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An enduring issue in the study of political participation is the extent to which political 

awareness and engagement are socially or individually motivated.  We address these issues in the 

context of a municipal election which generated a high level of political engagement on the part 

of college students for whom the election was relevant.  An effort was made to interview all 

these students using an on-line survey, and the students were asked to provide information on 

their friendship networks.  The paper demonstrates that awareness and engagement are not 

simply a consequence of individually defined interests and awareness, but rather that individuals 

are informed and engaged based on their locations within structured networks of social 

interaction. 

 

 

 

Prepared for delivery at the 2011 Political Networks Conference, University of Michigan, 
Ann Arbor, June 17, 2011. 



An enduring issue in the study of political participation is the extent to which political 

awareness and engagement are socially or individually motivated.  An enormous and 

sophisticated literature has developed focusing on the individual correlates of political 

participation, most particularly the participatory resources of the individual (Brady et al. 1995), 

the individual costs of participation (Downs 1957), and the individual level presence of political 

interest, political efficacy, and other participatory orientations and values (Verba, Burns, and 

Schlozman 1997). At the same time, another literature focuses on the socially contingent nature 

of participation and the role of social mobilization in stimulating engagement, either as a 

consequence of the larger social contexts within which individuals are imbedded (Huckfeldt 

1979), or as a consequence of institutionalized voting procedures and policies (Wolfinger and 

Rosenstone 1980), or as a consequence of social networks and social contacts (McClurg 2003).  

This latter literature on the socially contingent basis of individual engagement has 

developed more slowly, in large part due to methodological and observational challenges that 

have impeded its progress.  While 70 years worth of well understood, off-the-shelf survey 

procedures provide a robust platform for studying the individual correlates of political 

engagement, significant observational challenges confront studies that are aimed at taking 

interdependence seriously in the study of political participation.  This is not to say that progress 

has not occurred, but rather that the progress comes at a significant price.  Rather than simply 

adding another battery to a survey, further progress depends on rethinking and reconfiguring the 

basic template for studies of political participation.   

We address these issues within the context of student mobilization and activation. In May 

of 2010, the city of Williamsburg,Virginia held a municipal election with potentially important 

consequences for students at the College of William and Mary.  At least among the members of 
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the William and Mary student body, the city council election campaign revolved around several 

previously adopted council measures interpreted by many as being directed at William and Mary 

students.  These included a noise ordinance and a limitation of no more than four unrelated 

individuals within a single dwelling.  In response, student groups made concerted efforts to 

mobilize student interest and involvement in the election, and one William and Mary student ran 

as a candidate for the city council.  This election provides an opportunity to address several 

issues regarding the social mobilization of political engagement.  In particular, how important 

are individually versus collectively defined interests in mobilizing student awareness?  The data 

we employ in this paper were collected to take advantage of the opportunity to study the process 

of political mobilization through the networks of association among the students at William and 

Mary.   

 
Social Networks and Political Mobilization   
 

Prior to the advent of survey data, empirically based accounts of political participation 

typically focused on the setting in which participation occurred.  Tingsten’s (1963) classic 

account of turnout in Stockholm during the early 1930s used aggregate data to demonstrate the 

importance of residential location – working class individuals were more likely to vote if they 

lived in working class precincts.  Key (1949) showed that southern whites were more likely to be 

racially antagonistic and politically mobilized if they lived in counties with higher concentrations 

of black residents.  Matthews and Prothro (1963) correspondingly demonstrated the demobilizing 

consequences for black citizens – they were less likely to gain admission to voter registration 

lists if they lived in black majority counties where racially antagonistic whites held the reigns of 

control with a tenacious grip.   
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Some, but certainly not all, of these studies pointed toward the importance of social 

interaction.  Tingsten offered two separate and highly plausible accounts of very different social 

interaction mechanisms (also see Langton and Rapoport 1975).  First, workers living in working 

class precincts may have been more likely to interact with other workers, to recognize their 

working class interests, and hence to become socially mobilized.   Alternatively, party 

organizations that focus on the mobilization of working class groups may seek economies of 

scale by targeting their efforts on areas with high concentrations of working class individuals.  In 

either event, the socially contingent nature of political mobilization becomes clear, but the 

potential mechanisms and their implications are vastly different.  The problem was, and indeed 

continues to be, that students of politics and social mobilization lack the data resources to 

address these questions. 

Surveys and survey research are not the enemies of studying social contingencies on 

individual behavior.  Indeed the earliest survey based studies of elections and political 

engagement were community based studies highly sensitive to the presence or absence of social 

mobilization effects.  In the words of Lazarsfeld et al. (1948), politics was best seen as a “social 

experience.”  Both the Elmira and Erie County studies of the 1940 and 1948 presidential 

elections pointed toward patterns of political engagement produced through patterns of social 

interaction (see Berelson et al. 1954: chapters 6-7).   The problem was, however, that the 

relatively crude measurement of social interaction placed severe limits on the ability to specify 

the nature of the social interaction mechanisms.  Based on an often implicit assumption of social 

homogeneity within patterns of social interaction, the authors assume that middle class 

individuals interact with other middle class individuals, and Catholics interact with other 

Catholics, and so on.  Hence, social interaction tends to be measured implicitly, on the basis of 
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direct measures of individual characteristics.  The authors also assume that social interaction 

patterns are affected by the composition of the community’s larger population, giving rise to a 

“breakage effect” (Berelson et al.1954) that provides an advantage to majority sentiment within 

the community.  Here again, however, social interaction tends to be measured implicitly through 

an undocumented (but typically correct) assumption that living among members of a particular 

group leads to interaction with members of that group (Huckfeldt 1983).   

Later survey studies are less effective at including considerations related to social 

interaction effects on participation for two reasons.  First, most studies are nationally based, and 

hence it becomes difficult to identify local climates of opinion.  Second, the introduction of the 

survey gives rise to a mother lode of new information and new individual level measurement 

innovations leading to important advances in the measurement of  individuals interests, 

resources, values, and abilities.  Indeed, rapid progress in identifying the individual sources of 

political engagement is simply not matched by the development of new measurement devices for 

patterns of social interaction, and this creates two problems.  Not only does it mean that the 

measurement of social contingencies lag behind the measurement of individual proclivities, but it 

also means that progress toward a socially contingent view of political participation must take 

place within the highly developed context of individual level measurement advances. 

Within this setting, the efforts of Edward Laumann become particularly important.  

Lauman’s 1966 Detroit Area Study includes an egocentric network battery as part of a survey of 

white Detroit males (Laumann 1973).   His efforts break new ground, providing a model for the 

simultaneous incorporation of individual level measures with self-report measures on the social 

networks of respondents.  This innovation leads eventually to a new literature on social and 

political participation through the inclusion of social network batteries within the General Social 
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Survey series (Marsden 197xx; Burt 19xx), as well as within a series of both U.S. and 

international election studies (Huckfeldt and Sprague 1995; Huckfeldt, Ikeda, and Pappi 2005; 

Huckfeldt, Sprague, and Levine 2000), and beginning in 2000, within the National Election 

Study (Huckfeldt, Johnson, and Sprague 2004).   

Hence McClurg (2003) employs one of these studies to argue that social networks 

produce strong effects on the likelihood of political participation. Significantly, his argument 

depends on the synergy between individual characteristics and social contingencies.  He 

contends that networks create opportunities for individuals to surpass individually idiosyncratic 

resource constraints by obtaining information from other individuals. He is able to move beyond 

the implicit assumption that individual characteristics determine the structure of social networks, 

showing that network effects are separate and distinct from the effects of social group 

memberships, as well as the manner in which they enhance the effect of individual education on 

the probability of participation.  In short, he shows that social interaction not only plays a crucial 

role in affecting levels of participation, but also in defining and identifying the role of individual 

characteristics and factors in affecting participation.   

Studies such as McClurg’s set a high bar for future contributions to the field.  His work, 

as well as other similar work – in the field (Nickerson 2009), in surveys (Mutz 2006), and in the 

lab (Levitan and Visser 2009)  –  show that we are now in a situation where sophisticated 

measurement is required both at the level of individuals and at the level of social networks.   

Participation is not only socially contingent but individually contingent as well, and a great deal 

of the explanatory progress with respect to political participation occurs at the intersection 

between individual characteristics and network properties.    
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In this context, Granovetter’s (1985) methodological insight regarding the need for 

specificity of network effects becomes particularly compelling.  Social interaction and social 

influence must be specified and measured, and they cannot be implicitly assumed on the basis of 

individual characteristics and properties.  Just as important, they cannot be boiled down to 

internalized norms and attitudes on the part of individuals.  Rather, the challenge is to understand 

political participation and mobilization relative to specific forms of social interaction, and hence 

the methodological challenges become particularly daunting.  Not only do we need high quality 

data on individuals, but also high quality data on their patterns of interaction.  In short, the study 

of political participation has become an enterprise that builds on methodological individualism 

within the context of highly interdependent individuals. One challenge is to ratchet up the quality 

of network data within survey applications, and that is the issue that we address in this paper. 

Opportunities for Enhancing the Measurement of Egocentric Networks 

A primary obstacle to progress along these lines lies in the relatively primitive network 

measures that are produced through the use of survey based network name generators.  The 

typical network name generator produces up to five names of associates, as well as a battery of 

questions that the respondent answers regarding each of these individuals.  In some instances the 

members of the network can be interviewed as well, thereby providing self-report validation with 

respect to the main respondent’s perception of the network member’s characteristics, beliefs, and 

values.  Moreover, if both the ego and alter are interviewed, it is possible to develop reciprocity 

measures within the ego-alter dyads.  Moreover, some relatively indirect measures of network 

density for the egocentric network can be obtained, at least in principle, based on the main 

respondent’s perception. 
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Several problems arise with these procedures.  First and most important, they provide 

limited utility in identifying the larger structure of the networks within which individuals reside.  

Efforts have been made to study network density and reciprocity (Huckfeldt, et al. 1995), as well 

as to study the implications of second order contacts (Huckfeldt, Johnson, and Sprague 2002), 

but these efforts have not fully satisfied the aspiration to combine the highest quality individual 

level measurement with the highest quality network measures.  

The question that arises is whether political mobilization can be studied using advanced 

network measurement procedures within the context of a survey design that fully addresses the 

individual correlates of political participation.  Great progress has been accomplished with 

studies that attempt to map the networks of a self-contained population that is more or less 

completely enumerated.  The study that we employ is based on a multi-wave panel study 

employing on-line surveys of individual students.  The target population was all William and 

Mary students, with a response rate on the first pre-election wave of slightly higher than 50 

percent, producing 2,711 responses.  The target population for the second pre-election wave 

included all respondents to the first wave, as well as associates of the first wave respondents who 

were not interviewed at the first wave.  This produced a second wave sample of 1912 

respondents, based on a response rate of 65 percent.  For the third post-election wave, the target 

population stayed the same, with a response rate of 65 percent producing a sample of 1910 

respondents.  Nearly 81 percent of second wave respondents were interviewed at the third, post-

election wave.     

 We restrict our analysis to the first wave of the study, during which respondents were 

asked to provide “the first and last names of up to five of your closest friends who attend 

William and Mary.”  Nearly 1400 respondents provided all 5 names.   This means that we have 
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relatively complete information on nearly 30 percent of the target population, and by 

contemporary standards in survey research, these are entirely respectable response rates.  The 

problem is that we are not aiming to accomplish a normal study with a rectangular matrix of 

survey respondents.  Instead, our goal is to conduct a network survey, and such an effort suffers 

from compounding rates of non-response.  If the non-response rate among individual students is 

the same as the non-response rate among the students’ friends, then only about 10 percent of the 

data on respondents and their networks will be complete.  Moreover, only about 3 percent of the 

respondents will have three rings of complete information – complete information on the ego, all 

five of the the ego’s alters, and all five of the alters’ alters.   

While these numbers are daunting, it is important that we place them in context. In a 

traditional survey setting with an ego-centric name generator, we are once again confronted with 

comparable non-response to the survey as a whole.  Among respondents, between 10 and 20 

percent typically do not provide any discussants in response to the name generator.  And less 

than half typically provide 4 or more discussants.  Finally, of those who do provide discussant 

information, our own experience is that only about 50 percent provide information that can be 

used to identify and interview the members of the network for a snowball survey (Huckfeldt and 

Sprague 1995; Huckfeldt, Beck and Dalton 1998; Huckfeldt, Johnson, and Sprague 2004).  In 

short, missing data problems are pervasive and compounding in network studies. 

The Political Problem 

 The students at William and Mary are differentially affected by the policies toward code 

enforcement, and hence their awareness of the problem covaries with their own residential 

experience at William and Mary.  As Table 1A shows, students are more likely to be aware of 

code enforcement to the extent that they are in a higher academic class and to the extent that they 
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live off campus.  And as Table 1B shows, their awareness of the problem and their class standing 

translate into more negative evaluations of the city council, with no effect due their residential 

status.  The lack of any direct effect for residential location is likely due to the fact that it is 

mediated by class standing.  Not only are advanced students more likely to live off campus – less 

than 1 percent among freshmen, approximately 15 percent among sophomores, 25 percent 

among juniors, and 30 percent among seniors – but we will see that they are also more likely to 

have friends who live off campus.   

 All the dyads in the data set are considered in Table 2. Part A shows that students who 

live off campus are more likely to have friends who live off campus, and Part B shows that 

patterns of association are structured by class standing – a large proportion of a the dyads are 

located within the same academic class.  Finally, Part C shows that class standing is also (and 

unsurprisingly) associated with the likelihood of having friends who live off campus. 

 In summary, these data seem to suggest that patterns of association may be as important 

as an individual’s own residential location for generating awareness and mobilizing student 

sentiment.   And the problem to consider is the relative consequences of individual defined 

interests versus interests that are socially informed.   Indeed, we are already seeing the hints of 

the social versus individual level mobilization of interests with respect to the issue in Tables 1 

and 2. 

Centrality among the Students 

 Our paper is particularly concerned with the structure of social communication regarding 

these issues.  Recent efforts have proposed different models of influence within communication 

networks.   One set of expectations is that influence would be widespread – a relatively large 

number of individuals would be locally defined influentials, where localities are defined in terms 
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of small, immediate, relatively compact networks that surround an individual.  Another set of 

expectations is that a relatively small group of individuals would be hyper-influentials, either 

because a large number of individuals directly rely on them for information, or because they are 

connected indirectly to a particularly large proportion of the population  (Barabási 2002). 

 These are particularly important issues for the study of democratic politics.  One set of 

expectations leads to a radically democratic vision in which expertise and political leadership is 

spread broadly through the population.  The other set of expectations leads to the vision of a 

democratic elite – a small group of individuals who play a particularly outsized role in the 

deliberations of democratic politics.  All respondents to the survey were asked to identify their 

friends, and on that basis we can identify a centrality measure for the campus as a whole – 

indegree, or the frequency with which students were named as friends by other students.  

Moreover, the missing data limitations are less daunting in this instance.  Again, nearly half of 

the students responded to the survey, and other students can be named regardless of whether they 

responded.  More than 1800 respondents identify more than 3,900  friends.  Ninety-four percent 

of the identified friends are nominated by 1 to 4 respondents to the survey, and approximately 1 

percent are nominated by 7 or more respondents.  In short, and as we might expect, a very small 

percentage of the respondents are identified at relatively high rates, producing a relatively small 

handful of the hyperconnected when viewed from the standpoint of the network connecting all 

the students. At the high end, 1 percent of the identified friends, for a total of 40 individuals, are 

identified between 11 and 15 times. 

 We can also identify a locally defined network that is centered on each of the respondents 

to the survey.  Unlike the traditional egocentric network, however, this network depends on the 

survey responses of not only the ego, but also each of the five potential alters, who in turn 
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identify as many as 5 friends each.  In short, as a first step in this direction, we propose to 

construct network information for each of the main respondents (egos) that includes as many as 5 

of the first ring contacts and 25 second ring contacts.1 

 This provides an opportunity to define centrality both locally and globally.  The 

distribution for global centrality is displayed in Part A of  Table 3, where we see that the range of 

nominations as a friend varies from 1 to 15 for the individuals who have been nominated.  In 

contrast, we can define individuals as being central who are most frequently named as friends 

within locally defined networks, and Part B shows that 15 percent of respondents are identified 

as being central in more than one locally defined network. 

 Finally, Part C of Table 3 shows the relationship between local centrality and global 

centrality among the main respondents.  Not surprisingly, the relationship is strong, but the 

measures appear to tap different dimensions of centrality among respondents.   

The Local Networks 

 We display two of the locally defined networks as directed graphs.  One of the networks 

(Figure 1a) is characterized by high levels of connectedness and thus redundancy within the 

network, while the other (Figure 1b) is characterized by low levels of connectedness.   

 In the high density case, we see that the network is characterized by a large number of bi-

directional edges – indicating that both individuals in a dyad reported the other as a discussant – 

and relatively few individuals only connected to the network by one tie.  The first “zone” of the 

network – the particular individuals that the ego named as discussants – shows an especially high 

level of interconnectedness.  Each of the ego’s alters in zone one was named as a discussant by at 

                                                            
1 We do not include information taken from the interviews of the second zone friends for the simple reason that it 
would compound our missing data problems.  Hence we ientify directed edges toward (but not from) the second 
zone friends, and we are underestimating network densities accordingly.  The dyadic reciprocity rate is .65 for the 
study. 
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least one of the other alters in question, and each one of the ego’s alters named the ego as well.  

There is an individual in the second “zone” of the network that was named by three of the ego’s 

alters.  This high density pattern of ties leads to a network with only 15 unique individuals, 

despite the fact that this ego-centric network is “complete” – we have five alters for the ego, and 

each of the ego’s alters provided a full five alters for themselves, as well, leaving us with a total 

of 30 directed edges.   

By contrast, the low density case is characterized by a much more obvious clustering of 

the network by the ego’s alters and very few bi-directional edges.  Only a handful of individuals 

in the network were named by more than one other individual in the network.  Only two of the 

ego’s alters named the ego as a discussant, and only one alter in the first zone was named by 

another alter in the first zone (a naming that was not reciprocated).  This leads to a total of 27 

unique individuals, despite the fact that the network is also complete and has the same number of 

directed edges (30) as the high-density network. 

The quartiles for the count of ties, the number of unique individuals (not including the 

main respondent), and the number of redundant ties are displayed in Table 4 for main 

respondents with non-missing data on at least three first order friends.  Part A shows that the 

median number of relationships is 3, with a maximum of 30, and quartile cutoffs of 10, 15, and 

20 relationships.  Part B shows that the number of unique individuals varies from 3 to 27, with 

quartile cutoffs of 8, 11, and 14.  Finally, if we subtract the number of unique ties from the count 

of relationships, we arrive at a count of redundant relationships, where the range is from 0 to 24, 

with quartile cutoffs of 1, 3, and 6.  We refer to these as redundant ties because they intensify 

communication within the locally defined network, but they limit the communication of 

information from beyond the locally defined network.   
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The simple regressions between each pairing of the three local networks properties are 

shown in Parts D, C, and E.  Networks with higher counts of unique individuals also tend to 

include higher levels of redundancy because both are driven by the number of relationships 

within the network.  Hence, in further analyses, we take simultaneous account of the number of 

unique nodes as well as the total number of identified relationships.  At the same time, some 

individuals end up with more or less of one or the other.  Some individuals are located in very 

densely connected networks with relatively few friends, while other individuals are located in 

local  networks  with a high count of individuals but where relatively few name more than one 

other individual in the network as a friend.  

  Hence, our examination of density and centrality gives rise to an important question.  

What are the consequences of network density and individual centrality for the diffusion of 

awareness among students regarding code enforcement in the city of Williamsburg? 

Centrality, Network Density, and the Diffusion of Awareness 

 The effects of network centrality and density on awareness regarding code enforcement 

are shown in Table 5.  As before, respondents who live off campus are more likely to be aware, 

as are respondents who are members of more advanced academic classes – seniors as opposed to 

juniors, juniors as opposed to sophmores, etc.  There is no evidence to suggest that locally 

defined centrality has any effect on awareness, but there is a marginally discernible effect of 

centrality in the larger network – higher levels of centrality may translate into higher levels of 

awareness.  Finally, we see that locally defined networks with lower density levels (relatively 

fewer edges, or more unique friends) are related to higher levels of awareness.  In short, there is 

at least some evidence to suggest that individuals with more friends are more likely to be aware 

of code enforcement, and that individuals in lower density networks are more likely to be aware. 
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 Figure 2 displays how students’ exposure to the noise ordinance permeates through the 

network. The shading of the node indicates the student’s self-reported degree of exposure to the 

noise ordinance. At one extreme, black nodes are those students who have never been to a party 

where the police issued a citation for violating the noise ordinance, do not know anyone who has 

been cited, and have never heard of anyone being cited. At the other extreme, bright red nodes 

are students who have been to such a party and personally know others who have been cited. The 

figure demonstrates that awareness of exposure to the ordinance is social, but social awareness 

diminishes quickly across ties. Students recognize when their friends have been exposed, but are 

less likely to recognize the exposure of friends of friends. These effects are most obvious looking 

at clusters on the periphery of the network. Cluster A, for example, features a student who has 

been at a party where the police issued a citation for the noise violation. Her immediate friend 

has not been to such a party, but recognizes that he knows personally someone who has. Yet, his 

friend cannot recall having heard of anyone who has. Thus, social experiences may require 

reinforcement to spread across the network. 

 A related implication of Figure 2 is that the dense and relatively homogenous networks 

depicted in Figure 1A may serve to insulate members from recognition of the experiences of 

others, while the more diffuse networks (e.g., Figure 1B) encourage the transmission of 

experience. Clusters B and C demonstrate this point. Cluster B is a group who have not been to a 

party featuring a citation and are unaware of others who have, despite the fact that one member is 

in a reciprocal relationship with someone who has been to such a party. Thus, the perceptions of 

the network may insulate members from recognition of discordant experiences. The more central 

students in the middle of the figure (Cluster C), on the other hand, are quite aware of their 

compatriot’s exposure to the ordinance, even though many have not been to a party featuring a 
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citation themselves. Thus, networks with many bridges and relatively few redundant ties sustain 

the transmission of colleagues’ exposure to the ordinance (Burt 1987). 

Implications for the Communication of Awareness 
 

Figure 2 suggests a model of social influence in which any given student’s awareness of 

exposure to the ordinance depends on the experiences of his or her network. Moreover, the 

experience of the locally defined network conditions the influence of individual friends’ 

experiences. This process resembles an autoregressive model of influence where the influence of 

individual bits of information is weighted by their deviation from the whole of accumulated 

information (Huckfeldt, Johnson, and Sprague 2004; McPhee 1963).  

Table 6 tests this model empirically, using a series of logistic regressions, with the dyad as 

the unit of analysis. The response variable is whether the ego recognizes that he or she knows 

someone personally who police have cited for violating the noise ordinance. Part A considers 

only the influence of the experience of the alter and the other friends identified by the ego, while 

Part B incorporates the experience friends of friends (the “Zone 2” network). Model 1 of part A 

demonstrates that the experience of the ego’s immediate friends can transmit awareness to the 

ego. The model suggests that the ego will be 1.6 times more likely to be aware of their friends’ 

exposure to the noise ordinance if the alter has been directly exposed. Interestingly, if the alter 

simply knows someone who has been exposed without being exposed directly, the ego is also 

about 1.6 times more likely to be aware. Importantly, these effects are independent of the ego’s 

self-exposure to the ordinance and the exposure of the ego’s other friends.2 Thus, individual 

alters are not acting as a proxy for the experience of the network more generally. The zone 1 

                                                            
2 The model controls for the zone 1 network by including the mean response of all friends, excluding the alter in 
the dyad. Thus the variables range from zero, indicating that no other friends in the network have been exposed, 
to one, indicating all other friends have been exposed.  
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network has its own independent effect as well, which exceeds the impact of the alter. Moreover, 

the network acts indirectly to condition the influence of any single alter. 

Model 2 of part A interacts the alter’s experience with the alter’s deviation from the mean of 

the network.3 The negative coefficients (each more than three times the size of its standard 

errors) suggest that the influence of the alter diminishes as it diverges from the experience of the 

micro-network.  Thus, individual social experiences need reinforcement to permeate through the 

network.  Students who know only a single student impacted by the ordinance are unlikely to be 

moved that friend’s experience, but as more friends are impacted, the influence of each of these 

experiences increases.  

One fear from the analysis in part A is that the observed effects are not effects of the micro-

context, but are instead proxies for the greater social context. Model 1 of part B tests this 

possibility by including the experience of friends of friends (the zone 2 network).4  The effects of 

the alter and the zone 1 network remain in model 1 of part B. The direct experience of the zone 2 

network also has an independent effect on the ego’s awareness, but the experience of the zone 2 

network’s friends has no significant influence. The results suggest that students’ experiences 

permeate two steps across the network. If one student is at a party that violates the ordinance, the 

students friends are more likely to be aware of this experience and the friends of the friends are 

also more likely to be aware. Yet, if this student only knows someone who has been cited, their 

friends will be more likely to be aware, but this knowledge will have no impact on the friends of 

friends.   

Model 2 of part B pools the zone 1 and zone 2 networks to determine if the broader locally 

defined network conditions the influence of individual alters. We again see general support for 

                                                            
3 The network means themselves cannot be included in this model due to collinearity. 
4 In measuring the zone 2 network means, we exclude the ego as well as any zone 1 members. 
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the autoregressive model, with negative coefficients on each of the interactions between the 

alter’s experience and the network mean.  

The implications of the Table 6 models are best seen by using the logit models to generate 

predicted probabilities across relevant variation in explanatory conditions.  Table 7 uses this 

procedure to address the second model in Part A of the Table 6.  As this table shows, the effect 

of a dyadic friendship is contingent on the distribution in the remainder of the friendship 

network.   A friend’s effect is magnified when this friend’s message to the respondent is 

reinforced by the other members of the network.  The friend’s effect is diminished when the 

message is contrary to other messages being received by the respondent.  The fact that dyadic 

flows of information and influence are contingent on the larger network is an important result, 

and we will return to it again in the conclusion.  

Conclusion 
 
 Students of interdependence in politics face formidable obstacles in the analysis of 

political behavior.  Good data are hard to find, and their analysis is often less than 

straightforward.  Moreover, the high quality data on individuals that have become a defining 

ingredient in political science research places a high bar on social network studies. In order to 

make significant inroads in political science research, network studies must produce high quality 

data and analysis on both the networks within which individuals are imbedded, as well as the 

social and political characteristics of individuals.    

 Significant advances have been made in the use of name generators, egocentric networks, 

and snowball surveys, but these studies are limited in their ability to provide the rich measures of 

networks that are likely to generate continuing progress in establishing the nature of 

interdependence and social contingencies in politics.  The importance of continuing this progress 



  18

has never been more important.  The key to political analysis is establishing the linkages between 

macro and micro politics.  Unless political analysis can move beyond the micro to address the 

macro, it will fail to fulfill its mission, and specifying the networks of relations that tie political 

actors together is a crucial ingredient in integrating micro and macro points of view. 

 At the same time, this paper makes an implicit case for a continuing dedication to 

methodological individualism in network studies of political behavior.  While individual level 

studies need to address interdependence and social contingencies, network studies generate 

enormous benefits by addressing the crucial role of the individual level variation within the 

networks.  We have self-consciously focused this paper on improving the measurement quality 

of the egocentric networks that surround particular individuals. 

 The payoff to such a commitment comes in the analysis of Table 7.  It is not simply that 

individuals depend on other individuals for their awareness of the political world.  It is rather that 

dyadic relations among individuals fundamentally depend on the larger constraints of the 

network within which these dyads are imbedded.  Not only is individual behavior autoregressive 

with respect to the behavior of other individuals, but the influence of one individual on another 

depends on all the other individuals within these individual’s networks.  Hence this analysis adds 

more evidence in support of the view that network portrayals of individual behavior are, by 

implication, non-linear with a vengeance.   
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Table 1.  Individual correlates of awareness regarding code enforcement and 
evaluations of the Williamsburg city council. 

 

A. Awareness of code enforcement by academic year in school and residence. 

                     Coefficient  s.e.   t-value     

    academic year       -.43      .03     14.80    N=2470 respondents 

    off campus          -.45      .08      5.72    R2=.12 

    constant            3.87      .08     50.90    s.e. of estimate=1.52 

  

B. Evaluation of city council by awareness of code enforcement, year in  

 school, and residence.  

                     Coefficient  s.e.   t-value      

    awareness           -.23      .02    -13.04    N=2203 respondents 

    academic year       .12      .03      4.39     R2= .11 

    off campus           .03      .07      0.37    s.e. of estimate= 1.26  

    constant            4.87      .10     50.57     

  

Awareness=number of affirmative answers to the following questions: Been at 
party where someone was cited for noise?  Know anyone who has been cited for 
noise?  Heard of anyone who has been cited for noise? You or anyone you know 
been cited for violating the three or four person rule for unrelated 
individuals in dwelling?  Heard of anyone who has been cited? Range is 0-5. 

Academic year: 1=freshman, 2=sophomore, 3=junior, 4=senior. 

Off campus: 1 if the main respondent lives off campus, 0 otherwise 

City council evaluation: range from xx (negative) to xx (positive) 
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Table 2. Characteristics of main respondents and friends. 
 
A. Off campus versus on campus. 
 
                  Main respondent 
 
  Friend        On-campus  Off-campus       Total 
 
  On-campus     85.19       48.59            77.77  
  Off-campus      14.81       51.41          22.23  
 
     N=          3,356        854            4,210 dyads  
                                        (1406 main respondents) 
 
 B. Year in school. 
 
 Friend’s            Main respondent’s year  
   Year     freshman   sophomore  junior     senior     Total 
 
 Freshman    86.61       4.76       1.37       1.71      21.93  
 Sophomore    8.43      75.70      11.92       6.11      27.07  
 Junior       2.77      13.51      69.62      17.47      26.11  
 Senior       2.19       6.03      17.09      74.71      24.89  
  
     Total    866      1,029        948        933      3,776 dyads 
                                                   (1334 main respondents)  
  
 
C. Residence of friend by class of main respondent. 
 
Friend’s          Main respondent class 
residence   freshman sophomore junior  senior       Total 
 
on campus    93.56    81.03     72.43   66.53       78.01  
off campus    6.44    18.97     27.57   33.47       21.99  
 
  Total        901    1,086     1,030   1,007       4,024  
                                              (1343 main respondents) 
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Table 3. Centrality within the student body, centrality within local 
networks, and the relationship between the two.   
 
 
A. Centrality within the student body. Total number of mentions per 
respondent. 
   
       indegree   percent    cumulative 
          1        20.6        20.6  
          2        25.2        45.8  
          3        22.8        68.7 
          4        16.7        85.4 
          5         7.6        93.0 
          6         4.4        97.4 
          7         1.5        98.9 
          8         0.4        99.2 
          9         0.4        99.6  
         11         0.1        99.8 
         14         0.1        99.9 
         15         0.1       100.0  
          N=        801         
 
 
B. Centrality within locally defined networks: the number of locally defined 
networks in which the respondent is named most frequently. 
 
        number     percent   cumulative     
          1         84.39       84.4 
          2         11.74       96.1 
          3          2.87       99.0  
          4          0.62       99.6  
          5          0.25       99.9 
          6          0.12      100.0  
          N=         801        
 
C. Centrality within locally defined networks by centrality within the 
student body. 
 
 
  
                coefficient     s.e.      t-value      
  
   Slope             .14        .01        13.25     
   Constant          .79        .04        21.94     
  
    N=   801 
    R2=  .18 
                        s.e. of estimate = .51 
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Table 4.  Quartiles for total count as well as redundant ties and unique 
nodes within locally defined networks, and the relationship between the two.  
For respondents with nonmissing data on at least 3 first order friends. 
   
 
 
A. Count – number of relationships (edges)      
    Minimum=3 
 First quartile=10 
 Second quartile=15 
 Third quartile=20 
 Maximum=30  
 
C. Unique individuals          
 Minimum=3 
 First quartile=8 
      Second quartile=11 
 Third quartile=14 
 Maximum=26 
 
B. Redundant ties       
    Minimum=0 
 First quartile=1 
 Second quartile=3 
 Third quartile=6 
 Maximum=27  
 
  
 
D. Redundancy by uniqueness. 
        
                   coefficient   Std. Err.  t-value  N   R2   s.e. of est. 
  
     slope             .12         .03        4.12  862 .02     3.59 
     constant         2.65         .34        7.68     
  
E. Redundancy by count. 
        
                   coefficient   Std. Err.  t-value  N   R2   s.e. of est. 
  
     slope             .42         .01       28.73  862 .49     2.59 
     constant        -2.51         .24        10.36      
 
F. Uniqueness by count. 
        
                   coefficient   Std. Err.  t-value  N   R2   s.e. of est. 
  
     slope             .58         .01       39.76  862 .65     2.59 
     constant         2.51         .14       10.36     
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Table 5. Awareness by density and centrality. 
 
A.   Awareness by number of unique friends and number of identified friends 
within respondent’s local network, for all respondents and for those who live 
on campus. 
 
 
    All main respondents         On-campus respondents 
 
                       coefficient  s.e.  t-value  coefficient  s.e.  t-value 
 
Unique friends              .04     .02    1.94        .04      .02     2.17 
Identified friends         -.03     .02    1.91       -.03      .02     2.10    
Respondent lives off campus .79     .16    4.83     
Academic class              .45     .06    7.96        .46      .06     7.84    
Constant                   1.18     .25    4.74       1.17      .26     4.54   
 
 
              N=                    529                         444 
              R2=                   .20                         .14 
              s.e. of estimate=    1.32                        1.31 
  
 
B.  Awareness by density of local network and centrality of main respondent.   
 
                                    coefficient  s.e.    t-value         
  
Respondent lives off campus             .80      .16       4.87     
Academic class                          .44      .06       7.79     
In-degree (entire network)              .07      .04       1.69     
Unique friends (local net)              .05      .02       2.39     
Centrality in local networks            .02      .10       0.17     
Number of relationships (local net)    -.05      .02      -2.62     
       _cons                           1.10      .27       4.11     
             
                               N=                529 
                               R2=               .21 
                               s.e. of estimate= .13  
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Table 6. Autoregressive influence in social awareness of noise ordinance 
enforcement. Logistic regressions with errors clustered on ego. Outcome 
variable: Ego awareness that someone he/she knows was cited by police for 
violating noise ordinance. 
 
A. Zone 1 network: discussants named by ego. 

  
                MODEL 1        MODEL 2 

                                       coefficient  SE    coefficient   SE    
Intercept                                  -2.0    0.13      -2.0      0.14 
E Attend                                    2.3    0.19       2.3      0.19         
A Attend                                    0.5    0.11       1.1      0.40 
A Knows                                     0.5    0.10       1.6      0.33 
Z1 Attend mean                              0.8    0.24        
Z1 Knows mean                               1.0    0.22       
A Attend deviation from Z1 Attend mean                        1.0      0.28 
A Knows deviation from Z1 Knows mean                          0.9      0.26 
A Attend X deviation from Z1 Attend mean                     -1.5      0.50 
A Knows X deviation from Z1 Knows mean                       -2.1      0.44  
N =                                              3551 (1185 clusters)  
Log pseudolikelihood =                        -1672.9      -1671.6 

 
 
B. Zones 1 and 2 network: discussants named by ego and their discussants. 
                             

               MODEL 1        MODEL 2 
                                       coefficient  SE    coefficient   SE    
Intercept                                  -2.4    0.20      -2.4      0.22 
E Attend                                    2.7    0.28       2.7      0.28         
A Attend                                    0.3    0.17       2.5      0.68 
A Knows                                     0.6    0.15       1.3      0.57 
Z1 Attend mean                              0.6    0.37        
Z1 Knows mean                               1.2    0.32    
Z2 Attend mean                              1.9    0.40        
Z2 Knows mean                              -0.5    0.39  
A Attend deviation from Z1Z2 Attend mean                      2.7      0.59 
A Knows deviation from Z1Z2 Knows mean                        0.8      0.51 
A Attend X deviation from Z1Z2 Attend mean                   -4.7      1.03 
A Knows X deviation from Z1Z2 Knows mean                     -1.5      0.91  
N =                                              2036 (646 clusters)  
Log pseudolikelihood =                        -886.0      -900.4 
                            
 
 
E = ego 
A = alter 
Z1 = Zone 1 network (discussants named by Ego) 
Z2= Zone 2 network (discussants named by Ego’s Zone 1 network) 
Z1Z2= Zone 1 and Zone 2 networks combined 
 
Attend = attended party where police issued citation for violating noise 

ordinance 
Knows =  personally knows someone who was cited by police for violating noise 

ordinance 
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Table 7.  Predicted probability that ego reports being aware that someone  
  he/she knows was cited by police for violating noise ordinance.a   
 

 
 
 
Proportion of      Friend in dyad  Friend in dyad    Effect of  
Zone 1 Friends  does not know  does know    friend 
knowing someone  someone cited   someone cited  in dyad  
who had been citedb   (A knows = 0) (A knows = 1)  __(Δ)___ 
 

   0    .27   .35     .08 

 .25    .32   .43     .11 

 .50    .37   .50     .13 

 .75    .42   .57     .15 

 1.0    .48   .65     .17 

 

 

 

a. Based on estimates from Model 2 in Table 6A.  E Attend is held constant at 
0.  A Attend is held constant at 0.  Z1 Attend Mean is held constant at 0. 

b. Calculation of proportion omits the friend in the dyad.Figure 1a.  High 
Density Network 
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Figure 1b.  Low Density Network. 
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Figure 2.  Diffusion of awareness of exposure to noise ordinance. 
 

 

 
 

NOTE: Color shows self-reported awareness of exposure to noise ordinance. 
Bright red nodes are those students who are maximally aware (i.e., have been 
to a party that was cited by police for violation and personally know others 
who have been cited) and black nodes are those students who are minimally 
aware (i.e., have never been to a party that was cited by police for 
violation and have not heard of others who were cited).  

B 
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