Generating Sequences of Clique-Symmetric Graphs via Eulerian Digraphs

John P. McSorley
Thomas D. Porter
Southern Illinois University Carbondale

Southern Illinois University Carbondale, mcsorley60@hotmail.com

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles
Part of the Discrete Mathematics and Combinatorics Commons
Published in Discrete Mathematics, 287(1-3), 85-91.

Recommended Citation

McSorley, John P. and Porter, Thomas D. "Generating Sequences of Clique-Symmetric Graphs via Eulerian Digraphs." (Oct 2004).

Generating Sequences of Clique-Symmetric Graphs via Eulerian Digraphs

John P. McSorley
Dept. of CCTM
London Metropolitan University
100 Minories
London, EC3N 1JY
mcsorley60@hotmail.com
Thomas D. Porter
Department of Mathematics
Southern Illinois University
Carbondale, IL 62901-4408
tporter@math.siu.edu

Abstract

Let $\left\{G_{p 1}, G_{p 2}, \ldots\right\}$ be an infinite sequence of graphs with $G_{p n}$ having $p n$ vertices. This sequence is called K_{p}-removable if $G_{p 1} \cong K_{p}$, and $G_{p n}-S \cong G_{p(n-1)}$ for every $n \geq 2$ and every vertex subset S of $G_{p n}$ that induces a K_{p}. Each graph in such a sequence has a high degree of symmetry: every way of removing the vertices of any fixed number of disjoint K_{p} 's yields the same subgraph. Here we construct such sequences using componentwise Eulerian digraphs as generators. The case in which each $G_{p n}$ is regular is also studied, where Cayley digraphs based on a finite group are used.

Keywords: Cayley, clique, digraph, Eulerian, reconstruction, removal, symmetric, uniform

$1 K_{p}$-removable sequences

In general we follow the notation in [5]. In particular, if $S \subseteq V(G)$, let $G[S]$ be the subgraph of G induced by S. Let p be a positive integer and n be a variable running from one to infinity. We use $[p]=\{1, \ldots, p\}$, and i for an element in $[p]$.

An infinite sequence of graphs $\left\{G_{p n}\right\}=\left\{G_{p 1}, G_{p 2}, \ldots\right\}$, with $G_{p n}$ having $p n$ vertices, is K_{p}-removable if it satisfies the following two properties:
P1 $G_{p 1} \cong K_{p}$,
$\mathbf{P} 2$ for every $n \geq 2$, the graph $G_{p n}$ contains at least one K_{p} and $G_{p n}-S \cong$ $G_{p(n-1)}$ for every S for which $G_{p n}[S] \cong K_{p}$.

Each graph in such a sequence has a high degree of symmetry: every way of removing the vertices of any fixed number of disjoint K_{p} 's yields the same subgraph. We call this property clique-symmetric.

We often write $G=G^{\prime}$ in place of $G \cong G^{\prime}$, and refer to K_{p} as a p-clique.
Let \vec{D} be a digraph without loops and multiple arcs, and with vertex set [p]. Let $\overrightarrow{i i^{\prime}}$ denote an arc in $A(\vec{D})$, then i^{\prime} is an out-neighbour to vertex i. Let i have $d^{+}(i)$ out-neighbours and $d^{-}(i)$ in-neighbours.

The following graph construction is central to this paper:
Consider a copy of K_{p} with vertices labelled $\{(1,1), \ldots,(p, 1)\}=\{(i, 1) \mid i \in$ $[p]\}$; call these vertices vertices at level 1 , and call this graph $D_{1}\left(K_{p}\right)$. Now consider another K_{p} with vertices labelled $\{(i, 2) \mid i \in[p]\}$, these are vertices at level 2. For any vertex $(i, 2)$ join it to vertices $\left\{\left(i^{\prime}, 1\right) \mid i \overrightarrow{i^{\prime}} \in A(\vec{D})\right\}$ at level 1; call this graph $D_{2}\left(K_{p}\right)$. Now consider a third K_{p} with vertices labelled $\{(i, 3) \mid i \in[p]\}$, at level 3. Join any vertex $(i, 3)$ to vertices $\left\{\left(i^{\prime}, 2\right) \mid i \overrightarrow{i^{\prime}} \in A(\vec{D})\right\}$ at level 2 and to vertices $\left\{\left(i^{\prime}, 1\right) \mid i \overrightarrow{i^{\prime}} \in A(\vec{D})\right\}$ at level 1 ; this is $D_{3}\left(K_{p}\right)$.

Now, for any $n \geq 1$, consider the graph which has been constructed level by level, up to n levels, according to this definition; call this graph $D_{n}\left(K_{p}\right)$ or simply D_{n} when p is clear. We say that the digraph \vec{D} generates the sequence $\left\{D_{n}\right\}=\left\{D_{1}, D_{2}, \ldots\right\}$.

In D_{n} the vertices are of the form (i, j) for every $i \in[p]$ and every j, $1 \leq j \leq n$, (where j is their level); and the edges are of two types:
(i) fixed-level edges, say at level j

$$
\left(\left(i_{1}, j\right),\left(i_{2}, j\right)\right) \text { is an edge for all } i_{1}, i_{2} \in[p] \text { where } i_{1} \neq i_{2} ; \text { and }
$$

(ii) cross-level edges, for $j>j^{\prime}$

$$
\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right) \text { is an edge if and only if } i \vec{i}^{\prime} \in A(\vec{D})
$$

Call digraph \vec{D} uniform if $d^{+}(i)=d^{-}(i)$ for every vertex i in \vec{D}. Note that \vec{D} need not be connected. Then \vec{D} is an Eulerian digraph if it has one component, otherwise \vec{D} is Eulerian on each of its components.

In this paper we study the sequences $\left\{D_{n}\right\}$. In Section 2 our main result (Theorem 2.3) states that if \vec{D} is uniform then its generated sequence $\left\{D_{n}\right\}$ is K_{p}-removable. In Section 3 we construct sequences in which each graph is regular. We use λ-uniform digraphs; these satisfy $\lambda=d^{+}(i)=d^{-}(i)$ for every vertex i in \vec{D}. They can be constructed in a similar manner to Cayley digraphs. We count the exact number of K_{p} 's in the graphs in these sequences. Many examples are given throughout the paper, as well as indications for further research.

$2\left\{D_{n}\right\}$ is K_{p}-removable for uniform \vec{D}

In this section we consider $\left\{D_{n}\right\}$, the sequence of graphs generated by digraph \vec{D}. Often \vec{D} will be uniform. In order to prove that $\left\{D_{n}\right\}$ is K_{p}-removable in this case, we are interested in the K_{p} 's in such D_{n}. The next theorem gives necessary and sufficient conditions for their existence.

For each $i \in[p]$, let $I_{i}=\{(i, 1), \ldots,(i, n)\}=\{(i, j) \mid 1 \leq j \leq n\}$ be the set of vertices in D_{n} in 'column i '. Then, because \vec{D} is loopless, i.e., $\overrightarrow{i i} \notin A(\vec{D})$, this is an independent set of vertices, the i-th independent set.

Now let $V=\left\{\left(1, v_{1}\right), \ldots,\left(p, v_{p}\right)\right\}$ be an arbitrary vertex subset in D_{n} with exactly one vertex from each independent set I_{i}. Let V have vertices at m different levels: $\ell_{1}, \ldots, \ell_{m}$ where $\ell_{1}<\cdots<\ell_{m}$. For each $k, 1 \leq k \leq m$, let $V_{k}=\left\{i \mid v_{i}=\ell_{k}\right\} \neq \emptyset$ be the set of first coordinates of all vertices of V at level ℓ_{k}. Then the sets V_{1}, \ldots, V_{m} form a level-partition of $[p]=\{1, \ldots, p\}$.

Now $D_{n}[V]$ contains the cross-level edge $\left(\left(i, \ell_{k}\right),\left(i^{\prime}, \ell_{k^{\prime}}\right)\right)$ where $\ell_{k^{\prime}}<\ell_{k}$ if and only if $i \overrightarrow{i^{\prime}}$ is an arc in \vec{D}. We call $i \vec{i}^{\prime}$ a V-skew arc. Hence a V-skew arc in \vec{D} 'joins' different levels of V.

Let $\overrightarrow{A B}$ denote the set of arcs in \vec{D} from A to B, i.e., all arcs $\overrightarrow{a b}$ with $a \in A$ and $b \in B$.

Theorem 2.1 Let \vec{D} be a uniform digraph with p vertices. Then $D_{n}[V]$ is a p-clique in D_{n} if and only if the associated V-skew arcs form a complete symmetric m-partite subdigraph in \vec{D}.

Proof. Suppose that $D_{n}[V]$ is a p-clique with level-partition V_{1}, \ldots, V_{m}. The digraph \vec{D} is uniform so the number of arcs entering any vertex subset equals the number of arcs outgoing from it. Now $D_{n}[V]$ is a p-clique so, in $\vec{D}, \vec{V}_{k} V_{k^{\prime}}$ is complete for each k^{\prime} and $k, 1 \leq k^{\prime}<k \leq m$; in particular $\overrightarrow{V_{k} V_{1}}$ is complete for each $k, 2 \leq k \leq m$. The number of arcs entering V_{1} is $\left|V_{1}\right|\left(\left|V_{2}\right|+\cdots+\left|V_{m}\right|\right)$ which equals the number of outgoing arcs, hence $\overrightarrow{V_{1} V_{k}}$ is also complete for each $k, 2 \leq k \leq m$.

So $\overrightarrow{V_{1} V_{2}}$ is complete, and we can apply a similar argument to V_{2} to show that $\overrightarrow{V_{2} V_{k}}$ is complete for each $k, 3 \leq k \leq m$, then to V_{3}, \ldots, and so on. Consequently, ${\overrightarrow{V_{k^{\prime}}} V_{k}}^{\text {is complete for each } k^{\prime} \text { and } k, 1 \leq k^{\prime}<k \leq m \text {, i.e., the }}$ V-skew arcs form a complete symmetric m-partite subdigraph in \vec{D}.

The converse is straightforward.
We usually refer to a p-clique in D_{n} as W. From the construction of D_{n}, for vertex (i, j) in D_{n} its degree is given by

$$
\operatorname{deg}(i, j)=d^{+}(i)(j-1)+d^{-}(i)(n-j)+p-1
$$

Corollary 2.2 Let \vec{D} be a uniform digraph with p vertices. If $D_{n}[W]$ is a p-clique then the number of edges in $D_{n}-W$ equals the number of edges in D_{n-1}.

Proof. Now $D_{n}[W]=K_{p}$ so the number of edges 'inside' W equals the number of edges inside the K_{p} at level n of D_{n}. For any vertex (i, j) in D_{n} we have by uniformity that $\operatorname{deg}(i, j)=d^{+}(i)(n-1)+p-1$. So, if (i, j) is in W then its degree 'outside' W is $d^{+}(i)(n-1)$, which is independent of its level j. This outside degree is the same as the degree outside the K_{p} at level n of the level n vertex (i, n). Hence the removal of W from D_{n} removes the same number of edges as the removal of the K_{p} at level n, and so the result.

Now for our main result.

Theorem 2.3 Let \vec{D} be a uniform digraph with p vertices. Then its generated sequence of graphs $\left\{D_{n}\right\}$ is K_{p}-removable.

Proof. \quad Suppose W induces a p-clique in D_{n}. Let the vertices of W be $\left\{\left(i, w_{i}\right) \mid 1 \leq i \leq p\right\}$. Now we construct a bijection ϕ between the vertices of $D_{n}-W$ and the vertices of D_{n-1}. Under ϕ, for a fixed $i \in[p]$, the vertices in the i-th independent set of $D_{n}-W$, namely in the set $I_{i} \backslash\left\{\left(i, w_{i}\right)\right\}$, are mapped to the vertices in the i-th independent set of D_{n-1}, namely to the set $\{(i, 1), \ldots,(i, n-1)\}$, as follows:

$$
\phi(i, j)= \begin{cases}(i, j), & \text { for } 1 \leq j<w_{i} \\ (i, j-1), & \text { for } w_{i}<j \leq n\end{cases}
$$

Clearly ϕ is a bijection. It is straightforward to show that ϕ moves edges in $D_{n}-W$ to edges in D_{n-1}.

Now, from Corollary 2.2, the graphs $D_{n}-W$ and D_{n-1} have the same number of edges, and so ϕ is an isomorphism. Hence $\left\{D_{n}\right\}$ satisfies P2. Clearly $\left\{D_{n}\right\}$ satisfies $\mathbf{P} 1$, which gives the result.

Example $1 \quad p=3, V(\vec{D})=\{1,2,3\}, A(\vec{D})=\{\overrightarrow{12}, \overrightarrow{21}, \overrightarrow{23}, \overrightarrow{32}\}$. Then \vec{D} is uniform with 3 vertices. The first three graphs in the K_{3}-removable sequence $\left\{D_{n}\right\}$ are shown in Figure 1 on page 7. Notice the level-partition $V_{1}=\{1,3\}$, $V_{2}=\{2\}$ which illustrates Theorem 2.1.

Figure 1

The converse of Theorem 2.3 is not true:
Example $2 \quad p=3, V(\vec{D})=\{1,2,3\}, A(\vec{D})=\{\overrightarrow{12}\}$. Then $\left\{D_{n}\right\}$ is $K_{3^{-}}$ removable, but \vec{D} is not uniform.

Question Is every K_{p}-removable sequence isomorphic to the generated sequence of some digraph \vec{D} ? (From Example 2 we know that \vec{D} need not be uniform.)

The K_{p}-removable sequence $\left\{G_{p n}\right\}$ is regular if every graph $G_{p n}$ is regular, and irregular otherwise. In general, the sequence $\left\{D_{n}\right\}$ is irregular, see Example 1. It is straightforward to show that all K_{p}-removable sequences with $p=1$ or 2 are regular; they will given in Theorem 3.3 below. However, for every $p \geq 3$ an irregular K_{p}-removable sequence exists:

Example $3 \quad p \geq 3, V(\vec{D})=[p], A(\vec{D})=\{\overrightarrow{12}, \overrightarrow{21}, \overrightarrow{23}, \overrightarrow{32}\}$. Then \vec{D} is uniform with p vertices, so $\left\{D_{n}\right\}$ is K_{p}-removable. However the graph D_{2} is irregular because $\operatorname{deg}(1,2)=p$ but $\operatorname{deg}(2,2)=p+1$, so $\left\{D_{n}\right\}$ is irregular.

Call two K_{p}-removable sequences $\left\{G_{p n}\right\}$ and $\left\{G_{p n}^{\prime}\right\}$ isomorphic, denoted by $\left\{G_{p n}\right\} \cong\left\{G_{p n}^{\prime}\right\}$, if $G_{p n} \cong G_{p n}^{\prime}$ for every $n \geq 1$.

Let $\theta: \vec{D} \rightarrow \overrightarrow{D^{\prime}}$ be an isomorphism between uniform digraphs \vec{D} and $\overrightarrow{D^{\prime}}$. For every fixed $n \geq 1, \theta$ induces an isomorphism Θ between D_{n} and D_{n}^{\prime} given by: $\Theta(i, j)=(\theta(i), j)$, for every $i \in[p]$ and j with $1 \leq j \leq n$. Hence, for every $n \geq 1, D_{n} \cong D_{n}^{\prime}$ and so $\left\{D_{n}\right\} \cong\left\{D_{n}^{\prime}\right\}$. We conjecture that the converse is true:

Conjecture Let $\left\{D_{n}\right\}$ and $\left\{D_{n}^{\prime}\right\}$ be two K_{p}-removable sequences generated by uniform digraphs \vec{D} and $\overrightarrow{D^{\prime}}$, respectively. If $\left\{D_{n}\right\} \cong\left\{D_{n}^{\prime}\right\}$ then $\vec{D} \cong \overrightarrow{D^{\prime}}$.

As a final remark we note that the above construction of a K_{p}-removable sequence needs a uniform digraph with vertex set $[p]$. One way to construct such a uniform digraph is to take an undirected graph H with vertex set $[p]$ and 'double-orientate' each edge in H, i.e., replace each edge $\left(i, i^{\prime}\right)$ with two $\operatorname{arcs} i \overrightarrow{i^{\prime}}$ and $\overrightarrow{i^{\prime}}$. Indeed, \vec{D} in Example 1 was obtained from double-orientating the path on 3 vertices.

3 Generating regular (K_{p}, λ)-removable sequences using finite groups

Recall the definition of a regular K_{p}-removable sequence given above.
A uniform digraph \vec{D} is called λ-uniform if there is a natural number λ such that $\lambda=d^{+}(i)=d^{-}(i)$ for every vertex i in \vec{D}. Note that $0 \leq \lambda \leq p-1$ when \vec{D} has p vertices.

We noted in the proof of Corollary 2.2 that, for a uniform digraph \vec{D} with p vertices, the degree of any vertex (i, j) in D_{n} is $\operatorname{deg}(i, j)=d^{+}(i)(n-1)+$ $p-1$. If \vec{D} is λ-uniform, then $\operatorname{deg}(i, j)=\lambda(n-1)+p-1$, which does not depend on i or j. Hence D_{n} is regular of degree $\lambda(n-1)+p-1$, and $\left\{D_{n}\right\}$ is a regular K_{p}-removable sequence. We call $\left\{D_{n}\right\}$ a regular $\left(K_{p}, \lambda\right)$-removable sequence.

So, from Theorem 2.3, we have
Theorem 3.1 Let \vec{D} be a λ-uniform digraph with p vertices. Then its generated sequence of graphs $\left\{D_{n}\right\}$ is regular $\left(K_{p}, \lambda\right)$-removable.

In this section we study such regular sequences $\left\{D_{n}\right\}$. To generate such a sequence we need a λ-uniform digraph. For this we can double-orientate a λ-regular graph H. However, this is only sufficient when such a λ-regular graph exists. Instead, we use a Cayley-type digraph which we obtain from an arbitrary finite group. See Biggs [2] and Grossman and Magnus [4].

Let $p \geq 1$ and let $\mathcal{G}_{p}=\left\{g_{1}, \ldots, g_{p}\right\}$ be a finite group with p elements, where e is the identity element. Let $\Lambda \subseteq \mathcal{G}_{p}$ be a subset of \mathcal{G}_{p} with $e \notin \Lambda$ and with $|\Lambda|=\lambda$, where clearly $0 \leq \lambda \leq p-1$.

We form a digraph $\vec{D}=\left(\overrightarrow{\mathcal{G}_{p}, \Lambda}\right)$ from \mathcal{G}_{p} and Λ as follows:

> the vertices of \vec{D} are $\left\{g_{1}, \ldots, g_{p}\right\}$ and $\overrightarrow{g_{i} g_{i^{\prime}}}$ is an arc in \vec{D} if and only if $g_{i^{\prime}} g_{i}^{-1} \in \Lambda$.

We see that $d^{+}\left(g_{i}\right)=d^{-}\left(g_{i}\right)=|\Lambda|=\lambda$ for every vertex g_{i}, hence \vec{D} is $\lambda-$ uniform. Consequently, using Theorem 3.1 above, $\left\{D_{n}\right\}$ is a regular $\left(K_{p}, \lambda\right)$ removable sequence. (Note that Λ need not be a generating set for \mathcal{G}_{p}; this is why we call $\left(\overrightarrow{\mathcal{G}_{p}, \Lambda}\right)$ a Cayley-type digraph rather than a Cayley digraph.)

Now for every $p \geq 1$ there is a cyclic group with p elements, \mathcal{C}_{p}, and a $\Lambda \subseteq \mathcal{C}_{p}$ with $e \notin \Lambda$ and $|\Lambda|=\lambda$ for each $0 \leq \lambda \leq p-1$; and, permitting
henceforth $\lambda=p$ corresponding to loops in \vec{D}, for every $p \geq 1$ there is a regular $\left(K_{p}, p\right)$-removable sequence, namely $\left\{K_{p n}\right\}$. So we have the following existence result for regular $\left(K_{p}, \lambda\right)$-removable sequences:

Theorem 3.2 For every $p \geq 1$ and every $\lambda, 0 \leq \lambda \leq p$, there exists a regular $\left(K_{p}, \lambda\right)$-removable sequence.

The cases corresponding to $\lambda=0, p-1$, and p are especially interesting; they result in sequences that are unique up to isomorphism. Let $K_{p \times n}=$ $K_{n, \ldots, n}$ be the complete p-partite graph on $p n$ vertices. The proof of the
$\underbrace{K_{n}, \ldots, n}_{p}$
following Theorem is straightforward.
Theorem 3.3 For every $p \geq 1$ there is a unique regular $\left(K_{p}, \lambda\right)$-removable sequence for $\lambda=0, p-1$, or p :
(i) $\left\{n K_{1}\right\}$ is the unique regular $\left(K_{1}, 0\right)$-removable sequence,
(ii) $\left\{K_{n}\right\}$ is the unique regular $\left(K_{1}, 1\right)$-removable sequence.
and, for every $p \geq 2$,
(iii) $\left\{n K_{p}\right\}$ is the unique regular $\left(K_{p}, 0\right)$-removable sequence,
(iv) $\left\{K_{p \times n}\right\}$ is the unique regular $\left(K_{p}, p-1\right)$-removable sequence,
(v) $\left\{K_{p n}\right\}$ is the unique regular $\left(K_{p}, p\right)$-removable sequence.

The λ-uniform digraphs needed to generate the last three sequences in Theorem 3.3 are: (iii) the 0-uniform digraph with p vertices and no arcs; (iv) the ($p-1$)-uniform digraph obtained by double-orientating the complete undirected graph K_{p}; and (v) the p-uniform digraph obtained by attaching one loop to each vertex to the digraph in (iv). (Note that in (v) the digraph is not loopless, but the construction still works.)

Example 4 Let $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$ be the additive group $(\bmod p)$. For $\lambda=0$ set $\Lambda=\emptyset$, and for $1 \leq \lambda \leq p-1$ set $\Lambda=\{1,2, \ldots, \lambda\}$, and for $\lambda=p$ set $\Lambda=\mathbb{Z}_{p}$. Note that in this last case $0 \in \Lambda$, contrary to our previous assumption that $e \notin \Lambda$, but this causes no problems. Then $\left(\overrightarrow{\mathbb{Z}_{p}, \Lambda}\right)$ generates a regular $\left(K_{p}, \lambda\right)$-removable sequence for each $\lambda, 0 \leq \lambda \leq p$. So $\left(\mathbb{Z}_{p}, \Lambda\right)$ generates a spectrum of graph sequences among which are the three sequences of Theorem $3.3(i i i)-(v)$, namely $\left\{n K_{p}\right\}, \ldots,\left\{K_{p \times n}\right\}$, and $\left\{K_{p n}\right\}$.

As usual let $\left\{D_{n}\right\}$ be the regular $\left(K_{p}, \lambda\right)$-removable sequence obtained from a generating digraph $\vec{D}=\left(\overrightarrow{\mathcal{G}_{p}, \Lambda}\right)$. Analogous to Theorem 2.1, we describe the structure induced on \vec{D} from p-cliques in D_{n}.

Let $\bar{\Lambda}$ denote the complement of Λ in \mathcal{G}_{p} and let $\langle\bar{\Lambda}\rangle$ be the subgroup generated by $\bar{\Lambda}$, also let $\langle\bar{\Lambda}\rangle g$ denote a typical coset of this subgroup.

Let $V=\left\{\left(g_{1}, v_{1}\right), \ldots,\left(g_{p}, v_{p}\right)\right\}$ be an arbitrary vertex subset in D_{n} with exactly one vertex from each independent set $I_{i}=\left\{\left(g_{i}, j\right) \mid 1 \leq j \leq n\right\}$. As in Section 2, let V have vertices at m different levels: $\ell_{1}, \ldots, \ell_{m}$ where $\ell_{1}<\cdots<\ell_{m}$. For each $k, 1 \leq k \leq m$, let $V_{k}=\left\{g_{i} \mid v_{i}=\ell_{k}\right\} \neq \emptyset$ be the set of first coordinates of all vertices of V at level ℓ_{k}. Then the sets V_{1}, \ldots, V_{m} form a level-partition of \mathcal{G}_{p}, and we have:

Theorem 3.4 Let $\vec{D}=\left(\overrightarrow{\mathcal{G}_{p}, \Lambda}\right)$ be a λ-uniform digraph with generated sequence $\left\{D_{n}\right\}$. Then $D_{n}[V]$ is a p-clique in D_{n} if and only if each V_{k} is a union of cosets of $\langle\bar{\Lambda}\rangle$.

Proof. For any $r \geq 1$ let $\Pi(r)=h_{1} \cdots h_{r}$ denote a product of r arbitrary elements h_{1}, \ldots, h_{r} from $\bar{\Lambda}$. Clearly for any $a \in\langle\bar{\Lambda}\rangle$ we can express a as $\Pi \underline{(r)}$ for some fixed $r \geq 1$ and some suitably chosen r elements h_{1}, \ldots, h_{r} from $\bar{\Lambda}$.

Suppose $D_{n}[V]$ is a p-clique in D_{n} with level partition V_{1}, \ldots, V_{m}. Consider any V_{k} and let $g_{i} \in V_{k}$. Then $\Pi(1) g_{i} \in V_{k}$ for any $\Pi(1)$. For suppose otherwise. Then there exists a $\Pi(1)=h_{1}$, say, with $h_{1} g_{i} \in V_{k^{\prime}}$ for some $k^{\prime} \neq k$. However, this implies from Theorem 2.1 that $\overrightarrow{g_{i}\left(h_{1} g_{i}\right)}$ is an arc in \vec{D}, i.e., $\left(h_{1} g_{i}\right) g_{i}^{-1}=h_{1} \in \Lambda$, a contradiction.

Now we show that if any $\Pi(r) g_{i} \in V_{k}$ then any $\Pi(r+1) g_{i} \in V_{k}$. For suppose that there is a $\prod(r+1)=a(r+1)=h_{1} \cdots h_{r+1}$ with $a(r+1) g_{i} \notin V_{k}$. Then, by similar reasoning to the above, we must have $a(r+1) g_{i} \in V_{k^{\prime \prime}}$ for some $k^{\prime \prime} \neq k$. Let $a(r)=h_{2} \cdots h_{r+1}$; then, by the induction hypothesis, $a(r) g_{i} \in V_{k}$. Hence $\overrightarrow{a(r) g_{i}\left(a(r+1) g_{i}\right)}$ is an arc in \vec{D}, and, as above, $h_{1} \in \Lambda$, a contradiction.

Hence the induction goes through, and, for any $a \in\langle\bar{\Lambda}\rangle$ we have $a g_{i} \in V_{k}$, i.e., we have $\langle\bar{\Lambda}\rangle g_{i} \subseteq V_{k}$. Hence V_{k} is a union of cosets of $\langle\bar{\Lambda}\rangle$.

For the converse, let each V_{k} be a union of cosets of $\langle\bar{\Lambda}\rangle$. Let $\left(g_{i}, \ell_{k}\right)$ and $\left(g_{i^{\prime}}, \ell_{k^{\prime}}\right)$ be two arbitrary vertices in V. We show that $\left(\left(g_{i}, \ell_{k}\right),\left(g_{i^{\prime}}, \ell_{k^{\prime}}\right)\right)$ is an edge in D_{n}. If $\ell_{k}=\ell_{k^{\prime}}$ then, certainly, $\left(\left(g_{i}, \ell_{k}\right),\left(g_{i^{\prime}}, \ell_{k^{\prime}}\right)\right)$ is an edge by construction of D_{n}. Otherwise, without loss of generality, let $\ell_{k}>\ell_{k^{\prime}}$. Then g_{i} and $g_{i^{\prime}}$ are in different cosets of $\langle\bar{\Lambda}\rangle$, so $g_{i^{\prime}} g_{i}^{-1} \notin\langle\bar{\Lambda}\rangle$, so $g_{i^{\prime}} g_{i}^{-1} \in \overline{\langle\bar{\Lambda}\rangle} \subseteq \Lambda$,
and again $\left(\left(g_{i}, \ell_{k}\right),\left(g_{i^{\prime}}, \ell_{k^{\prime}}\right)\right)$ is an edge. Thus $D_{n}[V]=K_{p}$, as required.
Theorem 3.4 enables us to count the exact number of K_{p} 's in D_{n}. Let $\left|\mathcal{G}_{p}:\langle\bar{\Lambda}\rangle\right|$ be the index of $\langle\bar{\Lambda}\rangle$ in \mathcal{G}_{p}, i.e., the number of cosets of $\langle\bar{\Lambda}\rangle$ in \mathcal{G}_{p}.

Corollary 3.5 The number of K_{p} 's in D_{n} is $n^{\left|\mathcal{G}_{p}:\langle\bar{\Lambda}\rangle\right|}$.
Proof. Consider any coset $\langle\bar{\Lambda}\rangle g$, let us 'place' the elements of this coset at any fixed level j, where $1 \leq j \leq n$, in the graph D_{n}. Each such placement of every coset of $\langle\bar{\Lambda}\rangle$ gives a K_{p} and every K_{p} corresponds to such a placement of every coset of $\langle\bar{\Lambda}\rangle$. Hence, the number of K_{p} 's in D_{n} equals the number of such placements of all the cosets of $\langle\bar{\Lambda}\rangle$. There are $\left|\mathcal{G}_{p}:\langle\bar{\Lambda}\rangle\right|$ cosets, and n levels to place each, hence $n^{\left|\mathcal{G}_{p}:\langle\bar{\Lambda}\rangle\right|}$ such placements and so $n^{\left|\mathcal{G}_{p}:\langle\bar{\Lambda}\rangle\right|}$ corresponding K_{p} 's.

Finally we briefly consider three more topics: firstly, we discuss pairs (p, λ) for which there is a unique regular $\left(K_{p}, \lambda\right)$-removable sequence up to isomorphism; secondly, we prove that if any member of an arbitrary $K_{p^{-}}$ removable sequence $\left\{G_{p n}\right\}$ contains a K_{p+1} then $\left\{G_{p n}\right\}=\left\{K_{p n}\right\}$; lastly, we list some possibilities for further research.

Let \mathfrak{U} denote the set of pairs (p, λ) for which there is a unique regular $\left(K_{p}, \lambda\right)$-removable sequence up to isomorphism. Then, from Theorem 3.3, for every $p \geq 1$ we have $(p, 0),(p, p-1)$, and $(p, p) \in \mathfrak{U}$. Now we use Corollary 3.5 to show that for every even $p \geq 4$, we have $(p, p-2) \notin \mathfrak{U}$.

Example 5 For every even $p \geq 4$ there are at least two non-isomorphic regular ($K_{p}, p-2$)-removable sequences:

For the first let $\mathcal{G}_{p}=\mathcal{D}_{\frac{p}{2}}$ be the dihedral group with p elements, the group of symmetries of the regular $\frac{p}{2}$-gon. We have $\mathcal{D}_{\frac{p}{2}}=\langle a, b| a^{\frac{p}{2}}=b^{2}=(a b)^{2}=$ $e\rangle$. Let $\Lambda=\mathcal{D}_{\frac{p}{2}} \backslash\{e, b\}$ so that $|\Lambda|=p-2$ and $e \notin \Lambda$. So $\langle\bar{\Lambda}\rangle=\{e, b\}$ and $\left|\mathcal{D}_{\frac{p}{2}}:\langle\bar{\Lambda}\rangle\right|=\frac{p}{2}$. Thus D_{n} has $n^{\frac{p}{2}} K_{p}$'s.

For the second let $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$ be the additive group $(\bmod p)$. Let $\Lambda=\{1,2, \ldots, p-2\}$, then $|\Lambda|=p-2$ and $0 \notin \Lambda$. But $p-1 \in \bar{\Lambda}$ and $p-1$ generates \mathbb{Z}_{p} i.e., $\langle\bar{\Lambda}\rangle=\mathbb{Z}_{p}$, and so $\left|\mathbb{Z}_{p}:\langle\bar{\Lambda}\rangle\right|=1$ and D_{n}^{\prime} has $n K_{p}$'s.

Thus $D_{2} \not \not D_{2}^{\prime}$ and so $\left\{D_{n}\right\} \not \not\left\{\left\{D_{n}^{\prime}\right\}\right.$, and for every even $p \geq 4$, we have $(p, p-2) \notin \mathfrak{U}$. Note that D_{2} is $K_{2 p}$ minus the edges of $p / 2$ disjoint 4 -cycles, while D_{2}^{\prime} is $K_{2 p}$ minus the edges of a Hamiltonian cycle.

Now we show that if any member of an arbitrary K_{p}-removable sequence $\left\{G_{p n}\right\}$ contains a K_{p+1} then $\left\{G_{p n}\right\}=\left\{K_{p n}\right\}$.
Theorem 3.6 Suppose that for some $n \geq 2$ the $n^{\text {th }}$ member, $G_{p n}$, of the K_{p}-removable sequence $\left\{G_{p n}\right\}$ contains a K_{p+1}. Then $G_{p n}=K_{p n}$ and $\left\{G_{p n}\right\}=\left\{K_{p n}\right\}$.

Proof. Now $G_{p n}$ contains a K_{p+1}. Since every K_{p} in $G_{p n}$ is part of a partition of $V\left(G_{p n}\right)$ into disjoint p-cliques, we may assume without loss of generality that $V\left(G_{p n}\right)$ is partitioned into $n p$-cliques L_{1}, \ldots, L_{n} so that some vertex u in L_{2} is joined to every vertex of L_{1}, i.e., $L_{1} \cup\{u\}=K_{p+1}$. Let v be any vertex in L_{1}. Deleting the $n-1 p$-cliques $L_{3}, L_{4}, \ldots, L_{n}, L_{1}+\{u\}-\{v\}$ in this order, we obtain the p-clique $L_{2}+\{v\}-\{u\}$. Hence v is adjacent to every vertex of L_{2} and the union of L_{1} and L_{2} is $K_{2 p}$. Consequently, the removal of any $n-2$ disjoint K_{p} 's must produce a $K_{2 p}$. This implies that the union of every two levels L_{j} and $L_{j^{\prime}}$ is $K_{2 p}$; therefore, $G_{p n}$ is a complete graph. Hence $G_{p n}=K_{p n}$.

Then clearly for every $n^{\prime}>n$ we have $G_{p n^{\prime}}=K_{p n^{\prime}}$. And, by removing the required number of K_{p} 's, for every $n^{\prime}<n$ we have $G_{p n^{\prime}}=K_{p n^{\prime}}$ also. Hence $\left\{G_{p n}\right\}=\left\{K_{p n}\right\}$.

Some further research possibilities are the following:
(A) Investigate the Question and Conjecture mentioned near the end of Section 2.
(B) Investigate the set \mathfrak{U}; in particular, is $(3,1) \in \mathfrak{U}$?

For other papers on graph sequences see Barefoot, Entringer, and Jackson [1], and the references therein; another somewhat related paper is Duchet, Tuza, and Vestergaard [3].

Acknowledgment The authors thank the referees for providing insight and suggestions that greatly improved this paper.

References

[1] C.A. Barefoot, R.C. Entringer, D.E. Jackson, Graph theoretic modelling of cellular development II, Proc. 19-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 1988), Congr. Numer. 65 (1988) 135-146.
[2] N. Biggs, Algebraic Graph Theory, 2nd Edition, (Cambridge University Press, 1993).
[3] P. Duchet, Z. Tuza, P.D. Vestergaard, Graphs in which all spanning subgraphs with r fewer edges are isomorphic, Proc. 19-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 1988), Congr. Numer. 67 (1988) 45-57.
[4] I. Grossman, W. Magnus, Groups and their Graphs, (Random House, New York, 1964).
[5] D.B. West, Introduction to Graph Theory, 2nd Edition, (Prentice Hall, 2001).

