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Abstract

For a simple graph G let NG[u] denote the closed-neighborhood
of vertex u ∈ V (G). Then G is closed-neighborhood anti-Sperner
(CNAS) if for every u there is a v ∈ V (G)\{u} with NG[u] ⊆ NG[v];
and a graph H is closed-neighborhood distinct (CND) if every closed-
neighborhood is distinct, i.e., if NH [u] 6= NH [v] when u 6= v, for all u

and v ∈ V (H).
In this paper we are mainly concerned with constructing CNAS

graphs. We construct a family of connected CNAS graphs with n

vertices for each fixed n ≥ 2. We list all connected CNAS graphs
with ≤ 6 vertices, and find the smallest connected CNAS graph that
lies outside these families. We indicate how some CNAS graphs can
be constructed from a related type of graph, called a NAS graph.
Finally, we present an algorithm to construct all CNAS graphs on a
fixed number of vertices from labelled CND graphs on fewer vertices.
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1 Closed-Neighborhood anti-Sperner Graphs

Let F = {N1, N2, . . .} be a family of sets. Then F is Sperner if no member
of F is a subset of another member; and F is anti-Sperner if every member
of F is a subset of another member.

Let G be a simple graph with a finite number of vertices. For each
u ∈ V (G) let NG[u] denote the closed-neighborhood of u, i.e., vertex u
together with the set of vertices to which u is adjacent.

Let F(G) = {NG[u] |u ∈ V (G)} be the family of closed-neighborhoods of
G. Then if F(G) is anti-Sperner we say that G is a closed-neighborhood anti-
Sperner (CNAS) graph, i.e., for every u ∈ V (G) there is a up ∈ V (G)\{u}
with NG[u] ⊆ NG[up]. Vertex up is a closed-parent of vertex u; so a CNAS
graph is a graph in which every vertex has a closed-parent. We note that u
and up are adjacent.

A graph H is closed-neighborhood distinct (CND) if every closed-neighborhood
is distinct, i.e., if NH[u] 6= NH[v] when u 6= v, for all u and v ∈ V (H).

If we replace the word ‘closed’ by ‘open’ in the first definition above then
we have an open-neighborhood anti-Sperner graph, which we call a NAS
graph. These graphs were introduced by Porter in [5], and studied further in
Porter and Yucas [6], and in McSorley [4]. Our CNAS graphs are a natural
variation of these graphs.

In this paper we are mainly concerned with constructing CNAS graphs:

In Section 2 we construct a family of connected CNAS graphs with n
vertices for each fixed n ≥ 2. We list all connected CNAS graphs with ≤ 6
vertices, and find the smallest connected CNAS graph that lies outside these
families.

In Section 3 we return to NAS graphs and indicate how some, but not all,
CNAS graphs on a fixed number of n ≥ 2 vertices can be constructed from a
suitable NAS graph also on n vertices; thus establishing a link between the
two different types of graphs.

Section 4 contains preparatory material for Section 5, in which we present
an algorithm to construct all CNAS graphs on a fixed number of n ≥ 2
vertices from labelled CND graphs on ≤ n − 1 vertices. This is similar to
an algorithm that constructs NAS graphs from labelled ND (neighborhood
distinct) graphs in McSorley [4]

Standard definitions of graph theory are from West [10].
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2 Families of CNAS graphs, small CNAS graphs

For n ≥ 1 let Kn denote the complete graph on n vertices. For m ≥ 2 let Sm

be a connected or disconnected graph on m vertices, with no isolates. For
n ≥ 2 and 2 ≤ m ≤ n let Kn\Sm = Kn − E(Sm) denote the complete graph
Kn with the edges of Sm removed. Finally, in any graph on n ≥ 2 vertices,
call a vertex full if it has degree n − 1.

We are primarily interested in connected CNAS graphs, since each com-
ponent in a disconnected CNAS graph must itself be CNAS.

Theorem 2.1 Let G be an arbitrary graph on n ≥ 2 vertices with at least
two full vertices. Then G is a connected CNAS graph.

Proof. Clearly G is connected. Let u and v ∈ V (G) be two full vertices
then NG[u] = NG[v] = V (G), the whole vertex set of G. So vertex u is
a closed-parent of all vertices in V (G)\{u}, and v is a closed-parent of u.
Hence every vertex in V (G) has a closed-parent, and so G is CNAS.

In particular, for n ≥ 2, the complete graph Kn is CNAS. Furthermore,
we may preserve the CNAS property by removing edges from Kn provided
that we always leave at least two full vertices:

Corollary 2.2 For any n ≥ 2 and any m with 2 ≤ m ≤ n − 2 let Sm be
a graph on m vertices with no isolates. Then Kn\Sm is a connected CNAS
graph.

Indeed, we can classify incomplete connected CNAS graphs on n vertices
with at least two full vertices:

Theorem 2.3 For n ≥ 2 let G 6= Kn be a connected CNAS graph on n
vertices with at least two full vertices. Then there is a graph Sm on m vertices
with no isolates where 2 ≤ m ≤ n − 2 such that G = Kn\Sm.

Proof. Let {u1, u2, . . . , um} be the non-full vertices of G, since G 6= Kn

then m ≥ 2. And let {um+1, . . . , un} be the full vertices of G, the number
of these is n − m ≥ 2, so m ≤ n − 2. Consider a copy of Km with ver-
tex set {u1, u2, . . . , um}, and the Kn with vertex set {u1, u2, . . . , un}. Let
Sm = G[u1, u2, . . . , um], where the complement is taken in the above Km.
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Now if ui is an isolate in Sm then in G[u1, u2, . . . , um] it has (full) degree
m− 1 and so in G it is full, a contradiction. Hence Sm has no isolates. Then
G = Kn\Sm, and 2 ≤ m ≤ n − 2.

So, for each n ≥ 2, we have a family Kn\S of connected CNAS graphs,
each member of which has at least two full vertices:

Kn\S = {Kn}∪{Kn\Sm |Sm is a graph on m vertices with no isolates, 2 ≤ m ≤ n−2}.

For those G outside these families we have:

Theorem 2.4 Let G be a connected CNAS graph on n ≥ 2 vertices with-
out at least two full vertices. Then G has no full vertices.

Proof. Clearly G cannot have exactly one full vertex, because this full
vertex would not have a closed-parent; hence it has no full vertices.

The connected CNAS graphs G on 2 ≤ n ≤ 6 vertices are shown in
Table 1. Here Ka,b denotes the complete bipartite graph with parts of size a
and b, Pa denotes the path on a vertices, and e denotes an edge.

n G
2 K2

3 K3

4 K4, K4\K2

5 K5, K5\K2, K5\P3, K5\K3

6 K6, K6\K2, K6\P3, K6\2K2, K6\K3, K6\P4

6 K6\K1,3, K6\(K1,3 + e), K6\K2,2, K6\(K2,2 + e), K6\K4, F

Table 1. Connected CNAS graphs G with n vertices, 2 ≤ n ≤ 6.

Example 1 Of the connected CNAS graphs on 2 ≤ n ≤ 6 vertices all
except one, F , belongs to a family Kn\S for some n ≥ 2. The graph F
is shown below. It is the smallest connected CNAS graph that lies outside
these families, i.e., without at least two full vertices. So, from Theorem 2.4
it has no full vertices, indeed it has 6 vertices and maximum degree 4.
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3 CNAS graphs and Neighborhood anti-Sperner

graphs

In this Section we show how to construct some CNAS graphs with a fixed
number of n vertices from NAS graphs with n vertices, thus establishing a
connection between the two different types of graph.

Let Fo(H) = {NH(u) |u ∈ V (H)} be the family of open-neighborhoods
of a graph H. We always drop the prefix ‘open’ in open-neighborhood, open-
parent, open-twin, etc.. Then if Fo(H) is anti-Sperner we say that H is a
neighborhood anti-Sperner (NAS) graph. Hence, in a NAS graph H, for every
u ∈ V (H) there is a parent upo ∈ V (H)\{u} such that NH(u) ⊆ NH(upo).

NAS graphs have been studied in [4], [5], and [6]. Because the definition
of a CNAS graph is similar to that of a NAS graph, we might sensibly
ask whether we can construct CNAS graphs from NAS graphs. However it
doesn’t seem possible to construct all CNAS graphs of order n from NAS
graphs of order n, but some CNAS graphs can be constructed:

For an arbitrary graph G, the set P ⊆ V (G) is a closed-parent-set if it is
closed under taking closed-parents, i.e., if every u ∈ P has a closed-parent
up ∈ P . And a closed-parent-set partition of V (G) is a partition of V (G)
into closed-parent-sets. Similarly, for an arbitrary H, the set Po ⊆ V (H) is
a parent-set if it is closed under taking parents, i.e., if every u ∈ Po has a
parent upo ∈ Po. And a parent-set partition of V (H) is a partition of V (H)
into parent-sets.
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Theorem 3.1 Let H be a NAS graph with {Po,1, Po,2, . . . , Po,d} a parent-
set partition of V (H). Let G = H+ be the graph obtained from H by making
Po,i into a clique for each 1 ≤ i ≤ d, i.e., by making G[Po,i] = K|Po,i |. Then
G is a CNAS graph and {Po,1, Po,2, . . . , Po,d} is a closed-parent-set partition
of V (G).

Proof. For an arbitrary vertex u ∈ V (G) = V (H) let u ∈ Po,i for some
fixed i, so NG[u] = NH(u) ∪ Po,i. Now, in H, let upo ∈ Po,i be a parent of
u ∈ Po,i, so NG[upo] = NH(upo) ∪ Po,i. Hence, since NH(u) ⊆ NH(upo), then
NG[u] ⊆ NG[upo], i.e., upo ∈ Po,i is a closed-parent of u in G. Hence (in G)
Po,i is a closed-parent-set. Furthermore, since u ∈ V (G) is arbitrary then G
is CNAS. Each Po,i is a closed-parent-set of V (G), and so {Po,1, Po,2, . . . , Po,d}
is a closed-parent-set partition of V (G).

The null graph Nn is the graph with n ≥ 1 vertices and no edges.

Example 2 We can construct many non-isomorphic CNAS graphs from a
single NAS graph. Consider the NAS graph H = N1∪N1∪K2,2 on 6 vertices.
There are 5 different parent-set partitions of V (H), yielding 4 non-isomorphic
CNAS graphs G = H+ on 6 vertices, 3 of which are connected:

See next page

The construction of Theorem 3.1 yields a CNAS graph G = H+ with
a closed-parent-set partition of V (G) in which each closed-parent-set is a
clique. However not all CNAS graphs have such a partition, and those that
do not cannot be obtained via this construction no matter which NAS graph
H and which parent-set partition of V (H) is used. The smallest CNAS graph
without such a partition is K4\K2. Other constructions of CNAS graphs from
NAS graphs do not seem to be available. But Theorem 3.1 is still useful for
obtaining some CNAS graphs from NAS graphs, as illustrated in Example 2.
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4 Closed-Neighborhood distinct graphs, la-

belled graphs, miscellaneous

This Section contains preparatory material needed in Section 5.

The join X ∨ Y of two graphs X and Y with disjoint vertex sets is the
graph with vertex set V (X) ∪ V (Y ) and edge set E(X) ∪ E(Y ) ∪ {xy |x ∈
V (X) and y ∈ V (Y )}, i.e., every vertex in V (X) is joined to every vertex in
V (Y ).

Recall that a graph H is closed-neighborhood distinct (CND) if every
closed-neighborhood is distinct, i.e., if NH [u] 6= NH[v] when u 6= v, for all
u and v ∈ V (H). Sumner [9] called such graphs point distinguishing and
they are also known as supercompact , see Lim [3]. See also Entringer and
Gassman [2] for further properties of these graphs.

Sumner proved the following Theorem for graphs in which every neigh-
borhood is distinct, which he called point determining. But he stated that
there is a dual Theorem for CND graphs. We state his Theorem using our
notation, (see Theorem 2 of Sumner [9] and Theorem 2.1 of Chia and Lim [1]):

Let H be a CND graph with ≥ 2 vertices. Then there is a vertex
w ∈ V (H) such that H −w is also CND.

The CND graphs with ≤ 3 vertices are: N1, N2, N3, and P3.

We use Sumner’s result in the following algorithm which constructs all
CND graphs on t vertices from CND graphs on t − 1 vertices:

Algorithm CND Graphs Four step algorithm to construct all CND
graphs H on a fixed number of t ≥ 2 vertices from all CND graphs on
t − 1 vertices.

(1) List all non-isomorphic CND graphs Ht−1 on t − 1 vertices.

(2) For each Ht−1 list all subsets S ⊆ V (Ht−1) for which S 6= NHt−1[u]
for all u ∈ V (Ht−1), i.e., S is distinct from all closed-neighborhoods of
Ht−1. Note that S = ∅ is to be considered.

(3) Let w 6∈ V (Ht−1) be a new vertex. For each such Ht−1 and S let H be
the graph with vertices and edges as follows:

V (H) = V (Ht−1) ∪ {w} and E(H) = E(Ht−1) ∪ {ws | s ∈ S},

i.e., H is the graph obtained by joining w to S.

9



(4) Remove isomorphic copies from the graphs in (3).

We now have a complete list of CND graphs H with t vertices, with no
repeated H.

Example 3 We find all CND graphs on 4 vertices from the two CND
graphs N3 and P3 on 3 vertices. For each such graph there are 23 − 3 = 5
subsets S, yielding 10 CND graphs on 4 vertices. Removing isomorphic copies
leaves the 5 non-isomorphic CND graphs below:

t t
t t

ttt t�
�@

@

t t
t t

t t
t t

ttt t�
�@

@

We can then use these CND graphs on 4 vertices to construct all CND
graphs on 5 vertices ,....., and so on. Hence, for any t ≥ 1, we can construct
all CND graphs on ≤ t vertices.

We will need labelled graphs H in which every vertex u ∈ V (H) has
been labelled with a positive integer `(u) ≥ 1. We also need the concept of
label-isomorphism:

Let H and H ′ be two arbitrary labelled graphs. Then H and H ′ are
label-isomorphic if there is a bijection between V (H) and V (H ′) which is a
graph isomorphism that preserves labels. So if in a label-isomorphism we
have u ∈ V (H) ↔ u′ ∈ V (H ′), then `(u) = `(u′).

Example 4 Consider the two labellings of the first graph from Example 3,
H and H ′, shown below. Next to vertex u is its label `(u).

t t
t t

v 3

u 1

w 2

x 1

H

t t
t t

v′ 2

u′ 1

w′3

x′ 1

H ′

Clearly u ↔ u′, v ↔ v′, w ↔ w′, x ↔ x′ is an isomorphism but not a label-
isomorphism since `(v) 6= `(v′). However u ↔ x′, v ↔ w′, w ↔ v′, x ↔ u′ is
a label-isomorphism. So H and H ′ are label-isomorphic.
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Finally, for an arbitrary graph G, if NG[u] = NG[v] for two different
vertices u and v ∈ V (G) then u and v are closed-twins. We note that
closed-twins are adjacent. We denote a closed-twin of u by u∗. If u has no
closed-twin then it is closed-twinless. If H is CND then every vertex in V (H)
is closed-twinless.

5 Constructing CNAS Graphs from labelled

CND Graphs

In this final Section we show how to construct all CNAS graphs G on a fixed
number of n ≥ 2 vertices from labelled CND graphs H on ≤ n− 1 vertices.

Let G be an arbitrary graph. Consider the following equivalence relation
≡ on V (G): u ≡ u′ if and only if NG[u] = NG[u′]. The equivalence class
containing u is U = {u′ ∈ V (G) |NG[u] = NG[u′]} 6= ∅. Here every vertex
u′ is a closed-twin of u, which we normally write as u∗, provided that it is
distinct from u. We let t denote the number of equivalence classes under ≡
of V (G) (or of G); and denote the classes themselves by U1, U2, . . . , Ut, where
|Ui| = `i for each i = 1, 2, . . . , t.

Theorem 5.1 Let G be an arbitrary graph with equivalence relation ≡. Let
U and V be two distinct equivalence classes with u ∈ U and v ∈ V arbitrary.
Then

(i) the induced subgraph G[U ] = K|U |,

(ii) uv ∈ E(G) if and only if G[U ∪ V ] = G[U ] ∨ G[V ] = K|U | ∨ K|V |,

(iii) uv 6∈ E(G) if and only if G[U ∪ V ] = K|U | ∪ K|V |.

Proof. (i) If |U | = 1 then clearly G[U ] = K|U |. So assume that |U | ≥ 2
and let u and u∗ be two arbitrary distinct vertices in U . Then u ∈ NG[u] =
NG[u∗], i.e., uu∗ ∈ E(G). Since u and u∗ are arbitrary, then G[U ] = K|U |.
(ii) Now u ∈ U and v ∈ V are arbitrary, let u′ ∈ U and v′ ∈ V also
be arbitrary, (so u = u′ and/or v = v′ is allowed). Since uv ∈ E(G), so
v ∈ NG[u] = NG[u′], so u′ ∈ NG[v] = NG[v′], and then u′v′ ∈ E(G). Hence
G[U ∪ V ] = G[U ] ∨ G[V ] = K|U | ∨ K|V |, using (i). The converse is clear.
(iii) Similar to (ii), using (i) again.
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So, in any graph G and for any two distinct equivalence classes U and V ,
either G[U ∪ V ] = K|U | ∨ K|V | or G[U ∪ V ] = K|U | ∪ K|V |. This suggests the
following two constructions:

Construction G≡ Let G be an arbitrary graph, with equivalence rela-
tion ≡ and equivalence classes U1, U2, . . . , Ut, where |Ui| = `i for each i =
1, 2, . . . , t. Construct a labelled graph G≡ with t vertices, and edges as fol-
lows:

V (G≡) = {U1, U2, . . . , Ut} and E(G≡) = {UiUj |G[Ui∪Uj ] = K|Ui|∨K|Uj |},

where vertex Ui has been labelled with `i for each i. We call G≡ the closed-
reduced graph of G. See [3] where an unlabelled version of this graph is
called S(G). An unlabelled version is also known as the Roberts reduct , see
Roberts [8], and Section 10.6 of Prisner [7]. Note that |V (G)| =

∑t
i=1 `i.

Construction H↑ Let H be an arbitrary labelled graph, so every u ∈
V (H) has been labelled with a positive integer `(u) ≥ 1. Construct a new
graph H↑ from H by replacing each vertex u with the `(u) vertices from
exp(u) = {x1, x2, . . . , x`(u)}, the expansion set of u, where H↑[exp(u)] =
K`(u) is a clique. Similarly, replace v by exp(v) = {y1, y2, . . . , y`(v)}, etc.. If
uv ∈ E(H) then let H↑[exp(u), exp(v)] = K`(u) ∨ K`(v), and if uv 6∈ E(H)
then let H↑[exp(u), exp(v)] = K`(u) ∪ K`(v).

We illustrate these constructions with F below. The equivalence classes
of F under ≡ are: U1 = {x1}, U2 = {y1, y2}, U3 = {z1, z2}, and U4 = {t1}.

F

x1•

•y1 •y2

•z1 •z2

•
t1

•

•

•

• 1U1

2U2

2U3

1U4

F≡

From the above two constructions we have:

Theorem 5.2 Let G be an arbitrary graph. Then G = (G≡)↑.
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Given an arbitrary graph G, as we closed-reduce to G≡ we identity vertices
with the same closed-neighborhood, so G≡ should be CND (Theorem 3.1 of
[3]):

Theorem 5.3 Let G be an arbitrary graph. Then G≡ is CND.

Proof. Let U and V be two distinct vertices in V (G≡). Suppose that G≡
is not CND and NG≡ [U ] = NG≡ [V ] = {U, V, U1, U2, . . . , Ud} for some d ≥ 1,
or NG≡[U ] = NG≡ [V ] = {U, V }.

In the first case let u ∈ V (G) lie in equivalence class U , then, since NG≡[U ]
is a clique, we have NG[u] = U ∪ V ∪ (

⋃d
k=1 Uk). Similarly, if v ∈ V then

NG[v] = V ∪ U ∪ (
⋃d

k=1 Uk). Hence NG[u] = NG[v] so u ≡ v, a contradiction
since u ∈ U and v ∈ V and U 6= V . Thus G≡ is CND. The proof is similar
when NG≡ [U ] = NG≡ [V ] = {U, V }.

The following two technical Lemmas are required before our main results:

Lemma 5.4 Let H be an arbitrary labelled CND graph with t ≥ 1 vertices.
Then H↑ has t equivalence classes under ≡.

Proof. Let H↑ have s equivalence classes under ≡, we will show that s = t.
Let each vertex u ∈ V (H) be labelled with `(u) ≥ 1. The Lemma is

clearly true if t = 1. So assume that t ≥ 2 and let u and v be distinct
vertices in V (H). In the construction of H↑ from H we replace u by the
`(u) vertices from exp(u) = {x1, x2, . . . , x`(u)}, and we replace v by the `(v)
vertices from exp(v) = {y1, y2, . . . , y`(v)}. Let xi ∈ exp(u) and yj ∈ exp(v)
be arbitrary. Now, since H is CND, we have NH[u] 6= NH [v]. Without
loss of generality let w ∈ NH [u]\NH[v] and let exp(w) = {z1, z2, . . . , z`(w)},
(w = u is allowed). If w 6= u then, in H↑, we have xi ∈ NH↑[z1] but
yj 6∈ NH↑[z1]. So NH↑[xi] 6= NH↑[yj], and so xi 6≡ yj in H↑. So xi and yj

are in distinct equivalence classes of H↑. Now let V (H) = {u1, u2, . . . , ut}.
We can apply the above argument to every distinct pair ua and ub ∈ V (H),
showing that exp(ua) and exp(ub) are contained in distinct equivalence classes
of H↑. Hence t ≤ s. A slight modification of this argument is required if
w = u.

Suppose s > t. Let e1, e2, . . . , es be representatives of the s equiva-
lence classes under ≡ in H↑, one from each class. Then, by the pigeon
hole principle, there must be some vertex u ∈ V (H) whose expansion set

13



exp(u) contains two of e1, e2, . . . , es. Suppose that ea and eb ∈ exp(u) where
1 ≤ a < b ≤ s, then NH↑[ea] = NH↑[eb], i.e., ea ≡ eb in H↑, a contradiction.
Hence s ≤ t. And so s = t.

In an arbitrary graph G we say that vertex u ∈ V (G) is closed-parentless
if u does not have a closed-parent. And if u does have a closed-parent up

with NG[u] ⊂ NG[up] then we call up a proper closed-parent of u.
In the following Lemma, as usual, we denote the equivalence class under

≡ containing u by U , and the equivalence class containing up by Up.

Lemma 5.5

(i) In an arbitrary graph G let up be a proper closed-parent of u. Then, in
G≡, Up is a proper closed-parent of U .

(ii) For a CNAS graph G let W ∈ V (G≡) be closed-parentless. Then `(W ) ≥ 2.

Proof. (i) In G since up is a proper closed-parent of u then NG[up] 6=
NG[u], and so Up 6= U , i.e., in G≡ the vertices Up and U are distinct, and
UpU ∈ E(G≡).

We first show that Up is a closed-parent of U . If not, then there exists
a vertex V with V ∈ NG≡ [U ] but V 6∈ NG≡ [Up]. Now V 6= U since UpU ∈
E(G≡) and so U ∈ NG≡ [Up], and V 6= Up since Up ∈ NG≡ [Up]. Let v ∈ V (G)
be in equivalence class V . Then v ∈ NG[u] but v 6∈ NG[up], a contradiction
since up is a (proper) closed-parent of u. So, in G≡, Up is a closed-parent
of U . Now G≡ is CND so Up cannot be a closed-twin of U , but it is a
closed-parent of U , so it must be a proper closed-parent of U .
(ii) Let W ∈ V (G≡) be closed-parentless, then W has no proper closed-
parents in G≡. Let w ∈ V (G) lie in equivalence class W , so, by (i), w has no
proper closed-parents in G. But G is CNAS so w must have a closed-parent
which must be a closed-twin w∗, so |W | ≥ 2, i.e., `(W ) ≥ 2.

The following main result deals with both connected and disconnected
CNAS graphs.

Theorem 5.6 Let G be an arbitrary graph. Then G is a CNAS graph
with t equivalence classes under ≡ if and only if G≡ is a labelled t vertex
CND graph in which all closed-parentless vertices have label ≥ 2.

14



Proof. First let G be a CNAS graph with t equivalence classes under ≡
given by U1, U2, . . . , Ut, where |Ui| = `i for each i = 1, 2, . . . , t. Then the
construction of G≡ from G and Theorem 5.3 shows that G≡ is a labelled t
vertex CND graph. From Lemma 5.5(ii) all closed-parentless vertices in G≡
have label ≥ 2.

Conversely suppose that G≡ is a labelled t vertex CND graph in which
all closed-parentless vertices have label ≥ 2. From Theorem 5.2 we have G =
(G≡)↑. Now any vertex u ∈ V (G) is a uj ∈ exp(U) = {u1, u2, . . . , u`(U)} for
some U ∈ V (G≡), and the closed-neighborhoods NG[uj] for j = 1, 2, . . . , `(U)
are all equal. Either `(U) = 1 or `(U) ≥ 2. If `(U) = 1 then U is not closed-
parentless and so U has a closed-parent Up, and then u1 has a closed-parent
in exp(Up). If `(U) ≥ 2, then each uj has a closed-twin, which is a closed-
parent. Hence, in either case, u = uj has a closed-parent, and so G is CNAS.
Furthermore, since G≡ is a t vertex CND graph then, from Lemma 5.4,
the graph G = (G≡)↑ has t equivalence classes under ≡.

For connected graphs we have:

Lemma 5.7 Let G be an arbitrary graph. Then G is connected if and only
if G≡ is connected.

Proof. Let G be connected. To see that G≡ is connected, let U and V be
two different vertices of G≡, and let u ∈ U and v ∈ V in G. Then, since G
is connected, there is a path u = w1w2 · · ·wd = v between u and v in G, but
then U = W1W2 · · ·Wd = V is a walk between U and V in G≡, and so G≡ is
connected. The converse is proved similarly.

Using Lemma 5.7 we have the following ‘connected’ version of Theo-
rem 5.6:

Theorem 5.8 Let G be an arbitrary graph. Then G is a connected CNAS
graph with t equivalence classes under ≡ if and only if G≡ is a connected la-
belled t vertex CND graph in which all closed-parentless vertices have label ≥ 2.

We need another definition: Let n ≥ 2 be a positive integer. A partition of
n is a set P = {`1, `2, . . . , `t} of t ≥ 1 integers that satisfy 1 ≤ `1 ≤ `2 · · · ≤ `t

and
∑t

i=1 `i = n. Partition P has t parts.

We now present an algorithm to construct (connected) CNAS graphs G
from (connected) labelled CND graphs H. It uses Theorems 5.6 and 5.8
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where we denote G≡ by H, and consider all possible (connected) labelled
CND graphs H, and then construct all possible (connected) CNAS graphs G
by using G = H↑.

Let the labels on the t vertices of H = G≡ be {`1, `2, . . . , `t}, where each
`i ≥ 1. If G is CNAS with n ≥ 2 vertices then a vertex u ∈ V (G) of
maximum degree must have a closed-twin, so |U | ≥ 2. So some `i ≥ 2, and
since n =

∑t
i=1 `i, then t ≤ n − 1.

Algorithm (Connected) CNAS Graphs Four step algorithm to con-
struct all (connected) CNAS graphs G on a fixed number of n ≥ 2 vertices
from all (connected) labelled CND graphs H on 1 ≤ t ≤ n − 1 vertices.

For each fixed t = 1, 2, . . . , n − 1:

(1) By repeated use of Algorithm CND Graphs, (suitably modified to generate
connected CND graphs if required), list all non-isomorphic (connected)
CND graphs Ht on t vertices.

(2) List all partitions Pt of n with t parts.

(3) For each (connected) graph Ht and partition Pt = {`1, `2, . . . , `t} label its
t vertices with {`1, `2, . . . , `t} in all possible non-label isomorphic ways,
ensuring that all closed-parentless vertices have label ≥ 2.

(4) For each (connected) labelled graph Ht construct G = Ht
↑.

Because of Theorems 5.6 and 5.8 we have a complete list of (connected)
CNAS graphs G with n vertices, with no repeated G.

Example 5 We illustrate Algorithm Connected CNAS Graphs for n = 5
by constructing the 4 connected CNAS graphs G on 5 vertices, see Table 1.
From the Algorithm we need to consider all connected CND graphs Ht on
1 ≤ t ≤ 4 vertices. These graphs Ht are shown below, suitably labelled. Two
such Ht cannot be labelled since closed-parentless vertices, indicated by cp,
require a label of ≥ 2, thus forcing the sum of all labels to be > 5.

16



CND

H

H1
5
•

• •

• •

•

CNAS

G

K5

H3 • • •
1 2 2

•
•

•
•

• K5\P3

H ′
3 • • •

1 3 1

•
•

•
•

• K5\K2

H4
•

• •

•
≥ 1

cp cp

≥ 1

Cannot be expanded

H ′
4

•

•

••

1

2

1 1 • •

• •

•

K5\K3

H ′′
4 •

• •

•cp

cp cp

cp

Cannot be expanded

17



References

[1] G-L.Chia, C-K.Lim. On Supercompact Graphs I: The Nucleus, Ars Com-
binatoria, 20, 101–110, (1985).

[2] R.C.Entringer, L.D.Gassman. Line-Critical Point Determining and Point
Distinguishing Graphs, Discrete Mathematics, 10, 43–55, (1974).

[3] C-K.Lim. On Supercompact Graphs, Journal of Graph Theory, 2, 349–
355, (1978).

[4] J.P.McSorley. Constructing and Classifying Neighborhood Anti-Sperner
Graphs, Submitted.

[5] T.D.Porter. Graphs with the Anti-Neighborhood Sperner Property, Jour-
nal of Combinatorial Mathematics and Combinatorial Computing, 50,
123–127, (2004).

[6] T.D.Porter, J.L.Yucas. Graphs whose Vertex-Neighborhoods are Anti-
Sperner , Bulletin of the Institute of Combinatorics and its Applications,
44, 69–77, (2005).

[7] E.Prisner. Graph Dynamics, Pitman Research Notes in Mathematics Se-
ries 338. Longman, (1995).

[8] F.S.Roberts. Indifference Graphs, in: Proof Techniques in Graph Theory,
(F.Harary ed.) Academic Press, 139–146, (1969).

[9] D.P.Sumner. Point Determination in Graphs, Discrete Mathematics, 5,
179–187, (1973).

[10] D.B.West. Introduction to Graph Theory, Prentice-Hall, (1996).

18


	Southern Illinois University Carbondale
	OpenSIUC
	6-2007

	Closed-Neighborhood Anti-Sperner Graphs
	John P. McSorley
	Alison Marr
	Thomas D. Porter
	Walter D. Wallis
	Recommended Citation



