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NORM PRINCIPLES FOR FORMS OF HIGHER DEGREE
PERMITTING COMPOSITION

R. W. FITZGERALD AND S. PUMPLÜN

Abstract. Let F be a field of characteristic 0 or greater than d. Scharlau’s norm

principle holds for finite field extensions K over F , for certain forms ϕ of degree

d over F which permit composition.

Introduction

Let d ≥ 2 be an integer and let F be a field of characteristic 0 or > d. Let
ϕ : V → F be a form of degree d on an F -vector space V of dimension n (i.e., after
suitable identification, ϕ is a homogeneous polynomial of degree d in n indetermi-
nates). Let K/F be a finite field extension of degree m. Scharlau’s norm principle
(SNP) says that if a is a similarity factor of ϕK , then NK/F (a) is a similarity factor
of ϕ. Knebusch’s norm principle (KNP) states that if a is represented by ϕF , then
NK/F (a) is a product of m elements represented by ϕ, hence lies in the subgroup
of F× generated by DF (ϕ). Both norm principles were proved for nondegenerate
quadratic forms over fields of characteristic not 2 (cf. [Sch, II.8.6] or [L, p. 205,
p. 206]). For finite extensions of semi-local regular rings containing a field of charac-
teristic 0, Knebusch’s norm principle (for quadratic forms) was proved in [Z] and for
finite étale extensions of semi-local Noetherian domains with infinite residue fields
of characteristic different from 2 in [O-P-Z]. Barquero and Merkurjev [B1,2], [B-M]
generalized the norm principle to algebraic groups.

We prove Scharlau’s norm principle for certain nondegenerate forms ϕ of degree
d ≥ 3 which permit composition. Scharlau’s and Knebusch’s norm principle “coin-
cide” for these forms, since they permit composition in the sense of Schafer [S] and
thus satisfy DK(ϕ) = GK(ϕ) for all field extensions K/F . We explicitly compute
the norms of some similarity factors, if ϕ is the norm of an étale algebra over F or
of a central simple algebra.
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1. Preliminaries

A form of degree d over F is a map ϕ : V → F on a finite-dimensional vector
space V over F such that ϕ(av) = adϕ(v) for all a ∈ F , v ∈ V and such that the
map θ : V × · · · × V → F (d-copies) defined by

θ(v1, . . . , vd) =
1
d!

∑
1≤i1<···<il≤d

(−1)d−lϕ(vi1 + · · ·+ vil)

(with 1 ≤ l ≤ d) is F -multilinear and invariant under all permutations of its vari-
ables. The dimension of ϕ is defined as dim ϕ = dim V . ϕ is called nondegenerate,
if v = 0 is the only vector such that θ(v, v2, . . . , vd) = 0 for all vi ∈ V . We will only
study nondegenerate forms. Forms of degree d on V are in obvious one-one corre-
spondence with homogeneous polynomials of degree d in n = dim V variables. If ϕ

is represented by a1x
d
1 + . . .+amxd

m (ai ∈ F×), we use the notation ϕ = 〈a1, . . . , an〉
and call ϕ diagonal.

Two forms (Vi, ϕi) of degree d, i = 1, 2, are called isomorphic (written (V1, ϕ1) ∼=
(V2, ϕ2) or just ϕ1

∼= ϕ2) if there exists a bijective linear map f : V1 → V2 such that
ϕ2(f(v)) = ϕ1(v) for all v ∈ V1.

Let (V, ϕ) be a form over F of degree d in n variables over F . An element a ∈ F

is represented by ϕ if there is an v ∈ V such that ϕ(v) = a. An element a ∈ F× such
that ϕ ∼= aϕ is called a similarity factor of ϕ. Write DF (ϕ) = {a ∈ F× | ϕ(x) =
a for some x ∈ V } for the set of non-zero elements represented by ϕ over F and
GF (ϕ) = {a ∈ F× | ϕ ∼= aϕ} for the group of similarity factors of ϕ over F . The
subscript F is omitted if it is clear from the context that ϕ is a form over the base
field F . ϕ is called round if D(ϕ) ⊂ G(ϕ).

A nondegenerate form ϕ(x1, . . . , xn) of degree d in n variables permits composition
if ϕ(x)ϕ(y) = ϕ(z) where x, y are systems of n indeterminates and where each zl is
a bilinear form in x, y with coefficients in F . In this case the vector space V = Fn

admits a bilinear map V ×V → V which can be viewed as the multiplicative structure
of a nonassociative F -algebra and ϕ(vw) = ϕ(v)ϕ(w) holds for all v, w ∈ V . Note
that the form ϕ here is nondegenerate if and only if the underlying (automatically
alternative) F -algebra is separable (Schafer [S]). For instance, every norm of a central
simple algebra or of a separable finite field extension over F is nondegenerate and
permits composition.

Remark 1. (i) There are two types of forms ϕ of degree d over F for which SNP
trivially holds:
(a) if GF (ϕ) = F×;
(b) if GK(ϕ) = K×d for every field extension K over F .
(ii) Let ϕ be a diagonal form over F of degree d ≥ 3. If dim ϕ = 1 or dim ϕ ∈
{sd + 1, sd − 1} for some integer s ≥ 1, then GK(ϕ) = K×d for every finite field
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extension K over F [Pu1, Proposition 1 (i)]. Hence ϕ trivially satisfies SNP for all
field extensions K over F by (i). Moreover, every form 〈a, a, . . . , a〉 of degree d ≥ 3
satisfies GK(ϕ) = K×d for all field extensions K over F [Pu1, Lemma 9 (ii)], hence
SNP.
(iii) If ϕ is the determinant of the d-by-d matrices over F , then GK(ϕ) = K× for all
field extensions K over F , hence SNP holds for all field extensions of F by (i).
(iv) The cubic norm ϕ of a reduced Freudenthal algebra J = H3(C,Γ), C a com-
position algebra over F or 0 [KMRT, p. 516], trivially satisfies SNP for all field
extensions K of F , because DK(ϕ) = GK(ϕ) = K×.
(v) Suppose the base field F has characteristic 0 or greater than d+1. Let ϕ0 : V →
F be a form of degree d, then the form ϕ(a + u) = aϕ0(u), a ∈ F , u ∈ V of degree
d + 1 satisfies GK(ϕ) = DK(ϕ) = K× for all field extensions K over F , hence SNP.

Remark 2. (i) Let ϕ be a form of degree d over F . Let K/F be a finite field
extension. Suppose we have aϕK

∼= ϕK for some a ∈ K×.
(a) If [K : F (a)] = dm then a straightforward calculation shows that NK/F (a) ∈
F×d ⊂ G(ϕ).
(b) If a ∈ F then trivially NK/F (a) ∈ F×d ⊂ G(ϕ).
(ii) Let ϕ be a form of prime degree p over F . Then SNP holds for ϕ for all field
extensions of degree pr for some integer r > 0 by (a).

2. Forms satisfying Scharlau’s norm principle

2.1. Norms of étale algebras. Let R be a unital commutative ring. Suppose that
A is a finitely generated unital commutative associative R-algebra which is free as
an R-module. For a ∈ A we define the norm NA/R(a) to be the determinant of
the regular representation x → ax. If B is a finitely generated unital commutative
associative A-algebra which is free as an A-module, then B is a finitely generated
commutative R-algebra which is free as an R-module and

(1) NB/R = NA/R ◦NB/A.

This transitivity of norms follows from the general transitivity of determinants, see
for instance [J, p. 406] or [Bou, p. 548].

In this subsection, let F be a field of arbitrary characteristic (that is, we drop our
standing assumptions on char(F )).

Theorem 1. Let L be an étale algebra over F and its norm ϕ = NL/F of degree d.
Suppose that K/F is a finite field extension. If e ∈ K× is represented by ϕK , then
NK/F (e) is represented by ϕ and thus

NK/F (GK(ϕK)) ⊂ GF (ϕ).
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Proof. Since L is an étale algebra over F , there are finite separable field extensions
K1, . . . ,Kr of F such that

L ∼= K1 × · · · ×Kr.

For all field extensions K/F , DK(ϕK) = GK(ϕK) [Pu2, Proposition 6]. Set LK =
K ⊗F L, and note that ϕK = NLK/K [Bou, p. 544]. Let u1, . . . , ud be an F -basis of
L. If eϕK

∼= ϕK , then e = ϕK(z1, z2, . . . , zd) with zi ∈ K and using equation (1) we
obtain

NK/F (ϕK(z1, z2, . . . , zd)) =
NK/F (NLK/K(z1 ⊗ u1 + z2 ⊗ u2 + · · ·+ zd ⊗ ud))) =
NL/F (NLK/L(z1 ⊗ u1 + z2 ⊗ u2 + · · ·+ zd ⊗ ud)) =
NL/F (a1u1 + a2u2 + · · ·+ adud) =
ϕ(a1, a2, . . . , ad) ∈ GF (ϕ)

for suitable ai ∈ F . �

This simple trick which even gives an explicit identity for NK/F (e) in terms of
the ai’s, was used in [F] to compute norms for the quadratic form 〈1, 1〉.

Corollary 1. Let F̃ = F (α) be a field extension of F of degree d and ϕ = N
F̃ /F

.
Suppose that K/F is a finite field extension. If e ∈ K× is represented by ϕK , then
NK/F (e) is represented by ϕ and thus

NK/F (GK(ϕK)) ⊂ GF (ϕ).

2.2. Norms of central simple algebras. We now turn to the (reduced) norm
forms of central simple algebras over F . Let ϕ = NA/F be the norm of a central
simple algebra A of degree d over F . Then SNP holds for all finite separable field
extension [B-M, 3.1]. For the split central simple algebra A ∼= Matd(F ), ϕ trivially
satisfies SNP for all field extensions of F by Remark 1 (iii).

If A is a division algebra then SNP holds for all finite field extensions:
Let K/F be a finite field extension of degree n. For α ∈ F , ρα : K → K,

ρα(x) = αx is left multiplication with α. Fix a basis B = {w1, w2, . . . , wn} of
K/F . Let ρ(α) be the matrix representation of ρα with respect to B. The map
ρ : K → Mn(F ) is an injective ring homomorphism and the norm is given by
NK/F (α) = det ρ(α).

Let A be a central simple algebra over F . Pick ∆ =
∑n

i=1 αiwi, where αi ∈ A and
so ∆ ∈ Ā = A⊗K. Again, ρ∆ : Ā → Ā is left multiplication and ρ(∆) is the matrix,
with entries in A, of ρ∆ with respect to B. For the proof of the next theorem we
need the following observation:

Lemma 1. ρ(∆) =
∑n

i=1 αiρ(wi).

Proof. Let a ∈ Ā. Then ρ∆(a) =
∑

αiwia =
∑

αiρwi(a). Hence ρ∆ =
∑

αiρwi and
for matrices ρ(∆) =

∑
αiρ(wi). �
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Let A be a central simple division algebra over F with basis ε1, . . . , εm. Let A× be
the invertible elements in A and C(A×) = [A×, A×] be the commutator subgroup.
Put Ā = A ⊗F K. Let det : GLnA → A×/C(A×) be the Dieudonné determinant.
There is a polynomial G ∈ F [x1, . . . , xm] such that for any extension L/F the norm
from A⊗ L → L is given by

N(
m∑

i=1

liεi) = G(l1, . . . , lm).

We write

G(∗ lk∗) for G(l1, . . . , lk, . . . , lm).

Theorem 2. Let A be a central simple division algebra over F . Let K/F be a finite
extension (which need not be separable). Then

NK/F (NĀ/K(∆)) = NA/F (det ρ(∆)).

Proof. The matrices ρ(w1), ρ(w2), . . . , ρ(wn) commute and so have a common eigen-
vector. A simple induction argument shows that there is a matrix P , over the
algebraic closure F̄ , such that each P−1ρ(wi)P is upper triangular. Let the diagonal
entries of P−1ρ(wi)P be denoted by dij , 1 ≤ j ≤ n.

We compute both sides starting with the right-hand side: By Lemma 1,

P−1ρ(∆)P =


∑

i αidi1 ∑
i αidi2 ∗

0
. . . ∑

i αidin

 .

Now Dieudonné’s determinant [P, p. 308] satisfies det(P−1MP ) = det M and the
determinant of an upper triangular matrix is the product of the diagonal elements
(in [A, p. 163], the first is consequence h), the second follows from [A, Theorem
4.4]). Hence

det ρ(∆) =
n∏

j=1

(
n∑

i=1

αidij

)
.

Write αi =
∑m

k=1 aikεk where aik ∈ F . For the right-hand side we know that

det ρ(∆) =
n∏

j=1

m∑
k=1

(
n∑

i=1

aikdij

)
εk,

NA/F (det ρ(∆)) =
n∏

j=1

G(∗
n∑

i=1

aikdij ∗).
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For the left-hand side we have

∆ =
m∑

k=1

(
n∑

i=1

aikwi

)
εk,

NĀ/K(∆) = G(∗
n∑

i=1

aikwi ∗).

As ρ is a ring homomorphism, ρ(G(∗uk∗)) = G(∗ ρ(uk)∗). Thus

NK/F (NĀ/K(∆)) = det G(∗
n∑

i=1

aikρ(wi) ∗).

Conjugation by P is also a ring homomorphism, so

NK/F (NĀ/K(∆)) = det G(∗
n∑

i=1

aikP
−1ρ(wi)P ∗).

We conclude that G(∗
∑n

i=1 aikP
−1ρ(β)iP ∗) =

G

∗

∑

i aikdi1 ∑
i aikdi2 ∗

0
. . . ∑

i aikdin

 ∗

 =


G(∗

∑
i aikdi1 ∗)

G(∗
∑

i aikdi2 ∗) ∗

0
. . .

G(∗
∑

i aikdin ∗)

 .

Hence

NK/F (NĀ/K(∆)) =
n∏

j=1

G(∗
n∑

i=1

aikdij ∗),

the same as the right-hand side, proving the identity. �

Theorem 3. Let ϕ be the norm of a central simple division algebra A over F . Then
SNP holds for all finite field extensions of F .

Proof. The proof is analogous to the one given in [F, Lemma 2.1] for the norms of
a quaternion division algebra: Let ε1, . . . , εm be a basis for A as a F -vector space
(where m = d2 if d is the degree of A). For zi ∈ K and z = ε1z1 + ε2z2 + · · ·+ εmzm,
we have

NK/F (ϕK(z)) =
NK/F (NA/K(z)) =
NA/F (det(ρ(z))) =
NA/F (ε1a1 + ε2a2 + · · ·+ εmam)

for suitable ai ∈ F . (The second equality holds by Theorem 2.) �
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Corollary 2. Let ϕ be the norm of a central simple algebra A over F of prime
degree. Then SNP holds for all finite field extensions of F .

Remark 3. Let K = F (
√

c) be a quadratic field extension and A a division algebra
over F of degree d. Let zi = ui + vi

√
c ∈ K and z = z1ε1 + z2ε2 + · · ·+ zd2εd2 , then

z = x + y
√

c with x = u1ε1 + u2ε2 + · · ·+ ud2εd2 and y = v1ε1 + v2ε2 + · · ·+ vd2εd2 .
We obtain, more explicitly than above (similar as in [F, 2.2]):

NK/F (ϕK(z)) = NA/F (det(ρ(z))) = NA/F (y(xy−1x− cy)) ∈ DF (NA/F ).

In particular, if A has degree 3, then we can also write

NK/F (ϕK(z)) = 1
NA/F (y)NA/F (xy]x− cNA/F (y)y)

with x] = x2 − TA/F (x)x + SA/F (x)1A [KMRT, p. 470].

2.3. Some construction methods.

Remark 4. Suppose there are f, g ∈ F [X1, . . . , Xn] such that f(X1, . . . , Xn)m =
g(X1, . . . , Xn)m. Then, by unique factorization in F [X1, . . . , Xn], there is an mth
root of unity µ in F such that f(X1, . . . , Xn) = µg(X1, . . . , Xn).

Lemma 2. Let ϕ1 ∈ F [X1, . . . , Xn] be a form of degree d1 which satisfies SNP for
all finite field extensions. Put ϕ(X) = ϕ1(X)m for some integer m ≥ 2. Then ϕ

satisfies SNP for all finite field extensions.

Proof. Let aϕK
∼= ϕK for some finite field extension K/F . Then there is an invertible

n×n matrix M over F such that aϕ1,K(X)m = ϕ1,K(MX)m. Let x be an anisotropic
vector, then a = (ϕ1,K(Mx)/ϕ1,K(x))m is an mth power in K, hence write a = bm

for some b ∈ K×. From bmϕm
1,K

∼= ϕm
1,K we conclude that µbϕ1,K

∼= ϕ1,K for some
mth root of unity µ in K (Remark 4). As ϕ1 satisfies SNP, NK/F (µb) ∈ GF (ϕ1).
Thus NK/F (µb)m = NK/F (a) ∈ GF (ϕ). �

Lemma 3. (i) Let ϕi : Vi → F be two forms over F of degree di which satisfy SNP
for all finite field extensions K/F . Put ϕ : V1 ⊕ V2 → k, ϕ(u) = ϕ1(u1)ϕ2(u2) for
u = u1 + u2, ui ∈ Vi. If DK(ϕi) = GK(ϕi) for all finite field extensions K/F , then
ϕ satisfies SNP for all finite field extensions.
(ii) Let F ′/F be a finite separable field extension and ϕ0 : V → F ′ be a form over
F ′. Let ϕ = NF ′/F (ϕ0). Suppose that (ϕ0)L′ is a round form for all finite field
extensions L′ of F ′ and that SNP holds for ϕ0 for all finite field extensions L′ of F ′.
Then ϕ = NF ′/F (ϕ0) satisfies SNP for all finite field extensions K of F which are
linearly disjoint with F ′ over F .

Proof. (i) By [Pu1], ϕK is a round form. Let aϕK
∼= ϕK . Then a = ϕ1,K(w1)ϕ2,K(w2)

and by assumption, NK/F (ϕi,K(wi)) ∈ GF (ϕi) for i = 1, 2. This immediately yields
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NK/F (ϕ1(w1))NK/F (ϕ2(w2)) = NK/F (ϕ1(w1)ϕ2(w2)) = NK/F (a) ∈ GF (ϕ).
(ii) Let K be a finite field extension of F which is linearly disjoint with F ′ over F .
Then

ϕK = NK′/K((ϕ0)K′)

with K ′ = F ′ · K the composite of F ′ and K (i.e., the homogeneous polynomials
defining the forms are equal). Since (ϕ0)K′ is round by assumption, DK′((ϕ0)K′) =
GK′((ϕ0)K′), and ϕK is a round form by [Pu1].
Let aϕK

∼= ϕK . Since ϕK is round, a = NK′/K((ϕ0)K′(z0)) for some z0 ∈ K ′. As
(ϕ0)K′ is round, we have

(2) ((ϕ0)K′(z0))(ϕ0)K′ ∼= (ϕ0)K′ .

ϕ0 satisfies SNP for all field extensions of F ′ by assumption, hence

NK′/F ′((ϕ0)K′(z0))ϕ0
∼= ϕ0

and so NF ′/F (NK′/F ′((ϕ0)K′(z0)))ϕ ∼= ϕ. Hence

NF ′/F (NK′/F ′((ϕ0)K′(z0))) = NK/F (NK′/K((ϕ0)K′(z0))) = NK/F (a) ∈ GF (ϕ).

�

Similarly, we obtain:

Theorem 4. Let F ′/F be a finite separable field extension and ϕ0 : V → F ′ be a
form over F ′ of prime degree p. Let ϕ = NF ′/F (ϕ0). Suppose that (ϕ0)L′ is a round
form for all finite field extensions L′ of F ′. Then ϕ = NF ′/F (ϕ0) satisfies SNP for
all field extensions K of F of degree pr coprime to [F ′ : F ].

Proof. Let K be a field extension of degree pr which is coprime to [F ′ : F ] and
set K ′ = F ′ · K. Then [K ′ : F ′] = pr and K ′ is linearly disjoint from F ′ over F .
The proof of Lemma 3 (ii) holds up to (2). By Remark 2 (ii), SNP holds for ϕ0

for all extensions K/F ′ of degree a power of p, in particular, for K ′. So (2) yields
NK/F (a) ∈ GF (ϕ). �

Forms ϕ0 over F ′ which satisfy the conditions of Theorem 4 are not only those
permitting composition [Pu2, Proposition 6], but also forms permitting Jordan com-
position of prime degree over fields of characteristic 0 or greater than 2d, e.g. the
cubic norm of an Albert algebra [Pu2, Proposition 7].

Example 1. Let ϕ0 = 〈〈a1, . . . , ar〉〉 (ai ∈ F×) be an anisotropic r-fold quadratic
Pfister form. If K = F (

√
c) is a quadratic field extension, then

NK/F (ϕ0)(u1, w1, . . . , u2r , w2r) =
(〈〈a1, . . . , ar, c〉〉)2(u1, u2, . . . , u2r , w1, w2, . . . , w2r)− 4cϕ0(u1w1, . . . , u2rw2r)
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is an anisotropic quartic form of dimension 2r+1 which satisfies SNP for all finite
field extensions of F which are linearly disjoint with K over F .

If F contains a primitive third root of unity and K = F ( 3
√

c) is a cubic Kummer
field extension, then

NK/F (ϕ0)(u1, v1, w1, . . . , u2r , v2r , w2r) =
(〈〈a1, . . . , ar, 2c〉〉)3(u1, . . . , u2r , v1w1, . . . , v2rw2r)
+c(c〈〈a1, . . . , ar〉〉 ⊥ 2〈〈a1, . . . , ar〉〉)3(w1, . . . , w2r , u1v1, . . . , u2rv2r)
+c2(〈〈a1, . . . , ar〉〉 ⊥ 2〈〈a1, . . . , ar〉〉)3(v1, . . . , v2r , u1w1, . . . , u2rw2r)
−3c[(〈〈a1, . . . , ar, 2c〉〉(u1, u2, . . . , u2r , v1w1, . . . , v2rw2r))
·((c〈〈a1, . . . , ar〉〉 ⊥ 2〈〈a1, . . . , ar〉〉)(w1, . . . , w2r , u1v1, . . . , u2rv2r))
·(〈〈a1, . . . , ar〉〉 ⊥ 2〈〈a1, . . . , ar〉〉)(v1, . . . , v2r , u1w1, . . . , u2rw2r))]

is an anisotropic form of degree 6 and dimension 3 · 2r which satisfies SNP for all
finite field extensions of F which are linearly disjoint with K over F .

There exists a nondegenerate form ϕ of degree d > 2 permitting composition on
a finite dimensional unital F -algebra A if and only if A is a separable alternative
algebra and ϕ is one of the following forms, for some integers s1, . . . , sr > 0: write
A as direct sum of simple ideals A = A1 ⊕ · · · ⊕ Ar with the center of each Ai

a separable field extension Fi of F . Any a ∈ A can be written uniquely as a =
a1 + . . . + ar, ai ∈ Ai and any nondegenerate form ϕ on A permitting composition
can be written as

ϕ(a) = N1(a1)s1 · · ·Nr(ar)sr ,

where d = d1s1 + . . . + drsr, and where Ni is the generic norm of the F -algebra Ai

of degree di [S]. If SNP holds for all Ni then it holds for ϕ (Lemma 2, 3).

Theorem 5. If ϕ is a nondegenerate cubic form over F which permits composition,
then SNP holds for all finite field extensions of F .

Proof. We have either ϕ ∼= 〈1〉, ϕ is the norm of a cubic field extension, of a central
simple F -algebra of degree 3 or ϕ(a+x) = aNC(x) for a ∈ F, x ∈ C, C a composition
algebra over F . In all cases SNP holds for all finite field extensions of F by Corollary
1, Theorem 3 and Remark 1, (iii) and (v). �

Remark 5. Let ϕ(x) = NF ′/F (NC(x)) with NC the quadratic norm of a composition
algebra over F ′, F ′ a quadratic field extension of F . ϕ is a form of degree 4 permitting
composition. If C has dimension greater than 1 then ϕ satisfies SNP for all field
extensions of odd degree (Lemma 3 (ii)). If C has dimension 1 then ϕ satisfies SNP
for all finite field extensions (Lemma 2). Thus, by invoking Lemma 1, Theorem 3
and [B-M, 3.1], for any form of degree 4 permitting composition, SNP holds for all
odd degree separable field extensions.
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We conclude pointing out that already for cubic forms (which do not permit
composition), it might not be enough any more to investigate if aϕK

∼= ϕK implies
that NK/F (a)ϕ ∼= ϕ. It might also be interesting to know if and when NK/F (a)2ϕ ∼=
ϕ holds.
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