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1 Introduction

Equitent problems ask what is the figure that minimizes perimeter for a
given area or volume and a fixed boundary. This paper investigates the eq-
uitent problem in R2, specifically connecting the vertices of regular polygons
while also enclosing a given area. We utilize a new method of optimization
called metacalibration, which was first developed by Gary Lawlor of Brigham
Young University. Equitent problems in the plane can be thought of as a com-
bination of a Steiner problem and an isoperimetric problem, so we will give an
introduction to both problems below.

1.1 Introduction to Problem Types

Steiner Problems

The Steiner problem focuses on connecting a given set of points with mini-
mal length. The Steiner problem has several applications, such as the network
of roads and telephone wires. Sometimes, the path created to connect the set
of points can create additional nodes, called Steiner points. For the minimizing
configuration, no more than three segments will meet at any point, and any
three segments meeting will always form an angle of 120◦ with one another. [4]
There is an algorithm that gives the minimal Steiner tree solution. However,
due to the complexity of large Steiner trees finding the minimal solution is com-
putationally hard. [3]

Isoperimetric Problems

By definition, isoperimetric means having the same perimeter. An isoperi-
metric problem involves enclosing the most area with a given perimeter. Alter-
natively, we can solve the dual problem of enclosing a given area with the least
perimeter. It is well known that for Euclidean space, the optimal surface is a
sphere. In fact, in spaces of constant curvature the solution to the isoperimet-
ric problem often consists of all points at a fixed distance from a center point.
Research on the isoperimetric problem continues outside Euclidean space. [2]

Equitent Problems

Equitent is the name given by Lawlor to minimization problems having fixed
boundary and enclosing fixed area or volume. They are so named for having
both equal extent and content.

The planar equitent problem connecting the vertices of three and four sided
polygons was solved at the 2008 Brigham Young University REU [1]. In each
case, it was proved that a single bubble was preferred to enclose a given area and
the position of the bubble was dependent on the amount of area enclosed. In
this paper, we extend the previous findings to the equitent problem connecting
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the vertices of five- and six-sided polygons.

1.2 Introduction to Methods

Variational Methods

Traditionally, the most common way of solving geometric optimization prob-
lems is to use variational methods. For geometric optimization, this method is
applied to find a path or curve along which length is minimal. Once the list of
regions has been narrowed down to those that are stable and locally minimal,
the global minimizer can be isolated using geometric properties. Additionally,
due to the indirect process involved in finding the minimum, a proof of the ex-
istence of a minimizer is required. [7]

Calibration

The method of calibration compares each region directly to a conjectured
minimizer using an intermediate function. We use the intermediate function to
create a bridge between the conjectured minimizer and the competitors, show-
ing that every other competitor has longer perimeter than the conjectured min-
imizer. Thus, we will have shown that our conjectured minimizer is, in fact, the
actual minimizer through direct methods. Classical calibration allows for some
variables, such as direction and position, and is useful when solving problems
with a fixed boundary. Generally it does not, however, allow us to find the mini-
mizer of a region that has enclosed area, volume, or arc-length specifications. [5]

Metacalibration

To solve the equitent problem that connects the vertices of a five- and six-
sided polygon, we will use a variation of calibration techniques developed by
Lawlor. This method, called metacalibration, uses different vector fields for
each competitor. As a result, it introduces new variables to the arguments used
in calibration. These new variables allow us to address fixed boundary problems
that also have area, volume, or arc-length constraints.

Perhaps due to the difficulty of addressing equitent problems efficiently in
three or more dimensions with more traditional methods, these types of prob-
lems have been largely neglected, despite their intriguing characteristics.

In reference to any metacalibration problem, we call the proposed optimal
surface the minimizer, Ω∗, and we refer to every other region possessing the
desired properties as a competitor, Ω. In a minimization problem, we want to
show that P (Ω∗) ≤ P (Ω) where P represents the perimeter. However, in most
cases, proving this directly is difficult. Therefore, we introduce an intermediate
function, G, that will allow us to compare our competing perimeters. Each
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metacalibration problem makes use of some intermediate function that will al-
low us to state

P (Ω∗) = G(Ω∗) ≤ G(Ω) ≤ P (Ω).

Proving the middle inequality will always rely on Stokes’ Theorem or the
Fundamental Theorem of Calculus. Over time, several methods of finding the
intermediate function, G, have developed, some proving more useful than others
in various situations.

2 Variables

Throughout this paper we frequently refer to a set of variables as we define
functions across our figures. Below is a complete list of our definitions of these
variables. Note that variables with a hat represent variables on the minimizing
figure.

Often we refer to a figure as either representing a regular isotopy class or
some alternate isotopy class. An isotopy class is a class of all figures that can
be continuously, homeomorphically deformed into each other. Alternatively, we
can think of a class of competitors in terms of which pairs of regions share
(positive-length) boundary. We will refer to the simplest case, where the num-
ber of vertices and the number of regions surrounding the bubble are equal, as
the regular isotopy class. An alternate isotopy class can therefore be thought
of as any figure where the number of regions surrounding the bubble is less
than the number of vertices. Additionally, each alternate isotopy class can be
categorized according to which regions are separated by a boundary.

There are two main types of regions in equitent problems: any region outside
of the bubble and the bubble itself. The bubble is labeled as B and represents
any region which encloses the necessary area. The boundary of this bubble
region is called ∂B. Any region outside of the bubble is assigned using the
notation Ri. On the regular isotopy class, which we will consider first, this
represents a region which is bounded by the vertex lines of the figure, ∂B and
the edges of the basis polygon formed by connecting the vertices. On other
isotopy classes this definition varies slightly because some regions do not touch
the bubble. ∂Ri is the boundary of region Ri. This includes both the polygon
edges and ∂B, where applicable.

• Si is ∂Ri not including the polygon edges

• y is the height of a horizontal slicing line on any competitor

• a is the total area lying below the given slicing line
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• r is the radius of curvature of the circular arcs of B

• Li is the length of the intersection of the slicing line y with the region Ri

• LB is the length of the intersection of the slicing line y with the region B

• Ht is the half plane below a slicing line represented by Ht = {y ≤ t}

• ŷ is the height of the horizontal slicing line that cuts off area a on the
minimizer

• L̂B is the length of the intersection of the slicing line ŷ with the region B
on the minimizer

• ~vi is a vector field perpendicular to a polygon edge such that the difference
between two adjacent vectors ~vi and ~vj is unit normal to the boundary
between them

• ~ν is a vector field such that ~ν = ~vi +~n where ~n is the unit normal to ∂RB

Below is a picture to illustrate some of these variables.

Figure 1: Variable Picture

3 Equitent Problem Connecting the Vertices of
a Regular Polygon

Our problem requires us to connect the vertices of a regular five- or six-sided
polygon while enclosing a given area with minimal perimeter. We first focus on
solving our problem for the regular pentagon and will later extend our results to
the hexagon. We define the vertices we want to connect by inscribing a regular
pentagon on the unit circle. Some possible solutions to this problem are shown
below.
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Figure 2: Possible Minimizers

4 Proceeding With the Proof: Building a G

Function

Recall that in order to prove P (Ω∗) ≤ P (Ω) we must use an intermediate func-
tion, called the G function, which relates the two perimeters to one another.
There are several ways to build an intermediate G function that will allow us
to relate the perimeter of the proposed minimizer to the perimeter of any com-
petitor. A G function can be defined using the geometry of the figure or specific
vector fields across the figure. Additionally, we can generalize a vector field
approach such that finding the G function explicitly from the vector fields is
unnecessary. In this proof we focus on a generalized argument for G functions
using the flux through each point.

In order to get the inequalities we need vector fields through the figure to
have certain characteristics. First, adjacent vector fields must have unit length
difference with one another. Second, the difference vector between two adjacent
vectors must be perpendicular to the proposed minimizer boundary between
them. Upon defining the necessary vector fields we use them to evaluate the
flux through the boundary of the minimizer and competitor. The flux through
each piece of boundary lying below a horizontal slicing line y = t is the desired
intermediate G function for each figure.

5 Proving the Solution

5.1 Generalized G Function Using Flux Arguments

Below we provide a generalized method using flux arguments to define the in-
termediate G function for the regular isotopy class. This proves that the figure
below is minimal among all competitors in which the bubble is surrounded by
five separate regions. Due to the abstract method used to define the G function,
it also proves the equitent problem connecting the vertices of a n-gon (n ≤ 6)
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in which the bubble is surrounded by n regions.

Figure 3: Bubble surrounded by five regions

We wish to define a G function based on the flux through a given figure. To
do so we must consider two separate components of G. First, we consider the
flux through boundaries not containing the bubble.

Figure 4: Labeling bubble surrounded by five regions

Definition 1. Let

Gs(t) =
∑
i

Flux through Si ∩Ht due to vector fields ~vi.

The second component of our G function focuses on the flux through each point
of the bubble.

Definition 2. Let

GB(t) =
∑
i

Flux through ∂B ∩Ht due to the vector field ~ν.

We define G to be the sum of both flux components. In other words,

G(t) = Gs(t) +GB(t).
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For a generic polygon of n edges (n ≤ 6) it can be geometrically proved that on
∂B

~ν =
1

r

(
− L̂B

2
, ŷ

)
.

Over the whole bubble we define ~ν = 1
r

(
− L̂B

LB
(x− c), ŷ

)
where x is the hori-

zontal distance from the bubble center c.

Consider a narrow horizontal slice of the bubble region B that has been scaled
to height 1; horizontally the figure is not drawn to scale.

Figure 5: Bubble region B

On this slice: Flux of ~ν through ∂B =
∫
B
div(~ν)

⇒
∫
B
div(~ν) =

∫
B

L̂B

rLB
+ ŷ′

r

But LB = L̂B ŷ′, so:

∫
B
div(~ν) =

∫
B

1
rŷ′ + ŷ′

r

which is the sum of two positive things whose product is constant, so it is min-

imized when 1
rŷ′ = ŷ′

r ⇒ ŷ′ = 1

Thus div(~ν) = 2
r .

2

r
∆a ≤

∫
B

div(~ν) = Flux of ~ν through B ≤ ∆P +
∆ŷLB

r

⇒ ∆

(
2a− ŷLB

r

)
≤ ∆P

Thus to satisfy G(Ω) ≤ P (Ω) we can also take GB to be 2A−ŷLB

r and the
entire function to be

G =
∑
edges

Flux +
2A− ŷLB

r
.

8



5.2 Consistent Vector Behavior

The method of defining vector fields adjacent to a bubble relies on the assump-
tion that the regions and the boundaries separating them are the same for both
the ideal and any competitor. If not, the magnitude of ~ν − ~vi is not known
because ~ν was defined according to the ideal boundaries. The magnitude of
~ν − ~vi can be assumed to be less than unit at a given point only if that point is
contained by the circle of the arc from which it was mapped on the ideal. This
is because ~vi can be defined as the distance between the center of the figure and
the centers of the vector fields’ respective arcs scaled by r.

Theorem 5.1. ‖~ν − vi‖ ≤ 1 ∀ vi.
In order to prove the theorem above we will need the following lemma.

Lemma 1. The distance between the two centers of circular arcs is the radial
distance, r.

Recalling that all circular arcs of the interior bubble have the same radius
r, it can be geometrically shown that any two adjacent arcs’ centers are exactly
a distance r apart.

Figure 6: Two adjacent circular arcs’ centers are a radial distance apart.

Proof. It is known that the angle between the two circular arcs is 120◦ and the
vertex line a bisector, so the angle between a circular arc and the vertex line is
60◦. The radial vector is perpendicular to it’s arc, so the angle between it and
the vertex is 30◦. From symmetry, the angle between two adjacent circular arcs
is therefore 60◦. It can then be seen that since the two sides of length r are
separated by 60◦, the distance between the two circle’s centers represents the
base of an equilateral triangle of length r.

We now have the necessary background to prove the theorem we introduced
before the lemma. Recall, our theorem states

‖~ν − vi‖ ≤ 1 ∀ vi.
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Proof. Using the fact that the angle between the vertex line and the circle tan-
gent is 120◦ and comparing the perpendicular radial line to the circle we find
that the angle between the vertex line and the continuation of the circular arc is
60◦. Extending the radial line we find that the angle between one circle’s radial
line and the tangent line of the adjacent circle is 30◦. The lemma proved the
distance between the two centers of circular arcs is r.

Using this information and symmetry, the geometric figure shown below im-
mediately follows. By taking the outer radial sides of both of the equilateral
triangles an arc of 120◦ on the respective circle is formed. Since the vertex line
is 30◦ beyond the perpendicular radial line of a circle, the angle between two
adjacent vertices in this scenario is 180◦.

Figure 7: Geometry of two adjacent circular arcs.

For an extended circular arc not to enclose a figure would require two ad-
jacent vertex lines be more than 180◦ apart. Therefore we can assume that
the difference ~ν − vi is always less than or equal to unit, thus completing the
proof.

5.3 Flux Proof

Our process for proving a figure is a minimizer involves slicing our figure and its
competitors into segments of equal change in G, and then comparing perimeter.
Recall the inequality we need to prove is P (Ω∗) = G(Ω∗) ≤ G(Ω) ≤ P (Ω).
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Theorem 5.2. P (Ω∗) = G(Ω∗) ≤ G(Ω) ≤ P (Ω) where Ω∗ refers to the figure
below and Ω refers to any figure connecting the vertices of a regular pentagon
where the bubble region is surrounded by five regions.

Figure 8: Minimizer where the bubble is surrounded by five regions

Lemma 2. P (Ω∗) = G(Ω∗).

We can get several possible slicing types when we slice our figure: where our
slicing line does not intersect the bubble region and slices which intersect the
bubble region along with various combinations of exterior regions. Because of
the way we defined the vector fields however, the proofs for all cases are equiv-
alent.

Proof. In the following proof we will examine a narrow horizontal slice of a fig-
ure that has been scaled to height 1; horizontally the figures are not drawn to
scale.
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Figure 9: Possible combinations of regions

It is sufficient for this proof to show that P ′(t) = G′(t) because the two func-
tions have the same initial values, so integrating over their boundaries preserves
the relationship. Geometrically, P ′(t) is the change in perimeter of the bound-
ary segment. Since on the ideal the difference between two adjacent vectors ~vi
and ~vj is unit normal to the boundary between them and the difference ~ν − ~vi
is unit normal to the boundary of the interior bubble, the change in flux must
be equal to the change in perimeter of the boundaries on the ideal for both ∂B
and ∂Ri.

The total change in flux is the sum of the change of flux over all boundaries
not containing bubbles with those that do. From above, this will yield a value
that is equal to δ = δB + δi where δ is the total change in perimeter of the
boundaries over the segment, δB is the change in perimeter of the boundaries
containing a bubble and δi is the change in perimeter of all boundaries not con-
taining a bubble. Since P ′(t) = δ, and since G′(t) can be represented as the
change in flux over the segment, P ′(t) = G′(t) on Ω∗. Both functions have the
same initial values, so we have P (Ω∗) = G(Ω∗).

Thus we have considered all possible regions generated by slicing our figure
and have found P (Ω∗) = G(Ω∗) in each case.

Lemma 3. G(Ω∗) ≤ G(Ω).

Proof. Consider the total G across the entire figure, or Gtop −Gbottom. Notice,
however, that Gbottom = 0 since there is not flux through the figure at the

bottom. Additionally, we know the
∑
edges

Flux is equivalent for all competitors

since the flux through the edges of the basis polygon is constant. Lastly, we
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note LB = 0 at the top of the figure. Thus, we have

Gtop(Ω∗) =
∑
edges

Flux +
2A

r
= Gtop(Ω).

Lemma 4. G(Ω) ≤ P (Ω).

We can get several possible slicing types when we slice our figure, but again
the proofs for all cases are equivalent.

Proof. In the following proof we will examine a narrow horizontal slice of a fig-
ure that has been scaled to height 1; horizontally the figures are not drawn to
scale.

Again, it is sufficient for this proof to show that G′(t) ≤ P ′(t). The difference
between two adjacent vectors ~vi and ~vj is unit normal to the boundary between
them on the ideal and the difference ~ν − ~vi is unit normal to the boundary of
the interior bubble on the ideal. Therefore, since the competitor has boundaries
which are oriented differently, the change in flux must be less than the change
in perimeter of the boundaries on the competitor for both ∂B and ∂Ri.

The total change in flux is the sum of the change of flux over all boundaries
not containing bubbles with those that do. From above, this will yield a value
that is equal to δ = δB + δi where δ is the total change in perimeter of the
boundaries over the segment, δB is the change in perimeter of the boundaries
containing a bubble and δi is the change in perimeter of all boundaries not con-
taining a bubble. Since P ′(t) = δ, and since G′(t) can be represented as the
change in flux over the segment, G′(t) ≤ P ′(t) on Ω. Both functions have the
same initial values, so we have P (Ω) ≤ G(Ω).

Thus we have considered all possible regions generated by slicing our figure
and have found in each case G(Ω) ≤ P (Ω).

Proof. (Theorem 5.2) Combining the three lemmas above we have our desired
inequality which states P (Ω∗) = G(Ω∗) ≤ G(Ω) ≤ P (Ω). Therefore, we can
conclude that the bubble surrounded by five regions is a minimal solution to
the equitent problem we are studying among competitors with the area bubble
surrounded by five regions.

6 Other Minimizers

6.1 Comparing Isotopy Classes

Recall that the equitent problem we are studying requires us to find the min-
imal distance required to span five fixed points on a polygon while enclosing
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a given area. We have already shown that Figure 8 is a minimal solution to
our problem when the bubble is surrounded by five separate regions. However,
when the bubble is not surrounded by five regions, other figures may be globally
minimizing. We will show that there are also two other minimal solutions to
this problem. The two additional figures are shown below.

Figure 10: Additional minimizers

We note that these figures both have different isotopy classes.

To find each isotopy class we remove the bubble and place a dot in each
region of the figure. Then we connect each pair of dots that share an edge.
Upon doing so we notice that each of these three options has a different shape,
or isotopy class. Our method requires these to be treated in separate cases. We
show the three different isotopy classes below.

Figure 11: Minimal isotopy class 1

14



Figure 12: Minimal isotopy class 2

Figure 13: Minimal isotopy class 3

Notice that these are not the only isotopy classes for figures that combine
the given area and connect our five fixed points. However, they are the only
isotopy classes for the conjectured minimizers. We will provide a proof that our
assumption is valid later.

6.2 Vectors Across Boundaries in Alternate Classes

Recall that an alternate isotopy class of a figure with n points will have less than
n regions surrounding the bubble. If this is the case then at least one of the
lines extending from the bubble will branch and resemble the answer to the three
point Steiner problem. In other words, this interior line will intersect with two
other lines at an angle of 120◦. Thus, to prove that figures behaving in this way
are minimizers we must show there exist three adjacent vector fields who have a
unit normal difference with respect to the boundary separating them. Since two
of the three vector fields are already defined with respect to the bubble, we need
only to prove the existence of the third. Once we know this, we can simply apply
the previous proof for regions touching the bubble with this addition for regions
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not touching the bubble to our alternate isotopy classes. Together this proves
that these isotopy classes are minimizers. The proof can also be generalized to
any alternate isotopy class where the bubble is surrounded by 6 or less regions.

Theorem 6.1. If three line segments meet at an angle of 120◦, forming three
independent regions, and two known vector fields are fully contained in two
separate regions, a third vector field such that the difference between all adjacent
vector fields is unit normal to the boundary between them can always be found
in the third region.

Proof. If there is a connection of vertex lines without a bubble, they will invari-
ably meet at a Y with angles of 120◦.

Figure 14: Geometry of a 120◦ Y connection with vector fields.

To see that the unit normal to the Y is indeed the difference of vy and vi,
first align the x-axis to the vertex line for simplicity. Then is can be seen that

vi − vi+1 = (0, 1).

The vector vy can then be defined such that vi+1 − vy =
(
−
√
3
2 ,−

1
2

)
, which is

the unit normal to the upper part of the Y.
Then:

vi − vy = (vi − vi+1) + (vi+1 − vy)

= (0, 1) +

(
−
√

3

2
,−1

2

)

=

(
−
√

3

2
,

1

2

)

which is the unit normal to the lower part of the Y, as desired.
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7 Isotopy Class Bounds

We have just proved that there are three minimizers when connecting the ver-
tices of a regular pentagon and enclosing area. Now the question becomes which
figure is the global minimizer? The answer to this question depends on the area
being enclosed in the figure. The initial assumption that these were the three
possible solutions was based on results found using Surface Evolver, a program
designed by Ken Brakke. [8] Surface Evolver allows us to view and manipulate
a set of fixed points and the area enclosed.

Area Changes
5 Sided Bubble 4 Sided Bubble 3 Sided Bubble

0.2334 ≤ A ≤ 2.498 0.0775 ≤ A ≤ 0.2334 A ≤ 0.0775

Here we provide approximations of the exact values of the proposed area
bounds. In order to determine where the changes occur we developed formulas
for the area and perimeter of the minimizing figures. Using these formulas and
the fact that the transformation of the globally minimizing figure between two
competing minimizing figures occurs when they have equal area and perimeter,
we can determine a value for area. Consider

A(n, rn) = nr2n

[
π

n
− π

6
−

sin
(
360
n − 60

)
2

+
sin2

(
180
n − 30

)
tan

(
180
n

) ]
,

where n is the number of circular arcs used to enclose the desired area and
rn is the radius of curvature of the arcs. The perimeter formula is depen-
dent on the figure we are considering, these are defined below. We will set
A(3, r3) = A(4, r4) and P (3, r3) = P (4, r4) to determine what area causes the
minimal figure to change from one isotopy class to the other. Similarly, we will
set A(4, r4) = A(5, r5) and P (4, r4) = P (5, r5) to find the analogous point when
n = 4 or n = 5.

To determine the perimeter of each figure we first consider its length without
the bubble, adding in the length of the circular arcs and subtracting the line
segments within the bubble region.

The generic formula that adds the length of the curves and subtracts the
line segments within the bubble is

2nπrn
360

(
360

n
− 60

)
−
nrn sin( 180

n − 30)

sin( 180
n )

.
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Combining the above with the perimeter of the figure without the bubble
we find:

P (3, r3) = 1 + cos(36)− 4 sin(18) tan(42)

tan(18) + tan(42)
− sin(36) tan(30) +

2 sin(36)

cos(30)
+

8 sin2(18)

cos(42)(tan(18) + tan(42))

+
8 sin(18) tan(42)

tan(18) + tan(42)
+ 3r3

[
2π

3
− π

3
− sin(30)

sin(60)

]
P (4, r4) =

2 sin(36)

cos(30)
+ 2 sin(72) + 1 + cos(36)− sin(36) tan(30) + 4r4

[
π

2
− π

3
− sin(15)

sin(45)

]
P (5, r5) = 5 + 5r5

[
2π

5
− π

3
− sin(6)

sin(36)

]
Next, we set P (3, r3) = P (4, r4), solving for r4 in terms of r3. Then, substi-

tuting this value into the formula for A(4, r4) and setting this equal to A(3, r3)
we obtain a value for r3. We then use this value in our formula for A(3, r3) to
obtain A ≈ .0775. Thus, we know when A ≤ .0775 the figure with three regions
surrounding the bubble region is minimal.

We repeat this process, using P (4, r4), P (5, r5), A(4, r4), andA(5, r5) to find
A ≈ .2234. From this we can conclude when .0775 ≤ A ≤ .2234 the figure
with four interior lines extending from the bubble region is minimal. Whenever
.2234 ≤ A ≤ 2.498 the minimal solution will be the figure with five lines ex-
tending from the bubble region.

A visual representation of these changes can be seen by graphing each area
and perimeter equation. In this graph intersections represent points where the
minimal figure changes.

Figure 15: Perimeter (y-axis) vs. Area (x-axis)
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7.1 Isotopy Classes

Throughout the paper we have only considered three isotopy classes as globally
minimal. The globally minimal solution, as shown above, will depend on the
amount of area being enclosed.

Theorem 7.1. The isotopy classes we considered are the only cases that have
the potential to be globally minimal.

Proof. To complete this proof we must consider several alternate ways to con-
nect the five points and enclose area. This includes figures where line segments
meet at angles other than 120◦, the figure contains multiple bubbles and the
bubble does not intersect the figure at all, the bubble is not placed at a vertex.

Case 1 Line segments within the figure meet at angles other than 120◦

Figure 16: Line segments do not meet at 120◦

Notice if we concentrate on connecting the three dotted points, the minimal
solution should resemble the solution to the three point Steiner tree problem.
This would mean it is most efficient to create an addition node where the three
line segments meet at 120◦.

Figure 17: Optimal intersections vs. non-minimizing intersections

The picture above depicts the optimal way to connect the three desired
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points. This minimal solution is an application of the three point Steiner prob-
lem.

Case 2 The figure contains multiple bubbles

Consider a figure that connects the five required points while enclosing the
necessary area in more than one bubble. Here we again employ the flux argu-
ment, setting

G =
∑
edges

Flux +
2A− ŷLB

r
.

When we add an additional bubble, the above G function becomes

G2 =
∑
edges

Flux +
2A1 − ŷ1LB1

r1
+

2A2 − ŷ2LB2

r2
.

We can compare G2 to the initial G function at the end of the figure to see
which is most efficient. Notice that Total G = Gtop−Gbottom, Gbottom = 0, and
at the top of the figure LB = 0. Thus we have

G2 =
∑
edges

Flux+
2A1

r1
+

2A2

r2
>
∑
edges

Flux+
2(A1 +A2)

r
=
∑
edges

Flux+
2A

r
= G

whenever r > r1, r2. A1 +A2 = A, so A > A1, A2 and a larger area will, by def-
inition, have a larger radius. Thus, we conclude r > r1, r2 for any two bubbles.
Notice that this argument can easily be expanded for more than two bubbles to
show it is always more efficient to have a single bubble containing the required
area.

Case 3 The bubble does not intersect the boundary line of the figure

Figure 18: Bubble region outside and intersecting the boundary line
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For the case where a bubble is outside the figure it is trivial to prove that
the bubble simply centered at any boundary line will save 2r length while en-
closing the same amount of area. Since there exists some figure that is better
the proposed figure must not be the minimizer.

Case 4 The bubble is not centered at a vertex

Notice in the picture above the bubble merely intersects a line segment. In
order to better analyze this case, we merely treat the section of the graph con-
taining the bubble as an equitent problem connecting the vertices of a triangle
while enclosing a given area. This problem was studied and solved in 2008 by
students at the Brigham Young University REU. It was shown that the minimal
solution to this problem was to enclose the area at a vertex. [6] Therefore, a
figure where the bubble is not centered at a vertex is not a minimizer.

Thus we have examined all isotopy classes that enclose a given area and span
our specified fixed points and found the only global minimizers to be the three
minimizers we considered.

8 Connecting the Vertices of a Regular Hexagon
While Enclosing a Given Area

Here we show the conjectured solutions to the equitent problem which connects
the vertices of a regular hexagon while enclosing a given area. For this problem
we have not considered relatively small areas. Again, we made the initial con-
jectures using Surface Evolver. The globally minimal solution is dependent on
the area enclosed by the figure. The conjectured minimizers for this problem
when not enclosing a small area are shown below.

Figure 19: Minimizers when connecting the vertices of a regular hexagon
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8.1 Regular Isotopy Class

Figure 20: Minimizer of the regular isotopy class

Here we will give some explanation of why the generalized proof provided for the
regular isotopy class in the previous problem works. Consider the figure which
has six regions surrounding the bubble and the general G function defined in
section 5.1. Notice in this figure for line segments to meet at 120◦ angles the
area is enclosed with straight lines. By definition, a straight line has radius ∞.
Thus our G function simply becomes

G =
∑
edges

Flux.

A simple argument shows that ‖vi‖ = 1. Therefore, evaluating the flux through
any boundary point on the minimizer simply gives the perimeter. Due to the
nature of the proof for the regular isotopy class, we can use the same argument
to obtain the desired inequality for this problem. Thus, we have shown this
figure is a minimizer within its isotopy class.
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8.2 Alternate Isotopy Classes

Figure 21: Minimizer of the alternate isotopy classes

Notice that two of the alternate isotopy classes fit the stipulations of the alter-
nate isotopy classes defined earlier. Therefore we can conclude that these two
figures are minimizing within their isotopy classes by the same arguments used
with the previous problem.

8.3 Isotopy Class Bounds

The same methods used to find area bounds for the equitent problem connecting
the vertices of a pentagon while enclosing area were used to determine which
figure is globally minimal based on the area enclosed for the hexagon problem.
We provide approximations of the exact values of the bounds for each figure
below.

Area Changes
6 Sided Bubble 5 Sided Bubble 3 Sided Bubble

0.259 ≤ A ≤ 2.598 0.215 ≤ A ≤ .259 A ≤ .215

It is interesting to note that a figure with a four-sided bubble is not among
our global minimizers. While this figure is locally minimal, upon doing the
above analysis we found that there is always a figure that has less perimeter.

8.4 Additional Case

We conjecture that there is an additional case which is globally minimal for
small areas. However, we did not have time to fully consider this case. We
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believe this figure resembles the solution to the six point Steiner problem with
the area enclosed at the vertex.

Figure 22: Conjectured global minimizer for small areas

9 Conclusion

In conclusion, we have found the most efficient way to connect the vertices of
a regular pentagon while enclosing a given area. We present the table of our
findings below.

Area Changes
5 Sided Bubble 4 Sided Bubble 3 Sided Bubble

0.2334 ≤ A ≤ 2.498 0.0775 ≤ A ≤ 0.2334 A ≤ 0.0775

Notice that in each figure the area is enclosed by circular arcs. This reflects
the solution to the isoperimetric problem which states that a circle encloses a
given area with minimal perimeter. Additionally, in each figure all line segments
meet at 120◦ angles. This coincides with the solution to the Steiner tree problem
where all line segments meet at 120◦ angles to minimize the path connecting a
fixed set of points.

We were also able to identify several local minimizers for the problem that
connects the vertices of a regular hexagon while enclosing a given area. We
believe that these will also be global minimizers depending on the amount of
area being enclosed.

It is interesting to note that the general construction of our proofs can be
applied to alternate isotopy classes of any equitent problem where the bubble
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is surrounded by six or less regions.

Future work in this area could determine the nature of the globally mini-
mizing solution to the regular hexagon problem. Additionally, it would be in-
teresting to study equitent problems on other manifolds, such as the hyperbolic
plane.
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