge, true reed beds have been applied in respect of reducing
volume, breaking down organic matter and increasing the density
of sludge (Nielsen, 2003, 2005; Gustavsson et al., 2007), however
whether this enhanced biological treatment is suitable for degrada-
tion of xenobiotics, was not fully elucidated before undertaking the
study presented here. This project was conducted to study whether
reedbed treatment of sludge is suited to decrease the loading of xeno-
biotics to agricultural land with by fertilising with sewage sludge.

1.1. Compounds included in this study

Musk fragrances such as HHCB (1,3,4,6,7,8-hexahydro-4,6,6,
7,8,8-hexamethylcyclopenta-(g)-2-benzopyran), AHTN (7-acetyl-
1,1,3,4,4,6 hexamethyl-1,2,3,4 tetrahydronaphthalene) which is

0045-6535/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.chemosphere.2009.04.023
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mainly used in domestic purpose as well as OTNE (1-(2,3,8,
8-tetramethyl-1,2,3,4,5,6,7,8-octahydro-naphthalen-2-yl)ethan-1-
one), triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol), DEHP
(bis(2-ethylhexyl)phthalate) have recently been identified as ma-
jor anthropogenic organic contaminants in sewage sludge (Simo-
nich et al., 2002; Kinney et al., 2006).

Triclosan is currently used as an antimicrobial agent in tooth-
paste, mouthwash, and in functional clothing such as sport shoes
and underwear and as a stabilizing agent in a multitude of deter-
gents and cosmetics (Adolfsson-Erici et al., 2002). Additionally, it
is used as an antimicrobial agent in polymeric food cutting boards.
Approximately 1500 tonnes are produced annually worldwide, and
approximately 350 tonnes of those are applied in Europe (Singer

et al., 2002). Triclosan has a low water solubility and very high po-
tential of bio-accumulation (Coogan et al., 2007). Studies have
increasingly linked triclosan to a range of health and environmen-
tal effects, skin irritation, allergy susceptibility, and ecological tox-
icity to the aquatic and terrestrial environment (Coogan et al.,
2007). In sludge from North Rhine-Westphalia, triclosan is wide-
spread and the concentration is in the range of more than 2000–
8000 ng g�1 (dry mass) (Bester, 2005a). In Table 1 the structural
formula and other details on the compounds are presented.

Polycyclic musk compounds such as HHCB and AHTN are used
frequently as fragrances in washing softeners, shampoos, and other
consumer products. More than 2000 tonnes are used annually in
Europe (Balk and Ford, 1999). The structural formulas of both

Fig. 1. Sludge treatment process in reed bed treatment plant (Pauly et al., 2006).
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compounds are given in Table 1. After application, most of these
materials are released to the sewer. Thus, they have been identified
in sewage treatment plants (Eschke et al., 1994, 1995) and in
the sewage sludge (Reiner and Kannan, 2006). Both of them
have very low water solubility and high potential of bio-accumula-
tion, thus they can cause ecological toxicity to the aquatic and
terrestrial environment (Brunn and Rimkus, 1997). The musk
compounds are not mineralized in sewage treatment processes
and sorption is their main elimination path in waste water treat-
ment plants, although transformation to other compounds may
occur (Bester, 2005b). Elimination rates of fragrance compounds
in 17 different plants in US and Europe were compared by
Simonich et al. (2002). Removal rates of 50%–90% were determined
for HHCB and AHTN. Concentration of HHCB for 3100 ± 240 ng g�1

and AHTN for 1500 ± 150 ng g�1 in digested, dewatered sludge was

determined from one STP in North Rhine-Westphalia (Bester,
2004).

HHCB-lactone is the primary metabolite of HHCB, which is an
oxidationproduct as shown in Table 1. The ratio ofHHCB:HHCB-lac-
tone has been used to detect transformation processes of this fra-
grance. During the sewage treatment process about 10% of HHCB
is transformed toHHCB-lactonewhichhasbeen reported forbalance
assessment for polycyclic mask fragrances in German treatment
plantbyBester (2004). The relationHHCB:HHCB-lactonevaries from
3 to 130 in surfacewaters. This indicates that degradation processes,
especially degradation/transformation efficiency, in the respective
sewage treatment plants differ considerably (Bester, 2005b). Con-
centrations of HHCB-lactone from sludge of 20 sewage treatment
plants were determined from 30 ng g�1 to 36,000 ng g�1 (Bester,
2005b).

Table 1
Compounds of interest.

OTNE (Gautschi et al., 2001; Bester et al., 2008)

O

CH3

Name: 1-(2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydro-naphthalen-2-yl)ethan-1-one
Molecular formula: C16H26O
Molecular weight: 234 g mol�1

CAS: 54464-57-2
Boiling point: 230 �C
Vapour pressure: 0.2 Pa
Water solubility: 2.68 mg L�1

log Kow: 5.7
log Koc: 4.64

HHCB (Balk and Ford, 1999)

O

Name: 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran
Molecular formula: C18H26O
Molecular weight: 258 g mol�1

CAS: 1222-05-5
Vapour pressure: 0.0682 Pa
Water solubility: 1.25 mg L�1

log Kow: 5.7
log Koc: 4.80

AHTN (Balk and Ford, 1999)

O

Name: 7-acetyl-1,1,3,4,4,6 hexamethyl-1,2,3,4 tetrahydronaphthalene
Molecular formula: C18H26O
Molecular weight: 258 g mol�1

CAS: 1506-02-1
Vapour pressure: 0.0727 Pa
Water solubility: 1.75 mg L�1

log Kow: 5.9
log Koc: 4.86

Triclosan (Bester, 2005a; Ying et al., 2007)

O

Cl

Cl

Cl

OH

Name: 5-chloro-2-(2,4-dichlorophenoxy)phenol
Molecular formula: C12H7Cl3O2

Molecular weight: 290 g mol�1

CAS: 3380-34-5
Vapour pressure: 0.00062 Pa
Water solubility: 4.621 mg L�1

Boiling point: 373.62 �C
log Kow: 4.2–4.76
log Koc: 4.265

DEHP (Cheng et al., 2008)

O

O

O

O

Name: bis(2-ethylhexyl)phthalate
Molecular formula: C24H38O4

Molecular weight: 391 g mol�1

CAS: 117-81-7
Boiling point: 230 �C
Vapour pressure: 0.000034 Pa
Water solubility: 0.003 mg L�1

log Kow: 7.5
log Koc: 5.2

HHCB-lactone (Bester, 2005b)

O

O

Name: 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta [g]-2-benzopyran-1-one
Molecular formula: C18H24O2

Molecular weight: 272 g mol�1

CAS: 507442-53-7
log Kow: 4.7
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OTNE is widely used in consumer products (in Table 1). It has
been among the most popular compounds in fragrances in the last
few years. It is marketed as Iso E Super, with 2500–3000 tonnes
annually being sold (Gautschi et al., 2001). Concentrations of
7000–30,000 ng g�1 OTNE in dry sludge were determined in sludge
from the U.S. (Difrancesco et al., 2004), while European data indi-
cate concentrations of 2000–4000 ng g�1(Bester et al., 2008).

DEHP is widely used as plasticizer in PVC construction materi-
als, and also in varnish, paint, and cosmetics products. DEHP is
used as a plasticizer because of its stability, fluidity, and low vola-
tility (Giam et al., 1984). This plasticizer is eluted into wastewater
by washing and cleaning processes, it is assumed to at least have
strong ecotoxic effect to the aquatic organisms (Roh et al., 2007).
Because of the relatively high lipophilicity of the compounds, sorp-
tion is the main process relevant for elimination in sewage treat-
ment plants. Beauchesne et al. (2008) investigated that sludge
can represent significant sources of plasticizers in the environ-
ment. Typical concentration of DEHP in sludge was investigated
in the range of 10–100 lg L�1 by Fromme et al. (2002).

According to the parameters shown in Table 1, these
compounds have low vapour pressure and low water solubilities.
High octanol–water partition coefficient (Kow) and soil organic
matter–water partitioning coefficient (Koc) suggest that theses
compounds are hydrophobic and sorption is the main process of
elimination in sewage treatment plant.

2. Materials and methods

AHTN, triclosan, and DEHP were purchased from Ehrenstorfer
(Augsburg, Germany) as pure compounds with purity being
P99% according to the supplier. OTNE and pure standards of
HHCB-lactone as well as HHCB were obtained from International
Flavours and Fragrances (IFF, Hilversum, Netherlands).

The internal standard MX D15 was used to quantify the musks
and DEHP as it elutes in the same fraction as these compounds,
while TPP D15 was used in this experiment to quantify triclosan
and HHCB-Lactone. While Musk xylene D15 was obtained from
Ehrenstorfer (Augsburg, Germany), TPP D15 was synthesized from
D6 phenol and phosphoroxychloride. These internal standards
were chosen as they give undisturbed signal, and also not undergo
any reaction themselves (Andresen and Bester, 2006).

Ethyl acetate, acetone, and cyclohexane were used in analytical
grade (p.a.) quality, while toluene and n-hexane were used in res-
idue grade (z.R.) quality. All solvents were purchased from Merck,
Darmstadt, Germany.

Samples were taken from the sludge reed bed from the waste-
water treatment plant (WWTP) in Meppen, which processes
2,000,000 m3 wastewater of 52,500 inhabitants annually. About
half of the wastewater that is produced is domestic. This WWTP in-
cludes primary sedimentation basins, activated sludge treatment
basins and a final clarifier before the water is released to the river.
This plant produces about 40,000 m3 excess sludge annually. Until
2003 the sludge was treated by a filter press and then used as fer-
tilizer in agriculture. Since June 2003 the sludge is treated in a reed
bed installation consisting of seven separated beds with separated
drainage systems (Fig. 1). The reed beds (50 � 20 m each) are
equipped by polyethylene foil (PE). To study whether this en-
hanced biological treatment is suitable for degradation of xenobi-
otics, one of the reed beds was put out of operation in 2006 and
no new sludge was added during the experimental period. The
experiment was conducted under ambient conditions: tempera-
ture, water content and reed plant density were not changed but
as established by nature in this bed. Monitoring of the height of
the sludge in this bed proved a stable bed with little alterations
65 cm with 2 cm standard deviation.

From June, 2006 to July, 2007 sludge sampleswere takenbyusing
a stainless steel tube with a cutting edge for easy core removal. The
samples were divided into three sub-samples according to depth.
The upper third of the sample is considered to be the top layer, mid-
dle third as the middle layer and lower third as the bottom layer.
Then 100 g samples were taken from 10 different points of the reed
bed and a homogenate for the respective layer was produced.

Two hundred grams of these homogenates were immediately
frozen in refrigerating room at �27 �C overnight. Frozen sub-sam-
ples of 50 g wet weight were lyophilised at 2 mbar and �46 �C.
Duplicates of the lyophilised sludge samples were extracted by
means of accelerated solvent extraction (ASE) with ethyl acetate
at 90 �C and 150 bar. The resulting extracts were then cleaned up
with 1 g silica (SPE) solid-phase extraction cartridges (silica 60 ob-
tained from Merck, Darmstadt, Germany) by elution with ethyl
acetate after adding an aliquot of 100 lL internal standard solution
(IS) (containing 100 ng D15 musk xylene and 100 ng TPP D15).

These resulting solutions were concentrated to 1 mL by a Büchi
multiport concentrator at 80 �C and 70 mbar (Büchi, Essen,
Germany). The resulting extracts were injected to a GPC-column
(LC-tech, Dorfen, Germany, equipped with Biorad SX-3) ID:
2.5 cm, length 30 cm, flow 5.0 mL min�1 cyclohexane: ethyl ace-
tate 1:1. The solvent eluting in the first 19:30 min was drained to
waste, while the fraction 19.30–30.00 min was collected. Thus,
macromolecules were separated as they elute in the first fraction,
while sulphur, etc. are separated from the target compounds as
they are eluted after the analyte fraction. The samples were finally
transferred into toluene. The resulting extracts were finally frac-
tionated on silica using 5% Methyl-tertbutylether (MTBE) in n-hex-
ane and ethyl acetate successively as eluents. These fractions were
condensed and finally analysed by gas chromatography with mass
spectrometric detection (GC–MS) equipped with a programmable
temperature vapouriser (PTV) injector. The PTV (1 lL injection vol-
ume) was operated in PTV splitless mode. The injection tempera-
ture of 115 �C was held for 3 s, it was successively ramped with
12 �C s�1 to 280 �C for the transfer of the analytes. This tempera-
ture was held for 1.3 min. The injector was then ramped with
1 �C s�1 to 300 �C which was held for 7 min as a cleaning phase.

The GC separation was performed with a DB-5MS column (J&W
Scientific), L: 15 m; ID: 0.25 mm; film: 0.25 lm and a temperature
programme of: 100 �C (hold: 1 min) ramped with 30 �C min�1 to
130 �C and with 8 �C min�1 successively to 220 �C. Finally, the bak-
ing temperature was reached by ramping the column with
30 �C min�1 to 280 �C which was held for 7 min.

The detector of the mass spectrometer (DSQ, Thermo Finnigan,
Dreieich, Germany) was operated with 1281 V on the secondary
electronmultiplier and about 40 msdwell time in selected ionmode
(SIM) mode. The transfer line was held at 250 �C, which is sufficient
to transfer all compounds from the GC into the MS as the vacuum
builds up in the transfer line. The ion source was operated at
230 �C. Helium was used as carrier gas with a flow rate of
1.3 mL min�1.

When the rain water passes through the sludge layer, some
compounds can be dissolved, which can also lead to the concentra-
tion reduction of compounds. Thus, liquid samples were collected
as manual grab samples in two litre glass bottles from the drainage
water of the drainage canal of the reed bed during the treatment
process. Two samples for out-flowing water were taken as dupli-
cates. One litre samples were extracted for 20 min with 20 mL tol-
uene by means of vigorous stirring with a teflonized magnetic stir
bar after adding an aliquot of 100 lL internal standard solution.
The organic phase was separated from the aqueous one and the
residual water was removed from the organic phase by freezing
the samples overnight at �20 �C. The resulting extracts were then
concentrated with a rotary evaporator at 80 �C and 70 mbar to
1 mL. Resulting extracts were quantified by using GC–MS.
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The compounds were detected by means of their mass spectral
data and retention times. For quantitative measurements the
method was validated, by determining recovery rates, standard
deviations, and limits of quantification (see next paragraph)
(Bester, 2004, 2007, 2009; Peck, 2006).

The average of the concentrations obtained from the duplicate
extractions was used for further data processing. The calibrations
were performed as a multi-step internal standard calibration
(10–10,000 ng mL�1). The recovery rates were assessed by extract-
ing spiked manure/soil 1/1 samples. Six different concentrations
(between 20 ng g�1 and 10,000 ng g�1) were dosed, for each con-
centration two samples were extracted, thus 12 extractions were
performed plus extractions for blank determination. Additionally
recovery rates were determined by means of standard addition
by spiking sludge from this experiment with respective standard
concentrations of 5000 ng g�1.

2.1. Method quality assurance

The recoveries were 60–133% for the respective compounds, the
relative standard deviations varying for the specific compounds
from 5 to 21% (for more details see Table 2). The limit of detection
was 3–30 ng g�1 and the limit of quantification was 10–100 ng g�1.
Limits of quantification (LOQ) were calculated by two means:

(1) From the analysis of standard solutions, as the lowest con-
centration which gave signal to noise ratios (s/n) of at least
10 (six replicas in each series).

(2) As the lowest concentration for the respective substance
that was detectable from the recovery studies with the same
recovery rate as the higher concentrations. Full data are
given in Table 2 (duplicates per concentration).

3. Results and discussion

3.1. Water content

During the 13 months field-incubation of the organic com-
pounds in a technical reed bed sludge treatment the water content
during time was analysed. The liquid excess sludge (used as feed
for this sludge treatment) contained about 99% water. The rainfall
in this treatment facility (May 2006–July 2007) was 1130 L m�2.
The water content of the sludge ranged from 85% to 73% during
the experiment period. The lowest water content in the top layer,
76%, was found in September 2006, because of the low amount
of rainfall and high temperature (and enhanced transpiration by
the reed plants) at that time.

3.2. Personal care compounds

The xenobiotic compounds triclosan, HHCB, AHTN, HHCB-lac-
tone, OTNE, and DEHP were identified by their retention times
and mass spectral data in sludge samples (Table 2).

The concentration of triclosan (Fig. 2) in the beginning of the
experiment was measured as 1400, 1900, and 2000 ng g�1 (dry

mass) in the top, middle, and bottom layer, comparable results
were obtained by Bester (2005a) in sewage sludge samples from
20 WWTPs in Germany with triclosan concentration ranging from
400 to 8800 ng g�1. After 13 months triclosan was reduced to less
than 60% and the concentration was 800, 900 and 600 ng g�1

(dry mass) in the top, middle, and bottom layer, respectively
(Fig. 2). Considering a standard deviation of 12% from the method
validation this change is significant.

The concentrations of the polycyclic musk compounds HHCB,
AHTN, and the primary metabolite of HHCB, i.e. HHCB-lactone
showed no reduction in 13 months during the experimental peri-
od. The concentration varied from 8000 to 12,000 ng g�1 (dry
mass) for HHCB, from 1500 to 2300 ng g�1 (dry mass) for AHTN
and from 1400 to 2100 ng g�1 (dry mass) for HHCB-lactone. These
are corresponding to the results obtained by Reiner and Kannan
(2006) who found concentrations ranging from 7230 to
108,000 ng g�1 (dry mass) for HHCB, 809 to 16,800 ng g�1 (dry
mass) for AHTN and 3160 to 22,000 ng g�1 (dry mass) for HHCB-
lactone. Nevertheless, a few studies indicated that polycyclic
musks can be degraded in sludge-amended soils. Litz et al.
(2007) investigated aerobic dissipation of HHCB and AHTN in
soil/sewage sludge mixtures is very slow with half-lives of 10–
17 months for HHCB and 2–24 years for AHTN. Similarly, Difrance-
sco et al. (2004) also found a particularly slow dissipation for HHCB
and AHTN in sludge-amended soils. Information on degradation of
HHCB-lactone is rare, only some mass balance measurement have
been carried out that indicate HHCB-lactone is developed during
HHCB transformation process (Bester, 2004; Berset et al., 2004;
Reiner and Kannan, 2006).

Fig. 2 shows the OTNE concentration as a function of time. The
highest amount was determined in the beginning of the project.
The measured concentrations were 2500 ng g�1, 2500 ng g�1, and
2400 ng g�1 (dry mass) in the top, middle, and bottom layer, this
is somewhat lower that found for sludges form the US by Difrance-
sco et al. (2004). After 13 months OTNE was reduced by 42% in the
top layer, 53% in the middle layer, and 70% in the bottom layer,
respectively.

Similar to OTNE, the highest concentration of DEHPwas detected
in the beginning of the project. The respective concentrations were
11,500, 10,500, and 7200 ng g�1 (dry mass) in the top, middle, and
bottom layer. Comparable results were obtained by Beauchesne
et al. (2008) ranging from15,000 ng g�1 to 346,000 ng g�1 in sewage
sludge in Canada. After 13 months DEHP was reduced by 70%, 71%,
and 40% in the top, middle, and bottom layer, respectively.

The processes that contributed to the dissipation of the studied
compounds in sludge may include volatilization, plants uptake,
leaching, and biological transformation (aerobic and anaerobic).
Considering their generally low volatility (Table 1), the tendency
of these compounds to volatize is low. Therefore it is expected that
only a small fraction of these compounds was volatilized into the
atmosphere, where they can photolyze (Aschmann et al., 2001;
Difrancesco et al., 2004; Chen et al., 2008). To quantify the uptake
of xenobiotic compounds by plants, reed samples were analysed by
using the same procedure as sludge. In these samples none of
the compounds were detected, except small amounts of DEHP
(13,000 ± 2000 ng g�1). As less than 1 kg reeds were growing in

Table 2
Quality assurance data including the MS data (analytical and verifier ions) as well as recovery rate standard deviation and limit of quantification of the recovery rate experiments.

Analyte Analytical ion (amu) Verifier ion (amu) Recovery (%) RSD (%) LOQ (ng g�1)

OTNE 191 219 60 6 30
HHCB 243 258 77 6 10
AHTN 243 258 69 5 10
Triclosan 288 290 133 12 100
HHCB-lactone 257 272 65 10 30
DEHP 279 167 87 21 10
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1 m2 sludge reed bed, it can be assumed that less than 0.01% of
DEHP was ingested by reeds. This is in agreement with the results
of Litz et al. (2007) who studied uptake of HHCB and AHTN by let-
tuce and carrots and found HHCB and AHTN were taken up only by
the carrot roots to some small extent. Phyto-remediation (consid-
ering only plant uptake) is thus not relevant for this system.

3.3. Mass balance studies

The amount of compounds in leachate can be calculated based
on the concentration of effluent and amount of rainfall (water flow
through the system). The concentration of xenobiotics in the efflu-
ent from this reed bed in November 2006 is shown in Table 3. The
rainfall during the experimental period (from June 2006 to July
2007) was 1130 mm (Table 3) (1 mm = 1 L m�2). Table 3 shows
mass fraction of compounds which were leached by drainage
water in comparison to the mass fraction in sludge in 1 m2 reed
bed. Since 0.010–0.048% of the mass fraction of the xenobiotics
contained in the sludge is leached by drainage water during the
experimental period, it seems that biological transformation was
the main dissipation mechanism for these compounds.

3.4. Kinetic analysis of dissipation data

Biological degradation of organic compounds at low concentra-
tions usually follows first-order kinetics, thus an elimination rate
constant (k) for sludge removal in reed beds can be calculated from
the concentrations from a log c � c0

�1 plot (Fig. 3) using Eq. (1). For
the triclosan degradation process the respective k values are
0.0009, 0.0021 and 0.0022 in the top, middle, and bottom layer.

K ¼ ln½c0c �
t

: ð1Þ

With Eq. (2), the half-life can be assessed:

T1=2 ¼
ln

C0
C0
2

� �

k
¼ ln 2

k
: ð2Þ

Tentative half-lives for triclosan can be calculated as 770, 330, and
315 d in the top, middle, and bottom layer, respectively (Table 4).
This is corresponding to the results which were gained by Ying
et al. (2007) by spiking triclosan into loamy soil with a concentra-
tion of 1 mg kg�1 (i.e. 1000 ng g�1), 18 d half-life was calculated un-
der aerobic conditions within this 70 d experiment.

Tentative half-lives of OTNE degradation were calculated as
630, 239, 277 d in the top, middle, and bottom layer, respectively
(Table 4), which indicate OTNE degraded faster in the middle and
bottom layer than in the top layer. Comparable half-lives were ob-
served by Difrancesco et al. in 2004 with OTNE dissipation half-
lives of 30–100 d in sludge-amended soils.
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Fig. 2. Triclosan and OTNE concentration from the bottom layer (40–60 cm from
surface) as a function of time. Error bars are from the stated uncertainty from the
method development.

Table 3
Mass fraction (M1) of compounds dissolved in rain water passing through 1 m2 reed bed in comparison to the mass fraction in sludge (M2) in 1 m2 reed bed. As well as relative
amount of substance washed of the reed bed with the drainage water (M1/M2). Sludge density is 0.8 ton m�3.

Compounds C1 Drainage water
(ng L�1)

Rainfall
(L m�2)

M1 Drainage
water (mg)

C2 Sludge
(ng g�1)

Depth of the
reed bed (m)

M2 Sludge
(mg)

M1/M2
(%)

OTNE 130 1130 0.147 2370 0.6 1140 0.013
HHCB 310 1130 0.35 9150 0.6 4390 0.0080
AHTN 50 1130 0.057 1220 0.6 586 0.010
Triclosan 270 1130 0.305 1330 0.6 638 0.048
DEHP 170 1130 0.192 11,600 0.6 5570 0.0034

C1: Concentration in the drainage water (ng L�1).
C2: Concentration in the sludge (ng g�1) (start of experiment).

y = -0.0022x -0.1415 
R² = 0.7338 
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Fig. 3. Kinetics of triclosan degradation in log form in the bottom layer of a sludge
reed bed.

Table 4
Tentative half-lives of the compounds during the experimental period in a sludge reed
bed. The R2 refers to the regression line in the log plots to gain the half-life values.

Compounds Tentative half-life

OTNE Top layer (0–20 cm) 630 d (R2 = 0.7361)
Middle layer (20–40 cm) 239 d (R2 = 0.6047)
Bottom layer (40–60 cm) 277 d (R2 = 0.4716)

HHCB Top layer (0–20 cm) 1
Middle layer (20–40 cm) 1
Bottom layer (40–60 cm) 770 d (R2 = 0.4858)

AHTN Top layer (0–20 cm) 1
Middle layer (20–40 cm) 1
Bottom layer (40–60 cm) 1

DEHP Top layer (0–20 cm) 315 d (R2 = 0.6562)
Middle layer (20–40 cm) 289 d (R2 = 0.6554)
Bottom layer (40–60 cm) 578 d (R2 = 0.4117)

Triclosan Top layer (0–20 cm) 770 d (R2 = 0.4822)
Middle layer (20–40 cm) 330 d (R2 = 0.7588)
Bottom layer (40–60 cm) 315 d (R2 = 0.7338)

HHCB-lactone Top layer (0–20 cm) 1
Middle layer (20–40 cm) 1
Bottom layer (40–60 cm) 1

1 means half-lives larger than 3 years.
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DEHP was eliminated with half-lives as 315, 289, and 578 d in
the top, middle, and bottom layer, respectively. These can be com-
pared with results obtained by Madsen et al. (1999) who found
that more than 41% of DEHP in a sludge-amended soil was still
not mineralization after 1 year incubation and in this study a
half-life for DEHP in soils with sludge aggregates was estimated
to be higher than 3 years.

3.5. Comparison of layering

Triclosan and OTNE degraded very similar concerning the layers
of sludge, i.e., faster in bottom layer than in the top layer.

This might be influenced by different age, compactness or oxy-
gen supply in the different layers. The oxygen regime in the differ-
ent layers that can be quite diverse, as reed is known to pump
oxygen from the leaves to the rizome into the surrounding med-
ium (sludge) (Armstrong et al., 2000). This can be accounted for
29–60 ng m�2 min�1(Armstrong et al., 2000). However the sur-
rounding sludge can consume the oxygen rapidly especially if it
is partially aerobically stabilized sludge as in this experiment. Dur-
ing the experiment, the reed bed was monitored in intervals for
aerobic and anaerobic areas. The reed bed was usually patchy, thus
aerobic areas occurred as well as anaerobic ones. Additionally air
could have entered from the drainage basin. The main result at this
moment is, there is indeed an effect of the different layers future
research will show what might be the reason for that.

By the way of contrast DEHP degraded faster in the top layer,
which suggesting the highest reduction of DEHP was achieved at
the highest temperature (Cheng et al., 2008). Possibly the degrada-
tion of the different compounds is preferred at different oxygen
levels (aerobic and anaerobic processes).

4. Conclusions

In the 13 months of this experiment, the concentrations of some
compounds such as OTNE, triclosan, and DEHP in this sludge reed
bed treatment were decreased. However, the concentrations of other
compounds such as polycyclic musk compounds HHCB, AHTN, and
HHCB-lactonedidnot changeduring this experiment.OTNEand triclo-
san degraded faster in the bottom layerwhile DEHP degraded faster in
the top layer, which is indicating different regimes in the different
layers and different degradation processes in the respective layers.

Considering half-lives of 300–900 d, this sludge reed bed can
eliminate considerable amounts of some of the pollutants in its
10 years production cycle. If the sludge is to be used as fertilizer
in agriculture the use of reed bed treatments can help considerably
to decrease the contamination of sludge.

Acknowledgements

The authors acknowledge the support of ProInno/AIF and xeno-
biotic groups of university of Duisburg-Essen as well as Thomas
Groß and Enno Pieper for sampling. Additionally the authors are
indebted to the water board Stadtwerke Meppen for the possibility
to sample their sludge reed plant.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.chemosphere.2009.04.023.

References

Adolfsson-Erici, M., Pettersson, M., Parkkonen, J., Sturve, J., 2002. Triclosan, a
commonly used bactericide found in human milk and in the aquatic
environment in Sweden. Chemosphere 46, 1485–1489.

Andresen, J., Bester, K., 2006. Elimination of organophosphate ester flame
retardants and plasticizers in drinking water purification. Water Res. 40, 621–
629.

Armstrong, W., Cousins, D., Armstrong, J., Turner, D.W., Beckett, P.W., 2000. Oxygen
distribution in wetland plant roots and permeability barriers to gas-exchange
with the risosphere: a microelectrode and modelling study with Phragmitis
australis. Ann. Bot.-London 86, 687–703.

Aschmann, S.M., Arey, J., Atkinson, R., Simonich, S.L., 2001. Atmospheric lifetimes
and fates of selected fragrance materials and volatile model compounds.
Environ. Sci. Technol. 35, 3595–3600.

Balk, F., Ford, R.A., 1999. Environmental risk assessment for the polycyclic musks
AHTN and HHCB in the EU I Fate and exposure assessment. Toxicol. Lett. 111,
57–79.

Beauchesne, I., Barnabé, S., Cooper, D.G., Nicell, J.A., 2008. Plasticizers and related
toxic degradation products in wastewater sludges. Water Sci. Technol. 57, 367–
374.

Berset, J.D., Kupper, T., Etter, R., Tarradellas, J., 2004. Considerations about the
enantioselective transformation of polycyclic musks in wastewater, treated
wastewater and sewage sludge and analysis of their fate in a sequence batch
reactor plant. Chemosphere 57, 987–996.

Bester, K., 2004. Retention characteristics and balance assessment for two
polycyclic musk fragrances (HHCB and AHTN) in a typical German sewage
treatment plant. Chemosphere 57, 863–870.

Bester, K., 2005a. Fate of triclosan and triclosan-methyl in sewage treatment plants
and surface waters. Arch. Environ. Con. Toxicol. 49, 9–17.

Bester, K., 2005b. Polycyclic musks in the Ruhr catchment area – transport,
discharges of waste water, and transformations of HHCB, AHTN and HHCB-
lactone. J. Environ. Monitor. 7, 43–51.

Bester, K., 2007. Personal Care Compounds in the Environment. Essen, Germany.
VCH-Wiley, Weinheim, Germany. pp. 9–13.

Bester, K., 2009. Analysis of musk fragrances in environmental samples. J.
Chromatogr. A 1216, 470–480.

Bester, K., Klasmeier, J., Kupper, T., 2008. Emissions of OTNE (Iso-E-super) – Mass
flows in sewage treatment plants. Chemosphere 71, 2003–2010.

Brunn, H., Rimkus, G., 1997. Synthetic musk compounds – Application,
environmental accumulation, and toxicology. Ernährungs Umschau. 44, 4–7.

Chen, Z.L., Song, Q.J., Cao, G.Q., Chen, Y.F., 2008. Photolytic degradation of
triclosan in the presence of surfactants. Chem. Pap. – Chem. Zvesti. 62, 608–
615.

Cheng, H.F., Kumar, M., Lin, J.G., 2008. Degradation kinetics of di-(2-
ethylhexyl)phthalate (DEHP) and organic matter of sewage sludge during
composting. J. Hazard. Mater. 154, 55–62.

Coogan, M.A., Edziyie, R.E., Point, T.W., Venables, B.J., 2007. Algal bioaccumulation of
triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater
treatment plant receiving stream. Chemosphere 67, 1911–1918.

Cooper, P., Griffin, P., Humphries, S., Pound, A., 1999. Design of a hybrid reed bed
system to achieve complete nitrification and denitrification of domestic sewage.
Water Sci. Technol. 40, 283–289.

Difrancesco, A.M., Chui, P.C., Standley, L.J., Allen, H.E., Salvito, D.T., 2004. Dissipation
of fragrance materials in sludge-amended soils. Environ. Sci. Technol. 38, 194–
201.

Eschke, H.D., Traud, J., Dibowski, H.J., 1994. Untersuchungen zum vorkommen
polycyclischer moschusduftstoffe in verschiedenen umweltkompartimenten –
nachweis und analytik mit GC–MS in oberflaechen-, abwaessern und fischen (1.
Mitteilung). UWSF-Z. Umweltchem. Oekotox. 6, 183–189.

Eschke, H.D., Dibowski, H.J., Traud, J., 1995. Untersuchungen zum Vorkommen
polycyclischer Moschus-Duftstoffe in verschiedenen Umweltkompartimenten.
UWSF-Z. Umweltchem. Oekotox. 7, 131–138.

Fromme, H., Kuchler, T., Otto, T., Pilz, K., Muller, J., Wenzel, A., 2002. Occurrence of
phthalates and bisphenol A and F in the environment. Water Res. 36, 1429–
1438.

Fytili, D., Zabaniotou, A., 2008. Utilization of sewage sludge in EU application of old
and new methods – a review. Renew. Sust. Energ. Rev. 12, 116–140.

Gautschi, M., Bajgrowicz, J.A., Kraft, P., 2001. Fragrance chemistry – milestones and
perspectives. Chimia 55, 379–387.

Giam, C.S., Atlas, E., Powers, M.A., Leonard, J.E., 1984. Phthalic acid esters. In:
Hutzinger, O. (Ed.), The Handbook of Environmental Chemistry. Springer,
Berlin,Germany, pp. 7–142.

Gustavsson, L., Hollert, H., Jönsson, S., van Bavel, B., Engwall, M., 2007. Reed beds
receiving industrial sludge containing nitroaromatic compounds. Environ. Sci.
Pollut. R. 14, 202–211.

Kinney, C., Furlong, E., Zaugg, S., Burkhardt, M., Werner, S., Cahill, J., Jorgensen, G.,
2006. Survey of organic wastewater contaminants in biosolids destined for land
application. Environ. Sci. Technol. 40, 7207–7215.

Litz, N.T., Mueller, J., Boehmer, W., 2007. Occurrence of polycyclic musks in sewage
sludge and their behaviour in soils and plants: Part 2. J. Soils Sediments 7, 36–
44.

Madsen, P.L., Thyme, J.B., Henriksen, K., Moldrup, P., Roslev, P., 1999. Kinetics of di-
(2-ethylhexyl)phthalate mineralization in sludge-amended soil. Environ. Sci.
Technol. 33, 2601–2606.

Nielsen, S., 2003. Sludge drying reed beds. Water Sci. Technol. 48, 101–109.
Nielsen, S., 2005. Mineralisation of hazardous organic compounds in a sludge reed

bed and sludge storage. Water Sci. Technol. 51, 109–117.
Pauly, U., Rehfus, S., Peitzmeier, M., 2006. In: 15 Years Operational Experience in the

Humification of Sewage Sludge in Reed Beds, Proceedings. Organic Recovery
and Biological Treatment, Weimar.

1100 X. Chen et al. / Chemosphere 76 (2009) 1094–1101



Author's personal copy

Peck, A.M., 2006. Analytical methods for the determination of persistent ingredients
of personal care products in environmental matrices. Anal. Bioanal. Chem. 386,
907–939.

Reiner, J.L., Kannan, K., 2006. A survey of polycyclic musks in selected household
commodities from the United States. Chemosphere 62, 867–873.

Roh, J.Y., Jung, I.H., Lee, J.Y., Choi, J.H., 2007. Toxic effects of di(2-
ethylhexyl)phthalate on mortality, growth, reproduction and stress-related
gene expression in the soil nematode caenorhabditis elegans. Toxicology 237,
126–133.

Simonich, S.L., Federle, T.W., Eckhoff, W.S., Rottiers, A., Webb, S., Sabaliunas, D., De
Wolf, W., 2002. Removal of fragrance materials during US and European
wastewater treatment. Environ. Sci. Technol. 36, 2839–2847.

Singer, H., Muller, S., Tixier, C., Pillonel, L., 2002. Triclosan: occurrence and fate of a
widely used biocide in the aquatic environment: field measurements in
wastewater treatment plants, surface waters, and lake sediments. Environ.
Sci. Technol. 36, 4998–5004.

Wood, J., Fernandez, G., Barker, A., Gregory, J., Cumby, T., 2007. Efficiency of reed
beds in treating dairy wastewater. Biosyst. Eng. 98, 455–469.

Ying, G.G., Yu, X.Y., Kookana, R.S., 2007. Biological degradation of triclocarban and
triclosan in a soil under aerobic and anaerobic conditions and comparison with
environmental fate modelling. Environ. Pollut. 150, 300–305.

Zhao, Y.Q., Babatunde, A.O., Razali, M., Harty, F., 2008. Use of dewatered alum sludge
as a substrate in reed bed treatment systems for wastewater treatment. J.
Environ. Sci. Heal. A 43, 105–110.

X. Chen et al. / Chemosphere 76 (2009) 1094–1101 1101



Research paper 2: 

Chen XJ., Pauly U., Rehfus S. and Bester K. Removal of personal care compounds 

from sewage sludge in reed bed container (lysimeter) studies — Effects of macrophytes, 

Science of the Total Environment 407 (2009) 5743–5749





Author's personal copy

Removal of personal care compounds from sewage sludge in reed bed container
(lysimeter) studies — Effects of macrophytes

Xijuan Chen a, Udo Pauly b, Stefan Rehfus b, Kai Bester a,c,⁎
a Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, 9000 Aalborg, Denmark
b EKO-PLANT GmbH, Karlsbrunnenstraße 11, D-37249 Neu-Eichenberg, Germany
c Institute of Environmental Analytical Chemistry, University Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany

a b s t r a c ta r t i c l e i n f o

Article history:
Received 30 March 2009
Received in revised form 7 July 2009
Accepted 13 July 2009
Available online 14 August 2009

Keywords:
Sludge
Reed bed sludge treatment
Degradation
Polycyclic musk fragrances
Triclosan
OTNE

Sludge reed beds have been used for dewatering (draining and evapotranspiration) and mineralisation of
sludge in Europe since 1988. Although reed beds are considered as a low cost and low contamination method
in reducing volume, breaking down organic matter and increasing the density of sludge, it is not yet clear
whether this enhanced biological treatment is suitable for degradation of organic micro-pollutants such as
personal care products. Within this project the effect of biological sludge treatment in a reed bed on reducing
the concentrations of the fragrances HHCB, AHTN, OTNE was studied as on the bactericide Triclosan.
Additionally, the capacity of different macrophytes species to affect the treatment process was examined.
Three different macrophyte species were compared: bulrush (Typha latifolia), reed (Phragmites australis) and
reed canary grass (Phalaris arundinacea). They were planted into containers (lysimeters) with a size of
1 m × 1 m × 1 mwhich were filled with 20 cm gravel at the bottom and 50 cm sludge on top, into which the
macrophytes were planted. During the twelve months experiment reduction of 20–30% for HHCB and AHTN,
70% for Triclosan and 70% for OTNE were determined under environmental conditions. The reduction is most
likely due to degradation, since volatilization, uptake into plants and leaching are insignificant. No difference
between the containers with different macrophyte species or the unplanted containers was observed.
Considering the usual operation time of 10 years for reed beds, an assessmentwasmade for thewhole life time.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Reed beds have been used for dewatering and mineralisation of
sludge in Europe since 1988 (Nielsen et al., 1992). In comparison to the
other technologies (incineration, land filling, land application etc.) the
reedbedhas a numberof advantages. It is relatively inexpensive to build,
operate and maintain. It consumes less energy, and discharges a
minimum of CO2 into the atmosphere in comparison to the other
techniques of sludge disposal (Davison et al., 2005).

It has beenwidely accepted that reed beds have the ability to dewater
and stabilise sludge (Edwards et al., 2001; Nielsen, 2003, 2005a; Nassar et
al., 2006) and to reduce BOD and COD content (Gschlößl and Stuible,
2000;Davison et al., 2005; Kayser andKunst, 2005). Additionally, removal
of LAS and NPE during reed bed treatment of mesophilically digested
sludge was observed during a 9 months study by Nielsen (2005b).
Moreover Nassar et al. (2006) investigated the cost of sludge treatment
using reed bed to be 0.34 US$ m−3 compared with 1.01 US$ m−3 for

treatment using conventional drying beds in the Gaza Strip. Therefore,
reed beds are used especially in rural areas where space is relatively
inexpensive for treating sludge before final disposal or use in agriculture.

Macrophytes (plants) play a critical part in the reed bed sludge
treatment process, with their rhizomes creating the necessary environ-
ment for the bacterial and physical–chemical processes (Pauly et al.,
2006; Nielsen, 2005a). The plant rhizomes provide surfaces for bacterial
growthaswell as forfiltrationof solids. Furthermore, their oxygen supply
(Armstrong et al., 1990) creates oxidised micro-environments, stimulat-
ing both the decomposition of organic matter and the growth of
nitrifying bacteria. The roots are also thought to stabilise the hydraulic
conductivity at a desired level (Gumbricht, 1992). Common reed
(Phragmites australis), which is widely used in reed bed treatment
technologies, is an aquatic grass with a distribution extending from cold
temperate regions to the tropics (Karunaratne et al., 2003). It is a robust
plant which can tolerate a fairly wide range of pH and salinity. However,
the other aquatic grasses, bulrush (Typha latifolia) and reed canary grass
(Phalaris arundinacea) are also frequently used in the reed bed systems
(Vymazal, 1998, 2001). The first of the two aims of this paper is to assess
the role of macrophytes in the sludge reed bed treatment technologies
concerningdifferenteffects on removal of persistentorganic compounds.

The second aim of this paper is to investigate dissipation kinetics as
well as removal mechanism of organic micro-pollutants during the
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sludge reed bed treatment process. In contrast to an earlier study, that
was conducted on a technical open sludge reed bed (Chen et al., 2009),
in this study more controlled enclosed environments (container
lysimeters) are being used.

Personal care product ingredients were used as marker com-
pounds as they are among themost abundant in sludge (Kinney et al.,
2006), and they are presumably emitted continuously in contrast to
most other pollutants. Personal care compounds are among the most
commonly detected compounds in waste water for the last 40 years
(Xia et al., 2005; Kolping et al., 2002). They are released after use via
sewer system into sewage treatment plants. Because of the relatively
high lipophilicity of the compounds, sorption is the main process
relevant for elimination in sewage treatment plants. Previous
investigations have indicated that land application of sludge may
be a potentially important route through which personal care
products enter the environment (Xia et al., 2005). As a matter of
fact, musk fragrances such as HHCB and AHTNwhich are mainly used
in domestic purpose as well as Triclosan and OTNE have recently
been identified as important anthropogenic organic contaminants in
sewage sludge (Kinney et al., 2006; Simonich et al., 2002; Bester
et al., 2008a,b).

HHCB, AHTN and OTNE are currently among the most frequently
used fragrances in cosmetic, cleaning and personal care products,

while Triclosan is an antimicrobial agent which is widely used in
toothpaste, soaps, deodorants, cosmetics and skin care lotions as well
as other consumer goods (Adolfsson-Erici et al., 2002; Bester, 2005,
2007). In Table 1 the structural formulas and other details on the
compounds are presented. The annual production of the respective
compounds is: 350 tons Triclosan (Singer et al. 2002), over 2000 tons
HHCB and AHTN (Balk and Ford, 1999; Dsikowitzky et al., 2002) and
2500–3000 tons OTNE (Gautschi et al., 2001). The primary emission
route for these compounds after usage is through waste water. These
are very lipophilic, persistent substances, thus they are transferred to a
high extent from waste water into sludge during waste water
treatment. Thus they were chosen as marker substances for elimina-
tion/degradation studies in sludge reed beds.

2. Materials and methods

2.1. Chemicals

AHTN and Triclosan were purchased from Ehrenstorfer (Augsburg,
Germany) as pure compounds with purity being ≥99% according to
the supplier. OTNE and pure standards of HHCB-lactone as well as
HHCB were obtained in pure form (N99%) from International Flavours
and Fragrances (IFF, Hilversum, Netherlands).

Table 1
Compounds of interest.

Name Formula name CAS Structure M.W. Log kow

HHCB 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-
hexamethylcyclopenta-(g)-2-benzopyran

1222-05-5 258g mol−1 5.7

AHTN 7-acetyl-1,1,3,4,4,6 hexamethyl-1,2,3,4
tetrahydronaphthalene

1506-02-1 258 g mol−1 5.9

HHCB-lactone HHCB-lactone 507442-53-7 272 g mol−1 4.7

Triclosan 2,4,4′-trichloro, 2′-hydroxy-diphenylether 3380-34-5 290 g mol−1 4.2–4.76

OTNE 7-acetyl, 1,2,3,4,5,6,7,8-octahydro-1,1,6,7-
tetramethyl naphthalene

54464-57-2 234 g mol−1 5.7
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The internal standard MX 2D15 was used to quantify the musks and
OTNE as it elutes in the same fraction throughout all clean-up steps as
these compounds, while TPP 2D15 was used in this experiment to
quantify Triclosan and HHCB-Lactone. Musk xylene 2D15 was obtained
from Ehrenstorfer (Augsburg, Germany), TPP 2D15 was synthesized
from 2D6 phenol and phosphoroxychloride (Andresen and Bester,
2006). These internal standards were chosen as they give undisturbed
signal, and also not undergo any reaction themselves.

Ethyl acetate, acetone and cyclohexane were used in analytical
grade (p.a.) quality, while toluene and n-hexane were used in residue
grade (z.R.) quality. All solvents were purchased from Merck,
Darmstadt, Germany.

2.2. Experimental setup and sampling

In this project pre-treated sludge from a reed bed sludge treatment
facility in Meppen, Germany was used. This pre-treated sludge was
chosen because it is plant-compatible and capable of dewatering
(Nielsen, 2003; Nassar et al., 2006).

16 containerswith a sizeof 1 m × 1m × 1mwerebuilt fromstainless
steel and filled with a 20 cm layer of gravel (16–32 mm) and 50 cm pre-
treated sludge, from which plants and roots had been removed to
prevent reeds from growing in the experiments with the other species
(Fig. 1). The containers were placed outdoors on a test facility. Four
containers were planted with reed canary grass (P. arundinacea), four
with bulrush (T. latifolia), and another four with reed (P. australis) at a
density of 12 plants m−2 to study the effects of the different species on
the degradation process of organic pollutants. Four containers were left
unplanted in order to distinguish the impact of the root system on the
performance of the containers for the degradation of the target
compounds. From May, 2007 to April, 2008 samples were taken for
analysis of personal care products. In the first five months which was a
very dry period, each container was watered by awater faucet for 2 min
(ca. 27 l) per week to support the growing of the plants. The sludge
samples were taken from a depth of 5–10 cm. The experiment was
conducted under ambient temperature, water content and plant density.

2.3. Preparation and clean-up of sludge

After sampling, 200 g samples were immediately frozen in a
refrigerating room at−27 °C overnight. Frozen sub-samples of 50 g wet
weight were lyophilised at 2 mbar and −46 °C (ALPHA 1–2/LD, Christ,
Osterode am Harz, Germany). The lyophilised sludge samples were

extracted by means of accelerated solvent extraction (ASE200, Dionex,
Sunnyvale, USA) with ethyl acetate at 90 °C and 150 bar. After adding an
aliquot of 100 μl internal standard solution (IS) (containing 100 ng 2D15
musk xylene and 100 ng TPP 2D15), the resulting extracts were
concentrated by a Büchi Synchore multiport concentrator at 80 °C and
70 mbar (Büchi, Essen, Germany) to 1 ml and were successively cleaned
upwith 1 g silica SPE solid-phase extraction cartridges (silica 60 obtained
fromMerck, Darmstadt, Germany) by elution with ethyl acetate.

These resulting solutions were condensed again and injected into a
GPC-column(BioradSX-3) ID: 2.5 cm, length: 30 cm,flow:5.0mlmin−1

and cyclohexane:ethyl: acetate 1:1. The solvent eluting in the first
19:30 minwasdrained towaste,while the fraction19.30–30.00 minwas
collected. Thus,macromoleculeswere separated as they elute in thefirst
fraction, while sulphur, etc. are separated from the target compounds as
they are eluted after the analyte fraction. The samples were finally
transferred into toluene as shown above. The resulting extracts were
finally fractionated on silica using 5% Methyl-tertbutylether MTBE in n-
hexane and ethyl acetate successively as eluents (2 fractions).

2.4. Instrumental analysis

The resulting fractions were condensed and finally analysed by gas
chromatography with mass spectrometric detection (GC–MS)
equipped with a programmable temperature vapouriser (PTV)
injector. The PTV (1 μl injection volume) was operated in PTV splitless
mode. The injection temperature of 115 °C was held for 3 s, it was
successively ramped with 12 °C s−1 to 280 °C for the transfer of the
analytes. This temperature was held for 1.3 min. The injector was then
ramped with 1 °C s−1 to 300 °C which was held for 7 min with 20ml
min−1 as a cleaning phase.

The GC separation was performed with a DB-5MS column (J&W
Scientific), L: 15 m; ID: 0.25 mm; film: 0.25 μm and a temperature
programmeof: 100 °C (hold: 1 min) rampedwith30 °Cmin−1 to 130 °C
and with 8 °C min−1 successively to 220 °C. Finally, the baking
temperature was reached by ramping the column with 30 °C min−1 to
280 °Cwhichwas held for 7 min. The detector of themass spectrometer
(DSQ, Thermo Finnigan, Dreieich, Germany) was operated with 1281 V,
230 °C ion source temperature and 250 °C interface temperature.

2.5. Leachate

When rain water passes through the sludge layer, some compounds
can be dissolved (mobilised from the sludge), which could also lead to a

Fig. 1. Container section plan.
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decreased concentration of compounds in the sludge. Thus two samples
for out-flowing water were taken as duplicates from each container. 1 l
samples were extracted for 20 min with 20 ml toluene by means of
vigorous stirringwith a teflonizedmagnetic stir barafter addinganaliquot
of 100 μl internal standard solution. Theorganicphasewas separated from
the aqueous one and the residual water was removed from the organic
phase by freezing the samples overnight at−20 °C. The resulting extracts
were then concentrated with a Büchi Synchore at 80 °C and 70 mbar to
1 ml. The resulting extracts were quantified by using GC–MS.

The compounds were detected by means of their mass spectral
data and retention times. For quantitative measurements the method
was validated (Simonsick and Prokai, 1995; Peck, 2006; Bester, 2004,
2007, 2009). Calibrations were performed as a multi-step internal
standard calibration. Recovery rates were determined by spiking
sludge with respective standard concentrations at 5000 ng g−1 (Chen
et al., 2009; Chen and Bester, submitted for publication).

3. Results

3.1. Method quality assurance

The recovery rates were 60–133%, and the relative standard
deviations were 5–12%. Limits of quantification (LOQ) were calculated
from the analysis of standard solutions, which gave signal to noise
ratios (s/n) of at least 10 as well as from the lowest concentration for
the respective substance that was detectable from the recovery
studies. Full data are given in Chen et al. (2009) and Chen and Bester
(submitted for publication).

3.2. Water content

Water content increased from 52% (in May 2007) to 61% (in Sep
2007) due to the 27 l of watering every week, and stayed constant
after Sep 2007 since the rainfall and evaporation were equal. No
significant difference of water content was detected between planted
and unplanted containers as well as containers within different plants.

3.3. Mineral content

The mineral content of sludge increased during the experimental
period, which indicates occurrence of degradation of organic material.
The mineral content ranged from 40% to 52% in the reed canary grass
planted containers, from 40% to 49% in the bulrush planted containers,
from 40% to 50% in the reed planted containers as well as unplanted
containers. No significant difference of mineral content was detected
between planted and unplanted containers as well as containers with
different plants.

3.4. Personal care products

The highest concentrations of the polycyclic musk compounds
HHCB, AHTN were determined in the beginning of the project, which
is 11,000 ng g−1 (dry weight) HHCB and 2250 ng g−1 (dry weight)
AHTN. These are corresponding to the results obtained by Mueller
et al. (2006). After 12 months, the HHCB concentrations were reduced
by 25% in the reed canary grass planted containers, 27% in the bulrush
planted containers, 22% in the reed planted containers and 23% in the
unplanted containers. Similar to HHCB, AHTN was reduced by 24% in
the reed canary grass planted containers as well as in the bulrush
planted containers, 20% in the reed planted containers and 21% in the
unplanted containers after 12 months.

Byway of contrast, the primarymetabolite of HHCB, i.e. HHCB-lactone
showed increasing concentration during the experimental period. The
concentration of HHCB-lactone was 1200 ng g−1 (dry mass) at the
beginning of the experiment. After 12 months the concentrations
increased up to 1600 ng g−1 (dry mass) in the reed canary grass planted

containers aswell as in the bulrush planted containers,while 1700 ng g−1

(dry mass) was reached in the reed planted and unplanted containers
after 12 months.

HHCB started with concentration of 11,000 ng g−1 (dry mass), and
became 8300, 8000, 8500 and 8500 ng g−1 (dry mass) in the reed
canary grass, bulrush, reed and unplanted containers. Considering the
increasing concentration of HHCB-lactone, it can be calculated that
about 4%, 3%, 5% and 5% of the starting concentrations of HHCB were
oxidised to HHCB-lactone in the reed canary grass, bulrush, reed and
unplanted containers, respectively. However, not all of the missing
HHCB turns up as HHCB-lactone. It is most probable, that the
oxidation and transformationwent on to form secondary metabolites.
The first step is in agreement with Bester (2004), Berset et al. (2004)
and Reiner and Kannan (2006) who found oxidation of HHCB to
HHCB-lactone in the aeration tank of waste water sewage treatment
plant.

Fig. 2a and b shows the log C/C0 plot for OTNE concentration as a
function of time. The highest amount 1600 ng g−1 (dry mass) was
determined in the beginning of the project. After thirteen months the
OTNE concentrationswere reducedby 70%, 73%, 72% and 73% in the reed
canary grass, bulrush, reed and unplanted containers, respectively.

The concentrations of Triclosan (log C/C0 plot: Fig. 3a) in the
beginning of the experiment were 800 ng g−1 (dry mass). After
thirteen months the Triclosan concentrations were reduced to less
than 50% and the concentrations were 360, 310, 390 and 360 ng g−1

(dry mass) in the reed canary grass, bulrush, reed and unplanted
containers. Considering a standard deviation of 12% from the method
validation this difference to the starting concentration is significant.

Fig. 2. Kinetics of OTNE degradation in log form. a. Kinetics of OTNE degradation in
containers with different macrophyte species. b. Kinetics of OTNE degradation in
bulrush planted containers with 95% confidence interval.
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4. Discussions

The processes that contributed to the dissipation of the studied
compounds in sludge may include volatilization, plants uptake,
leaching, and biological transformation (aerobic and anaerobic).
Considering their generally low volatility (vapour pressure of
HHCB=0.073 Pa, AHTN=0.061 Pa, OTNE=0.2 Pa, and Triclo-
san=0.00062 Pa), the tendency of these compounds to volatize is
low. Therefore it is expected that only small fractions of these
compounds were volatilized into the atmosphere, where they could
also be photolyzed (Aschmann et al., 2001; Difrancesco et al., 2004;
Chen et al., 2008). To identify the relevant processes the dissipation
data were analysed to determine the respective first-order reaction
constants and half-lives. To discriminate microbial processes against
uptake into plant biomass, the concentrations of the respective
compounds were analysed in sludge as well as in plant biomass and in
leachate water.

4.1. Concentrations in plant biomass

To quantify the uptake of xenobiotic compounds, roots, rhizome
and leaves of the three plants were analysed using the same procedure
as for sludge. In these samples none of the compounds was detected
(LOQ are give in Chen et al., 2009), which indicated that uptake into
plant material is not relevant for the mass balance in the container
experiment. This is in agreement with the results of Litz et al. (2007)
who studied uptake of HHCB and AHTN by lettuce and carrots and

found HHCB and AHTNwere taken up only by the carrot roots to some
small extent. It is also well in agreement with the earlier field study
(Chen et al., 2009).

4.2. Leachate

The amount of compounds in leachate water can be calculated
based on the concentration of compounds in the effluent and amount
of water flowing through the system. The sludge used in this project is
pre-treated sludge, which is already well dry, crumbly and structured,
and not as paste like as fresh sludge and therefore it is easier for water
and oxygen to pass through than for example the normal excess or
dewatered sludge. In this case the worst case assumption is all
rainwater and all irrigation water leach completely (no evaporation).

The rainfall amount during the experimental period (from May
2007 toApril 2008) is 900 mm(1mm=1 lm−²). The irrigationvolume
is thus 900 l.

Since only 0.14% of the HHCB in the container was found in the
leachatewater, it appears that, leaching is irrelevant for the removal of
compounds from the sludge in sludge reed bed treatment. The
corresponding numbers are 0.16% AHTN and 0.52% Triclosan as well as
OTNE (calculation details see supplementary material). Thus it occurs
that (micro) biological transformation was the main dissipation
mechanism for these compounds. Comparable result was obtained by
Litz et al. (2007) who found a leaching rate of b0.001% for HHCB and
AHTN in a leaching experiment using small soil lysimeter over a test
period of 48 h simulating a rain of 200 mm.

4.3. Kinetic analysis of dissipation data

Considering no significant volatilization, plants uptake and leach-
ing occurred; biological degradation is thus dominant in the ex-
periment process.

Biological degradation of organic compounds at low concentra-
tions usually follows first-order kinetics, if the temperature and other
critical parameters are constant. As temperature was not constant,
first-order kinetics are only an approximation of the real degradation
kinetics. However, this approach, with working with big installations
under real conditions was assessed to give more realistic results than
experiments under temperature controlled laboratory experiments.
An elimination rate constant (k) for compound removal in the reed
bed containers was calculated from the concentrations during the
experiment using Eq. (1). For the HHCB degradation process the
respective k values are between 0.0005 and 0.0007 in the diverse
experiments (canary grass, bulrush, reed and unplanted containers).

K =
ln C0

C

h i
t

ð1Þ

k=elimination rate constant, C0=starting concentration, t=time.
With Eq. (2), the half-life can be assessed:

t1=2 =
ln½C0C02 �

k
=

ln2
k

: ð2Þ

Tentative half-lives were calculated for OTNE. The respective graphs
are displayed in Fig. 2a. For the experiment with bulrush the results are
calculated with a confidence interval as an example (Fig. 2b). OTNE was
eliminatedwithhalf-lives of 204,187,198 and187 days in the reed canary
grass, bulrush, reed and unplanted containers, respectively (Table 2).
These data are consistent with data from full scale for which half-lives of
239–277 d were found in the middle and bottom layers (Chen et al.,
2009). Comparable half-lives were also observed by Difrancesco et al.
(2004) with OTNE dissipation half-lives of 30–100 days in sludge-
amended soils. No significant difference was detected for the respective

Fig. 3. Kinetics of Triclosan degradation in log form. a. Kinetics of Triclosan degradation
in log formwith first data point. b. Kinetics of Triclosan degradation in log formwithout
first data point.
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setups. Obviously the support of the microbial activity by the respective
plants was not significant for these experiments.

Tentative half-lives for Triclosan were calculated as continuous first-
order kinetics (Fig. 3a) 433, 330, 462 and 385 days in the reed canary
grass, bulrush, reed and unplanted containers, respectively (Table 2).
However, the respective data could also be interpreted as a fast
degradation in the first month and a slower degradation in the following
ones (Fig. 3b). This behaviour could be induced by oxygen supply during
installation of the experiments, or high temperatures. However degrada-
tion half-lives of 315–330 d were also found in a full scale study for the
middle and bottom layers (Chen et al., 2009). No significant difference
was detected for the respective setups with the different plants in the
container study. Obviously the support of the microbial activity by the
respective plants was not significant for these experiments. This is
corresponding to the results which were gained by Ying et al. (2007) by
spiking Triclosan into loamy soil with a concentration of 1 mg kg−1 (i.e.
1000 ng g−1), 18 days half-life was calculated under aerobic conditions
within this 70 days experiment. Laboratory studies showed significant
biodegradation of Triclosan in activated sludge, and indicating that
adaptation was a critical factor determining the rate and extent of
biodegradation (Federle et al., 2002).

Tentative half-lives for HHCB can be calculated as 1160, 990, 1390
and 1160 days in the reed canary grass, bulrush, reed and unplanted
containers, respectively (Table 2). No significant difference was
detected for the respective setups. Obviously the support of the
microbial activity by the respective plants was not significant for these
experiments. These results are consistent with data from full scale
experiments in which HHCB also proved to be persistent with half-
lives N three years (Chen et al., 2009).

Tentative half-lives of AHTN degradation were calculated as 870,
770, 990 and 770 days in the reed canary grass, bulrush, reed and
unplanted containers, respectively (Table 2). These values should to
be viewed as tentatively, as the experimental period (twelve months)
is too short to reveal such a slow degradation process. This also was
consistent with full scale studies, in which AHTN proved to be
persistent with half-lives over three years (Chen et al., 2009). No
significant difference was detected for the respective setups.
Obviously the support of the microbial activity by the respective
plants was not significant for these experiments. Nevertheless the
data indicated that HHCB and AHTN are belonging to the group of very
persistent pollutant. This is corresponding to the results which were
gained by Mueller et al. (2006) and Litz et al. (2007) that aerobic
dissipation of HHCB and AHTN in soil/sewage sludge mixtures is very
slow with half-lives of 10–17 months for HHCB and 2–24 years for
AHTN. Similarly, Difrancesco et al. (2004) also found a particularly
slow dissipation for HHCB and AHTN in sludge-amended soils.

4.4. Effects of macrophytes

Microbial processes play a significant role for the proper function-
ing of reed beds. The major role of macrophytes is probably in the
dewatering of sludge. The dewatering capacity of a reed bed is
maintained or improved by the mechanical activity of the reeds in the
sludge layer. The mechanical activity includes shoots and rhizomes,
which move through the sludge, as well as the above ground
movement of the plants due to wind (Nielsen, 2003, 2005a).

Also, plants provide oxygen to the sludge in the reed beds. With
slow percolation of oxygen into the sludge layer, both via the reed
plants and their root zone, and by diffusion through the air–sludge
interface, the sludge gradually becomes oxidised and stabilised (De
Maeseneer, 1997). In our experiment no significant effect of the
different macrophytes on mineralisation and biodegradation of
organic micro-pollutants in sludge was detected, however some
other research did find positive results (Zwara and Obarska-
Pempkowiak, 2000; Pempkowiaka and Obarska-Pempkowiak, 2002;
Nielsen, 2003, 2005a), this may be due to the low amount of sludge in
the small-scale (1 m3 box) containers, so that the influence of
boundary effects and weather gain more influence on the processes
than they do in full scale.

5. Conclusion

The sludge reed bed container study showed that the reed bed
sludge treatment technology is able to reduce persistent organic
pollutant (such as HHCB, AHTN, Triclosan, and OTNE) significantly.
After a twelve month experiment, only 73%–78% of HHCB, 76%–80% of
AHTN, 38%–48% of Triclosan and less than 30% of OTNEwere left in the
containers. The decrease of pollutants during the full life time
(10 years) of reed beds would be much higher than, that, obviously.

It is most likely that microbial degradation processes are the domi-
nating ones in this setup, since most of the corresponding degradation
products (metabolites) could be identified (HHCB/HHCB-lactone). An
accounting ofmaterial flows in addition showed that only a small fraction
(b1%) of the target substances was washed out (leached) with the
effluent. The uptake of personal care products into the biomass of the
macrophytes can also be neglected.

The different macrophyte species did not have a significant effect
on the dewatering process as well as degradation of the respective
compounds in this experiment.
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Abstract In this study, a method for the determination of
organic micro-pollutants, i.e. personal care products such as
synthetic musk fragrances, household bactericides, organo-
phosphate flame retardants and plasticizers, as well as
phthalates in sludge, has been developed. This method is
based on lyophilisation and accelerated solvent extraction
followed by clean-up steps, i.e. solid phase extraction and
size exclusion chromatography. The determination is
performed by gas chromatography coupled to mass spec-
trometry. Stable isotope-labelled compounds such as musk
xylene (MX D15), tri-n-butylphosphate (TnBP D27) and
triphenylphosphate (TPP D15) were used as internal stand-
ards. Recovery rates were determined to be 36–114% (with
typical relative standard deviation of 5% to 23%) for the
target compounds. The limit of detection was 3–30 ng g−1,
and the limit of quantification was 10–100 ng g−1 dry
matter.

Keyword Personal care products .Musk fragrances .

Triclosan . Household bactericides . Organophosphates .

Phthalates

Introduction

Sewage sludge is produced in waste water treatment while
removing compounds causing oxygen demand (BOD5) from
the waste water. Thus sludge contains high concentrations of
organic matter, nutrients (nitrogen and phosphorous) and
lipophilic organic micro-pollutants from the waste water.
Some countries such as the Nordic countries prefer to use the
nutrients in agriculture (re-cycling of sludge), while some
others (e.g. Switzerland) have decided to incinerate all
sludges as they prioritised to destroy all micro-pollutants.
The majority of countries do a case by case decision
depending on the concentrations of organic micro-pollutants
and heavy metals. Thus a sound basis for analysing organic
micro-pollutants in sludge is necessary to make sure that only
sludge with low contaminations is used for re-cycling in
agriculture. Established methods are usually single or group
specific such as the methods used to analyse PAHs or PCBs
[1, 2]. Often the analytical protocols are similar to those
established for sediments with a high load of TOC.

The compounds included in this study were synthetic
musk fragrances (musk xylene, musk ketone, HHCB,
AHTN, HHCB–lactone), an antimicrobial and its metabo-
lite (triclosan, triclosan–methyl), organophosphate flame
retardants and standing for organophosphate-plasticizers
(tri-iso-butylphosphate (TiBP), tri-n-butylphosphate (TnBP),
tris-(2-chloroethyl) phosphate (TCEP), tris-(2-chloro-iso-
propyl) phosphate (TCPP), tris-(dichloro-iso-propyl) phos-
phate (TDCP) and triphenylphosphate (TPP)) and the
phthalate (di(2-ethylhexyl) phthalate (DEHP); Table S1).
Some of these compounds have been discussed in national as
well as developing EU laws on sludge as maker compounds
for the re-use of this material [3, 4].

Synthetic musk fragrances are compounds used as low
cost fragrances in soaps, perfumes, air fresheners, deter-
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gents, fabric softeners and other household cleaning prod-
ucts. There are four synthetic musk fragrances accounting for
95% of the used musk. These are two polycyclic compounds
(HHCB and AHTN) as well as the nitro-musks (musk xylene
and musk ketone). These compounds have been detected in
surface water [5, 6], in waste water [7–9] and in sewage
sludge [10–12]. HHCB–lactone is the primary metabolite of
HHCB (Table S1). The ratio HHCB versus its metabolite
HHCB–lactone has been used to detect transformation
processes of this fragrance. During the sewage treatment
process, about 10% of HHCB is transformed to HHCB–
lactone, which has been reported for balance assessment for
polycyclic musk fragrances in a German treatment plant by
Bester [8]. Reviews of several analytical strategies for the
analysis of musks in sludge have been described by using
accelerated solvent extraction (ASE), supercritical fluid
extraction, Soxhlet extraction and liquid–liquid extraction,
all of them in combination with gas chromatography–mass
spectrometry (GC–MS) [13–15].

Triclosan (Table S1) is an antimicrobial agent, which is
widely used in personal care products such as toothpaste,
soaps, deodorants, cosmetics and skin care lotions as well
as other consumer goods. Approximately 1,500 t is
produced annually worldwide, and approximately 350 t
of those is applied in Europe [16]. Triclosan–methyl
(Table S1) is a transformation product of triclosan. These
two compounds have been identified in the environment
by several investigators [16–21], whereas bioaccumulation
and toxicity have been studied by Orvos et al. [22],
Coogan et al. [23] and De Lorenzo et al. [24]. Analytical
methods for analysing antimicrobials in sludge by using
GC–MS and liquid chromatography–MS have been
reviewed by Peck [13].

The organophosphates included in this study were
chlorinated alkylphosphates such as TCPP, TCEP and
TDCP, which are mostly used as flame retardants in
polyurethane. Additionally, non-derivatised alkylphos-
phates such as the two isomers of tri-butylphosphate (TnBP
and TiBP) and TPP, which are used as plasticisers, were
studied as well. Because of their relatively low cost,
organophosphates especially TCPP have become the most
widely used class of flame retardants [25]. These com-
pounds are washed off from the equipped items during
cleaning; the cleaning water will be discharged to the sewer
and thus reach waste water treatment plants, as discussed
by Fries and Puttmann [26] as well as by Meyer and Bester
[27]. Additionally, these organophosphates have been detected
in indoor air as well as in indoor dust by Sanchez et al. [28]
and García et al. [29]. Only a few analytical procedures to
determine organophosphates in sludge or sediment with high
TOC content have been described [30, 31].

DEHP is one of the most widely used plasticizers. It is
used mainly for making PVC soft and pliable. This

plasticizer is eluted into waste water by washing and
cleaning processes of the respective materials; it is assumed
to have ecotoxic (endocrine disrupting) effects to aquatic
organisms [32]. Because of the relatively high lipophilicity
of this phthalate, sorption is the main process relevant for
elimination in sewage treatment plants. Typical concentra-
tion of DEHP in sludge was found to be ranging from 10
to 100 μg L−1 by Fromme et al. [33]. Extraction methods
in combination with GC–MS have been described by
Sablayrolles et al. [34] and Aparicio et al. [35].

The main objective of the research presented in this
paper was to develop and validate an analytical multi-
method to determine different classes of organic micro-
pollutants such as personal care products, plasticizers and
flame retardants and phthalates in sludge.

Experimental section

Materials

AHTN, triclosan, musk xylene, musk ketone and DEHP
were purchased from Ehrenstorfer (Augsburg, Germany) as
pure compounds with purities being ≥99% according to the
supplier. Pure standards of HHCB–lactone as well as
HHCB were obtained from International Flavours and
Fragrances (IFF, Hilversum, Netherlands). Triclosan–methyl
was synthesised from triclosan by methylation with trime-
thylsulfonium hydroxide solution (Macherey-Nagel, Dueren,
Germany) at 40°C [20].

TCPP and TDCP were obtained from Akzo Nobel
(Amersfoort, the Netherlands). These compounds were
used without further purification. The technical TCPP gives
three peaks in the ratio 9:3:1. In this study, only the main
(first eluting) isomer was used for determination. TnBP,
TiBP, TPP and TCEP were purchased from Sigma-Aldrich
(Steinheim, Germany). Ethyl acetate, acetone, cyclohexane
and methanol were used in analytical grade (p.a.) quality,
while toluene and n-hexane were used in residue grade
(z.R.) quality. All solvents were purchased from Merck
(Darmstadt, Germany).

Internal standards

The internal standard musk xylene D15 was used to
quantify the musk fragrances musk xylene, musk ketone,
HHCB, AHTN, triclosan–methyl and DEHP as it elutes in
the same fraction as these compounds, while TnBP D27 was
used to quantify TiBP, TnBP, TCEP and TCPP, and TPP
D15 was used in this experiment to quantify triclosan,
HHCB–lactone, TDCP and TPP. Musk xylene D15 and
TnBP D27 were obtained from Ehrenstorfer (Augsburg,
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Germany); TPP D15 was synthesised from D6 phenol and
phosphoroxychloride. These internal standards were chosen
as they give undisturbed signal and also do not undergo any
reaction themselves [36].

Analytical method

The sample preparation scheme is shown in Fig. 1: After
sampling, the sludge samples were immediately frozen at
−27°C overnight. “Dried sludge” such as produced at waste
water treatment plants contains about 70% water; thus
drying is essential to provide good wettability of the sludge
with organic solvents. The frozen sub-samples of 40 g wet
weight were then lyophilised overnight at 2 mbar and
−46°C using an ALPHA 1-2/LD (Christ, Osterode am

Harz, Germany). The 4–6 g lyophilised sludge samples was
blended with about 10 g diatomaeous earth (acid-washed
obtained from MP Biomedicals, Solon, OH, USA) and
homogenised in a mill (IKA A11 BASIC, Staufen,
Germany) to a fine powder. The homogenates were then
transferred into a 33-mL stainless steel ASE cell and
extracted successively with ethyl acetate (ASE 200,
Dionex, Sunnyvale, USA). After adding an aliquot of
500 μl internal standard solution (IS; containing 500 ng D15

musk xylene, 500 ng TPP D15 and 500 ng TnBP D27), the
extract was concentrated to 1 mL by a Büchi Synchore
multiport concentrator (Büchi, Essen, Germany) at 80°C
and 70 mbar.

The resulting extracts were cleaned up with silica solid
phase extraction (SPE) cartridges. This step is primarily
protecting the next step (size exclusion chromatography
(SEC)) from too many particles as well as very polar
compounds. It was performed by packing 1 g of silica
(silica 60 obtained from Merck, Darmstadt, Germany, pre-
dried at 105°C) into a glass column (60 mm long, 12 mm
ID) with two PTFE frits on the top and bottom of silica.
The silica column was conditioned with 12 mL n-hexane
before use and eluted with 12 mL ethyl acetate after loading
the samples.

The resulting extracts were again concentrated by a
Büchi Synchore multiport concentrator and successively
injected into an SEC system (GPC-Basix, purchased from
LC-Tech, Dorfen, Germany) equipped with a glass column
ID: 2.5 cm, length 30 cm, packed with 50 g SX-3 (Bio-Rad,
Hercules, CA, USA). The mobile phase was cyclohexane
and ethyl acetate (1:1, V/V) and the flow rate was
5.0 mL min−1. The solvent eluting in the first 19.30 min
(97.5 mL) containing macro-molecules was drained to
waste, while the fraction 19.30–30.00 min (52.5 mL)
containing the analytes was collected [37]. The samples
were finally transferred into toluene by adding 10 mL
toluene and condensing to 1 mL. Thus, macro-molecules
were separated as they are eluted in the first fraction, while
sulphur, etc. are separated from the target compounds as
they are eluted after the analyte fraction.

The resulting extracts were then fractionated for polarity
on silica 60 using 12 mL 5% methyl-tertbutylether in n-
hexane (first fraction) and 12 mL ethyl acetate (second
fraction) successively as eluents. The musks, triclosan–
methyl and DEHP were eluted in the first fraction, while
TiBP, TnBP, TCEP, TCPP, TDCP and TPP as well as
triclosan and HHCB–lactone were eluted in the second
fraction according to their polarity. These fractions were
transferred into toluene as described above and finally
analysed by GC–MS detection.

The GC–MS system was a DSQ purchased from
Thermo, Waltham, USA. The GC was equipped with a
programmable temperature vapouriser (PTV) injector. The

40g sludge 

Lyophilisation

2 mbar and -46ºC

ASE

Elute with ethyl acetate at 90ºC and 150 bar

1st clean up
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Fig. 1 Sample preparation scheme
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PTV (1 μl injection volume) was operated in PTV splitless
mode. The injection temperature of 115°C was held for 3 s;
it was successively ramped with 12 to 280°C s−1 for the
transfer of the analytes into the column. This temperature
was held for 1.3 min. The injector was then ramped with 1
to 300°C s−1 (open split), which was held for 7 min as a
cleaning phase.

The GC separation was performed with a DB-5MS
column (J&W Scientific), L was 15 m, ID was 0.25 mm,
and film thickness was 0.25 μm. The oven temperature
programme started at 100°C (hold, 1 min) and was then
ramped with 30 to 130°C min−1 and successively with 8 to
220°C min−1. Finally, the baking temperature was reached
by ramping the oven with 30 to 280°C min−1, which was
held for 7 min.

The transfer line was held at 250°C, which is sufficient
to transfer all compounds from the GC into the MS as the
vacuum builds up in the transfer line. The ion source was
operated at 230°C. Helium (4.0) was used as carrier gas
with a flow rate of 1.3 mL min−1. All compounds were
detected by means of their mass spectral data and retention
times as shown in Table 1.

Calibrations were performed as a multi-step internal
standard calibration. A stock solution was produced by
dissolving 20 mg of the target compounds into 100 mL
acetone. This stock solution was stored at 4°C in the dark.
The weight of this flask was controlled before and after
each operation. Calibration standards (3, 10, 30, 100, 300,
1,000, 3,000 and 10,000 ng mL−1 in toluene) were made by
serial dilution of the stock solution. The calibration stand-
ards contained the internal standards with a concentration
of 100 ng mL−1. The calibration curve was calculated by
using a weighted (1/X) linear regression.

Results and discussions

Extracting organic compounds from sludge is optimised
between extracting as much as possible of the target
compound and as little as possible of the organic matter
of the sludge, as the latter will be corrupting the GC or
either one of the following steps.

Three experiments were performed to determine the
optimal conditions for the accelerated solvent extraction in
the method development and method validation after it had
been decided to focus on ethyl acetate as an extractant:

1. A temperature optimisation, which was compared to
total and destructive extractions

2. Validation from an artificial blank material to determine
potential concentration dependency of the recovery rate
as well as blank problems

3. Validation from a spiked sludge to determine recovery
rates by different means as well as gain insight on
realistic precision

Optimisation of extraction temperature

Temperature is the most important parameter used in ASE
extraction. ASE operates at temperatures above the normal
boiling point of most solvents, using pressure to keep the
solvents in the liquid phase during the extraction process.
As the temperature is increased, the viscosity of the solvent
is reduced, thereby increasing its ability to wet the matrix
and solubilise the target analytes. However thermal degra-
dation of the solvent or the sample might occur at higher
temperatures [38, 39]. In this study a temperature range
from 50 to 150°C was tested for the optimisation of

Compound RT (min) Quantifier mass (amu) Verifier mass (amu)

OTNE 5.96 191 219

Musk xylene 8.12 282 297

Musk ketone 9.50 279 294

HHCB 8.03 243 258

AHTN 8.14 243 258

HHCB–lactone 11.73 257 272

Triclosan 11.07 288 290

Triclosan–methyl 11.30 302 304

TiBP 4.37 155 211

TnBP 5.80 155 211

TCEP 7.19 249 251

TCPP 7.46 277 279

TDCP 13.35 379 381

TPP 13.88 325 326

DEHP 14.60 149 167

Table 1 Retention times and
selected mass fragments for the
determination of the respective
compounds using a DB-5
column
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extraction. For the extraction of organic micro-pollutants,
one sub-sample of homogenised dried sludge was extracted
by ASE with temperatures of 50, 70, 90, 110, 130 and
150°C, each followed by first clean up, SEC and the
second clean up as described above. In the end the samples
were measured by GC–MS. The highest concentration of
HHCB, AHTN, triclosan and HHCB–lactone was found
from the 70 and 90°C extractions, which is shown in Fig. 2.
The increased concentration of HHCB–lactone found at
130°C was interpreted as result of an oxidation of HHCB
under these conditions. Therefore, 90°C was selected as the
extraction temperature because of the better extraction
efficiency proved here and suggested references [38, 39].
As a control, total extractions with acetone and acidified
methanol at 150°C were performed. These did not give
higher concentrations than those with ethyl acetate at 90°C
and 150 bar.

Method validation from artificial blank material
(manure/soil) recovery rates and working range

These experiments were performed to determine whether
the recovery rate was dependent on the concentration or
not. The working range was considered to range from the
lowest to the highest concentrations for which the same
recovery rates were obtained. A blank material, which
contains similar TOC and ammonia content as sludge but
no analytes, was produced by mixing manure from organic
farming with soil (1:1). Various concentrations of the
standard were spiked into the dried homogenized material.
The spiked sub-samples were transferred into ASE cells,
which were extracted with the method described above.
Table 2 shows the recovery rate and its working range
determined from the spiked artificial blank material. Figure S1
shows the recovery rate of triclosan as the function of
concentration. The recovery rates for all compounds are
independent on the concentrations (Table 2). It was also
demonstrated that no other peaks (e.g. from decomposition/

pyrolysis) of biogenic material that could be mistaken for the
analytes occurred from such matrices.

Method validation from spiked sludge samples (LOQ)

These recovery experiments were carried out by providing
six homogeneous sub-samples from one sludge sample and
each was spiked with 125 μl of the stock solution
(200 μg mL−1). Two other sub-samples were left unspiked
as comparison. They were lyophilised and then extracted at
90°C and 150 bar. The following sample preparation,
extraction and clean up were identical to the procedures
described above. For this study, dewatered digested sludge
of an urban waste water treatment plant with 450,000
population equivalents, operating BOD, nitrogen and
phosphorous removal was used. The sludge had a water
content of 90% before lyophilisation. The mineral content
of the total solid content was 33%. The concentrations of
the target compounds in this sludge before and after spiking
are shown in Table 3. Figure 3 shows the chromatographic
characterisation of TCPP in one unspiked sludge sample
(18,400 ng g−1).

Since the standard deviation from this six spiked samples
was low and no outlier was identified, all results were
averaged. The mean recovery rates were 36–114%, and the
relative standard deviations were 5–23% (Table 3), depend-
ing on the respective compounds. The lower recovery rates
of musk xylene and musk ketone were possibly due to the
occurrence of biotransformation of the nitro-musks during
the sample preparation process [40, 41]. The limit of
detection was taken as signal-to-noise ratio 3:1, and the
limit of quantification (LOQ) was defined as signal-to-noise
ratio 10:1, which was calculated by the Xcalibur software
(Thermo, Waltham, USA) for the respective SIM chromato-
grams of the standard calibration (Table 3). The thus
obtained LOQs are in the same range as the lower end of
the working range (see above, Table 2). Comparable results
were obtained by Bester [30] who used a similar procedure
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but utilised a Soxhlet extraction to determine polycyclic
musk fragrances and TCPP in waste water treatment plant.

Stereoisomer separation

Stereoisomer-specific determination often gives in-depth
insights into ongoing processes; however, this analytical
technique is more vulnerable to matrix than conventional
analysis, as the respective columns have lower temperature
limits. Thus, stereoisomer-specific determination requires
better sample clean ups. In this study, it was tested whether
the developed sample clean up is suitable also for
stereoisomer determination. The gained extracts were used
for stereoisomer separation of OTNE. OTNE has two chiral

centres; thus enantiomers and diastereomers may occur.
The synthesis of this compound is not stereoselective; thus
both kinds of stereoisomers are expected in the product
[42].

Stereoisomer separation was performed on a heptakis-
(2,3-di-O-methyl-6-O-t-butyldimethyl-silyl)-β-cyclodextrin
(Hydrodex 6-TBDMS) column (Macherey-Nagel, Düren,
Germany). This column is able to separate enantiomers as
well as diastereomers of compounds such as polycyclic
musks [15], but for OTNE only two major peaks were
observed (Fig. 4). Thorough temperature programme and
gas flow optimisation were performed and resulted in a tem-
perature programme of 90 �C 1 min½ � ! 10 �C min�1 !
115 �C 70 min½ � ! 10 �C min�1 ! 200 �C 30 min½ � at a
constant flow of 1.2 mL min−1 helium gave the best
separation from the production impurities. However, only
two main stereoisomers could be separated. It is thus currently
unknown whether the achieved separation separates the
enantiomers or diastereomers of OTNE. However, in this
study, it could be demonstrated that the extracts were clean
enough to give reliable stereoseparation. A multitude of
standards and sludge samples were analysed in one sequence
with no change of chromatographic performance. Thus this
multi-method is capable to perform sample clean up for
stereoseparations as well as conventional analysis.

Table 3 Typical concentration of compounds in sludge samples, mean recovery, relative standard deviation (RSD), limit of detection (LOD) and
limit of quantification (LOQ)

Compound Concentration in
unspiked sludge (ngg−1)

Calculated concentration
in spiked sludge (ngg−1)

Determined
concentration (ngg−1)

Mean recovery
rate (%)

RSD
(%)

LOD
(ngg−1)

LOQ
(ngg−1)

OTNE 3,000 10,927 6,513 60 6 10 30

MX 80 9,200 4,300 47 19 10 30

MK 40 7,600 2,700 36 23 3 10

HHCB 11,800 20,300 15,700 77 6 3 10

AHTN 1,600 8,900 6,100 69 5 3 10

HHCB–
lactone

800 7,900 5,200 66 10 3 10

Triclosan 4,400 11,700 15,600 114 12 30 100

Triclosan–Me 70 7,300 4,000 55 10 3 10

TiBP 100 8,100 6,200 77 10 10 30

TnBP 90 7,700 4,900 64 8 10 30

TCEP 70 11,900 7,000 59 9 10 30

TCPP 18,400 28,000 27,000 96 8 30 100

TDCP 90 8,500 4,400 52 8 10 30

TPP 400 7,600 4,300 57 5 3 10

DEHP 8,700 17,200 15,000 87 21 3 10

The LOD was taken as signal-to noise ratio 3:1, and LOQ was defined as signal-to-noise ratio 10:1, which was calculated by the Xcalibur
software (Thermo, Waltham, USA) for the respective SIM chromatograms of the standard calibration. Mean recovery rates were calculated by the
ratio of determined concentration and calculated concentration in spiked sludge

Table 2 Recovery rate and working range determined by the artificial
blank material

Compound Working range (ngg−1) RR (%) RSD (%)

OTNE 30–10,000 73 26

HHCB 300–10,000 87 13

Triclosan 30–10,000 88 9

TiBP 30–10,000 77 6

TCEP 10–10,000 70 11
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Conclusion

A precise multi-method has been developed to analyse musk
fragrances, bactericides as well as organophosphates and
flame retardants and phthalate by using lyophilisation, ASE
in combination with the clean-up steps of SPE, SEC and the
detection of GC–MS. The recovery rates obtained from two
different recovery experiments performed by two different
operators were comparable. In diverse projects, this method
has been used to analyse several hundred sludge samples

especially in degradation and process studies, for which
precision as well as stability of the system were crucial.
Though the DSQ–MS needs regular cleaning of the curved
prefilter quadrupole after injecting about 100 extracts in
duplicate plus calibration standards, the method performed
well in routine operations. It is a multi-method that in lots of
cases is open to including new analytes. Also the extracts
were clean enough to perform stereoseparation. Thus a
method was validated, which can be the backbone of future
research on organic micro-pollutants in sludge.
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Zusammenfassung

Im Beitrag werden die Versuchsdurchführung und die Ergebnis-
se einer Untersuchung zur Abbaubarkeit von organischen 
Schadstoffen, die in Klärschlämmen enthalten sind, mittels be-
pflanzter Beete dargestellt. Die durchgeführten Containerversu-
che wie auch die parallel durchgeführten Untersuchungen an 
den großtechnischen Klärschlammvererdungsanlagen Meppen 
in Niedersachsen und Kalkar-Rees in Nordrhein-Westfalen zei-
gen, dass bepflanzte Beete in der Lage sind, die Konzentrationen 
und Frachten, auch schwer abbaubare organische Schadstoffe 
wie den Weichmacher DEHP, das Bakterizid Triclosan sowie die 
Duftstoffe OTNE, HHCB, HHCB-Lacton und AHTN zu reduzie-
ren und eine Verminderung der über den Klärschlamm in die 
Umwelt gelangenden Fracht von 50 % (HHCB, AHTN) bis 93 % 
(OTNE) zu erreichen.

Schlagwörter: Klärschlamm, Spurenstoff, anthropogen, Schadstoff, 
organisch, Abbaubarkeit, Elimination, Versuch, Pflanzenbeet, Fracht, 
Reduzierung

DOI: 10.3242/kae2011.09.004

Abstract

Degradation of Organic Pollutants 
in Sewage Sludge Treatment in Reed Beds

The paper describes the performance of a test and the results of 
a study on the degradability of organic pollutants, which are 
contained in sewage sludge, in reed beds. The container tests un-
dertaken as well as the parallel tests in large-scale plants for the 
conversion of sewage sludge into humus, such as Meppen in 
Lower Saxony and Kalkar-Rees in North Rhine Westphalia, 
show that reed beds are able to reduce pollution levels and loads 
even of difficult to degrade organic pollutants such as DEHP, a 
surfactant, triclosan, a bactericide, as well as fragrances such as 
OTNE, HHCB, HHCB-lactone and AHTN and that the pollution 
loads that enter the environment via the sewage sludge can be 
reduced by between 50% (HHCH, AHTN) and 91% (OTNE).

Key words: sewage sludge, trace element, anthropogenic, pollutant, 
organic, degradability, removal, test, reed bed, load, reduction

1 Einleitung

Bepflanzte Beete werden seit 1988 in Europa für die Entwässe-
rung von Klärschlämmen eingesetzt. Bei dem naturnahen Ver-
fahren wird flüssiger Klärschlamm in schilfbepflanzten und 
zum Untergrund hin abgedichteten Beeten durch Schwerkraft 
(Filtration) und durch die Verdunstungsleistung der eingesetz-
ten Pflanzen entwässert. Parallel zu den Entwässerungsprozes-
sen findet ein Abbau eines Teils der organischen Trockenmasse 
durch Mikroorganismen statt. Das Endprodukt ist ein durch-
wurzeltes, humoses Substrat, auf das weiterhin die Bestim-
mungen der Klärschlammverordnung anzuwenden sind. Die 
Methode hat sich insbesondere für kleine und mittlere Kläran-
lagen im ländlichen Raum als kostengünstige und ökologische 
Alternative zur maschinellen Entwässerung bewährt.
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Im Rahmen des von der Arbeitsgemeinschaft industrieller 
Forschungsvereinigungen „Otto von Guericke e. V.“ (AiF) geför-
derten zweijährigen Forschungsvorhabens „ Abbau von organi-
schen Schadstoffen im Rahmen der Klärschlammvererdung“ 
wurden zwei großtech nische Klärschlammvererdungsanlagen 
in Meppen (Niedersachsen) und Kalkar-Rees (Nordrhein-West-
falen, Abbildung 1) untersucht und mit 16 eigens angefertig-
ten, unterschiedlich bepflanzten Modellanlagen verglichen.

Folgende Substanzen wurden untersucht:

OTNE (7-Acetyl-1,2,3,4,5,6,7,8-octahydro-1,1,6,7-tetrame-
thylnaphthalen; Handelsname Iso-E-super) hat derzeit eine 
weite Verbreitung in Verbraucherprodukten gefunden. 2500–
3000 t dieses Duftstoffs werden jährlich verkauft [3]. Konzen-
trationen von 7000–30 000 ng OTNE je g Trockensubstanz (TS) 
Klärschlamm wurden in den USA gefunden [4], während in 
Europa die Konzentrationen zwischen 2000 und 4000 ng g–1 la-
gen [5].

Polycyclische Moschus-Duftstoffe wie HHCB (1,3,4,6,7,8-He-
xahydro-4,6,6,7,8,8-hexamethylcyclopenta-[g]-2-benzopyran, 
Handelsname zum Beispiel Galaxolid) und AHTN (7-Acetyl-
1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalen, Han-
delsname zum Beispiel Tonalid) werden häufig als Duftstoffe 
in Shampoos, Waschmitteln, Weichspülern und anderen Con-
sumer-Produkten benutzt. [5, 6]. Beide Polycyclen haben eine 
geringe Wasserlöslichkeit und hohes Bioakkumulationspoten-
zial [7]. Die Konzentrationen dieser Substanzen in Klärschläm-
men aus Nordhrein-Westfalen betrugen 3100 ± 240 ng g–1 
(HHCB) und 1500 ±150 ng g–1 (AHTN) [8].

HHCB-Lacton ist der Primärmetabolit von HHCB. Während 
der Abwasserbehandlung werden etwa 10 % des HHCB zum 
HHCB-Lacton oxidiert [8]. Das Verhältnis von HHCB zu HHCB-
Lacton kann im Ablauf von Kläranlagen zwischen 3 und 130 
variieren. Diese Zahlen können benutzt werden, um die Oxida-
tionseffizienz von technischen Anlagen abzuschätzen. Die Kon-
zentrationen im Klärschlamm lagen zwischen 600 ng g–1 und 
3500 ng g–1 [9].

Triclosan wird derzeitig als Bakterizid in Zahnpasta, Mund-
spülwasser sowie in Funktionswäsche wie zum Beispiel Unter-
wäsche und Turnschuhen ebenso eingesetzt sowie zur Stabili-
sierung von Waschmitteln und Kosmetika [10]. Zusätzlich wird 
es als Polymerzusatz in Plastik-Schneidebrettern für den Le-
bensmittelbereich verwendet. Schätzungsweise 1500 t Triclo-
san werden jährlich weltweit produziert, etwa 350 t davon in 
Europa [11]. Triclosan zeigt eine geringe Wasserlöslichkeit und 
ein hohes Bioakkumulationspotenzial. In allen Klärschlamm-
proben aus Nordrhein-Westfalen war Triclosan mit Konzentra-
tionen um 3000 ng g–1 nachweisbar [12].

DEHP [Bis(2-ethylhexyl)phthalat] wird als Weichmacher in 
PVC, in Baumaterialien, aber auch in Farben und Kosmetika 
eingesetzt [13]. Die jährliche weltweite Produktion von DEHP 
liegt bei 106 t [14]. Die Weichmacher werden während der Le-
benszeit der entsprechenden Produkte ausgewaschen und ge-
langen so ins Abwasser. DEHP ist eine der prioritären Substan-
zen der Wasserrahmenrichtlinie. Die Konzentrationen von 
DEHP liegen bei 1740 bis 182 000 ng l–1 in Kläranlagenabläu-
fen. In Klärschlämmen wurden 27 900 bis 154 000 ng g–1 Tro-
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ckenmasse und in Sedimenten 210 bis 84 400 ng g–1 gefunden 
[15].

2 Material und Methoden

2.1. Versuchsdurchführung

Für die Versuchsdurchführung war vorgesehen, zunächst in 
Versuchscontainern, deren Aufbau einem Vererdungsbeet nach-
empfunden ist, die Abbaubarkeit der Schadstoffe zu untersu-
chen. Anhand der Container sollte dabei der Einfluss unter-
schiedlicher Wasserregimes sowie der gewählten Pflanzenart 
auf die Abbaubarkeit untersucht werden. Zu diesem Zweck 
wurden insgesamt 16 Versuchscontainer (vier Ansätze mit je 
vier Parallelen) auf dem Versuchsfeld der Universität Duisburg-
Essen durch EKO-Plant installiert und betreut (Abbildung 2). 
Die Untersuchung und Auswertung der entnommenen Proben 
erfolgte durch das Fachgebiet Siedlungswasser- und Abfallwirt-
schaft der Universität Duisburg-Essen.

Die Container waren folgendermaßen ausgestattet:

Containermaße jeweils 1,0 � 1,0 � 0,95 m, unbehandeltes 
Stahlblech, außen mit Rostschutzlackierung versehen. An der 
Behältersohle wurde jeweils seitlich ein Kugelhahn aus Mes-
sing (vernickelt) zur Entnahme von Filtratproben angebracht.

In jeden Container wurden zunächst ca. 600 l maschinell 
entwässerter Klärschlamm mit ca. 20 % TS aus der Kläranlage 
Meppen eingebracht und anschließend wie folgt bepflanzt:

 Variante I: Container 1–4, bepflanzt mit Schilf (Phragmites 
australis), 

 Variante II: Container 1–4, bepflanzt mit Rohrglanzgras 
(Phalaris arundinacea), 

 Variante III: Container 1–4, bepflanzt mit Rohrkolben 
 (Typha latifolia), 

 Variante IV: Container 1–4, ohne Bewuchs. 

Um den Verbleib der im Klärschlamm enthaltenen organischen 
Stoffe bilanziell bewerten zu können, wurden  neben Unter-
suchungen des Klärschlamms – Proben aus dem Filtratwasser 
und dem Pflanzenmaterial entnommen und auf organische 
Schadstoffe untersucht.

Aufgrund von Problemen mit Entwässerungsfähigkeit und 
Pflanzenverträglichkeit des maschinell entwässerten Klär-
schlamms wurden im weiteren Projektverlauf die Container 
entleert, mit Klärschlamm aus der Anlage Vererdungsanlage in 
Meppen befüllt und erneut bepflanzt. Alle Untersuchungser-
gebnisse beziehen sich im Folgenden auf diesen Versuchsauf-
bau.

2.2 Probenahme und Aufbereitung

Die Proben wurden mithilfe eines Stahlstechrohrs in drei Tie-
fenprofilen (0–20 cm, 20–40 cm, 40–60 cm) genommen. Zehn 
Teilproben aus den jeweiligen Schichten wurden vereinigt und 
in einem Stahleimer homogenisiert. Von diesen Homogenaten 
wurden 200 g in Glasflaschen für die Analytik versendet.
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2.3 Durchführung der Analysen

Die instrumentelle Analyse wurde mittels GC-MS (Gas-Chro-
matographie mit massenspektrometrischer Detektion) durch-
geführt. Hierzu wurde ein Thermo Finnigan DSQ mit einem 
PTV-Injektor und einem Trace Autosampler eingesetzt.

Die gaschromatographische Trennung wurde mithilfe einer 
DB5-MS-Säule (J&W Scientific), L: 15 m, ID: 0,25 mm, film: 
0,25 m, und eines Temperaturprogramms durchgeführt. Die 
verschiedenen Verbindungen wurden über ihre massenspektro-
metrischen Daten und Retentionszeiten identifiziert.

2.4 Halbwertszeiten

Da die Experimente bei wechselnden Temperaturen und 
Feuchtgehalten durchgeführt wurden, sind die kinetischen Da-
ten nicht so belas  tbar wie zum Beispiel die aus Laborversuchen 
unter kontrollierten Bedingungen gewonnenen Daten. Deshalb 
soll im Rahmen dieses Projekts nur von einer „Abschätzung“ 
und nicht von einer „Bestimmung“ von Halbwertszeiten berich-
tet werden. Es bleibt aber hinzuzufügen, dass diese Abschät-
zung unter realen Bedingungen natürlich realitätsnäher ist als 
die unter kontrollierten Bedingungen gewonnenen Daten. Im 
Rahmen dieser Arbeit wird von einem Abbau erster Ordnung 
ausgegangen:

K = 
ln 

c 0 

c 

t 

Hierbei ist c0 die Startkonzentration zum Zeitpunkt t � 0 und 
c die Konzentration zum Zeitpunkt t. Die Formel für die Halb-
wertszeit wird durch Umformen gewonnen:

t1/2= 

ln 
2
c 0 

c 0 

k
=

ln2
k

3 Auswertung der Versuche

3.1 Konzentrationen der Zielsubstanzen

Die höchsten OTNE-Konzentrationen wurden zu Anfang des 
Experimentes mit 1600 ng g–1 (TS) gefunden. Nach 13 Mona-
ten waren die Konzentrationen bei allen Experimenten um 
70 % der ursprünglichen Konzentration reduziert. Hierbei wur-
de kein signifikanter Unterschied der verschiedenen Bewuchs-
formen festgestellt (Abbildung 3).

Etwa 20 % des HHCB wurden während des Versuchs elimi-
niert. Die Differenz zwischen Startkonzentration und Endkon-
zentration beträgt etwa 3000 ng g–1 (TS). Im Gegensatz dazu 
stieg die Konzentration des Metaboliten HHCB-Lacton um 
35 % in dem Container mit Rohrglanzgras, während der Zu-
wachs bei dem Versuch mit Rohrkolben 32 % und bei dem mit 
Schilf 45 % und ohne Bewuchs 44 % (etwa 500 ng g–1 (TS)) 
betrug. Da die Konzentrationen des Primärmetaboliten stiegen, 
kann davon ausgegangen werden, dass es sich bei den Elimi-
nierungsprozessen tatsächlich um oxidative Abbauprozesse 
durch Mikroorganismen handelt. Es muss aber ebenfalls fest-
gehalten werden, dass wiederum auch ein Abbau des HHCB-
Lactons erfolgt, da der Verlust des HHCB insgesamt größer ist 
als die Zunahme des Metaboliten.
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Die Konzentrationen von AHTN waren erwartungsgemäß 
deutlich niedriger als die des HHCB, was etwa dem derzeitigen 
Einsatzspektrum entspricht. Sie nahmen unabhängig von der 
Bewuchsform ebenfalls leicht ab, leider ist für diese Substanz 
derzeit kein Metabolit eines Bioabbauprozesses bekannt.

Die Triclosan-Konzentrationen nahmen innerhalb des Ver-
suches deutlich ab (Abbildung 4). Die Startkonzentrationen 
(800 ng g–1 (TS)) waren ausgesprochen niedrig, was nur da-
durch zu erklären ist, dass das Material, das aus der seit April 
2003 in Betrieb befindlichen Klärschlammvererdungsanlage 
Meppen stammte, bereits durch die vorherige Lagerungsdauer 
im schilfbepflanzten Beet in Meppen einem Vor-Abbau unter-
zogen war.

Ähnlich wie bei OTNE und Triclosan wurde auch für DEHP 
eine bedeutende Abnahme der Konzentrationen während der 
Versuche gefunden. Etwa 40 % Abnahme erfolgte bei der Be-
pflanzung mit Rohrglanzgras, während die Werte 44 % für 
Rohrkolben, 41 % für Schilf und 25 % für die Versuche ohne 
Bewuchs waren. In Bezug auf DEHP deuten sich also deutlich 
bessere Eliminierungen mit Pflanzenbewuchs an.

3.2 Massenbilanzen

Zur Sicherstellung der Messergebnisse wurde eine Massenbi-
lanz aufgestellt (Tabelle 1), für die die Konzentrationen c1 der 
Zielsubstanzen im Ablaufwasser der Container bestimmt wur-
den.

Den Konzentrationen wurden Wassermengen aus Nieder-
schlag (900 mm bzw. 900 l je Container) und Bewässerung 
(432 l je Container) gegenübergestellt und als Ablaufmenge 
betrachtet. Dies ist sicherlich eine Überschätzung der Ablauf-
menge (Wasser), da die Betrachtung die Verdunstung des Was-
sers nicht berücksichtigt.

Aus diesen Ablaufmengen (Wasser) und der Konzentration 
in dem Ablaufwasser kann eine eluierte Menge (M1) der jewei-
ligen Substanz als die maximale Menge errechnet werden, die 
während des Versuchszeitraums mit dem Drainagewasser aus 
den Containern gespült wurde.

Aus den Konzentrationen im Schlamm c2 kann bei Berück-
sichtigung der Füllhöhe und der Grundfläche der Container die 
Menge der im Schlamm enthaltenen Substanz (M2) errechnet 
werden.

Hieraus lässt sich der relative, im Drainagewasser enthalte-
ne Massenanteil der jeweiligen Substanz errechnen (M1/M2). 
Er beträgt im Falle von OTNE 0,52 % des Ausgangsgehalts und 
ist damit vernachlässigbar. Vergleichbare Aussagen gelten für 
alle hier untersuchten Substanzen. Der Anteil lag zwischen 
0,01 und 0,63 %. Das Auswaschen spielt infolgedessen für kei-
ne der Substanzen eine signifikante Rolle bei den Massenbilan-
zen oder Eliminierungen.

Zusätzlich wurde auch die grüne Blattmasse im Rahmen der 
Massenbilanzierung qualitativ berücksichtigt. Ein Einfluss der 
grünen Blattmasse auf die Reduktion der Xenobiotica (durch 
Aufnahme derselben in die Biomasse) kann ebenfalls ausge-
schlossen werden (�1 %), da sowohl die gemessenen Konzen-
trationen in der Blattmasse sehr gering waren als auch die 
Blattmasse selbst gegenüber der Masse des Klärschlamms nur 
eine untergeordnete Rolle spielt (wenige kg/m² gegenüber 
mehreren Hundert kg Klärschlammmasse/m²).
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4 Diskussion der Ergebnisse

Die durchgeführten Containerversuche wie auch die parallel 
durchgeführten Untersuchungen an den großtechnischen Ver-
erdungsanlagen Meppen in Niedersachsen und Kalkar-Rees in 
Nordrhein-Westfalen zeigen deutlich, dass die vegetative Klär-
schlammbehandlung in der Lage ist, auch schwer abbaubare 
organische Schadstoffe zu reduzieren. Dabei handelt es sich 
höchstwahrscheinlich um echte Abbauprozesse, da entspre-
chende Abbauprodukte (Metabolite) nachgewiesen werden 
konnten. Eine Bilanzierung der Stoffströme zeigte ergänzend, 
dass nur ein Bruchteil (�1 %) der Zielsubstanzen mit dem Fil-
tratwasser ausgewaschen wird. Auch die Aufnahme durch die 
Pflanzen kann mit �1 % vernachlässigt werden. Dass die Art 
der Bepflanzung zudem eine untergeordnete Rolle bei den Ab-
bauprozessen gespielt hat, kann als ein weiterer Beweis gese-
hen werden, dass es sich maßgeblich um substratspezifische 
mikrobielle Abbauprozesse handelt.

Bei den ermittelten Reduktionsraten und Halbwertszeiten 
ist zu berücksichtigen, dass sich diese auf Prozesse beziehen, 
die im schilfbepflanzten Beet allein während der rund zwölf-
monatigen Trockenphase vor einer Verwertung stattfinden. Wie 
die niedrigen Ausgangskonzentrationen des in den Containern 
eingesetzten Materials aus der Anlage in Meppen zeigen, fin-
det ein Abbau der Schadstoffe offenbar schon während der 
normalen Betriebsphase mit periodischer Beschlammung  vor 
Einleitung einer Trockenphase  statt. Setzt man eine Betriebs-
dauer von fünf bis zehn Jahren bis zur eigentlichen Trocken-
phase vor einer Beet-Räumung voraus, in der ebenfalls schon 
durch das periodische Beschicken und Trockenfallen der Beete 
Abbauprozesse stattfinden können, wird deutlich, dass bei die-
sen Anlagen ein unter Umständen noch erheblich höheres Ab-
baupotenzial für organische Schadstoffe besteht.

Für die Gesamtbilanzierung in Hinblick auf die Umweltre-
levanz ist daher eine Input-Output- Betrachtung bezüglich der 
Frachten hilfreich. Dazu wird die ins Beet geleitete Klär-
schlammtrockenmasse (in t TM) mit den in ihr enthaltenen 
Zielsubstanzen (in ng/g TM) im Nassschlamm ins Verhältnis 
zur Masse und den Konzentrationen gesetzt, die am Ende des 
Behandlungszyklus zur Verwertung in die Umwelt gelangen 
würden. Nachfolgend ist dies am Beispiel Kalkar dargestellt 
(Tabelle 2), da nur hier hilfsweise die Konzentration im Nass-
schlamm vorlag. Die Angaben stehen unter dem Vorbehalt die-
ser einmaligen Stichprobe, zeigen in ihrer Tendenz aber den 
deutlichen Einfluss der bepflanzten Beete auf die Entfrachtung 
der umweltrelevanten Zielsubstanzen.

Beispiel Klärschlammvererdungsanlage Kalkar-Rees

Gegenüber der Input-Trockensubstanzmenge von 489 t TM be-
finden sich nach Abschluss der Trockenphase nur noch rund 
331 t TM im Beet. Ein Großteil dieser Massenreduktion ist auf 
den Abbau organischer Substanz zurückzuführen. Gleichzeitig 
nimmt die Konzentration von der Startkonzentration c0 hin zur 
Endkonzentration c während des Behandlungsprozesses lau-
fend ab. Unter Berücksichtigung einer Klärschlammtrocken-
masse von 489 t TM Input und 331 t TM Output am Ende der 
Trockenphase ergeben sich die in Tabelle 3 genannten Frach-
ten.
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5 Fazit

In den Modellanlagen kommt es während des Versuchszeit-
raums zu einer deutlichen Abnahme der Konzentrationen der 
untersuchten Xenobiotica zwischen 20 % (HHCB) und 70 % 
(OTNE). Aus den gewonnenen Daten wurden näherungsweise 
Halbwertszeiten für die Zielsubstanzen ermittelt. Die Konzent-
rationsabnahmen und Halbwertszeiten aus den Modellanlagen 
konnten für die großtechnischen Anlagen weitgehend bestätigt 
oder übertroffen werden (Kalkar). Da bei großtechnischen An-
lagen in der Regel Trockenphasen von zwölf Monaten eingehal-
ten werden, können die Reduktionsraten der Zielsubstanzkon-
zentrationen für diesen Zeitraum bei der Anlage in Kalkar wie 
in Tabelle 4 dargestellt angenommen werden.

Betrachtet man neben den reinen Veränderungen der Kon-
zentrationen in der Trockenphase auch die Massenverände-
rung, die durch Abbau von Klärschlammtrockenmasse eintritt, 
ergeben sich weitere Entlastungen der Umwelt. Am Beispiel 
Kalkar konnte eine Frachtverringerung der untersuchten Xeno-
biotica zwischen rund 50 und 93 % gegenüber der direkten 
Nassschlammausbringung abgeschätzt werden.

Bei den Containerversuchen zeigte sich ein untergeordneter 
Einfluss der eingesetzten Pflanzenarten auf die Versuchsergeb-
nisse. Hierbei ist zu berücksichtigen, dass im Untersuchungs-
zeitraum lediglich die Verhältnisse während Trockenphasen, 
ohne regelmäßige Beschlammung, untersucht wurden. Durch 
ihre Verdunstungsleistung und ihre Rolle bei der Sauerstoffver-
sorgung der Mikroorganismen sind die Pflanzen allerdings ei-
ne wichtige Voraussetzung für eine optimale Entwässerungs- 
und Mineralisierungsleistung großtechnischer Anlagen und so-
mit wichtiger, unverzichtbarer Systembestandteil bei der Klär-
schlammbehandlung in Pflanzenbeeten. Insbesondere 
Schilfpflanzen tragen durch ihre Durchwurzelungsfähigkeit 
auch tieferer Schlammschichten dazu bei, das Gesamtsystem 
hydraulisch durchlässig und damit funktionsfähig zu halten.
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Begriffsbestimmung

Die vegetative Behandlung von Klärschlämmen in bepflanzten 
Beeten wird häufig auch als „Klärschlammvererdung“ bezeich-
net, die großtechnischen naturnahen Entwässerungsanlagen 
synonym als „Klärschlammvererdungsanlagen“.Diese Begriff-
lichkeit leitet sich aus einem von der Deutschen Bundesstiftung 
Umwelt (DBU) geförderten Projekt „Steigerung der Verwer-
tung von Klärschlämmen durch verbesserte Produkte, Quali-
tätsnormungen und erweiterte Märkte“ [1], ab, in dem die 
Entwässerungsendprodukte aus schilfbepflanzten Beeten bo-
denkundlich charakterisiert wurden. Darin wurde festgestellt: 
„Der Prozess der Klärschlammbehandlung in Schilfbeeten ist 
bodensystematisch als ein System im Übergangsbereich zwi-
schen Niedermoor und Mudde/Gyttja anzusprechen. Hinsicht-
lich der Ausgangsstoffe, Prozessbedingungen und Prozesse 
konnten keine systematischen Unterschiede festgestellt wer-
den. (...)es setzen (...)Bodenbildungsprozesse ein, die das Sys-
tem in eine neue bodensystematische Klasse, vererdete Nieder-
moore, Gyttjen/Mudden, überführen.“

Jordan [2] ordnet das Endprodukt der vegetativen Klär-
schlammbehandlung als „Anthrosol AT“ ein, also als einen un-
ter anthropogener Beeinflussung entstandenen Boden. Da mit 
der Begrifflichkeit „Boden“ in der Regel die natürliche Genese 
des Untergrunds bezeichnet wird, wohingegen der Begriff „Er-
de“ zum Beispiel im landschaftsbaulichen Bereich für herge-
stellte Substrate steht (vgl. „Komposterde“), werden im Folgen-
den die Begrifflichkeiten „Vererdung“ und „Vererdungsanla-
gen“ beibehalten. Unabhängig von der Bezeichnung bleiben 
die eingesetzten Ausgangssubstanzen und Endprodukte immer 
Klärschlämme, die gemäß den geltenden gesetzlichen Bestim-
mungen zu verwerten bzw. zu entsorgen sind.

Substanz c1

Ablauf-
wasser

Nieder-
schlag

Bewäs-
serung

M1

Ablauf-
wasser

c2

Schlamm
Tiefe des 
Schlamm-

beets

M2

Schlamm
M1/M2

relativer Massenanteil im 
Ablaufwasser im Vergleich zur 

Menge im Schlamm
[ng L–1] [L m–2] [L] [mg] [ng g–1] [m] [mg] [%]

OTNE 2450 900 432 3,26 1570 0,5 630 0,520

HHCB 5430 900 432 7,23 10 100 0,5 4040 0,179

AHTN 1350 900 432 1,80 2250 0,5 900 0,200

Triclosan 1240 900 432 1,65 800 0,5 320 0,516

HHCB-
Lacton

2280 900 432 3,04 1200 0,5 480 0,633

DEHP 480 900 432 6,39 11 130 0,5 4450 0,014

c1 � Konzentration im Ablaufwasser, M1 � Masse der im Ablaufwasser enthaltenen Substanz, c2 � Konzentration im Schlamm, M2 � Menge der im 
Schlamm enthaltenen Substanz, M1/M2 � relativer Massenanteil der Substanzmenge im Ablaufwasser. Die Material-Dichte wird mit 0,8 t/m³ ange-
nommen, was großtechnischen Erfahrungen mit diesem Material entspricht.

Tabelle 1: Massenbilanzen bei den Containerversuchen
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Substanz Nassschlamm-
Input
[ng/g]

letzter 
Messwert 
im Beet
[ng/g]

Konzen
trationsver-

ringerung um

OTNE 18 000 1600 91 %

HHCB 13 000 9600 26 %

AHTN 2100 1500 29 %

Triclosan 2400 650 73 %

DEHP 28 000 9100 68 %

Tabelle 2: Abbau der Zielsubstanzen in der Vererdungsanlage Kal-
kar während eines Behandlungszyklus

Substanz Input-Fracht
[kg]

Output-Fracht 
(bei Verwertung)

[kg]

Entfrachtung
[%]

OTNE 8,8 0,6 – 93

HHCB 6,4 3,2 – 50

AHTN 1,0 0,5 – 50

Triclosan 1,2 0,2 – 83

DEHP 14 3,0 – 79

Tabelle 3: Entfrachtung der Klärschlammerde Kalkar

Substanz Abgeschätzte 
Halbwertszeit

[Tage]

Konzentrationsbe zogene 
Eliminations rate in 

zwölf Monaten

OTNE 156 77 %

HHCB 924 24 %

AHTN 492 35 %

Triclosan 205 65 %

DEHP 250 55 %

Tabelle 4: Abgeschätzte Halbwertszeiten und rechnerisch ermit-
telte konzentrationsbezogene Eliminationsraten der untersuchten 
Xenobiotica in 12-monatiger Trockenphase (Kalkar)

Abb. 1: Klärschlammvererdungsanlage Hönnepel (acht Beete, 
540 t TS) (Foto: EKO-Plant)

ist 4c
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Abb. 2: Die 16 Versuchscontainer auf dem Testgelände (Foto: 
EKO-Plant)
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a b s t r a c t

Triclosan is an antimicrobial agent which is widely used in household and personal care products.
Widespread use of this compound has led to the elevated concentrations of triclosan in wastewater,
wastewater treatment plants (WWTPs) and receiving waters. Removal of triclosan and formation of tri-
closan-methyl was investigated in activated sludge from a standard activated sludge WWTP equipped
with enhanced biological phosphorus removal. The removal was found to occur mainly under aerobic
conditions while under anoxic (nitrate reducing) and anaerobic conditions rather low removal rates were
determined. In a laboratory-scale activated sludge reactor 75% of the triclosan was removed under aer-
obic conditions within 150 h, while no removal was observed under anaerobic or anoxic conditions.
One percent of the triclosan was converted to triclosan-methyl under aerobic conditions, less under
anoxic (nitrate reducing) and none under anaerobic conditions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Triclosan (2,4,40-trichloro-20-hydroxydiphenylether) is cur-
rently used as a bactericide in personal care products such as
toothpaste, shampoos, and soaps. It is additionally used as a stabi-
lizing agent in a multitude of detergents and cosmetics (Adolfson-
Erici et al., 2002). Triclosan inhibits bacterial growth by blocking li-
pid biosynthesis (Schweizer, 2001). Microalgae communities are
particularly sensitive to triclosan with effective concentrations
around 10 ng L�1 (Wilson et al., 2009). A mechanism responsible
for this effect has been proposed (Franz et al., 2008). Additionally,
triclosan has also been linked to a range of health and environmen-
tal effects, such as skin irritation, allergy susceptibility, and also
other ecological toxicity to the aquatic and terrestrial environment
(Coogan et al., 2007), e.g. it has an effect on earth worms (Eisenia
fetida) (Lin et al., 2010) and on Japanese medaka fish (Nassef
et al., 2010).

After use triclosan ends up in the wastewater with typical con-
centrations of 1–10 lg L�1 (Adolfson-Erici et al., 2002; Lindström
et al., 2002; Singer et al., 2002; Bester, 2005). Removal of about
90% was measured in wastewater treatment plants (WWTP)
employing conventional activated sludge process of which
40–60% was due to biodegradation while the remainder was due
to sorption to the sludge (Singer et al., 2002; Bester, 2003, 2005;
Coogan et al., 2007; Heidler and Halden; 2007; Ying et al., 2007).

On the other hand, this means that most removal occurs due to
biodegradation processes (Singer et al., 2002; Bester, 2003; Heidler
and Halden, 2007). However, only little is known about the reac-
tion pathways and conditions (Federle et al., 2002). About 5% of
triclosan is biomethylated to triclosan-methyl (2,4,40-trichloro-20-
methoxy-diphenylether) (Bester, 2003, 2005; Heidler and Halden,
2007). The structural formulas and basic physico-chemical param-
eters of triclosan and triclosan-methyl are compared in Table 1.
Another 5% of triclosan is transformed to bound residues (Bester,
2003). The biochemical pathways and conditions for formation of
triclosan-methyl are largely unknown up to now, as most studies
focused on the mass flow of triclosan-methyl in the WWTP treat-
ment process (Bester, 2005), its formation in estuarine systems
(DeLorenzo et al., 2007) as well as bioaccumulation of triclosan-
methyl in fish samples (Lindström et al., 2002; Balmer et al.,
2004). It is known, though, that triclosan-methyl is more persis-
tent, lipophilic, bio-accumulative and less sensitive towards
photo-degradation in the environment than its parent compound
(Lindström et al., 2002; Balmer et al., 2004). Typical concentrations
of triclosan in sludge were 2–8 mg kg�1 dry matter in Germany
(Bester, 2003) while triclosan-methyl was only detected with
0.004–0.311 mg kg�1 (dry weight) in sewage sludge samples from
municipal wastewater treatment plants in Spain (Sánchez-Brunete
et al., 2010).

To maximize the biodegradation of compounds like triclosan
and triclosan-methyl it is crucial to understand by which process
and in which part of the treatment plants triclosan is eliminated
and by which process triclosan-methyl is generated. There are
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three basic processes in biological treatment in the WWTP: aero-
bic, anaerobic and anoxic. Aerobic (oxygen present) biological
treatment is generally used removal of BOD (biochemical oxygen
demand) as well as for nitrification (ammonia to nitrate). Anoxic
conditions (no oxygen but nitrate present) are used for denitrifica-
tion (nitrate to nitrogen gas). True anaerobic conditions (neither
oxygen nor nitrate present) are limited to sludge digestion pro-
cesses such as methane production. These three individual types
of biological treatment processes can be run in one tank with dif-
ferent operating regimes in time or in separate tanks to offer better
treatment. The current study compared the degradation of triclo-
san and formation of methyl-triclosan under the different condi-
tions in laboratory-scale experiments to determine which of the
processes were important for the biodegradation of triclosan in
waste water treatment.

2. Materials and methods

2.1. Activated sludge sampling

Activated sludge samples for the preliminary experiments were
sampled from Aalborg East wastewater treatment plant (WWTP),
which processes 6 � 106 m3 wastewater (100 000 population
equivalents, PE) annually. Samples for the detailed aerobic experi-
ments were from Aalborg West WWTP, which processes
22 � 106 m3 wastewater (330 000 PE) annually.

The other key parameters of the plants are similar. Both receive
about 80% municipal wastewater and 20% from local industries.
They run with a hydraulic retention time of 24–30 h and sludge
retention time of 25–30 d, and the process configurations include
a screen chamber, primary sedimentation basins, activated sludge
treatment basins and a final clarifier before the treated water is re-
leased into the Limfjord. Nitrification and denitrification are per-
formed as alternating denitrification. Phosphorous removal is
performed mostly by biological means. The suspended solids (SS)
content of the activated sludge was 4 g L�1 and its volatile solids
content was 2.5 g L�1 during the sampling period.

2.2. Degradation experiments

Biodegradation experiments were carried out in 5 L glass biore-
actors. During the experiments, all reactors were maintained at
17 ± 2 �C. The reactors were completely covered by aluminium foil
to prevent photolytic degradation. They were monitored daily for
loss of water by weighing, eventual loss of water was compensated

by adding tap water. No action was undertaken to prevent volatil-
ization of triclosan, as the vapor pressure of triclosan and triclosan-
methyl, both are very low (Table 1). The reactors were stirred by
means of teflonized magnetic stir bars to keep the sludge homoge-
neous. No additional carbon source was added to the system, thus
they were run as static reactors. Duplicated sludge samples were
taken every day from each reactor.

The incubation conditions were established as:

(1) Aerobic conditions by supplying air through a diffuser stone
with a flow rate of 1.3 L h�1.

(2) Anaerobic conditions were maintained by constantly flushing
the respective bioreactor with nitrogen gas.

(3) Anoxic (nitrate reducing) conditions were maintained by
constant addition of potassium nitrate (KNO3)(44 gN
d�1 L�1).

The preliminary experiments were incubated for 80 h under
aerobic, anaerobic and anoxic conditions with starting concentra-
tions of 0.1 mg L�1 triclosan, which is exceeding typical wastewa-
ter concentrations by a factor of 10 but it is in the same range as
expected in activated sludge in municipal WWTPs (Bester, 2005).

Detailed aerobic experiments were performed for 10 d at five
different initial triclosan concentrations to determine the rate of
triclosan-methyl formed from triclosan under aerobic conditions.
Triclosan concentrations of 0.02, 0.5, 1, 2 and 3 mg L�1 were used
in order to investigate whether the degradation of triclosan and
formation of triclosan-methyl were concentration related. The
3 mg L�1 is towards the very high end of the concentration that
can still be found in rare cases in sludge (Stasinakis et al., 2007).
The high concentrations were chosen, to be able to discriminate
between triclosan an triclosan-methyl already present in the
sludge and those freshly spiked for the experiments. In these
experiments oxygen concentrations were measured and continu-
ously kept above 4.0 mg L�1.

2.3. Extraction and instrumental analysis

2.3.1. Liquid sludge
Ten millilitre sludge samples from the experiments were di-

luted by tap water to 1 L and extracted successively for 20 min
with 10 mL toluene by means of vigorous stirring with a teflonized
magnetic stir bar after adding an aliquot of 100 lL of internal stan-
dard solution (musk xylene D15). The organic phase was separated
from the aqueous one and the residual water was removed from

Table 1
Structural formulas and other environmental parameters of triclosan and triclosan-methyl.

Triclosan (Bester, 2005; Lindström et al., 2002, EPI
Suite 4.0)

Name: 2,4,40-trichloro, 20-hydroxy-
diphenylether
Water solubility: 4.621 mg L�1

Vapor pressure: 0.00062 Pa
log Kow: 4.2–4.8
log Koc: 4.3
pKa: 7.9

Triclosan-methyl (Bester, 2005; Balmer et al.,
2004, EPI Suite 4.0)

Name: 2,4,40-Trichloro, 20-methoxy-
diphenylether
Water solubility: 0.4 mg L�1

Vapor pressure: 0.00093 Pa
log Kow: 5
log Koc: 4.1
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the organic phase by freezing the samples overnight at -20 �C. The
organic extracts were concentrated to 1 mL with a nitrogen flow
condensator at 55 �C.

2.3.2. Solid sludge
To determine sorption of triclosan into the solid phase, another

10 mL sludge samples were taken every day from each reactor. The
samples were filtered through GC-50 glass fiber filters (Advantec,
Tokyo, Japan) with pore size of 0.2 lm. Filter residues (sludge solid
matter) were immediately stored in a refrigerating room at �27 �C
overnight and then lyophilized at 2 mbar and �46 �C. The lyophi-
lized samples were extracted by means of accelerated solvent
extraction (ASE) with ethyl acetate at 90 �C and 150 bar (Chen
and Bester, 2009). The resulting extracts were then concentrated
by using a Büchi multiport concentrator at 80 �C and 70 mbar
(Büchi, Essen, Germany) after adding 10 mL toluene and 100 lL
internal standard solution.

2.3.3. Instrumental analysis
Triclosan extracts from the liquid and solid sludge samples

were both finally analysed by gas chromatography with mass spec-
trometric detection (GC–MS, Thermo-Trace GC–MS) equipped with
a splitless injector and A200S autosampler. Samples (1 lL) were in-
jected into the injector in splitless (1.5 min) mode held at a tem-
perature of 240 �C. The GC separation was performed with a Rxi-
5Sil MS column (Restek, Bellefonte, USA), L: 10 m; ID: 0.18 mm;
film: 0.18 lm and a temperature programme of: 90 �C (hold:
1 min) ramped with 50 �C min�1 to 135 �C and then with
10 �C min�1 to 220 �C. Finally, the baking temperature was reached
by ramping the column with 40 �C min�1 to 260 �C which was held
for 6 min. Helium (5.0) was used as carrier gas with a flow rate of
1.3 mL min�1. The transfer line of the mass spectrometer (Trace
MS, Thermo Finnigan, Dreieich, Germany) was held at 250 �C.
The ion source was operated at 160 �C. The mass spectrometer
was operated in selected ion monitoring (SIM) utilizing 31–61 ms
dwell time. The detector of the mass spectrometer was operated
at 450 V. Table 2 lists the retention times of triclosan and triclo-
san-methyl and the mass fragments used for the detection.

2.3.4. Data treatment
The average of the duplicate extractions measured by duplicate

injections was used for further data processing. The calibrations
were performed as a multi-step internal standard calibration
(10–10 000 ng mL�1). The full method and validation data for tri-
closan and triclosan-methyl for liquid samples were described in
Bester (2005), while those for the solids were described by Chen
and Bester (2009). Both are shown in Table 2. To additionally val-
idate this method for recovery of triclosan from liquid sludge, it
was tested by extracting several activated sludge samples spiked
with this biocide. Five different concentrations (between 20 lg g�1

and 3000 lg g�1) were dosed and for each concentration two sam-
ples were extracted; thus 10 extractions were performed. The
recovery rate of triclosan was 82% with 10% relative standard devi-
ation, which is consistent with previous measurements (Bester,
2005).

2.4. Materials

Triclosan was purchased from Ehrenstorfer (Augsburg,
Germany) with a purity of P99% according to the supplier.
Triclosan-methyl was synthesized from triclosan by methylation
with trimethylsulfonium hydroxide solution (Macherey–Nagel,
Dueren, Germany) at 40 �C (Bester, 2003). Toluene was used in res-
idue grade (z.R.) quality and purchased from Merck (Darmstadt,
Germany). The internal standard musk xylene D15 (Ehrenstorfer,
Augsburg, Germany) was used to quantify triclosan and triclosan-
methyl (Andresen and Bester, 2006).

3. Results and discussions

3.1. Preliminary experiments

In this experiment the fate of triclosan was investigated in reac-
tor experiments under aerobic, anaerobic and anoxic conditions
with sludge from Aalborg East WWTP. After 80 h the concentration
of the parent compound was reduced from 30 to 15 lg L�1 (49%,
i.e. significantly) under aerobic conditions, but only from 32 to
28 lg L�1 (11%) and from 32 to 29 lg L�1 (16%) under anaerobic
and anoxic conditions, respectively, which is very close to the
method standard deviation, i.e., 11% (Bester, 2005).

Opposite to the triclosan concentrations, those of triclosan-
methyl concordantly increased from 4.2 to 5.0 lg L�1 (16%) during
the aerobic incubation and from 4.1 to 4.8 lg L�1 (17%) during the
anoxic incubation. Considering the analytical standard deviation,
this increase is significant. Additionally, no change of concentra-
tions was detected under anaerobic condition.

In summary, the fastest removal triclosan removal and its high-
est transformation rate to triclosan-methyl were determined under
aerobic conditions. Therefore, the more detailed experiments on

Table 2
Quality assurance data including the MS data (analytical and verifier ions) as well as limit of quantification (LOQ) of the experiments for the liquid samples. Data for recovery rate
(RR) and relative standard deviation (RSD) for liquid sludge were from Bester (2003), while those for solid sludge were from Chen and Bester (2009).

Analyte Analytical ion
(amu)

Verifier ion
(amu)

Retention time
(min)

LOQ
(ng L�1)

(RR) for liquid
sludge (%)

(RSD) for liquid
sludge (%)

(RR) for solid
sludge (%)

(RSD) for solid
sludge (%)

Triclosan 288 290 6.11 10 88 11 114 12
Triclosan-

methyl
302 304 6.04 0.3 102 11 55 10
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Fig. 1. Concentrations of triclosan and triclosan-methyl in aerated reactors. Starting
concentration 20 lg L�1 triclosan (unspiked). Error bars indicate standard error of
11% (Bester, 2005).
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degradation and methylation of triclosan were carried out in acti-
vated sludge under the aerobic conditions.

3.2. Detailed aerobic kinetic experiments

To make sure the elevated concentrations of triclosan-methyl at
the end of the experiment really originated from the freshly added
triclosan and not from an old and eventually unknown pool of tri-
closan in the sludge, several experiments were performed with dif-
ferent triclosan concentrations in aerobic experiments. Triclosan
concentrations were rapidly reduced in all reactors while
triclosan-methyl concentrations increased concomitantly. Fig. 1
shows these data for the reactors with 0.02 mg L�1 starting triclo-
san concentrations (unspiked), while in Fig 2 the data for starting
triclosan concentrations of 1 and 2 mg L�1 (spiked) are shown,
respectively. The major part of removal was achieved within
150 h (Figs. 1 and 2), after which the triclosan concentrations re-
mained almost constant at less than 0.01 mg L�1 to the end of
the experiment (220 h) (Fig. 1).

The production of triclosan-methyl occurred in all experiments.
The concentrations of triclosan-methyl increased according to the
starting levels of the parent compound, though the concentrations
of the metabolite remained significantly lower than the initial par-
ent concentrations (Fig. 2). It is assessed that in these reactors 1% of
triclosan was transformed into triclosan-methyl during the experi-
ment under aerobic conditions. However, in the reactor with triclo-
san starting concentration of 0.02 mg L�1 (Fig. 1), the production of

triclosan-methyl was mostly obscured by the background concen-
trations (from the sludge from the waste water treatment plant).
In the reactors fed with 1 and 2 mg L�1 triclosan, the concentrations
of triclosan-methyl increased (Fig. 2), reaching the highest concen-
trations after 120 h, at which they remained until the end of the
experiment. The concentration increase of themetabolite coincided
with the concentration decrease of the parent compound. Though
no strict mathematical equations could be established, it is clear,
that the higher the starting concentration of triclosanwas, the high-
er was the metabolite concentration at the end of the experiment,
thus proving the triclosan-methyl was really formed from the
added triclosan. The experiment thus indicates that the biomethy-
lation of triclosan can occur in aerobic reactors. As the concentra-
tions of triclosan-methyl are unchanged even after more than
100 h after the main pool of triclosan is consumed, it is obvious that
the metabolite cannot be degraded within timeframes relevant for
wastewater treatment.

To quantify the possible sorption of triclosan, solid samples
were analysed. Consistently 10% of the triclosan found in the
experiment medium (liquid sludge) was sorbed to the solids
throughout the experiment. The triclosan concentrations in the so-
lid phase show thus decrease in parallel to those in the liquid
phase. The partitioning of triclosan between the solid and liquid
phase remains constant, thus exchange processes are quick in com-
parison to the degradation. Additionally, the pH value of the sludge
was measured as triclosan adsorption and extraction are pH
dependent (Lindström et al., 2002). The pH value remained con-
stant (6.9 ± 0.5) during the experiment indicating that the concen-
tration changes measured are not influenced by pH.

At low concentrations (normal WWTP levels, up to 20 lg L�1)
the biological degradation of triclosan followed the first-order
kinetics (Fig. 1), while the reaction kinetics is more complex at
higher concentrations (>500 lg L�1). Thus, the pseudo-first-order
rates and half-lives from reactors were calculated to give an over-
view of the performance of the system (Table 3). The estimated
half-lives (t1/2) were found to be 54–86 h, and the elimination rates
considering a 10-d period were 75% and 86% for the reactors with
initial triclosan concentration of 0.02 and 0.5 mg L�1, and 99% for
reactors with the initial triclosan concentration of 1, 2 and
3 mg L�1.

The half-life of triclosan in this experiment was not dependent
on the concentration. However, the elimination rates were
relatively lower when the starting concentration was low
(0.02 mg L�1), and reached higher values (>99%) when the starting
concentration was high (>1 mg L�1). These data are from steady
state lab scale experiment, thus should be extrapolated to full-
scale WWTPs (which are flow through systems) with caution, as
external carbon sources, temperature, interference of other organic
compounds etc. may lead to different rates.

The rate constants of triclosan-methyl generation increased
concordantly with the starting concentration of triclosan as shown
in Table 3. With the initial triclosan concentrations of 0.5, 1, 2 and
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Fig. 2. Concentrations of triclosan and triclosan-methyl in aerated reactors. Starting
concentration of 1 and 2 mg L�1 triclosan (spiked). Error bars indicate standard
error of 11% (Bester, 2005).

Table 3
Degradation rate constant (k) of triclosan and generation rate of triclosan-methyl in different concentrations in aerobic activated sludge systems. Starting concentration (Co) and
final concentrations (Cf) are given. The final concentrations were measured after 220 h. Half-lives and pseudo-first-order rate constants for the degradation of triclosan were
calculated from the data between lag phase (24 h) and end of reaction (120 h), whereas generation rates of triclosan-methyl were calculated by using the data between 0–120 h.

Removal of TCS Formation of TCS-Me

Co (lg L�1) Cf (lg L�1) k (s�1) R2 t1/2 (h) Co (lg L�1) Cf (lg L�1) k (s�1)

20 5 0.0081 0.9969 86 1.6 2.2 0.004
500* 55 0.0095 0.9961 73 2.8 6.4 0.0054
1000 10 0.0129 0.8832 54 2.2 10.7 0.0103
2000 10 0.0085 0.9451 82 3.2 18.7 0.0127
3000 10 0.0123 0.7094 56 3.2 19.8 0.0129

* This experiment was ended after 168 h.
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3 mg L�1, the rate constants were 0.0054, 0.0103, 0.0127 and
0.0129 s�1, respectively.

Biomethylation of triclosan under aerobic conditions was sur-
prising as methylation of pollutants such as mercury (Gray et al.,
2004, 2006; Barringer and Szabo, 2006), antimony, arsenic (Duster
et al., 2008), bismuth (Michalke et al., 2002) and phenols (Pfeifer
et al., 2001) is usually associated with anaerobic, anoxic (no oxy-
gen but nitrate present), methanogenic or sulfate reducing re-
gimes. However, biomethylation, e.g., by cobalamin (Vitamin
B12) (Wehmeier et al., 2004) is not restricted to anaerobic condi-
tions. Older literature reported the conditions that induced meth-
ylation processes were rather ‘‘organic-rich’’ (Compeau and
Bartha, 1985), while others have reported that polychlorinated
phenoxy phenols (PCPP) were biomethylated in contaminated soil
and in several pure and mixed bacterial cultures under aerobic
conditions (Valo and Salkinoja-Salonen, 1986). Additionally, biom-
ethylation of chlorinated phenolic compounds (Häggblom et al.,
1988) and tetrabromobisphenol-A (George and Häggblom, 2008)
has been detected under aerobic conditions.

4. Conclusions

Triclosan-methyl was formed concomitantly with the removal
of triclosan in activated sludge under aerobic conditions.
Triclosan-methyl was also formed under anoxic (nitrate reducing)
conditions although at lower rates but was not formed under
anaerobic conditions in laboratory experiments. According to these
laboratory experiments, the emissions of triclosan-methyl will
thus be affected mostly by the management of the BOD removal
and nitrification tanks but not during anaerobic digestion.
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a b s t r a c t

Triclosan is an antimicrobial agent widely used in many household and personal care prod-

ucts. Widespread use of this compound has led to the elevated concentrations of triclosan in

wastewater, wastewater treatment plants and receiving waters. In this study removal of

triclosan by aqueous ozone was investigated and the degradation products formed during

ozonation of an aqueous solution of triclosan were analyzed by GC-MS and HPLC-MS/MS.

The following transformation products have been identified: 2,4-dichlorophenol, chloro-

catecol, mono-hydroxy-triclosan and di-hydroxy-triclosan during treatment process. Cyto-

toxicity and genotoxicity of pure triclosan and 2,4-dichlorophenol have been investigated and

the results showed reduced genotoxic effects after ozonation, though the respective chlor-

ophenol is harmful to aquatic organisms.

ª 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Triclosan (2,4,40-trichloro-20hydroxydiphenylether, CAS: 3380-
34-5) is currently used as an antimicrobial agent in toothpaste,

mouthwash, liquid soap and in functional clothing such as

functional shoes and underwear (Engelhaupt, 2007). It is also

used as a stabilizing agent in a multitude of detergents and

cosmetics and as an antimicrobial agent in polymeric food

cutting boards (Adolfsson-Erici et al., 2002; Dann and Hontela,

2011). Approximately 1500 t are produced annually world-

wide, and approximately 350 t of those are applied in Europe

(Singer et al., 2002). The primary emission route for triclosan

after usage is through wastewater. In fact, investigators have

detected triclosan in numerous municipal wastewater

influent samples at concentrations in the range of

0.5e4.5 mg L�1 (Buth et al., 2011; Lindström et al., 2002).

In wastewater treatment plants (WWTPs) 90% of the incoming

triclosan was removed from the water (Bester, 2003, 2005;

Heidler and Halden, 2008; Singer et al., 2002), which is a high

but not complete removal. As a result, it has been found in

some sewage treatment plant effluents as well as in surface

water and ground water in many countries (Adolfsson-Erici

et al., 2002; Balmer et al., 2004; Bester, 2005). In addition, it

has been detected in fish, soil and sediments due to its

hydrophobicity (Coogan et al., 2007; Lozano et al., 2010; Xie

et al., 2008).
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Triclosan inhibits bacteria growth by blocking biosynthesis

of lipids, which is necessary for building cell membranes and

reproduction (Levy et al., 1999; Schweizer, 2001). The impact of

triclosan on aquatic organisms and the ecosystem in general

has been investigated in several in vivo studies. These studies

showed that triclosan is toxic to fish (Lindström et al., 2002),

algae (Wilson et al., 2003) and other aquatic organisms (Orvos

et al., 2002). Algal toxicity was shown at a minimum concen-

tration of 0.15 mg L�1 for up to 13 days of exposure and

community changes were visible even at 0.015 mg L�1 (Wilson

et al., 2003). The EC50 of triclosan in fish is between 240 and

410 mg L�1 (Lindström et al., 2002; Orvos et al., 2002). In vitro

studies on human gingival cells reported toxic effects at

concentrations between 4.3 and 28.96 mg L�1 depending on

the test and the exposure time (Zuckerbraun et al., 1998).

Acute toxic effects were found to start at 0.28 mg L�1 using the

bioluminescent bacteria Vibrio fischeri (Farre et al., 2008).

In addition to these toxic effects it was reported that triclosan

and its degradation products show endocrine disrupting

effects (Foran et al., 2000; Ishibashi et al., 2004; Raut and

Angus, 2010). The toxicity of 2,4-dichlorophenol was previ-

ously investigated by Ensley et al. (1994) who found EC50

values of 6.5 mg L�1 in Lemna gibba.

As conventionalwastewater treatment processes areunable

to act as a reliable barrier concerning triclosan, it is discussed to

introduce additional advanced treatment technologies in the

areaswhere a pollution problemconcerning triclosan and other

persistent organic pollutants has been recognized or is antici-

pated. Ikehataetal. (2008)andTernesetal. (2003)haveevaluated

different technologies including ozonation and advanced

oxidation processes, membrane bioreactors, membrane filtra-

tion and activated carbon adsorption, suggesting that chemical

oxidations using ozone is a highly effective treatment process

for a wide spectrum of emerging organic pollutants, including

pesticides, pharmaceuticals, personal care products, surfac-

tants, microbial toxins and natural fatty acids. Ozone (O3) is

a very powerful disinfecting and deodorizing gas. The ability of

ozone to disinfect polluted water was recognized in 1886 by de

Meritens (Vosmaer, 1916). However, the widespread introduc-

tionof ozone to removepollution fromdrinkingwater started in

the 1960s (Langlais et al., 1991). Nowadays, ozone is used in

removing bacteria, viruses, algae and fungi as well as

sulfur, thus also eliminating taste and odor problems, as well

as oxidizing and mineralizing organic chemicals concerning

drinking water (Langlais et al., 1991).

Ozonation has recently emerged as an important tech-

nology for the oxidation and destruction of a wide range of

organic pollutants in wastewater as well (Ikehata et al., 2006).

It has been proven to be an effective post-treatment technique

for pharmaceuticals and personal care products (Carballa

et al., 2007; Ikehata et al., 2008; Lee and von Gunten, 2010;

Wert et al., 2009; Snyder et al., 2006).

Although ozonation of organic pollutants in wastewater

has been investigated in numerous studies, data on the

removal of triclosan and eventual formation of by-products

are scarce and incomplete and they are mainly focused on

the effect andkinetics of triclosanoxidationbyaqueousozone.

Suarez et al. (2007) investigated that nearly 100% of triclosan

depletion was achieved for a 4 mg L�1 O3 dose applied to

a wastewater containing 7.5 mg L�1 of DOC, while Wert et al.

(2009) reported that >95% triclosan removal was indepen-

dent of water quality when the O3 exposure was measurable

(0e0.8 mgmin L�1). However, Levy et al. (1999) investigated

that the antibacterial activity of triclosan is derived primarily

from its phenol ring, via van derWaals and hydrogen-bonding

interactions with the bacterial enoyleacyl carrier protein

reductase enzyme. The characterization of the reaction path-

ways of the ozonation of triclosan is currently rather unclear.

Furthermore, it is essential to understand all possible trans-

formation products to enable a full risk assessment especially

considering toxicological classification.

The objective of this work was to study the reaction prod-

ucts of triclosan formed during ozonation treatment. Addi-

tionally, the toxicity of selected by-productswas investigated to

evaluate the oxidative post-treatment technique with ozone in

removal of triclosan in water and wastewater systems.

2. Materials and methods

2.1. Standards and reagents

Triclosan was purchased from Ehrenstorfer (Augsburg,

Germany) with purity being �99% according to the supplier.

Methanol, Toluene, Acetone, Methyl-tert-butyl ether (MTBE)

were used in residue grade quality and purchased fromMerck,

Darmstadt, Germany. Triclosan stock solutions were prepared

at a concentration of 10mg L�1 according to its water solubility

by dissolution of the solid compound in water (HPLC grade,

Baker, Deventer, The Netherlands).

2,4-dichlorophenol, 4-chlororesorcinol, and 4-chlorocatechol

were purchased from Sigma Aldrich.

O3 stock solutions were prepared by purging an O3-

containing gas stream through HPLC water. The O3-containing

gas streamwasproducedbypassingair throughanO3generator

(Enaly 1000BT-12, Enaly M&E Ltd, Shanghai, China) at constant

flow rate of 0.5 Lmin�1. According to UVeVis spectrophotom-

etry (Shimadzu, Duisburg, Germany), the concentration of O3

stock solution was 2 mg L�1.

In the toxicity tests the Chinese hamster ovary cells

(CHO-9) were used and MTT (Sigma, St. Louis, USA) was used

in the cytotoxicity test.

2.2. Ozonation and extractions

Samples were prepared by mixing O3 stock solutions into

triclosan stock solutions in different volume ratios to reach the

molar ration of triclosan:O3 in 1:1, 1:3 and 1:5. All samples were

extracted after the reaction performed at room temperature

overnight. ThepHof thewater usedwas 7� 0.5. Itwasmeasured

at the beginning of the experiments as well as at the end.

Samples were extracted by solid phase extraction (SPE)

using polymeric cartridges (Strata-X, Phenomenex, Aschaf-

fenburg Germany). Before the extraction, the SPE cartridges

were rinsed with 6 mL methanol and 6 mL HPLC-grade water.

After loading the samples to the cartridges, they were eluted

by methyl-tert-butyl ether (MTBE) for analysis by gas

chromatography-mass spectrometry (GC-MS), whereas

duplicate samples were eluted by methanol for analysis by

wat e r r e s e a r c h 4 6 ( 2 0 1 2 ) 2 2 4 7e2 2 5 62248



Author's personal copy

high performance liquid chromatography-mass spectrometry

(HPLC-MS/MS).

2.3. Analytical methods

Samples eluted by MTBE were analyzed by gas chromatog-

raphy with mass spectrometric detection (GC-MS) equipped

with a programmable temperature vaporizer (PTV) injector.

The PTV (1 mL injection volume) was operated in PTV splitless

mode. The injection temperature of 115 �C was held for 3 s, it

was successively ramped with 12 �C s�1 to 280 �C for the

transfer of the analytes. This temperature was held for

1.3 min. The injector was then ramped with 1 �C s�1 to 300 �C
which was held for 7 min as a cleaning phase.

The GC separation was performed with a DB-5MS column

(J&W Scientific, Santa Clara, United States), L: 15 m; ID:

0.25 mm; film: 0.25 mm using a temperature programme of:

100 �C (hold: 1 min) rampedwith 5 �Cmin�1 to 220 �C andwith

30 �Cmin�1 successively to 280 �C. Finally, the baking

temperature 280 �C was held for 7 min. Helium (5.0) was used

as a carrier gas with a flow rate of 1.3 mL min�1. The transfer

line was held at 250 �C, which is sufficient to transfer all

compounds from the GC into the MS as the vacuum builds up

in the transfer line. The ion source of the mass spectrometer

(DSQ, Thermo Finnigan, Dreieich, Germany) was operated at

230 �C in electron impact mode. The MS was used in full scan

mode from 50 Da to 600 Da and the detector was operated

with 1218 V.

The samples eluted by methanol were analyzed by liquid

chromatography with tandem mass spectrometric detection

(HPLC-MS/MS). The separation was performed using a Phe-

nomenex synergi 4u polar-RP column (150� 2 mm I.D.,

particle size 4 mm). The flow rate was 0.25 mLmin�1. The LC

gradient was established by mixing two mobile phases: phase

A, HPLC water and phase B, Methanol. The chromatographic

separation was achieved with the following gradient: 0e2 min

100% A, changing to 100% B in 30 min, 32e36 min 100% B. The

injection volume was 10 mL.

The LC system consisted of a UltiMate 3000 autosampler

(WPS-3000 T SL), a UltiMate 3000 pump (DG-3600 M), a UltiMate

3000 columncompartmenthold (TCC-3000RS) on20 �C (all from

Dionex, California, United States). After LC separation, the

analytes were determined by an AB-Sciex (California, United

States) API 4000 triple quadruple mass spectrometer using

electrospray ionization in negative mode with full scan from

130 Da to 400 Dautilizing theprimaryquadrupole.Nitrogenwas

used as a drying (at 400 �C) nebulizing and collision gas. One

scan per second was recorded.

2.4. Toxicity tests

2.4.1. Cell culture
The Chinese hamster ovary cells (CHO-9) were cultured in

HAM’s F12 medium supplemented with 10% Foetal Calf

Serum, 0.5% gentamycin and 0.5% L-glutamine at 37 �C and 5%

CO2 conditions.

2.4.2. Exposure
Triclosan and 2,4-dichlorophenol were tested between 0.5 and

100 mg L�1 for 24 h.

2.4.3. Cytotoxicity: MTT test
To detect cytotoxic effects the MTT test was performed using

the 96-well plate format using 100,000 CHO-9 cells in 200 mL of

HAM’s F12 medium in each well. After 24 h the fresh medium

was added and the cells were exposed to the different concen-

trations of the two substances for another 24 h. After the

exposure time the medium was removed and 100 mL fresh

medium and 10 mL MTT solution (5mg MTT dissolved in 1 mL

phosphatebufferedsaline) (KCl 2.67mM,KH2PO4 1.47 mM,NaCl

137.93mM, Na2HPO4$7H2O 8.06mM; Invitrogen) were added to

each well and incubated at 37 �C for 2 h. Themediumwas then

replaced with 100 mL of lysis solution (99.4 mL dimethylsulf-

oxide, 0.6 mLacetic acid [100%] and10 g sodiumdodecyl sulfate)

and the absorption was directly measured at 590 nm.

2.4.4. Genotoxicity: alkaline comet assay
Thealkaline cometassaywasperformedasdescribedbyOstling

and Johanson (1984) and later on revised by Singh et al. (1988)

with some minor modifications. In short: Microgels were

prepared by adding 50 mL of low melting point agarose (L.M.P.

agarose) to a chamber. 100,000 CHO-9 cells were exposed to

different concentrations of triclosan and 2,4-dichlorophenol for

24 h. 0.1 mgL�1 N-ethyl-N-nitrosourea was used as a positive

control and added to the cells 30min prior to trypsination. After

the exposure time the cells were washed, trypsinated and

resuspended. 45 mL of low melting point agarose were mixed

with 20 mL of cell suspension containing 8000 cells and addedon

top of the first layer of agarose. After solidification the slides

were coveredwith freshlypreparedandprecooled lysis solution

overnight at 4 �C. Before electrophoresis the slides were incu-

bated in electrophoresis solution at 4 �C for 20min. Electro-

phoresis was then performed for 20 min at 4 �C with 300mA.

After electrophoresis the slides were incubated in neutraliza-

tion solution for 30minandafterwarddehydrated inethanol for

2 h. Then the slides were stored overnight to let the gels dry

completely. DNA was stained with SYBR Green� and image

analysis was performed using the Comet Assay IV Software

(Perceptive Instrument, UK) and a CCD (charge coupled device)

camera attached to a Leica microscope. All experiments were

carried out three times and statistical analysis was performed

using the ManneWhitney test.

3. Results and discussions

3.1. Identification of triclosan ozonation products

In Table 1 it can be seen that triclosan reacts under all used

conditions quantitatively with ozone, thus removal rates of

94e99.9% seem realistic.

However, four major peaks were detected in the gas chro-

matogram of a sample extract of ozonized triclosan sample

withmolar ratio of triclosan:ozone in 1:2 measured by GC-MS.

On the basis of their mass spectra, isomers of dichlorophenol

(M1) and chlorocatechol (M2) were identified at the retention

time of 5.88 min and 12.7 min, respectively. Peaks at retention

time of 24.99 min and 28.94 min were identified as triclosan

and its mono-hydroxylated product (M3). By comparing to

a true standard, 2,4-dichlorophenol was verified as the major

monoaromatic metabolite in GC-MS. The full results of all
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transformation products identified by GC-MS are listed in

Table 2.

A chromatogram of a sample with the molar ratio of tri-

closan:ozone: 1:2 measured by HPLC-MS is shown in Fig. 1.

Similar to the results from GC-MS, dichlorophenol (M1), chlor-

ocatechol (M2) and mono-hydroxy-triclosan (M3) were identi-

fied in the chromatogram. They were detected in different

ratios by GC-MS and HPLC-MS because of different extraction

and detection methods. Additionally, two isomers of chlor-

ocatechol (M2) and di-hydroxy-triclosan (M4) were detected by

the HPLC-MS measurements. The dichlorophenol (M1) was

confirmed as 2,4-dichlorophenol by comparison to a standard

purchased from Sigma Aldrich (Steinheim, Germany), the two

isomers of M2 were confirmed as 4-chlorocatechol (4-chloro-

1,2-dihydroxybenzene) (M2a) and 4-chlororesorcinol (4-chloro-

1,3-dihydroxybenzene) (M2b) by comparison with standards

purchased from Sigma Aldrich (Steinheim, Germany).

Other transformation products did not comply with stan-

dards by means of the retention time or were not commer-

cially available. Therefore, collision-induced dissociation

(CID) was used to produce product ion scans for further

metabolite identification. For this purpose the [M-H]� ion was

selected as precursor ion. The HPLC-MS/MS results of the

metabolite identification are listed in Table 3.

Table 1 e Volumes, molar ratios, and initial concentrations of triclosan and ozone in samples in comparison to final
triclosan concentrations and removal rates.

Sample
Name

Volume of
triclosan stock
solution [mL]

Volume of
aqueous

ozone [mL]

Molar ratio
of triclosan
to ozone

Initial concentration Residual
triclosan
[mg L�1]

Removal
rate [%]

Triclosan [mg L�1] Ozone [mg L�1]

Sample 1 45 55 1:1 4.5 1.1 0.26 94

Sample 2 29 71 1:3 2.9 1.42 0.087 97

Sample 3 14 86 1:5 1.4 1.72 0.001 99.9

Table 2 e GC-MS results of the transformation product identification.

Compound Structure Retention
time [min]

MW
[Da]

RTþMS
complied
standard

RTþMS
complied
theory

Mass fragments
(including the

Cl isotope signals)
[Da]

Triclosan (M)

O

OH

Cl

Cl

Cl

24.99 288 Yes Yes 288 (290, 292),

252 (254, 256),

218 (220)

2,4-Dichlorophenol

(M1)

Cl

Cl

OH
5.88 162 Yes Yes 162 (164, 166),

126, 98, 63

Chlorocatechol

(M2)

Cl (OH)2

11.40 144 Yes 144 (146),

115, 81, 52

Mono-hydroxy-

triclosan (M3)

O

OH

Cl

Cl

Cl
OH

28.45 304 Yes 304 (306, 308),

234 (236, 238)
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Mono-hydroxy-derivatives of triclosan (M3) were detected

at 303 and 305 Da (equivalent to the two main isotope signal

for the (M-H)� ion) at 27.56 min retention time. The product

ion scan of 303 Da and 305 Da provided abundant fragmen-

tation for this compound (Fig. 2). The identification was

confirmed by the detection of the fragment ion peak at 161

corresponding to (C6H3OCl2)
�. The two chlorine atoms are

being verified by the chlorine isotope distribution in Fig. 2C.

Further analysis of Fig. 2B and C shows that fragments 125 Da

and 113 Da are attributed to [C6H2OCl]� and [C5H2OCl]�

stemming from cleavage of HCl and CHCl from 161 respec-

tively. It can thus be hypothesized that the oxidation takes

place in the triclosan ring with less chlorination.

The molecular ion peak of di-hydroxy-triclosan (M4)

was detected with the retention time at 17.65 min (Fig. 1).

The product ion spectrum of M4 showed major fragment ion

peaks at 161 and 125 Da, indicating that the double chlori-

nated ring is again still intact and not oxidized (Fig. S1). Similar

as the fragmentation spectrum of M3, the transformation

product identification was further confirmed by an investi-

gation on the chlorine isotope peaks.

3.2. Structural suggestions and verifications

After triclosan was reacted with ozone, some intermediates

were identified by using GC-MS and HPLC-MS/MS. On the

basis of their GC-MS spectra and HPLC-MS/MS fragmentation,

several ozonation products for triclosan are proposed (Table 2

and 3). Triclosan can be oxidized by ozone resulting in OH

addition forming mono-hydroxy- (M1) and di-hydroxy-

triclosan (M2) and finally breaking of the ether bond result-

ing in 2,4-dichlorophenol (M1), 4-chlorocatechol (M2a) and 4-

chlororesorcinol (M2b).

The 2,4-dichlorophenol (M1) is a well known product of

triclosan which has been detected by several investigators

within biodegradation experiments (Kim et al., 2010), as an

oxidative transformation product from reactions with

manganese oxides (Zhang and Huang, 2003), as well as

a photochemical degradation product in both natural and

buffered deionized water (Latch et al., 2005). Kim et al. (2010)

has found the chlorocatechol (M2), mono-hydroxy-triclosan

(M3) and di-hydroxy-triclosan (M4) as biodegradation prod-

ucts of triclosan frombacteria. Additionally, Zhang andHuang

(2003) have detected that mono-hydroxy-triclosan (M3) could

be one of the oxidation products of triclosan by manganese

oxides. Except the 2,4-dichlorophenol (M1), none of the other

transformation products have been published as ozonation

by-products of triclosan, to the best of our knowledge.

3.3. Ozonation of triclosan

The triclosan chromatograms of the three samples from the

experiment are shown in Fig. 3. Complete ozonation of tri-

closan (but not its transformation products) was detected in

the sample with molar ratio of triclosan:ozone¼ 1:5. Ozona-

tion was substantial in the sample with a molar ratio of
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M2a, 4-chlorocatechol 
MW: 144

M4, dihydroxy-triclosan 
MW: 320

M2b, 4-chlororesorcinol 
MW: 144

M1, 2,4-dichlorophenol 
MW: 162

M3, 
monohydroxy-triclosan 

MW: 304

Triclosan 
MW: 288

Fig. 1 e Chromatogram of sample with triclosan:ozone in 1:2 from HPLC-MS/MS (Electrospray ionization in negative

polarization ESI (L)) with suggested identification.
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triclosan:ozone¼ 1:3 and less in the sample with molar ratio

of triclosan:ozone¼ 1:1.

2,4-dichlorophenol was detected by GC-MS and HPLC-MS

in all the three samples. Levels of 2,4-dichlorophenol in the

sample with high ozone amount (molar ration of triclosan:o-

zone in 1:3) were, however, lower than the other two samples

with lower ozone amount, which indicate that 2,4-

dichlorophenol is an intermediate product and can be

Table 3 e HPLC-MS/MS results of the transformation product identification.

Compound Structure Retention
time [min]

MW [Da] RTþMS
complied
standard

RTþMS
complied
theory

Product ion
scan fragments

[Da]

Triclosan (M)

O

OH

Cl

Cl

Cl

30.78 288 Yes Yes 287, 252, 251

2,4-Dichlorophenol

(M1)

Cl

Cl

OH
24.76 162 Yes Yes 161, 125, 89,

61, 35

4-Chlorocatechol

(M2a) OH

Cl

OH

13.31 144 Yes Yes 143, 107, 79,

51, 35

4-Chlororesorcinol

(M2b) OH

Cl

OH

19.19 144 Yes Yes 143, 107, 79,

51, 35

Mono-hydroxy-

triclosan (M3)

O

OH

Cl

Cl

Cl
OH

27.56 304 Yes 303, 161, 125,

113, 85, 35

Di-hydroxy-

triclosan (M4)

O

OH

Cl

Cl

Cl
(OH)2

17.65 320 Yes 319, 161, 125,

35
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further oxidized. Chromatograms of 2,4-dichlorophenol and

triclosan during ozonation showing the somewhat longer

presence of 2,4-dichlorophenol are shown in Fig. 3. The

conversion yields of triclosan to 2,4-dichlorophenol depend

on the amount of ozone. Now, these compounds are available

they can be studied in biodegradation processes as well. More

information can be gained from Fig. S2 in which the signal

height obtained by HPLC-ESI (�) MS of all identified trans-

formation products is plotted against the relative ozone

concentration.

3.4. Toxicity of triclosan transformation products in
comparison to triclosan

Cytotoxic and genotoxic effects of triclosan and its oxidation

by-product 2,4-dichlorophenol were analyzed using the MTT

test and the alkaline comet assay.

These two tests are well established toxicity tests and have

been used in the testing of chemicals for several decades and

they have been proven to be rapid and sensitive methods.

The MTT tests give a quantitative measure on the amount of
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Fig. 2 eHPLC-MS/MS analysis (ESI (L)) of mono-hydroxy-triclosan, A) the full scan spectrum of themono-hydroxy-triclosan,

B) product ion spectrum of the precursor 303 of mono-hydroxy-triclosan (the isotopic composition 35Cl3), C) product ion

spectrum of the precursor of mono-hydroxy-triclosan (the isotopic composition 35Cl2
37Cl).
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viable and dead cells thus the cytotoxicity of the tested

substances resulting in an idea about the general toxicity

(Mosmann, 1983). DNA damage was measured by the alkaline

comet assay which allows the detection of single and double

strand breaks as well as alkali labile sites (Singh et al., 1988;

Tice et al., 2000). In addition both tests have been previously

adapted for the use of CHO (Chinese Hamster Ovary) cells.

This is a cell line which has been derived from the ovaries of

the Chinese hamster in 1957 and widely used in toxicity

testing (Puck et al., 1958).
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Fig. 3 e Chromatogram and MS spectra of triclosan and its ozonation product e 2,4-dichlorophenol detected by GC-MS in

electron impact ionization. To simplify the graph, the signals for 162 and 288 Da were added to gain one chromatogram for

both 2,4-dichlorophenol (162 Da) and triclosan (288 Da). Sample 1, triclosan:ozone[ 1:1. Sample 2, triclosan:ozone[ 1:3.

Sample 3, triclosan:ozone[ 1:5.

Fig. 4 e Genotoxic effects of triclosan and 2,4-dichlorophenol on CHO-9 cells after 24 h of exposure investigated using the

alkaline comet assay. Asterisks display the significance in DNA damage increase ( p< 0.05[ * significant; p< 0.01[ **

very significant; p< 0.001[ *** extremely significant).
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Both substances were tested at concentrations between

0 and 100 mg L�1. The results of the MTT test show that neither

triclosan nor 2,4-dichlorophenol has any cytotoxic effect on

CHO-9 (Chinese Hamster Ovary) cells after a 24 h exposure at

the used concentrations (data not shown). For each concen-

tration the viability lies above 90% compared to the negative

control. In addition no difference can be seen comparing both

substances and their effects on cell viability.

However the results of the alkaline comet assay with

triclosan show tail moments increasing with concentrations.

Compared to triclosan and the negative control, 2,4-

dichlorophenol is less genotoxic (Fig. 4). This indicates that

ozonation is a useful tool in removing the genotoxic

compound triclosan from wastewater. However, it should be

taken into account that 2,4-dichlorophenol is prioritized

under the EU surface water directive 76/464/EC (European

Comission 1976) (Umweltbundesamt, 2005) and is classified

to be “harmful to aquatic organisms” and “may cause long-

term adverse effects in the aquatic environment”.

4. Conclusion

Contamination of surface water and ground water with tri-

closan is an emerging issue in environmental science and

engineering. The outcomes of this study are:

Removal of triclosan from water can be achieved by

using ozonation.

The treatmentprocesscaneliminate triclosancompletely

and convert it into the products: 2,4-dichlorophenol,

chlorocatechol,mono-hydroxy-triclosananddi-hydroxy-

triclosan. Increasing the ozone concentrations in the

reactions leads to decreased concentration of triclosan as

well as its oxidation by-products.

2,4-dichlorophenol shows lower genotoxic effects than

triclosanat the tested concentrations, but this compound

is classified to be toxic to aquatic organisms. The other

transformation products cannot be assessed up to now.

Formation and occurrence of the identified trans-

formation products should be investigated at full scale

applications

Reactor design should take the formation of oxidation

by-products into account and possibly use higher ozone

doses or retention times to remove by-products.
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Triclosan is considered a ubiquitous pollutant and can be detected in a wide range of

environmental samples. Triclosan removal by wastewater treatment plants has been largely

attributed to biodegradation processes; however, very little is known about the micro-organisms

involved. In this study, DNA-based stable isotope probing (DNA-SIP) combined with

microautoradiography-fluorescence in situ hybridization (MAR-FISH) was applied to identify

active triclosan degraders in an enrichment culture inoculated with activated sludge. Clone library

sequences of 16S rRNA genes derived from the heavy DNA fractions of enrichment culture

incubated with 13C-labelled triclosan showed a predominant enrichment of a single bacterial

clade most closely related to the betaproteobacterial genus Methylobacillus. To verify that

members of the genus Methylobacillus were actively utilizing triclosan, a specific probe targeting

the Methylobacillus group was designed and applied to the enrichment culture incubated with
14C-labelled triclosan for MAR-FISH. The MAR-FISH results confirmed a positive uptake of

carbon from 14C-labelled triclosan by the Methylobacillus. The high representation of

Methylobacillus in the 13C-labelled DNA clone library and its observed utilization of 14C-labelled

triclosan by MAR-FISH reveal that these micro-organisms are the primary consumers of triclosan

in the enrichment culture. The results from this study show that the combination of SIP and MAR-

FISH can shed light on the networks of uncultured micro-organisms involved in degradation of

organic micro-pollutants.

INTRODUCTION

Triclosan [5-chloro-2-(2,4-dichloro-phenoxy)-phenol] is a
synthetic antibacterial compound that inhibits the NADH-
dependent enoyl-[acyl-carrier protein] reductase, an essen-
tial enzyme involved in the biosynthesis of fatty acids
(Heath et al., 1999; McMurry et al., 1998; Regös et al.,
1979). As an effective antimicrobial agent, triclosan has
been used in a wide range of personal care products, such
as toothpaste and soaps, and in consumer products,
including textile and plastics (DeSalva et al., 1989; Jones
et al., 2000; Schweizer, 2001). Due to its extensive use and
persistence, triclosan and some of its derivatives can be

detected in different environmental matrices such as
wastewaters, surface waters and sediments, and in biological
samples, including those from fish, algae, human plasma,
urine and breast milk (Balmer et al., 2004; Hovander et al.,
2002; Miller et al., 2008; Sánchez-Brunete et al., 2010;
Sandborgh-Englund et al., 2006; Wilson et al., 2003; Ye et al.,
2008).

Biodegradation of triclosan has been shown by mixed
bacterial cultures from activated sludge (Gangadharan
Puthiya Veetil et al., 2012; Hay et al., 2001; Stasinakis et al.,
2010) and in wastewater treatment plants (WWTPs)
(Bester, 2003; Chen et al., 2011; Singer et al., 2002). Due
to insufficient removal during wastewater treatment,
triclosan has been found in WWTP effluents in concentra-
tions ranging from 1 to 10 mg l21 (Adolfsson-Erici et al.,
2002; Bester, 2003, 2005; Lindström et al., 2002; Singer
et al., 2002). Although mass balance assessments have
shown that biological treatment contributes to the major
removal of triclosan in WWTPs (Bester, 2003; Heidler &
Halden, 2007; Singer et al., 2002), little is known about the

Abbreviations: DGGE, denaturing gradient gel electrophoresis; FISH,
fluorescence in situ hybridization; MAR, microautoradiography; SIP,
stable isotope probing; WWTP, wastewater treatment plant.

The GenBank/EMBL/DDBJ accession numbers for the sequences of
the triclosan-degrading culture clones represented in the phylogenetic
tree are JX099503–JX099536.

A supplementary figure is available with the online version of this paper.
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actual mechanisms or the micro-organisms involved in the
degradation process. So far, two wastewater isolates,
Sphingomonas sp. strains Rd1 (Hay et al., 2001) and PH-
07 (Kim et al., 2011), have been shown to degrade triclosan
via co-metabolism. Meade et al. (2001) showed that two
soil bacteria, Pseudomonas putida and Alcaligenes xylosox-
idans, have a high resistance to triclosan and can utilize it
as their sole carbon source, and the nitrifying Nitrosomonas
europea has also been shown to biodegrade triclosan
(Roh et al., 2009). Recently, several triclosan-degrading
strains belonging to the genus Pseudomonas were isolated
from aerobic and anaerobic enrichment cultures of acti-
vated sludge (Gangadharan Puthiya Veetil et al., 2012).
Biodegradation of triclosan has also been reported in
fungi (Hundt et al., 2000). However, knowledge based
on culture-independent approaches of the identity and
ecophysiology of triclosan-degrading bacteria in complex
microbial systems is still limited.

Stable-isotope probing (SIP) allows for in situ detection of
bacterial communities capable of metabolizing a specific
carbon source and thus links function to identity without
the need to culture the bacteria involved (Radajewski et al.,
2000). SIP approaches have been used to identify various
types of environmental pollutant-degrading bacteria, e.g.
those able to degrade nonylphenols (Zemb et al., 2012),
toluene (Woods et al., 2011) and phenols (Manefield et al.,
2007).

The aim of this study was to use the SIP approach to
identify the active micro-organisms in a triclosan-degrad-
ing consortium derived from activated sludge exposed to
13C-labelled triclosan. Genomic fingerprinting analyses of
resolved 13C-labelled DNA allowed the design of a specific
fluorescence in situ hybridization (FISH) probe for a
putative triclosan-degrading phylotype, which was used in
combination with microautoradiography (MAR) to verify
the physiology and abundance of these micro-organisms in
the enrichment.

METHODS

Reagents and media. Triclosan (Irgasan) was purchased from
Sigma-Aldrich with a purity of .97%. 13C12-Labelled triclosan
(isotope purity .98%) was purchased from Wellington Laboratories
and was dissolved in methanol. [Dichlorophenyl-U-14C]-labelled
triclosan (specific activity 5.43 MBq mg21) was donated by Ciba.
Stock solutions of both radiolabelled and unlabelled triclosan were
prepared in acetone. As a standard procedure, substrate solutions
were allowed to dry at room temperature prior to the addition of
specified media or culture. For all experiments, nitrate mineral salts
medium (NMS) was used as carbon-free medium (Whittenbury et al.,
1970). All other reagents used for SIP and MAR were commercial

products of highest grade (Chen et al., 2011; Kristiansen et al., 2011a;
Neufeld et al., 2007).

Enrichment culture and growth conditions. Activated sludge was
taken from the aeration tanks from C/N/P-removing Aalborg West
WWTP (Aalborg, Denmark) and was used as source of inoculum for
enrichment of triclosan-degrading organisms. The initial incubation
has been described in a preliminary report (Chen et al., 2011). Briefly,

an activated sludge sample was spiked with 2 mg triclosan l21 and

incubated in the dark under aerobic conditions at 22–25 uC on a

rotary table (150 r.p.m.). Following the initial incubation and every

9 days thereafter, the enrichment culture was transferred [10% (v/v)]

to fresh NMS medium containing 2 mg triclosan l21. The enriched

culture had a maximum cell density of 66108 cells ml21 and was

maintained for 4 months before conducting the SIP and MAR

incubations.

Analytical methods

Liquid–liquid extraction. Samples (5 ml) from the experiments were

extracted by addition of 2 ml toluene and 100 ml internal standard

solution (1000 ng musk xylene D15 ml21) and were vigorously stirred

for 5 min. The organic phase was extracted and the residual water was

removed by freezing the samples overnight at 220 uC. These organic
extracts were then concentrated to 1 ml with a nitrogen flow

condensor at 55 uC.

Instrumental analysis. Triclosan extracts were finally analysed by gas

chromatography with mass spectrometric detection (GC-MS,

Thermo-Trace-MS and Trace GC) equipped with a splitless injector

and A200S autosampler. Samples (1 ml) were injected into the injector

in splitless (1.5 min) mode held at 240 uC. The GC separation was

performed with an Rxi-5Sil MS column (Restek): length, 10 m; ID,

0.18 mm; film, 0.18 mm; and a temperature programme of 90 uC
(hold 1 min) ramped at 50 uC min21 to 135 uC and then at 10 uC
min21 to 220 uC. Finally, the baking temperature was reached by

ramping the column at 40 uC min21 to 260 uC which was held for

6 min. Helium (5.0) was used as carrier gas with a flow rate of 1.3 ml

min21. The transfer line of the mass spectrometer (Trace MS, Thermo

Finnigan) was held at 250 uC. The ion source was operated at 160 uC.
The mass spectrometer was operated in selected ion mode (SIM)

utilizing 31–61 ms dwell time. The detector of the mass spectrometer

was operated at 450 V. The recovery rate of triclosan was 88±11%

(SD) and limit of quantification was 3 ng g21, as reported by Bester

(2003).

SIP. A total of 5 ml (approx. 100 mg dry matter) of the enriched

culture was transferred to 60 ml serum bottles and incubated with

2 mg 13C-labelled triclosan l21 for 3 days. Parallel incubations were

also prepared with unlabelled substrate and used as controls for

verification of DNA-SIP labelling and triclosan degradation. The

bottles were crimp-sealed with rubber stoppers and incubated in the

dark at 24 uC on a rotary table (150 r.p.m.) for 3 days. Subsequently,

total DNA was extracted using the FastDNA SPIN kit for Soil (MP

Biomedicals) according to the manufacturer’s instructions. The DNA

concentration was measured on a NanoDrop 2000 spectrophotometer

(Thermo Fisher Scientific). All incubations were carried out as

biological duplicates.

Isolation and fingerprinting of 13C-labelled DNA. Caesium

chloride (CsCl) gradient fractionation, DNA precipitation and DNA

quantification were set up as described previously (Neufeld et al.,

2007). Briefly, 2 mg DNA from each sample (two control samples and

two 13C-labelled samples) was added to the gradient buffer and mixed

with CsCl to a final density of 1.725 g ml21. These solutions were

added to 5.1 ml polyallomer Quik-seal centrifuge tubes (Beckman

Coulter) and ultracentrifuged at 133 000 gav for 72 h at 20 uC in a

Sorvall TH-641 swing-out rotor (Kendro). Immediately after

centrifugation, the density gradients were fractionated into 12

volumes of approximately 400 ml. The buoyant density of each

fraction was determined by measuring 5 ml from each sample on a

refractometer (AR200, Reichert). DNA from each fraction was

precipitated with polyethylene glycol and glycogen as described

elsewhere (Neufeld et al., 2007), and followed by resuspension in
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nuclease-free water. DNA was quantified using a NanoDrop 2000

spectrophotometer.

The shift in community between the control and the labelled fraction

was visualized by molecular profiling using denaturing gradient gel

electrophoresis (DGGE) and PCR. DGGE was performed as described

in detail elsewhere (Kristiansen et al., 2011a). From DGGE results,

distinct DNA bands from the labelled heavy fractions (buoyant

density 1.83 and 1.79 g ml21) were chosen for subsequent sequencing

(Fig. S1, available with the online version of this paper). Furthermore,

the 12C and 13C-labelled DNA fractions were used as template for

PCR with the 16S rRNA gene-targeted primers 26F/1492R (approx.

1450 bp product) (Lane, 1991). PCR conditions are described

elsewhere (Kristiansen et al., 2011b). A 16S rRNA clone library was

prepared from the high density fractions (1.76–1.80 g ml21) of the

SIP incubation with the 13C-labelled triclosan. The clone library

preparation and the phylogenetic analysis were performed as

described by Kristiansen et al. (2011a) except that the alignment

and phylogenetic tree construction were done using MEGA 5 (Tamura

et al., 2011). Screening of the clone sequences with Bellerophon v3

(DeSantis et al., 2006) did not identify any putative chimeras.

Sequences represented in the phylogenetic tree were named triclosan-

degrading culture clones and deposited in the GenBank database

under accession numbers JX099503–JX099536.

FISH probe design. The 16S rRNA gene sequences from the clone

library were used to design an oligonucleotide probe (Meth1138)

(Table 1) using the probe design tool in the ARB software package

(Ludwig et al., 2004); the probe was subsequently confirmed for

specificity using the CHECK PROBE programme in the Ribosomal

Database Project (Maidak et al., 2000). Optimum hybridization

stringency for the probe was determined by performing formamide

dissociation series on biomass from the enrichment culture and

activated sludge from Aalborg West WWTP with 10% formamide (v/

v) increments across a range of 0–60% (v/v). Prior to FISH, samples

were homogenized and fixed with 4% (w/v) paraformaldehyde, as

described previously (Nielsen, 2009). The group-specific probe

Meth1138 was labelled with sulfoindocyanine dyes (Cy3). FISH

analysis was performed by using the general bacterial probe mixture

EUBmix labelled with 5(6)-carboxyfluorescein-N-hydroxysuccini-

mide ester (FLUOS) and more specific probes labelled with Cy3

(Table 1). The FISH procedure was carried out as described pre-

viously (Nielsen, 2009). An epifluorescence microscope (Axioscope 2,

Carl Zeiss) was used in all FISH analyses. Bacterial abundance was

quantified by measuring the ratio of the area fluorescing with a probe

(Cy3 labelled) to the area fluorescing with EUBmix probe (FLUOS

labelled) on the same microscopic field. For each enumeration, at

least 20 images were taken from two separate hybridizations and

analysed using ImageJ software (Collins, 2007). FISH analyses were

also conducted on samples taken from seven Danish WWTPs:

Bjergmarken, Aalborg East, Egå, Ejbymølle, Hjørring, Skive and
Aalborg West. These plants represent stable and well-functioning C/
N/P-removing treatment plants with different configurations and
influent wastewater composition.

Microautoradiography. Microautoradiography experiments in
enrichment culture in combination with FISH (MAR-FISH) were
performed as described previously (Nielsen & Nielsen, 2005). Briefly,
5 ml of the enriched culture was transferred to 9 ml serum bottles
and incubated with 10 mCi 14C-labelled triclosan (3.76107 Bq) and
unlabelled triclosan to a final concentration of 2 mg l21 under aerobic
conditions for 1 day on a rotary table (labelled and unlabelled
triclosan was added at time 0). As a control for chemography, a
sample from the enriched culture was pasteurized at 70 uC for 10 min
prior to MAR incubation and run in parallel. MAR incubations were
terminated by fixing samples with 4% (w/v) paraformaldehyde. The
samples were then washed, homogenized and immobilized on gelatin-
coated coverslips as described elsewhere (Nielsen & Nielsen, 2005).
Finally, the samples were subjected to FISH. After the FISH
procedure, the samples were coated with liquid film emulsion
(Kodak) and exposed in the dark for 3–6 days before being developed
and microscopically examined. Production of 14C-labelled CO2 was
monitored in MAR-incubated culture by measuring the percentage
accumulation of precipitated radioactivity using a liquid scintillation
counter (Packard 1600 TR; Packard) as follows. Samples (1 ml) from
the headspace gas were withdrawn using a syringe and mixed with
1 ml 0.1 M NaOH solution in a gas-tight sealed serum bottle. At the
same time, 0.1 ml aliquots were withdrawn from the culture and
directly transferred to 3 ml scintillation liquid (Ultima Gold XR;
Packard) to measure the total radioactivity of the culture. All
incubations were carried out as biological duplicates.

RESULTS

Biodegradation of triclosan in enrichment culture

After spiking the enrichment culture with 2 mg triclosan
l21, the concentration of triclosan was reduced below the
limit of quantification (3 ng l21) within 90 h, whereas the
triclosan concentration remained nearly constant in a
pasteurized control spiked with 1 mg triclosan l21 (Fig. 1).
This indicates that the removal of triclosan was predomi-
nantly due to biological activity, which agrees with the
literature (Bester, 2005; Singer et al., 2002). Degradation of
2 mg triclosan l21 followed first-order kinetics with a
removal rate and half-life of 0.0431 h21 and 16 h,
respectively. This was approximately five times faster than

Table 1. Oligonucleotides probes for FISH analysis

Probe Specificity Sequence (5§-3§) Reference or source

EUB338 Bacteria GCT GCC TCC CGT AGG AGT Amann et al. (1990)

EUB338II Bacteria GCA GCC ACC CGT AGG TGT Daims et al. (1999)

EUB338III Bacteria GCT GCC ACC CGT AGG TGT Daims et al. (1999)

Beta42a* Betaproteobacteria GCC TTC CCA CTT CGT TT Manz et al. (1992)

Gam42a* Gammaproteobacteria GCC TTC CCA CAT CGT TT Manz et al. (1992)

Meth1138* Methylobacillus sp. GCA CTC CAT GCT GCC GTT CG This study

Meth1138-comp. Competitor for Met1138 GCT CTC CAT GCT GCC GTT CG This study

*Used in equimolar concentrations with competitor.
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that calculated from degradation analyses where the same
concentration of triclosan was spiked directly into activated
sludge from the Aalborg West WWTP (Chen et al., 2011).
When radiolabelled triclosan was spiked into the enrich-
ment culture, the subsequent liquid scintillation counts
showed that this microbial community is able to mineralize
triclosan, with approximately 13% of the added radio-
activity detected in the headspace after 3 days of incuba-
tion (Fig. 1). The linear progression of 14C-labelled CO2 in
the headspace indicates that triclosan degradation started
immediately after its addition without a lag phase (Fig. 1).
Meanwhile, no further accumulation of 14C-labelled CO2

was observed when the triclosan concentration was
reduced below the detection limit.

Detection and phylogenetic analysis of 13C-
labelled bacterial 16S rRNA gene sequence

Following incubation with 13C-labelled triclosan, total
DNA was extracted and centrifuged in a CsCl density
gradient to separate labelled from non-labelled DNA. This
resulted in a linear isopycnic gradient from 1.83 to 1.57 g
ml21 (Fig. 2). Although the buoyant densities in our SIP
fractionation were relatively broad, a clear shift towards a
heavier density of the quantified DNA was observed from
both duplicate samples incubated with unlabelled triclosan
relative to the 12C-labelled control. This shift was also
apparent from the band intensity of the PCR product after
25 cycles of amplification of the 16S rRNA genes (Fig. 2).
The shift in density was further evaluated by DGGE,
revealing a shift in banding patterns in the heavy fractions
(density 1.80–1.76 g ml21) of the 13C-labelled triclosan
incubation compared with the unlabelled control (Fig. S1).
Distinct bands (1, 3, 6, 7, 8 and 9 on Fig. S1) were

identified as Methylobacillus sp. Iva (GU937479), while the
remaining bands (2, 4 and 5) were unclassified.

Thirty four clones of PCR-amplified 16S rRNA genes were
sequenced from the 13C-enriched DNA fractions. Most of
the clones (31 of 34 sequences) affiliated with the genus
Methylobacillus (Fig. 3). The obtained sequences had less than
95% identity to the other previously describedMethylobacillus
species. Three clone sequences were related to the genus
Stenotrophomonas within the Gammaproteobacteria (Fig. 3)
with strong bootstrap support and less than 95% identity to
other Stenotrophomonas sequences.

Identification of triclosan-utilizing bacteria

To verify that members of the genus Methylobacillus were
utilizing triclosan in the enrichment culture, a specific FISH
probe (Meth1138) targeting most members of the genera
was designed. The hybridization stringency of the probe was
optimized on biomass from the culture and from activated
sludge samples and determined to be 25% (v/v) formamide.
The probe was used to quantify the relative abundance of
Methylobacillus in the enriched culture as well as in activated
sludge and was calculated to range between 2 and 4% and
0.5 and 1% of the total detected cells, respectively. No
further enrichment was detected during SIP or MAR
incubations. Dense silver grain patches covering the
Meth1138-hybridized cells indicated an active utilization
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of 14C-labelled triclosan by Methylobacillus (Fig. 4). A low
background in the MAR visualizations and lack of MAR-
positive cells in the pasteurized control indicated a low
absorbance and chemography of 14C-labelled triclosan to the
sample. In the enrichment culture, approximately 25% of
the Meth1138-positive cells were MAR-positive, but other
betaproteobacterial cells (positive with the BET42a probe)
were also MAR-positive (Fig. 4). These cells were found to
constitute 2–3% of the total number of cells detected by
EUBmix and gave similar silver grain density to the MAR-
positive Methylobacillus.

The oligonucleotide probe was applied to assess the
abundance of FISH-detectable Methylobacillus bacteria in
seven Danish full-scale wastewater treatment plants. With a
detection limit of 0.25% of the biovolume, estimated by
the use of nonsense probe NONEUB (Wallner et al., 1993),
the survey revealed a highly variable presence of bacteria
affiliated with Methylobacillus; some plants showed a
complete absence or around the limit of quantification
(P,0.1; Aalborg East, Egå, Hjørring, Skive WWTPs) while
others showed relatively high abundance (0.5–2%, P,0.05,
Bjergmarken, Ejbymølle, Aalborg West WWTPs). The
probe hybridized with small, rod-shaped cells (Fig. 4) that

had similar morphology in samples from the enrichment
culture and all the activated sludge WWTPs (Fig. 4).

MAR-FISH was also attempted with biomass from a full-
scale plant to confirm that these organisms are involved in
triclosan removal in these systems. However, due to the
presence of very few MAR-positive cells (enumerated to be
around 2% of the total number of cells detected by
EUBmix, corresponding to approximately 86106 cells
ml21) combined with low fluorescence intensities we were
not able to assess with confidence the MAR-FISH signals.
Design of specific FISH probes targeting the three
Stenotrophomonas sequences identified by SIP failed to
detect target cells and previously published probes for this
genus had one mismatch to the sequences obtained from
the clone library. However, due to the relatively low
abundance of Gammaproteobacteria in the enrichment
culture (Fig. 4) [,1% positive with the GAM42a probe
compared with ~95% of Betaproteobacteria (BET42a)
relative to the total FISH positive cells detected by
EUBmix] and the observation that all MAR-positive cells
were also Betaproteobacteria-positive (Fig. 4), no further
attempts were taken to verify if members of the Steno-
trophomonas were taking up 14C-labelled triclosan.
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accession nos or the number of clone sequences obtained are indicated in parentheses. The tree was constructed using the
maximum-likelihood algorithm with branching confidence values from 1000 replicates. Bootstrap values ¢75% and ¢90%
are indicated by empty and filled circles, respectively. Bar, 5% sequence divergence; the outgroup was made from 10 randomly
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DISCUSSION

Although more than 60% of total removal of triclosan is
attributed to the biodegradation processes in activated
sludge treatment (Bester 2003, 2005) very little is known
about the micro-organisms involved. Previous studies have
shown the ability of a few isolates to degrade triclosan
(Gangadharan Puthiya Veetil et al., 2012; Hay et al., 2001;
Kim et al., 2011; Meade et al., 2001). However, as these
studies rely on the use of culture-dependent methods and do
not necessarily reflect the identity of the active members
involved in the biodegradation of triclosan in situ, the focus
of this study was to apply SIP to identify bacteria capable of
utilizing triclosan in an enrichment culture. Attempts to
apply the SIP approach directly on activated sludge were not
successful, most likely because of the low numbers of
bacteria involved in the degradation of triclosan as observed
in the MAR-FISH results. Apparently, with the amount of
13C-labelled triclosan added and the sequencing approach
used, we were unable to reach sufficient density shift for the
labelled DNA during SIP. So, in order to identify triclosan
degraders, an enrichment step was introduced. This
approach is biased to enrich for triclosan degraders with a
low affinity for the substrate, and discriminates against cells
with a high substrate affinity.

The enrichment culture, originally started from activated
sludge, was fed on regular additions of triclosan and was
able to degrade 2 mg triclosan l21 with a half-life of 16 h
compared with 90 h in the original activated sludge
sample. The relatively stable and high removal rate of

triclosan and consecutive development of 14C-labelled CO2

combined with a lack of lag phase in the degradation
experiments suggest that the enriched bacterial community
has readily adapted to triclosan as a carbon source.
The consumption of 13C-labelled triclosan resulted in a
sufficient amount of heavy-labelled DNA, and a shift in the
average density of total DNA compared with the unlabelled
(12C) control. Generally, to ensure sufficient DNA labelling
in SIP experiments, a few doubling times with the labelled
substrate is required. This potentially raises concern
regarding cross-feeding of labelled carbon. However, we
applied a relatively short incubation period and low
concentration of the applied 13C-labelled triclosan to
minimize the risk of cross-feeding. The predominant
enrichment of a single bacterial clade, the lack of by-
products identified, and the confirmation by MAR-FISH
with reduced incubation time and tracer, support that the
identified Methylobacillus are the primary consumers of
triclosan in the enrichment culture. The methodological
approach of applying SIP with MAR-FISH is a powerful
combination that validates the SIP findings and ensures
correct interpretation of even organisms with low abund-
ance. The MAR approach requires less uptake of tracer
compared with SIP, and is therefore more sensitive and can
be used to test uptake of substrate in natural systems under
in situ conditions. However, we were not able to
conclusively verify that Methylobacillus was the main
triclosan consumer using in situ concentrations in the
indigenous activated sludge sample due to very low
numbers of MAR-positive triclosan degraders.

Fig. 4. FISH and microautoradiography
images of triclosan-utilizing cells. FISH images
of the triclosan-fed enrichment culture after
hybridization with (a) the universal bacterial
probe EUBmix (green) and probe Meth1138
(red), and (b) probe BET42A (green) and
probe GAM42a (red). Cells appearing yellow
hybridized with both probes. Representative
MAR-FISH images of triclosan-utilizing bac-
teria present in the enrichment culture incu-
bated for 1 day at 1 mg 14C-labelled triclosan
l”1 and hybridized with BET42A probe (red)
(c, e) or Meth1138 (red) and EUBmix probe
(green) (d, f–i). Silver grains surrounding
bacterial cells indicate active cellular incorp-
oration of the 14C-labelled triclosan (white
arrows), while black arrows indicate MAR-
negative cells. Bars, 10 mm.

Identification of triclosan degraders

http://mic.sgmjournals.org 2801



The finding of a few Stenotrophomonas-related clones in the
13C-labelled DNA clone library could indicate a broader
diversity of triclosan degraders or the presence of multiple
degradation steps catalysed by different micro-organisms.
Although members of Stenotrophomonas have previously
been shown to be involved in the degradation of
environmental pollutants with aromatic structures such
as p-nitrophenol (Liu et al., 2007), nonylphenol (Soares
et al., 2003) and benzene (Lee et al., 2002), their involve-
ment in degradation of triclosan was not confirmed by the
MAR-FISH approach. Another betaproteobacterial group
was found to be present in similar numbers to Methylo-
bacillus and with similar triclosan degradation activity;
however, these cells were not identified by the SIP ap-
proach. This could be due to insufficient density shift in
the SIP fractionation.

Other studies have shown that less than 1% of the triclosan
added to activated sludge is actually transformed into
triclosan-methyl, and that the increase of triclosan-methyl
corresponded to the decrease of the parent compound
(Chen et al., 2011). We attempted to find and identify
triclosan degradation by-products from the enrichment
culture by GC-MS and revealed the presence of 2,4-
dichlorophenol but this was below the limit of quanti-
fication. The lack of accumulated by-products and
development of labelled CO2 in the head space during
incubation with 14C-triclosan indicates that the added
triclosan was fully mineralized. Alternatively, the findings
could suggest the presence of a more metabolically diverse
community of triclosan degraders in activated sludge, but
these would typically be present in small numbers and
therefore difficult to identify.

Methylobacillus belongs to methylotrophs, which is a
phenotypically defined group capable of using one-carbon
compounds as the sole source of energy and carbon (Hanson
& Hanson, 1996). However, it has been shown that several
methylotrophs that are within the genus Methylobacillus can
degrade organic compounds through co-metabolism, such as
the pesticide carbonfuran and choline (Hanson & Hanson,
1996), or through direct metabolism, such as microcystin (Hu
et al., 2009). Other methylotrophs are known for their ability
to participate in the co-metabolic degradation of various
environmental pollutants, including trichloroethylene, phenol
and different aromatic compounds (Chongcharoen et al.,
2005; Koh et al., 1993; Tsuji et al., 1990). Metabolic pathway
analyses have shown that Methylobacillus contains unique
clusters of genes encoding the degradation of chlorocatechol, a
major intermediate product in the biodegradation of
chloroaromatic compounds (Caspi et al., 2012; Spokes &
Walker, 1974). Little information is available regarding
the biodegradation products of triclosan, although catechol
and 3,5-dichlorocatechol were detected when triclosan was
degraded by pure cultures of Pseudomonas-like strains
(Gangadharan Puthiya Veetil et al., 2012) and Sphingomonas
sp. PH-07 incubated with diphenyl ether (Kim et al., 2011).
This information supports the notion that members of the
genusMethylobacillusmay play a role in triclosan degradation

in the enriched culture and in WWTPs. To our knowledge,
organisms within this group have not previously been linked
to triclosan degradation. The FISH surveys in the seven Danish
WWTPs show that Methylobacillus are indeed present in
activated sludge although they are more abundant than can be
ascribed to degradation of micro-pollutants such as triclosan,
and the abundance thus indicates that they are involved not
only in degrading aromatic micro-pollutants but likely also in
other processes as well.

In conclusion, SIP combined with MAR-FISH was used
here to identify the active community responsible for the
degradation of triclosan within an enrichment culture
originating from activated sludge. The findings show the
ability of members of the genus Methylobacillus to utilize
triclosan. Identifying the specific organisms involved in
triclosan degradation provides valuable information that
may lead to possible strategies to enhance micro-pollutant
removal.
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Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. (1999).
The domain-specific probe EUB338 is insufficient for the detection of
all Bacteria: development and evaluation of a more comprehensive
probe set. Syst Appl Microbiol 22, 434–444.

DeSalva, S. J., Kong, B. M. & Lin, Y. J. (1989). Triclosan: a safety
profile. Am J Dent 2 (Spec No 2), 185–196.

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L.,
Keller, K., Huber, T., Dalevi, D., Hu, P. & Andersen, G. L. (2006).
Greengenes, a chimera-checked 16S rRNA gene database and work-
bench compatible with ARB. Appl Environ Microbiol 72, 5069–5072.

Gangadharan Puthiya Veetil, P., Vijaya Nadaraja, A., Bhasi, A., Khan,
S. & Bhaskaran, K. (2012). Degradation of triclosan under aerobic,
anoxic, and anaerobic conditions. Appl Biochem Biotechnol 167, 1603–
1612.

Hanson, R. S. & Hanson, T. E. (1996). Methanotrophic bacteria.
Microbiol Rev 60, 439–471.

Hay, A. G., Dees, P. M. & Sayler, G. S. (2001). Growth of a bacterial
consortium on triclosan. FEMS Microbiol Ecol 36, 105–112.

Heath, R. J., Rubin, J. R., Holland, D. R., Zhang, E., Snow, M. E. &
Rock, C. O. (1999). Mechanism of triclosan inhibition of bacterial
fatty acid synthesis. J Biol Chem 274, 11110–11114.

Heidler, J. & Halden, R. U. (2007). Mass balance assessment of
triclosan removal during conventional sewage treatment. Chemosphere
66, 362–369.

Hovander, L., Malmberg, T., Athanasiadou, M., Athanassiadis, I.,
Rahm, S., Bergman, A. & Wehler, E. K. (2002). Identification of
hydroxylated PCB metabolites and other phenolic halogenated
pollutants in human blood plasma. Arch Environ Contam Toxicol
42, 105–117.

Hu, L. B., Yang, J. D., Zhou, W., Yin, Y. F., Chen, J. & Shi, Z. Q. (2009).
Isolation of a Methylobacillus sp. that degrades microcystin toxins
associated with cyanobacteria. New Biotechnol 26, 205–211.

Hundt, K., Martin, D., Hammer, E., Jonas, U., Kindermann, M. K. &
Schauer, F. (2000). Transformation of triclosan by Trametes versicolor
and Pycnoporus cinnabarinus. Appl Environ Microbiol 66, 4157–4160.

Jones, R. D., Jampani, H. B., Newman, J. L. & Lee, A. S. (2000).
Triclosan: a review of effectiveness and safety in health care settings.
Am J Infect Control 28, 184–196.

Kim, Y. M., Murugesan, K., Schmidt, S., Bokare, V., Jeon, J. R., Kim,
E. J. & Chang, Y. S. (2011). Triclosan susceptibility and co-metabolism–
a comparison for three aerobic pollutant-degrading bacteria. Bioresour
Technol 102, 2206–2212.

Koh, S. C., Bowman, J. P. & Sayler, G. S. (1993). Soluble methane
monooxygenase production and trichloroethylene degradation by a
type I methanotroph, Methylomonas methanica 68-1. Appl Environ
Microbiol 59, 960–967.

Kristiansen, A., Lindholst, S., Feilberg, A., Nielsen, P. H., Neufeld,
J. D. & Nielsen, J. L. (2011a). Butyric acid- and dimethyl disulfide-
assimilating microorganisms in a biofilter treating air emissions from
a livestock facility. Appl Environ Microbiol 77, 8595–8604.

Kristiansen, A., Pedersen, K. H., Nielsen, P. H., Nielsen, L. P.,
Nielsen, J. L. & Schramm, A. (2011b). Bacterial community structure
of a full-scale biofilter treating pig house exhaust air. Syst Appl
Microbiol 34, 344–352.

Lane, D. J. (1991). 16S/23S rRNA sequencing. In Nucleic Acid
Techniques in Bacterial Systematics, pp. 115–175. Edited by
E. Stackebrandt & M. Goodfellow. Chichester: Wiley.

Lee, E. Y., Jun, Y. S., Cho, K. S. & Ryu, H. W. (2002). Degradation
characteristics of toluene, benzene, ethylbenzene, and xylene by

Stenotrophomonas maltophilia T3-c. J Air Waste Manag Assoc 52, 400–

406.

Lindström, A., Buerge, I. J., Poiger, T., Bergqvist, P. A., Müller, M. D. &
Buser, H. R. (2002). Occurrence and environmental behavior of the

bactericide triclosan and its methyl derivative in surface waters and in

wastewater. Environ Sci Technol 36, 2322–2329.

Liu, Z., Yang, C. & Qiao, C. (2007). Biodegradation of p-nitrophenol

and 4-chlorophenol by Stenotrophomonas sp. FEMS Microbiol Lett

277, 150–156.

Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H.,
Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors
(2004). ARB: a software environment for sequence data. Nucleic Acids

Res 32, 1363–1371.

Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr, Saxman, P. R.,
Stredwick, J. M., Garrity, G. M., Li, B., Olsen, G. J. & other authors
(2000). The RDP (Ribosomal Database Project) continues. Nucleic

Acids Res 28, 173–174.

Manefield, M., Griffiths, R., McNamara, N. P., Sleep, D., Ostle, N. &
Whiteley, A. (2007). Insights into the fate of a 13C labelled phenol

pulse for stable isotope probing (SIP) experiments. J Microbiol

Methods 69, 340–344.

Manz, W., Amann, R., Ludwig, W., Wagner, M. & Schleifer, K.-H.
(1992). Phylogenetic oligodeoxynucleotide probes for the major

subclasses of proteobacteria: problems and solutions. Syst Appl

Microbiol 15, 593–600.

McMurry, L. M., Oethinger, M. & Levy, S. B. (1998). Triclosan targets

lipid synthesis. Nature 394, 531–532.

Meade, M. J., Waddell, R. L. & Callahan, T. M. (2001). Soil bacteria
Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans

inactivate triclosan in liquid and solid substrates. FEMS Microbiol Lett

204, 45–48.

Miller, T. R., Heidler, J., Chillrud, S. N., DeLaquil, A., Ritchie, J. C.,
Mihalic, J. N., Bopp, R. & Halden, R. U. (2008). Fate of triclosan and

evidence for reductive dechlorination of triclocarban in estuarine

sediments. Environ Sci Technol 42, 4570–4576.

Neufeld, J. D., Vohra, J., Dumont, M. G., Lueders, T., Manefield, M.,
Friedrich, M. W. & Murrell, J. C. (2007). DNA stable-isotope probing.

Nat Protoc 2, 860–866.

Nielsen, J. L. (2009). Protocol for fluorescence in situ hybridization

(FISH) with rRNA-targeted oligonucleotides. In FISH Handbook for

Biological Wastewater Treatment: Identification and Quantification of

Microorganisms in Activated Sludge and Biofilms by FISH, pp. 73–84.

Edited by P. H. Nielsen, H. Daims & H. Lemmer. London: IWA

Publishing Company.

Nielsen, J. L. & Nielsen, P. H. (2005). Advances in microscopy:

microautoradiography of single cells. Methods Enzymol 397, 237–

256.

Radajewski, S., Ineson, P., Parekh, N. R. & Murrell, J. C. (2000).
Stable-isotope probing as a tool in microbial ecology. Nature 403,

646–649.

Regös, J., Zak, O., Solf, R., Vischer, W. A. & Weirich, E. G. (1979).
Antimicrobial spectrum of triclosan, a broad-spectrum antimicrobial

agent for topical application. II. Comparison with some other

antimicrobial agents. Dermatologica 158, 72–79.

Roh, K., Subramanya, N., Zhao, F., Yu, C. P., Sandt, J. & Chu, K. H.
(2009). Biodegradation potential of wastewater micropollutants by

ammonia-oxidizing bacteria. Chemosphere 77, 1084–1089.

Sánchez-Brunete, C., Miguel, E., Albero, B. & Tadeo, J. L. (2010).
Determination of triclosan and methyl triclosan in environmental

solid samples by matrix solid-phase dispersion and gas chromato-

graphy-mass spectrometry. J Sep Sci 33, 2768–2775.

Identification of triclosan degraders

http://mic.sgmjournals.org 2803



Sandborgh-Englund, G., Adolfsson-Erici, M., Odham, G. &
Ekstrand, J. (2006). Pharmacokinetics of triclosan following oral
ingestion in humans. J Toxicol Environ Health A 69, 1861–1873.

Schweizer, H. P. (2001). Triclosan: a widely used biocide and its link
to antibiotics. FEMS Microbiol Lett 202, 1–7.

Singer, H., Müller, S., Tixier, C. & Pillonel, L. (2002). Triclosan:
occurrence and fate of a widely used biocide in the aquatic
environment: field measurements in wastewater treatment plants,
surface waters, and lake sediments. Environ Sci Technol 36, 4998–5004.

Soares, A., Guieysse, B., Delgado, O. & Mattiasson, B. (2003).
Aerobic biodegradation of nonylphenol by cold-adapted bacteria.
Biotechnol Lett 25, 731–738.

Spokes, J. R. & Walker, N. (1974). Chlorophenol and chlorobenzoic
acid co-metabolism by different genera of soil bacteria. Arch Mikrobiol
96, 125–134.

Stasinakis, A. S., Kordoutis, C. I., Tsiouma, V. C., Gatidou, G. &
Thomaidis, N. S. (2010). Removal of selected endocrine disrupters in
activated sludge systems: effect of sludge retention time on their
sorption and biodegradation. Bioresour Technol 101, 2090–2095.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar,
S. (2011). MEGA5: molecular evolutionary genetics analysis using
maximum likelihood, evolutionary distance, and maximum par-
simony methods. Mol Biol Evol 28, 2731–2739.

Tsuji, K., Tsien, H. C., Hanson, R. S., DePalma, S. R., Scholtz, R. &
LaRoche, S. (1990). 16S ribosomal RNA sequence analysis for

determination of phylogenetic relationship among methylotrophs.

J Gen Microbiol 136, 1–10.

Wallner, G., Amann, R. & Beisker, W. (1993). Optimizing fluorescent

in situ hybridization with rRNA-targeted oligonucleotide probes for

flow cytometric identification of microorganisms. Cytometry 14, 136–

143.

Whittenbury, R., Phillips, K. C. & Wilkinson, J. F. (1970). Enrichment,

isolation and some properties of methane-utilizing bacteria. J Gen

Microbiol 61, 205–218.

Wilson, B. A., Smith, V. H., deNoyelles, F., Jr & Larive, C. K. (2003).
Effects of three pharmaceutical and personal care products on natural

freshwater algal assemblages. Environ Sci Technol 37, 1713–1719.

Woods, A., Watwood, M. & Schwartz, E. (2011). Identification of a

toluene-degrading bacterium from a soil sample through H2
18O DNA

stable isotope probing. Appl Environ Microbiol 77, 5995–5999.

Ye, X., Bishop, A. M., Needham, L. L. & Calafat, A. M. (2008).
Automated online column-switching HPLC-MS/MS method with

peak focusing for measuring parabens, triclosan, and other envir-

onmental phenols in human milk. Anal Chim Acta 622, 150–156.

Zemb, O., Lee, M., Gutierrez-Zamora, M. L., Hamelin, J., Coupland,
K., Hazrin-Chong, N. H., Taleb, I. & Manefield, M. (2012).
Improvement of RNA-SIP by pyrosequencing to identify putative 4-

n-nonylphenol degraders in activated sludge. Water Res 46, 601–610.

Edited by: E. L. Madsen

I. B. Lolas and others

2804 Microbiology 158





Research paper 8: 

Chen XJ., Wimmer R., Ternes T., Schlüsener M., Nielsen JL. and Bester K. 

Biodegradation of triclosan and Formation metabolites in activated sludge under aerobic 

conditions. Manuscript in preparation



























































Mandatory page

Thesis title: Triclosan removal in wastewater treatment processes

Name of PhD student: Xijuan Chen 

Supervisors: Jeppe Lund Nielsen, Kai Bester 

List of published papers: 

 Paper 1: Chen XJ., Pauly U., Rehfus S. and Bester K. Personal care 

compounds in a reed bed sludge treatment system, Chemosphere 76 (2009) 

1094–1101

 Paper 2: Chen XJ., Pauly U., Rehfus S. and Bester K. Removal of personal 

care compounds from sewage sludge in reed bed container (lysimeter) 

studies — Effects of macrophytes, Science of the Total Environment 407 

(2009) 5743–5749 

 Paper 3: Chen XJ. and Bester K. Determination of organic micro-pollutants 

such as personal care products, plasticizer and flame retardants in sludge, 

Anal Bioanal Chem (2009) 395:1877–1884 

 Paper 4: Bester K., Chen XJ., Pauly U. and Rehfus S. Abbau von 

organischen Schadstoffen bei der Kläschlammbehandlung in 

Pflanzenbeeten, Korrespondenz Abwasser, Abfall  58 (2011) 1050-1157 

 Paper 5: Chen XJ., Nielsen JL., Furgal K., Liu YL., Lolas IB. and Bester K. 

Elimination of triclosan and formation of methyl-triclosan in activated sludge 

under aerobic conditions, Chemosphere 84 (2011) 452–456 

 Paper 6: Chen XJ., Richard J., Dopp E., Türk J., Liu YL. and Bester K. 



Ozonisation products of triclosan in advanced wastewater treatment, Water 

Research 46 (2012) 2247-2256

 Paper 7: Lolas IB., Chen XJ., Bester K. and Nielsen JL. Identification of 

triclosan degrading bacteria using stable isotope probing and 

microautoradiography. Microbiology 158 (2012) 2805-2814 

 Paper 8: Chen XJ., Wimmer R., Ternes T., Schlüsener M., Nielsen JL. and 

Bester K. Biodegradation of triclosan and Formation metabolites in activated 

sludge under aerobic conditions. Manuscript in preparation

This thesis has been submitted for assessment in partial fulfillment of the PhD 

degree. The thesis is based on the submitted and published scientific papers which 

are listed above. Parts of the papers are used directly or indirectly in the extended 

summary of the thesis. As part of the assessment, co-author statements have been 

made available to the assessment committee and are also available at the Faculty 

of Engineering and Science, Aalborg University.  




