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A Note on Visualizing Response Transformations in

Regression

R. Dennis Cook∗ and David J. Olive†

March 29, 2008

Abstract

A new graphical method for assessing parametric transformations of the re-

sponse in linear regression is given. Simply regress the response variable Y on

the predictors and find the fitted values. Then dynamically plot the transformed

response Y (λ) against those fitted values by varying the transformation parameter

λ until the plot is linear. The method can also be used to assess the success of nu-

merical response transformation methods and to discover influential observations.

Modifications using robust estimators can be used as well.

KEY WORDS: Box-Cox Transformation; Graphics.
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1 Introduction

It has long been recognized that the applicability of the linear regression model can

be expanded by allowing response transformations, and issues related to determining a

suitable transformation have generated an enormous literature.

Incorporating the possibility of transforming the positive response Y , the usual linear

regression model can be represented in terms of an unknown transformation parameter

λo,

Y (λo) = α0 + βT
0 x + ε (1)

Here, x is a p × 1 vector of predictors that are assumed to be measured with negligible

error, the errors ε are assumed to be iid and symmetric about 0, and the transformed

response is restricted to be a member of the power transformation family

Y (λ) =
Y λ − 1

λ
(2)

for λ 6= 0 and Y (0) = log(Y ). Generally λ ∈ Λ where Λ is some interval such as [−1, 1]

or a coarse subset such as Λc = {±1,±2/3,±1/2,±1/3, 0}. This family is a special case

of the response transformations considered by Tukey (1957). In a classic paper, Box

and Cox (1964) developed numerical methods for estimating λo. It is well known that

the Box-Cox normal likelihood method for estimating λo can be sensitive to remote or

outlying observations. Cook and Wang (1983) suggested diagnostics for detecting cases

that influence the estimator, as did Tsai and Wu (1992), Atkinson (1986) and Hinkley

and Wang (1988).

According to Tierney (1990, p. 297), one of the earliest uses of dynamic graphics

was to examine the effect of power transformations. McCulloch (1993) gave a graphical
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method for finding response transformations, and Cook and Weisberg (1994) described

how to use an inverse response plot of fitted values vs Y to visualize the needed trans-

formation.

In this article we propose a new graphical method for assessing response transforma-

tions under model (1). The appeal of the proposed method rests with its simplicity and

its ability to show the transformation against the background of the data. We introduce

the method by example in Section 2. Details underlying the method are presented in

Section 3, an example is presented in Section 4 and a concluding discussion is given in

Section 5.

2 Introductory Illustrations

2.1 Textile Data

In their pioneering paper on response transformations, Box and Cox (1964) analyze data

from a 33 experiment on the behavior of worsted yarn under cycles of repeated loadings.

The response Y is the number of cycles to failure and the three predictors are the length,

amplitude and load. Using the normal profile log likelihood for λo, Box and Cox determine

λ̂o = −0.06 with approximate 95 percent confidence interval −0.18 to 0.06. These results

give a strong indication that the log transformation may result in a relatively simple

model, as argued by Box and Cox. Nevertheless, this basic method provides no direct

way of judging the transformation against the data. This remark applies also to many of

the diagnostic methods for response transformations in the literature. For example, the
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influence diagnostics studied by Cook and Wang (1983) and others are largely numerical.

It would seem useful to have a simple method for judging transformations against the

data.
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Figure 1: FFλ Plot for the Textile Data

Suppose we use OLS to fit the linear model (1) for two selected values λ1 and λ2 of λ

in the usual interval [−1, 1], and then plot one set of fitted values versus the other, Ŷ (λ1)

versus Ŷ (λ2). We call this a “fit-fit” or an FFλ plot. How will the FFλ plot look? It

turns out that in many regressions Ŷ (λ1) and Ŷ (λ2) have a strong linear relationship.For

the textile data this linearity is evident in Figure 1 which shows a scatterplot matrix of

FFλ plots for five selected values of λ. The smallest sample correlation among the pairs

in the scatterplot matrix is about 0.9995.

The strong linearity in the FFλ plots of Figure 1 means that, if λo ∈ [−1, 1], then

Ŷ (λ) ≈ cλ + dλŶ
(λo) (3)
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for all λ ∈ [−1, 1]. Consequently, for any value of λ ∈ [−1, 1], Ŷ (λ) is essentially a linear

function of the fitted values Ŷ (λo) for the true λo, although we do not know λo itself.

However, to estimate λo graphically, we could select any fixed value λ∗ ∈ [−1, 1] and

then plot Y (λ) versus Ŷ (λ∗) for several values of λ and find the one for which the plot is

linear with constant variance. This simple graphical procedure will work in this example

because a plot of Y (λ) versus Ŷ (λ∗) is equivalent to a plot of Y (λ) versus cλ∗ + dλ∗Ŷ (λo) by

(3). Dynamic plotting using λ as a control seems quite effective.

Shown in Figure 2 are plots of Y (λ) versus Ŷ (1) (so that λ∗ = 1) for four values of λ.

The plots show how the transformations bend the data to achieve a homoscedastic linear

trend. Perhaps more importantly, they indicate that the information on the transforma-

tion is spread throughout the data in the plot since changing λ causes all points along

the curvilinear scatter in Figure 2a to form along a linear scatter in Figure 2c.

The next example illustrates that the transformation plots of Figure 2 can show

characteristics of data that might influence the choice of a transformations by the usual

Box-Cox procedure.

2.2 Mussel Data

Cook and Weisberg (1994) gave a data set on 82 mussels sampled off the coast of New

Zealand. The response is muscle mass M in grams, and the four predictors are the length

L, and height H of the shell in mm, the logarithm logW of the shell width W and the

logarithm logS of the shell mass S. With this starting point, we might expect a log

transformation of M to be needed because M and S are both mass measurements and
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Figure 2: Four Transformation Plots for the Textile Data

logS is being used as a predictor. Using logM would essentially reduce all measurements

to the scale of length. The Box-Cox likelihood method gave λ̂0 = 0.28 with approximate

95 percent confidence interval 0.15 to 0.4. The log transformation is excluded under this

inference leading to the possibility of using different transformations of the two mass

measurements.

The FFλ plots for λ ∈ Λc (not shown) exhibit strong linear relations, the correlations

ranging from 0.9716 to 0.9999. Shown in Figure 3 are transformation plots of M (λ) versus

M̂ (so λ∗ = 1) for four values of λ. A striking feature of these plots is the two highlighted

points that stand out in three of the four plots. The Box-Cox estimate λ̂ = 0.28 is

evidently influenced by the two outlying points and, judging deviations from the OLS

line in Figure 3c, the mean function for the remaining points is curved. In other words,

the Box-Cox estimate is allowing some visually evident curvature in the bulk of the

data so it can accommodate the two outlying points. Recomputing the estimate of λo
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Figure 3: Transformation Plots for the Mussel Data

without the highlighted points gives λ̂o = −0.02, which is in good agreement with the

log transformation anticipated at the outset. Reconstruction of the plots of M (λ) versus

M̂ indicated that now the information for the transformation is consistent throughout

the data on the horizontal axis of the plot.

The essential point of this illustration is that observations that influence the choice

of power transformation are often easily identified in a dynamic transformation plot of

Y (λ) versus Ŷ when the FFλ plots are strongly linear.

3 Explanations

The proposed graphical method is very simple. Use ordinary least squares (OLS) to

regress the positive response variable on the predictors. Then dynamically plot Y (λ)

against the fitted values by varying λ until the plot is linear. We call this the “dynamic
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transformation plot.” This plot helps visualize λ̂o against the data, and also the curvature

and heteroscedasticity in competing models with different values of λ.

The starting point the dynamic transformation plot is that for many data sets, the

FFλ plots are strongly linear. Hence any choice of λ∗ can be used for the fitted values

on the horizontal axis of the plot; in particular, λ∗ = 1. An alternative choice is λ∗ = 0.

Because λ∗ = 0 is in the middle of the usual range [−1, 1], the correlation between Ŷ (0)

and other fitted values will tend to be larger than the correlations using Ŷ (1). This may

be of little consequence when the FFλ correlations are quite large, but may help in cases

when the FFλ correlations begin to weaken. By using a single set of fitted values, say

Ŷ (1) or Ŷ (0), on the horizontal axis, influential points or outliers that might be masked

in plots of Y (λ) vs Ŷ (λ) for λ ∈ Λ will show up unless they conform on all scales.

The fact that the FFλ correlations are frequently all quite high can be justified in at

least two ways.

3.1 Local Approximation

The success of the dynamic transformation plot rests on finding fitted values Ŷ (λ∗) that

are highly correlated with the fitted values Ŷ (λo) for the true λo. If λo and λ∗ are both

in Λ and Λ is sufficiently narrow then, by a simple Taylor series argument, Ŷ (λ∗) will be

highly correlated with Ŷ (λo). The FFλ plots are used to assess the strength of the linear

relationships between the different sets of fitted values Ŷ (λ) obtained by varying λ in Λ.

This line of reasoning suggests that Λ should be a narrow interval containing λo. This

is one reason why we used the interval [−1, 1] in the previous examples; another is that
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useful transformations are often found in this interval. For example, recomputing the FFλ

correlations after adding the four points ±2 and ±3 to the coarse set Λc defined following

(2) resulted in reducing the smallest sample correlation from 0.9995 to 0.9940 in the textile

regression and from 0.9716 to 0.8474 in the mussel regression. This reduction seems

inconsequential for the textile regression but may not be so for the mussel regression.

The strength of the correlation between Ŷ (λ∗) and Ŷ (λo) can decrease as the error

variance in (1) increases. For illustration, we replaced the response Y in the textile re-

gression with a simulated response Ỹ constructed as log(Ỹ ) = log(Y ) + 0.38ε where ε

is a standard normal random variable and 0.38 is about twice the estimated standard

deviation of the model error ε from the OLS fit of log(Y ) on the three predictors. Recon-

structing the FFλ plots of Figure 1 using Ỹ reduced the minimum correlation to 0.9919

from 0.9995. Consequently, the correlations in FFλ plots will need to be assessed in each

regression since they depend on more than just the choice of Λ.

3.2 Predictor Distribution

The second reason to expect that the FFλ plots may exhibit linear relationships rests with

the distribution of the predictors. The following discussion of this reason incorporates a

comparison of the dynamic transformation plot with other related plots in the literature.

Consider a model of the form

Y = h(βT x, ε). (4)

where h is an unknown function. Let β̂ denote the coefficients of x obtained by mini-
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mizing an objective function L:

(â, β̂) = arg min
n∑

i=1

L(a+ bTxi, Yi)

where the function L(u, v) is a strictly convex function of u when v is held fixed. For

example, the OLS objective function is obtained by setting L(u, v) = (v − u)2. Li and

Duan (1989) showed that if the conditional predictor expectation E(x|βTx) is linear then

β̂ is a consistent estimator for τβ where τ is a scalar. Thus least squares, M-estimators

with monotone ψ functions, and generalized linear model (GLM) estimators can be used

to produce β̂, but high breakdown regression estimators may produce a β̂ that is not

consistent for τβ. Further background on this result was given by Cook (1998, Ch. 8).

The linearity condition is the key new ingredient for the discussion of this section. It

applies to the marginal distribution of the predictors and does not involve the response.

It is implied when the predictors follow an elliptically contoured distribution, including

the normal. Hall and Li (1993) show that the linearity condition will hold to a reasonable

approximation in many problems. The intuition here is that conditional expectations of

the form E(x|βT x) become more linear as p increases. This is related to the work of

Diaconis and Freedman (1984) who argue that almost all low-dimensional projections of

high-dimensional data sets are nearly normal. In addition, the linearity condition holds

to a good approximation in balanced designed experiments where the design points are

“uniformly spaced” on the surface of a p-dimensional hypersphere (Ibrahimy and Cook

1995). Examples of standard designs that are included are 33 designs and central com-

posite designs. In addition, the linearity condition might be induced by using predictor

transformations and predictor weighting (Cook and Nachtsheim 1994).
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When using a strictly convex objective function L and the linearity condition holds

to a reasonable approximation, the forward response plot of Y versus the fitted values Ŷ

constructed using L provides a visual estimate of h. See Cook (1998, Ch. 8) and Cook

and Weisberg (1999, section 18.5.3) for further discussion of this situation.

For a transformation of the response to be most useful, h must be a strictly monotone

function t−1 :

Y = t−1(α + βT x + ε). (5)

Hence

t(Y ) = α+ βTx + ε. (6)

Cook and Weisberg (1994) consider the forward (Y versus Ŷ ) and inverse (Ŷ versus Y )

response plots in this setting. With β̂ still constructed by minimizing a strictly convex

objective function, the inverse response plot shows t if the joint distribution of βT x and

ε is elliptically contoured. It should also provide a useful display of the transformation t

if the signal to noise ratio Var(βTx)/Var(ε) is large. It may be useful to emphasize that

t is not parameterized in this approach. As long as t is strictly monotonic, nearly any

function is possible as a choice for t.

The dynamic transformation plot proposed in this article adds another constraint by

restricting t to a parsimoniously parameterized family. In particular, t(Y ) = Y (λ), which

brings us back to model (1). Now the key condition for the transformation plot is that

we find a λ∗ so that

Ŷ (λ∗) ≈ cλ∗ + dλ∗Ŷ (λo) (7)

The linearity condition guarantees that for any λ (not necessarily confined to a selected
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Λ), the population fitted values Ŷ (λ)
pop are of the form

Ŷ (λ)
pop = αλ + τλβ

Tx (8)

so that any one set of population fitted values is an exact linear function of any other set

provided the τλ’s are nonzero. This result indicates that sample FFλ plots will be linear,

although it does not by itself guarantee high correlations. However, the strength of the

relationship (7) can be checked easily by inspecting a few FFλ plots. The conditions

necessary for the plots associated with (4) and (6) cannot be checked easily.

The idea of the transformation plot is similar to a graphical check suggested by Cook

and Weisberg (1994, p. 734): suppose that t∗ is the estimate of t. Then find β̂ from the

regression of t∗(y) on the predictors and verify that the plot of t∗(y) versus β̂
T
x is linear

and homoscedastic. However, the dynamic transformation plots suggested here are not

available in the context of (6) since its not clear how to choose a collection of t’s that may

be “near” the true t. That is, while we can plot the data at t∗, a series of ordered nearby

t’s would be required to use the idea underlying the dynamic transformation plots.

The dynamic transformation plot seems to work well in the textile data for at least

three reasons. First, the design is a 33 so that (8) holds to a good approximation

(Ibrahimy and Cook 1995). Second, the signal to noise ratio is large so that trends

should be visually evident in a transformation plot. Third, Λ = [−1, 1] seems narrow

enough to gain benefit of the local approximation. In many regressions these reasons ev-

idently work together to produce strongly linear FFλ plots and therefore useful dynamic

transformation plots.

If the FFλ plots are not strongly linear then it is often useful to consider two possi-
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bilities: Either the transformation model (1) does not provide a good representation of

the data, including the possibilities of outliers and influential cases, or there are strong

nonlinear relationships among the predictors. How to proceed in the former case depends

on the applications context. In the latter case, linearizing the predictor relationships by

using marginal power transformations prior to application of model (1) is often a useful

procedure.

4 Mussel Data Again

In this section we return to the mussel data, this time considering the regression of M

on the four untransformed predictors L, H, W and S. Assuming model (1) in the four

untransformed predictors, the Box-Cox likelihood estimate of λo is 0.49, suggesting the

square root transformation. FFλ plots for this regression are shown in Figure 4; There

is notable curvature in some of the plots and the FFλ correlations may be too small for

the transformation plots to work well.

Nevertheless, application of the transformation plot with Ŷ (0) on the horizontal axis

clearly points to the two highlighted cases in Figure 3 as influential. Deleting those cases

noticeably improved the linearity in the FFλ plots, the sample correlations now ranging

between 0.89 and 0.94. Even so, there is still substantial curvature in the FFλ scatterplot

matrix. The Box-Cox likelihood estimate of the transformation parameter is now 0.23,

suggesting the fourth root transformation. However, the usual diagnostic plots do not

sustain model (1) with the original predictors and λo = 0.25. For example, the plot

of the residuals versus S is clearly curved, the quadratic S2 adding significantly to the
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model, and there is evidence of heteroscedasticity as well. Both of these conclusions are

suggested by the transformation plots.

One way to attempt improvement of the model for the mussel data is to transform

the predictors to remove gross nonlinearities. This might be done, for example, by

using simultaneous power transformations λ = (λL . . . λS)T of the predictors so that the

vector of transformed predictors x(λ) = (L(λL), . . . , S(λS))T is approximately multivariate

normal. A method for doing this was developed by Velilla (1993). The basic idea is

the same as that underlying the likelihood approach of Box and Cox for estimating

a power transformation of response in regression, but the likelihood comes from the

assumed multivariate normal distribution for x(λ). We used the procedure suggested by

Velilla (1993), resulting in the transformed predictors used in the analysis described in

Section 2.2 and a better model. Of course, there is no guarantee that the transformation

model (1) is “correct”, and the usual diagnostic tests should still be performed. However,

if it is correct, then the methodology discussed in this paper should be helpful when

estimating a transformation and judging its effects against the data.

5 Discussion

Construction. We think simplicity is one of the advantages of the proposed method

for visualizing response transformations in regression. Apart from the usual assumption

that transformation model (1) is correct, the only requirement behind the transformation

plot is that the FFλ plots be strongly linear. This requirement can be checked easily

in practice, so the various conditions discussed in Section 3 need not be worrisome, and
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Figure 4: FFλ Plot for Mussel Data with Original Predictors

it might be induced by predictor transformations as necessary. Indeed, the proposed

transformation plots seem to work quite well for the poison data (Box and Cox 1964)

which has two qualitative predictors incorporated into the model (1) as factors, the

smallest correlation in the FFλ plots over Λc being 0.9833.

The construction of a dynamic transformation plot requires that the user select a

coarse subset Λc for constructing the separate views, and for assessing linearity in the

corresponding FFλ plots. We have found it useful to insure that the Box-Cox estimate

λ̂o is near the center of Λc.

While we restricted attention to power transformations, the basic ideas here can be

adapted straightforwardly to other parameterized transformation families.

Influence. The dynamic transformation plot shows the effect of a transformation against

the data, and seems quite effective for identifying influential cases, but we make no claim
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that it will find influential cases that cannot be found by numerical methods or that

it will find all influential cases. Indeed, we have found that dynamic transformation

plots can play a useful role in studies that involve assessing influence by numerical meth-

ods. Highlighting in the frames of a dynamic transformation plot potentially influential

points found by numerical methods often provides useful visual information about their

role in determining the transformation. This visual information may sustain the results

of numerical methods or raise questions about them, for example.

Robustness. Consider the possibility that there are outliers so model (1) may not

hold for an unknown subset of cases. To address this issue, almost any good robust

method can replace OLS in the construction of the transformation plots. If the objective

function L is convex, we will still gain the benefits of the linearity condition discussed in

Section 3.2. If the linearity condition holds and there are no outliers, then the coefficient

estimate will be converging to a population value that is proportional to β. If there are

outliers then the robust estimate may be still converge to a vector proportional to β, even

if a transformed response Y (λ) is used, while the OLS estimate converges to a population

vector that is not proportional to β. In other words, we can address the issue of outliers

by using a robust objective function for L and proceeding as before.

Strong Linearity. The requirement that the FFλ plots be “strongly linear” is quan-

titative and so giving a definitive cutoff is problematic. Nevertheless, our experience

indicates that the dynamic transformation plots usually give informative results when

the FFλ plots are linear with correlations larger than about 0.85. As the correlations
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drop substantially below this level, the value of transformation plots seems to decrease,

although useful results can still be obtained. For example, analysis of the untransformed

mussel data in Section 4 revealed the influential cases, although the FFλ plots were

curved and the smallest FFλ correlation was about 0.76.

Inverse Response Plots. Perhaps the closest graphical method in the literature is

based on inverse response plots by Cook and Weisberg (1994). They require assumptions

that, while plausible in many applications, cannot be checked directly. Additionally, use

of inverse response plots requires visualizing deviations from curves superimposed on an

inverse response plot. We find it easier to visualize deviations from lines rather than

curves. On the other hand, the primary context for the Cook-Weisberg plots is quite

different from that for the transformation plots proposed here: They emphasize non-

parametric transformations that linearize the mean function, while the approach here is

for parsimoniously parameterized transformation families that linearize the mean func-

tion and stabilize the variance function. Either method may be appropriate depending

on the applications context.

Access. All of the methods discussed in this article, including simultaneous power

transformations to multivariate normality, are available in Arc (Cook and Weisberg 1999),

which is available at the internet site http://www.stat.umn.edu/arc.
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