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Abstract

A vertex-magic total labeling of a graph G(V, E) is a one-to-one map λ from E ∪ V
onto the integers {1, 2, . . . , |E| + |V |} such that

λ(x) +
∑

λ(xy)

where the sum is over all vertices y adjacent to x, is a constant, independent of
the choice of vertex x. In this paper we examine the existence of vertex-magic total
labelings of trees and forests. The situation is quite different from the conjectured
behavior of edge-magic total labelings of these graphs. We pay special attention to
the case of so-called galaxies, forests in which every component tree is a star.

All graphs in this paper will be finite. The graph G = G(V, E) has vertex-set
V = V (G) and edge-set E = E(G); we write v for |V (G)| and e for |E(G)|.

A total labeling is a one-to-one map λ from E∪V onto the integers {1, 2, . . . , e+
v}. The weight of vertex x is the value λ(x) +

∑
λ(xy) (where the sum is over

all vertices y adjacent to x), and the weight of edge xy is λ(x)+λ(xy)+λ(y).
A total labeling is edge-magic if there is a constant k such that every edge xy
has weight k, and vertex-magic if there is a constant h such that every vertex
x has weight h. A graph with an edge-magic total labeling λ is called edge-
magic, and k is called the magic sum associated with λ; similarly a graph with
a vertex-magic total labeling is vertex-magic, and h is the magic constant.
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Kotzig and Rosa [2] introduced edge-magic total labelings, under the name
“ magic valuations”. In particular they showed that all caterpillars are edge-
magic, and conjectured that all trees are edge-magic. This conjecture is inter-
esting because of its similarity to the long-standing conjecture that all trees
have graceful labelings, but so far there has been no progress on it.

Vertex-magic total labelings were defined in [3], after MacDougall observed
that this natural analog of the edge-magic case arose in the solution to a high-
school enrichment problem [4]. We shall see that not all trees are vertex-magic,
and also explore results about forests.

1 Trees

In discussing trees, it is common to define a leaf to be a vertex of degree 1.
Other vertices are called internal. The vertex-magic property depends on the
proportion of leaves.

Theorem 1 Let T be a tree with n internal vertices and τn leaves. Then T
does not admit a vertex-magic total labeling if

τ >
1 +

√
12n2 + 4n + 1

2n
.

Proof. If T has n internal vertices and τn leaves, then v = (τ + 1)n and e =
(τ+1)n−1. So the labels to be used are {1, 2, · · · , M} where M = 2(τ+1)n−1.

The maximum possible sum of weights on the leaves will be the sum of the
2τn largest labels:

M∑
1

i −
M−2τn∑

1

i

=
M(M + 1)

2
− (M − 2τn)(M − 2τn + 1)

2
= τn(2τn + 4n − 1).

Since there are τn leaves, we get

h ≤ 2τn + 4n − 1.

On the other hand, the minimum possible sum of weights on the internal
vertices occurs when the smallest weights {1, · · · , n − 1} are assigned to the



internal edges (because they will be added twice) and the smallest remaining
labels assigned to the internal vertices and the other edges. This sum of weights
is

M−τn∑
1

i +
n−1∑

1

i

=
(M − τn)(M − τn + 1)

2
+

(n − 1)n

2

=
n(nτ 2 + (4n − 1)τ + (5n − 3))

2

and since there are n internal vertices,

h ≥ nτ 2 + (4n − 1)τ + (5n − 3)

So no labeling will be possible when

nτ 2 + (4n − 1)τ + (5n − 3)

2
> 2τn + 4n − 1,

i.e. when
nτ 2 − τ − (3n − 1) > 0.

The result follows. �

A simple approximation of the above shows that a labeling is impossible for
more than

√
3n + 1 leaves. For small n, here are the largest number of leaves

permitted by the theorem:

n 1 2 3 4 5 6 7

Ln 2 4 5 7 9 11 12

For n = 2, 3, and 4, we can attain these bounds. Examples are shown in Figure
1.

Theorem 1 does not provide a sufficient condition for existence of a vertex-
magic total labeling, however. The following result shows that there are also
restrictions imposed by the degrees of the internal vertices.

Theorem 2 If ∆ is the largest degree of any vertex in a tree T with v vertices,
then T does not admit a vertex-magic total labeling whenever

∆ >
−7 +

√
33 + 32v

2
.



 10

 1

 8

 11

 3

 9

 15

 5

14

 16

 3

 13

 5

 7

 4

 6

 8

 9

 7

 10

 17

 4

 12

 6

 11

 2 1 2

 19

 3

18

 21

 5

 17

 9

 10

 7

 11

 15

 14

 13

 1 4

 20

 6

16

 8

 12

 2

Fig. 1. Trees attaining the bound of Theorem 1

Proof. Let c be the vertex of maximum degree ∆. The minimum possible
weight on c is the sum of the (∆ + 1) smallest labels.

h≥
∆+1∑

1

i

= 1
2
(∆ + 1)(∆ + 2).

On the other hand, since there is an internal vertex of degree ∆, there are at
least ∆ leaves in T . So the maximum possible sum of weights on the leaves is
at most the sum of the 2∆ largest labels. Therefore

h≤ 1

∆

(
2v−1∑

1

i −
2v−2∆−1∑

1

i

)

= 4v − 2∆ − 1.

So a labeling will be impossible whenever

4v − 2∆ − 1 <
(∆ + 1)(∆ + 2)

2
,

that is, when

∆2 + 7∆ + 4 − 8v > 0.

The result follows. �



The following table shows the maximum degree permitted by the restriction
in Theorem 2 for small values of v:

v 3 4 5 6 7 8 9 10

∆ 2 2 3 4 4 5 5 5

These theorems still do not provide sufficient conditions since we can prove, for
example, that the tree with 6 vertices shown in Figure 2 has no vertex-magic
total labeling. The reasoning is as follows: considering the weight of vertex v
we see that the constant is at least 1 + · · · + 5 = 15 and from the leaves, the
constant is at most (11+10+ · · ·+4)/4 = 15. So h = 15, and this can only be
acheived by the assignment of labels described. But this means that at least
one of the edges incident with v has label less than 4, which contradicts the
assignment of labels to the leaf edges.

v

Fig. 2. A tree with no vertex-magic total labeling

In particular, Theorem 2 proves that the star K1,n (with ∆ = n and v = n+1)
is not vertex-magic when n > 2. It is obvious that K1,1 is not vertex-magic —
the conditions would require the two vertices to receive the same label. If the
trivial case of K1 is not treated as a star, we have:

Corollary 2.1 The only vertex-magic star is K1,2.

(This was observed in [3].)

2 Forests in general

Calculations similar to those in the proof of Theorem 1 can be carried out for
a forest of s components. If we have n internal vertices and τn leaves, then
there are n − s internal edges, and the label set is {1, 2, · · · , M} where now
M = 2(τ +1)n−s. The comparison of maximum sum of weights on the leaves
to minimum sum of weights on internal vertices gives the following analog of
Theorem 1:

Theorem 3 Let F be a forest of s components. If F has n internal vertices



and τn leaves, then there is no vertex-magic total labeling whenever

τ >
2s − 1 +

√
12n2 + 4n(2s − 1) − (4s2 − 4s − 1)

2n
.

3 Galaxies

In view of our special knowledge about vertex-magic total labelings of stars, it
is reasonable to ask which forests consisting only of stars — disjoint unions of
stars — are vertex-magic. The term galaxy has been used for a disjoint union
of stars (see, for example, [1]).

Suppose G is the union K1,n1 ∪ K1,n2 ∪ . . . ∪ K1,nt of t stars. The number of
edges of G is e = n1+n2+. . .+nt. Suppose G has a vertex-magic total labeling
with magic constant h. The sum of the weights of the centers of the stars will
be th; on the other hand, it will equal at least the sum of the smallest e + t
positive integers (the e spokes and the t centers). So

th ≥
e+t∑
i=1

i = 1
2
(e + t)(e + t + 1). (1)

On the other hand, the sum of the e weights of the leaves equals the sum of
the labels on all the edges and all the vertices except the centers, so

eh ≤
2e+t∑

i=t+1

i = 1
2
(2e + t)(2e + t + 1) − 1

2
t(t + 1). (2)

Combining (1) and (2),

e(e + t)(e + t + 1)≤ t(2e + t)(2e + t + 1) − t2(t + 1),

(e + t)(e + t + 1)≤ e2(4t) + e(4t2 + 2t),

so e2 + e(1 − 2t) − (3t2 + t) ≤ 0. It follows that

e ≤ 2t − 1 +
√

16t2 + 1

2
< 3t. (3)

Theorem 4 If a galaxy is vertex-magic, then the average size of the compo-
nent stars is less than 3.



It is clear that Theorem 4 is the best-possible conclusion from (3), because
2t−1+

√
16t2+1

2
> 3t − 1. But not every union of stars with average size smaller

than 3 is vertex-magic.

4 Restrictions on star sizes

From here on we shall assume that G is a vertex-magic galaxy of t stars that
has 3t−1 edges, and G has a vertex-magic total labeling λ with magic constant
h.

Equations (1) and (2) yield

8t − 2 ≤ h ≤ 8t − 1.

Say a and b are the labels on some edge and its adjacent leaf. Then a and b
are positive and a + b = h. No label can be greater than 7t − 2, so neither a
nor b can be smaller than h− 7t + 2. So h ≥ 8t− 2 implies that 1, 2, . . . , t− 1
must all be labels of centers of stars, and if h = 8t − 1 then t is also a center
label. Moreover, if h = 8t − 2 then neither a nor b can equal 4t − 1, because
repetitions are not allowed. So:

Lemma 5 If G has a vertex-magic total labeling λ with constant 8t − 2, the
centers have labels

1, 2, . . . , t − 1, 4t − 1.

If G has a vertex-magic total labeling λ with constant 8t− 1, the centers have
labels

1, 2, . . . , t − 1, t.

Let SC and SE denote the sums of labels on the centers and edges respectively.
Then, summing the weights of the centers, SC +SE = ht. If h = 8t−2, Lemma
5 gives SC = 1

2
t(t − 1) + 4t − 1, so

SE = t(8t − 2) − [1
2
t(t − 1) + 4t − 1] = 1

2
(15t2 − 11t + 2).

But no edge label is smaller than t, so SE ≥ t + (t + 1) + . . . + (4t − 2) =
1
2
(15t2 − 11t + 2), and equality must hold. So the edge labels are precisely

t, (t + 1), . . . , (4t − 2). If h = 8t − 1, the Lemma gives SC = 1
2
t(t + 1), so

SE = t(8t − 1) − 1
2
t(t + 1) = 1

2
(15t2 − 3t).

In this case no edge label is smaller than t + 1, so SE ≥ (t + 1) + (t + 2) +
. . . + (4t − 1) = 1

2
(15t2 − 5t). This is not tight, but the sum of edge labels is

only greater than the minimum by t.



This information can be used to limit the number of small stars — K1,2’s —
in any vertex-magic union.

Theorem 6 Suppose G is a vertex-magic galaxy of t stars which between them
have 3t − 1 edges; let r be the number of stars K1,2 in G. Then r ≤ 2

5
(t + 1).

Proof. First suppose h = 8t − 2. Possibly one K1,2 has center label 4t − 1.
The sum of the weights of the centers of the other K1,2’s is (r − 1)(8t − 2).
This must equal at most the sum of the r − 1 greatest center labels and the
2(r − 1) greatest edge labels. So

(r − 1)(8t − 2)≤ [(t − r + 1) + (t − r + 2) + . . . + (t − 1)]

+[(4t − 2r + 1) + (4t − 2r + 2) + . . . + (4t − 2)],

8t − 2≤ 9t − 1
2
(5r + 2).

so

t ≥ 1
2
(5r − 2),

and r ≤ 2
5
(t + 1).

If h = 8t − 1, the sum of the weights of the centers of the K1,2’s is r(8t − 1).
The sum of the 2r greatest edge labels could exceed (4t−2r−1)+(4t−2r)+
. . . + (4t − 2) by t, so

r(8t − 1)≤ [(t − r + 1) + . . . + (t − 1) + t]

+[(4t − 2r − 1) + (4t − 2r) + . . . + (4t − 2)] + t,

from which 5r2 − (2t − 3)r − 2t ≤ 0, so

r ≤ 1

10
(2t − 3 +

√
4t2 + 28t + 9) <

1

10
(2t − 3 +

√
4t2 + 28t + 49) =

2

5
(t + 1)

as required. �

There is also a restriction on the largest star. Suppose one of the stars in G
has s edges. If h = 8t − 2, then the center c of this large star has weight at
least 1 + t + (t + 1) + . . . + (t + s − 1) = 1 + st + 1

2
s(s − 1), so

8t − 2 ≥ 1 + st + 1
2
s(s − 1). (4)

Clearly s < 8, no matter what value t takes. Even for smaller s, not all t are
possible. The inequality (4) can be written as

t ≥ s2 − s + 6

16 − 2s
.



In the case h = 8t − 1, the center of the largest star has weight at least
1 + (t + 1) + . . . + (t + s) = 1 + st + 1

2
s(s + 1). Again s < 8. For smaller s we

obtain the slightly stronger condition

t ≥ s2 + s + 4

16 − 2s
.

From this we can deduce the following bounds:

Theorem 7 Suppose G is a vertex-magic galaxy of t stars which between them
have 3t − 1 edges; then no star can contain 8 edges. If the largest star has s
edges, then:

if h = 8t − 1 then s = 7 ⇒ t≥ 30,

s = 6 ⇒ t≥ 12,

s = 5 ⇒ t≥ 6,

s = 4 ⇒ t≥ 3,

s = 3 ⇒ t≥ 2,

while if h = 8t − 2 then s = 7 ⇒ t≥ 24,

s = 6 ⇒ t≥ 9,

s = 5 ⇒ t≥ 4,

s = 4 ⇒ t≥ 3,

s = 3 ⇒ t≥ 2.

3t–ii

t–1+i

4t–1+i 5t–2+i

4t–1–i

7t–1–i
4t–1

6t–2 6t–1

2t–12t

i = 1, 2, . . . t–1

�

Fig. 3. Vertex-magic total labeling of (t − 1)K1,3 ∪ K1,2

The extreme cases are worth considering. If t is any positive integer, then
(t − 1)K1,3 ∪ K1,2 is always a possibility according to Theorem 7, and it is in
fact vertex-magic. A labeling with h = 8t − 2 has stars labeled as follows:



center edges

4t − 1 (2t, 6t − 2)

(2t − 1, 6t − 1)

i (t − 1 + i, 7t − 1 − i)

(3t − i, 5t − 2 + i) i = 1, 2, . . . , t − 1

(4t − 1 − i, 4t − 1 + i)

((s, b) . . . denotes an edge labeled b joining the center to a leaf labeled b) and
is illustrated in Figure 3.

There is no vertex-magic total labeling with h = 8t − 1 in the case t = 2 For
t = 3, one labeling is

center edges

1 (13, 10), (9, 14)

2 (11, 12), (6, 17), (4, 19)

3 (8, 15), (7, 16), (5, 18)

If t is even, say t = 2u ≥ 4, an example is

center edges

1 (7u − 1, 9u)

(9u − 1, 7u)

2 (3u − 1, 13u)

(5u − 2, 11u + 1)

(8u, 8u − 1)

i (4u + 2 − i, 12u − 3 + i)

(6u + 1 − i, 10u − 2 + i) 3 ≤ i ≤ u + 2

(6u − 4 + i, 10u + 3 − i)

i (4u + 1 − i, 12u − 2 + i)

(3u − 3 + i, 13u + 2 − i) u + 3 ≤ i ≤ 2u,

(9u + 1 − i, 7u − 2 + i)



and if t = 2u + 1 ≥ 5, we can use

center edges

1 (7u + 2, 9u + 5)

(9u + 4, 7u + 3)

i (4u + 2 − i, 12u + 5 + i)

(5u + 2 + i, 11u + 5 − i) 2 ≤ i ≤ u

(7u + 3 − i, 9u + 4 + i)

i (u + 1 + i, 15u + 6 − i)

(6u + 2 − i, 10u + 5 + i) u + 1 ≤ i ≤ 2u

(9u + 4 − i, 7u + 3 + i)

2u + 1 (4u + 1, 12u + 6)

(5u + 2, 11u + 5)

(5u + 3, 11u + 4)

However, (t−1)K1,2∪K1,t+1 can never have a vertex-magic total labeling when
t > 3. The cases t = 2, 3 are vertex-magic—when t = 2, the construction of
Figure 3 provides an example. A labeling of 2K1,2∪K1,4 is provided in Section
5.

5 Small galaxies

In Figure 4 we present examples of vertex-magic total labelings for galaxies
up to t = 7 stars with 3t − 1 edges. The line “x − yz . . .” denotes a star with
center label x and leaf labels y, z, . . . (the edge labels are omitted, for brevity).

Note that two of the small examples cannot be realized; however, we have
constructed a number of larger examples without difficulty, and it may be
that the two examples already found are the only cases where the known
necessary conditions are not sufficient.



t type h = 8t − 2 h = 8t − 1

2 23 A Y

3 224 Y 3 − 12, 14

2 − 10, 15

1 − 16, 17, 18, 19

233 A A

4 2234 3 − 16, 17 1 − 14, 18

15 − 19, 26 3 − 15, 19

2 − 18, 21, 23 4 − 20, 21, 25

1 − 20, 22, 24, 25 2 − 22, 23, 24, 26

2333 A A

5 22334 4 − 20, 22 1 − 17, 23

19 − 28, 29 2 − 20, 21

2 − 25, 26, 27 3 − 24, 25, 32

3 − 23, 24, 32 4 − 26, 27, 29

1 − 23, 30, 31, 33 5 − 28, 30, 31, 33

23333 A A

6 222335 X 3 − 21, 29

4 − 19, 24

5 − 25, 27

2 − 31, 32, 33

6 − 30, 34, 36

1 − 35, 37, 38, 39, 40

222344 X 4 − 21, 30

5 − 23, 29

6 − 25, 28

3 − 31, 32, 34

1 − 27, 36, 39, 40

2 − 33, 35, 37, 38

t type h = 8t − 2 h = 8t − 1

6 223334 23 − 24, 27 5 − 21, 31

5 − 31, 38 6 − 23, 30

4 − 28, 33, 35 2 − 27, 32, 37

3 − 29, 30, 36 3 − 28, 33, 36

2 − 25, 32, 37 4 − 29, 34, 35

1 − 26, 34, 39, 40 1 − 25, 38, 39, 40

233333 A A

7 2223335 5 − 29, 30 5 − 24, 36

6 − 28, 32 6 − 29, 32

27 − 34, 47 7 − 28, 34

2 − 35, 36, 39 2 − 30, 40, 42

3 − 33, 38, 40 3 − 33, 37, 43

4 − 31, 37, 44 4 − 35, 38, 41

1 − 41, 42, 43, 1 − 39, 44, 45,

45, 46 46, 47

2223344 5 − 29, 30 3 − 24, 34

6 − 28, 32 4 − 29, 30

27 − 38, 43 5 − 28, 32

3 − 34, 37, 40 6 − 35, 39, 42

4 − 35, 38, 41 7 − 33, 41, 43

1 − 31, 39, 46, 47 1 − 36, 37, 46, 47

2 − 33, 42, 44, 45 2 − 38, 40, 44, 45

2233334 6 − 28, 32 2 − 28, 29

27 − 34, 47 3 − 24, 34

2 − 29, 40, 41 4 − 32, 38, 44

3 − 30, 39, 42 5 − 30, 40, 45

4 − 31, 38, 43 6 − 35, 39, 42

5 − 33, 36, 45 7 − 33, 41, 43

1 − 35, 37, 45, 46 1 − 36, 37, 46, 47

2333333 A A

A — Given by constructions in Section 4

X — Excluded by theorems in Section 4

Y — Excluded by exhaustive search

Fig. 4. Labelings for small galaxies



6 Unions of 2-paths

Another interesting case is the union of s 3-vertex paths. The path is of course
a star K1,2. No vertex-magic graph can have a component K1,1, so sK1,2 is the
smallest galaxy containing s non-trivial stars. We construct a vertex-magic
total labeling for every case.

The construction when s ≡ 0 or 1(mod 4) uses a special type of starter. Re-
call (see, for example, [5]) that a starter in an abelian group G of odd order is
a partition of the set G∗ of non-zero elements of G into pairs {x1, y1}, {x2, y2},
. . . , such that the differences ±(y1 − x1),±(y2 − x2), . . . together constitute
G∗. We use a starter in Z2s+1 with the special property that the differences
{(y1 − x1), (y2 − x2), . . .} equal {1, 2, . . . , s} in ordinary integer arithmetic.

Lemma 8 If s ≡ 0 or 1(mod4) then the integers 1, 2, . . . , 2s can be parti-
tioned into s pairs (xi, yi) such that {yi − xi : i = 1, 2, . . . , s} = {1, 2, . . . , s}.

Proof. First assume s ≡ 0(mod 4), say s = 4t. The integers are paired as
follows:

for t = 1 : (1, 2), (5, 7), (3, 6), (4, 8)

for t = 2 : (2, 3), (11, 13), (4, 7), (10, 14), (1, 6), (9, 15), (5, 12), (8, 16)

for t ≥ 3 : (t, t + 1), (2t, 4t − 1), (2t + 1, 6t),

(x, 4t − 1 − x) 1 ≤ x ≤ t − 1,

(x, 4t + 1 − x) t + 2 ≤ x ≤ 2t − 1,

(x, 12t − x) 4t ≤ x ≤ 6t − 1.

When s ≡ 1(mod 4), say s = 4t + 1, the integers are paired as follows:

for t = 0 : (1, 2)

for t = 1 : (1, 2), (7, 9), (3, 6), (4, 8), (5, 10)

for t ≥ 2 : (t, t + 1), (2t + 1, 4t + 2), (2t + 2, 6t + 2), (4t + 1, 8t + 2),

(x, 4t + 1 − x) 1 ≤ x ≤ t − 1,

(x, 4t + 3 − x) t + 2 ≤ x ≤ 2t,

(x, 12t − 1 − x) 4t + 3 ≤ x ≤ 6t + 1.

In each case, it is readily verified that each of 1, · · · , 2s is used precisely once,
and that each of 1, · · · , s occurs precisely once as a difference. �



Theorem 9 If s ≡ 0 or 1(mod 4) then sK1,2 has a vertex-magic total label-
ing with magic constant 6s + 1.

Proof. We construct a labeling in which the vertices of order 2 receive labels
1, 2, . . . , s. The edges adjacent to the center labeled i receive labels ei and fi,
and the corresponding leaves are labeled ui and vi respectively. If the labeling
is to be vertex-magic with magic constant h,

i + ei + fi = ei + ui = fi + vi = h. (5)

So, for each i,

i = h − (ei + fi) = (h − ei) − fi = ui − fi.

We select a partition of {1, 2, . . . , 2s} into s pairs (xi, yi) such that {yi − xi :
i = 1, 2, . . . , s} = {1, 2, . . . , s}, as guaranteed by Lemma 8, and reorder the
pairs so that yi − xi = i for each i. We then define

ei = 3s + 1 − yi, fi = xi + 3s, ui = yi + 3s, vi = 3s + 1 − xi.

It is clear that this assignment satisfies (5). �

The construction when s ≡ 2 or 3(mod4) is a slight generalization of the
earlier one.

Lemma 10 If s ≡ 2 or 3(mod4) then the integers 1, 2, . . . , 2s − 2 can be
partitioned into s − 1 pairs (xi, yi) such that {yi − xi : i = 1, 2, . . . , s} =
{1, 3, 4, . . . , s}.

Proof. First assume s ≡ 2(mod 4), say s = 4t + 2. The integers are paired as
follows:

for t = 0 : (1, 2)

for t = 1 : (2, 3), (6, 9), (4, 8), (5, 10), (1, 7)

for t ≥ 2 : (t + 1, t + 2), (2t + 2, 4t + 4), (2t + 3, 6t + 4), (2t + 4, 6t + 3),

(x, 4t + 4 − x) 1 ≤ x ≤ t,

(x, 4t + 6 − x) t + 3 ≤ x ≤ 2t + 1,

(x, 12t + 7 − x) 4t + 5 ≤ x ≤ 6t + 2.

When s ≡ 3(mod 4), say s = 4t + 3, the integers are paired as follows:



for t = 0 : (2, 3), (1, 4)

for t = 1 : (3, 4), (9, 12), (6, 10), (2, 7), (5, 11), (1, 8)

for t ≥ 2 : (t + 2, t + 3), (2t + 3, 6t + 5), (2t + 4, 6t + 4), (6t + 3, 8t + 4),

(x, 4t + 5 − x) 1 ≤ x ≤ t + 1,

(x, 4t + 7 − x) t + 4 ≤ x ≤ 2t + 2,

(x, 12t + 8 − x) 4t + 5 ≤ x ≤ 6t + 2.

Again it is readily verified that each of 1, · · · , 2s − 2 is used precisely once,
and that each of 1, 3, 4, · · · , s occurs precisely once as a difference. �

Theorem 11 If s ≡ 0 or 1(mod 4) then sK1,2 has a vertex-magic total label-
ing with magic constant 6s + 1.

The proof is very similar to that of Theorem 9. We take e2, f2, u2, v2 to be 3s−
1, 3s, 3s+2, 3s+1; s−1 pairs {xi, yi}(i �= 2) are chosen from {1, 2, . . . , 2s−2}
so that yi − xi = i, and

ei = 3s − 1 − yi, fi = xi + 3s + 2, ui = yi + 3s + 2, vi = 3s − 1 − xi

yield a vertex-magic total labeling with h = 6s + 1. �
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