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Simulations of the flow of concentrated aggregated colloidal systems, at the particulate level, are
used to investigate the distribution of stresses in the shear-thinning regime. It is found that the
distribution of shear stress carried by interparticle bonds decays approximately exponentially at
large stresses, but with a double-exponential distribution for values of positive stress. The
microstructural mechanisms associated with large stresses are manifested in clusters which
dominate the positive contribution to the stress in the system. Towards the end of shear thinning the
highest forces occur along bonds defining rods of particles aligned approximately along the
flow-compression direction. We propose that the rheology of such systems is determined by a
rupture–reformation process of these clusters of stress concentration during the flow. The
aggregation forces play the role of enhancing such stress concentration by stabilizing clusters
against buckling. ©1999 American Institute of Physics.@S0021-9606~99!51934-X#

I. INTRODUCTION

The flow properties of concentrated and aggregated col-
loidal suspensions continue to generate great interest not
merely because of their relevance to many industrial pro-
cesses, but also because of the fundamental understanding
that is generally lacking in this area. Through the aid of
recent numerical and simulation studies, with approximate
experimental verification, there now exist many models of
the shear behavior of aggregates at low-to-moderate colloid
volume fractions, generally,fc,0.30.1–5 However, such
models make untested assumptions about the evolving dy-
namics of the microstructure, with many microrheological
theories incorporating notions such as the breakup of aggre-
gating bonds in open-particle networks, typically character-
ized through a fractal-type analysis. The stress is usually
considered to exist along chains of particles of strongly ag-
gregated bonds and to be dominated by the extensions of the
bonds against the aggregation forces and rupture. Conse-
quently, it has been proposed that aggregating colloidal sus-
pensions necessarily possess a degree of stress concentration,
such as along the backbones of such fractal clusters~which
are sometimes characterized by the chemical dimension in
fractal structures6! or at rupture points.

In concentrated systems, we find that the effect of aggre-
gating forces is more subtle. Our model includes the aggre-
gation forces and short-range repulsive springs~these
crudely represent polymer coats!. We have found that, when

averaged, the dominant contribution to the stress comes from
repulsive springs on the particle surfaces—that is, bonds un-
der compression.7 Moreover, this contribution is much larger
than that of the same system with zero-aggregation force.
Yet a perplexing fact is that the direct contribution to the
stress from the aggregating forces@c.f. Eq. ~3!# is negligible
in comparison with the contribution from the surface coats.

Previously,7 extensive simulation studies were carried
out on the flow behavior of aggregated colloidal suspensions
at high colloid volume fractions, 0.47<fc<0.57. The re-
sults borne out in Refs. 7 and 8 yielded many interesting
insights regarding the rheology of concentrated, aggregating
suspensions—aggregating systems experience a hugely en-
hanced viscous response over an equivalent nonaggregating
system—including semiquantitative agreement with experi-
ment on both the rheology9 and also with light-scattering
studies.10

Earlier we computed the shear thinning through to the
high shear rate plateau flow regime of our model colloid
particles with aggregation forces.7 We cannot, with the cur-
rent code, shear at low enough shear rates to observe the first
Newtonian plateau. In the shear-thinning regime, the suspen-
sion viscosityh scales with the imposed ‘‘simple’’ shear rate
ġ as

h;ġ2a. ~1!

This power-law, shear-thinning behavior persists over many
decades of shear rate. The value ofa, the shear-thinning
exponent, is found to be independent offc in this highly
concentrated regime. We note that the value ofa50.84 isa!Electronic mail: lesilbe@sandia.gov
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close to values of shear-thinning exponents obtained from
experimental studies on concentrated colloids9 and ‘‘colloi-
dal gels’’.11,12 In the context of the simulations, the approxi-
mately universal relationship, Eq.~1!, suggests that the ob-
served power-law, shear-thinning behavior of these
concentrated systems is governed by the same mechanisms.
Therefore, we do expect a degree of structural evolution ge-
neric to the shear-thinning regime, although the concept of
open-particle networks is practically unfeasible at these high
concentrations.

In our structural analysis of the bulk suspension,8 we
computed the bulk, steady-state structure factorS(k) over a
range of shear rates, both in the shear-thinning regime and
beyond. We found that during shear thinning only,S(k)
changed very little; liquid-like short-range order exists, plus
the presence of aprepeak~a correlation peak at lower wave-
number k, than that expected for nearest-neighbor
correlations—usually situated at approximately integer val-
ues of kd/2p for particle diameterd!. This low-k feature
persisted only during shear thinning. The presence of a pre-
peak inS(k) indicates particle/cluster correlations, suggest-
ing some kind of intermediate range order within the bulk.
We also found that this prepeak is not observed in the case of
nonaggregating systems. We thus note that in some sense
this represents a signature of the observed ‘‘universal’’ shear
thinning of aggregated colloids~in the context of our simu-
lations!. Ultimately, we wish to gain insight into the struc-
tural arrangements of the stress-bearing networks, thus pro-
viding a description of what are the mechanisms that control
the observed rheology—describing the observed macro-
scopic behavior through a study of the distribution of forces
and stresses between the microstructural constituents.

This approach is motivated by recent studies of dry pow-
ders: it may be useful to considerconcentratedcolloidal sus-
pensions as a class of ‘‘wet’’ granular systems. Simply
‘‘dry’’ granular systems~apples packed in a container,13 for
example! exhibit some rather strange properties which are
only recently coming to light.14 However, we must make the
distinction clear that colloidal systems are typically con-
cerned with micron-sized particles with significant thermal
agitation as opposed to many real granular systems where
particles have dimensions of the order of millimeters if not
more. Inertial effects can be neglected in our colloidal simu-
lations, but may play a role in a flowing granular system.
Finally, the nature of the dissipative forces differ: colloids in
suspension experience viscous hydrodynamic forces, which
are dominated by squeeze lubrication modes in concentrated
systems; whereas dry granular particles experience shear
frictional effects~e.g., Coulombic!.

A common finding in studies of two- and three-
dimensional granular systems, which has been verified
experimentally15,16 and by simulation,17–19 and also in ex-
perimental studies of sheared granular materials,20 is that the
distribution of forces~or stresses! in a granular system is
extremely inhomogeneous. Such observations have led to the
concept ofstressor force chains.21–23 A compact granular
system under applied stress is typified by a stress distribution
which extends out to much larger stresses than the mean—
the variance is much larger than the modal value.24 Work at

high packing fractions, on a three-dimensional array of
springs, shows that such a strained system exhibits networks
of high stress imbedded in a background of a lower-stress-
bearing matrix.24 We have previously noted that concen-
trated colloids under flow exhibit similarly broad
distributions.25

The concentration of forces can be used to define net-
works of contacts, which although only constitute a fraction
of the contacts in the system, carry a disproportionate
amount of the applied stress. Imaged, these define lines of
force or stress-bearing pathways. Those ‘‘spectator’’ par-
ticles adjoined to this network, but not contributing to the
stress propagation, are thus deemed to provide support to the
stress-bearing pathways. The directionality of these propaga-
tions may be predicted by various methods,26,27 and recent
progress has been made in describing stress transmission
from a statistical mechanical viewpoint.28

We comment that the concepts of stress concentration in
granular systems and the fractal-type structures for aggregat-
ing colloids at lowerfc are not wholly dissimilar, merely
different manifestations of the same problem: stress trans-
mission in a particulate system. It seems that a natural exten-
sion of these ideas to the case of flowing colloids may help
in the understanding of our concentrated systems. It has al-
ready been suggested29,30 that certain situations seen in con-
centrated colloids, such as jammed states, for example,31 are
better understood in terms of force chains. The similarity
between colloidal systems and granular systems are now per-
ceived to be less crude, and indeed, there is currently a large
overlap of ideas covering a variety of particulate-based prob-
lems. See Ref. 32, for example.

We give a brief description of our model system and the
simulation technique employed to study such concentrated
systems. To avoid unnecessary repetition, we refer the reader
to Refs. 7, 33, and 34 for rather more explicit details. In the
results section we investigate the stress distribution problem
with a view to elucidating the structures that appear to be
controlling the observed flow behavior, and finally, we at-
tempt a qualitative description of the dynamics of these
structures through simulation visualization.

II. SIMULATION METHOD

A. Equations of motion

The simulation modeling essentially comprises a
version34 of Stokesian dynamics,35,36 which enables the
study of concentrated colloidal systems by incorporating
Lees–Edwards boundary conditions37 on arbitrarily large,
defined by the computational box volumeV, periodic cells.
We define the hard-core colloid volume fractionfc

5p/6rd3 of N particles of diameterd, with particle number
density r5N/V. In considering time scales long with re-
spect to the viscous momentum relaxation time of the sus-
pension, we treat the particles at the Langevin/
Smoluchowski level and the fluid by the creeping-flow
equations. Stick boundary conditions are imposed on the
fluid at the particle surfaces.

The equations of motion forN such particles immersed
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in a Newtonian fluid with viscositym thus express a quasi-
static force balance:

FH1FP5FB50. ~2!

The 6N force/torque vectors are:~i! hydrodynamic forces
FH, exerted on the particles due to their relative motions in
the presence of the solvent;~ii ! colloidal forcesFP ~the sum
of repulsive and attractive terms!; and ~iii ! Brownian forces
FB.

The terms in FH have approximate representations
~based on hydrodynamic lubrication theory, see Ref. 38, for
example! and their detailed expressions are available
elsewhere.33,34 The calculation of FB is also discussed
elsewhere.34,39 We refer the reader to Refs. 7, 33, and 34 for
discussions on the applicability and general context of the
technique used here.

In this work, the colloid forcesFP are composed of an
attractive term, modeled on the Asakura–Oosawa depletion
potential—40 hence, the term ‘‘aggregated’’ colloids—and a
repulsive term, which takes the form of a Hookean spring
coat on the surface of the particles; mimicking the osmotic
part of an attached/adsorbed polymer layer.

The depletion mechanism assumes a suspension of col-
loids in a mixture with nonadsorbing polymers of sizeRg at
volume fractionfp ~which sets the depth of the attractive
well!. The polymer–colloid size ratioRg /d, determines the
range of the attractive force. The spring coat thicknessdc

sets how much the thermodynamic size of the particle ex-
ceeds the hydrodynamic size, and the strength of the spring
~which sets the maximal force the spring can supply before
collapse! is parametrized by the dimensionless stiffnessF0 .
The resulting interaction potential is shown in Fig. 1, and
may be thought of as the colloidal equivalent of a Lennard-
Jones system. We note here that there exists a maximal at-
tractive force.

The size of the cubic simulation box has side lengthL
5V1/3. To provide a reasonable study of structure, here we
study systems withN5700, L.9. Our ongoing studies for
N54000, in rectangular boxes, give quantitatively identical
results. It is only in small systems, sayN<50, L<4, that

system size effects show up in the rheology, for example. We
reason that the smallness of the box in small-N simulations
interferes with the microstructural mechanisms that give rise
to the observed rheology.41.

B. Computation of the stress tensor

In the computation, the bulk stress of the suspension is
computed as the sum over nearest-neighbor, interacting par-
ticle pairsi andj. We define nearest-neighbor pairs through a
neighbor list defined on a three-dimensional tetrahedral De-
launay mesh–Voronoi neighbors. The particle centers on the
mesh define the positions of the vertices, and consequently,
the mesh edges define particle separations. With this rule, all
particles whose centers lie closer than& ~diametersd51 in
the simulation! are neighbors.~We point out that due to this
procedure some nearest neighbors will occasionally be
slightly beyond the hydrodynamic lubrication approximation
range, however, we still employ the approximate hydrody-
namic terms regardless.!

The stress is given by

s52
1

V (
a

(
i j

f i j
a r i j 1sB, ~3!

where the edge vectorr i j is the center–center vector separa-
tion from particlei to its neighborj, and the sum overa is
the sum over the various colloid and dissipative forcesf i j

a .
The Brownian contribution to the stresssB is detailed
elsewhere.34,39 Normalization is with respect to the volume
of the computational boxV.

In steady simple shear, the relation of shear stress to
shear rate is conveniently expressed as

sxy~ ġ !5mh r~ ġ !ġ, ~4!

where thexy component ofs represents the shear gradient–
flow element of the stress tensor, andm the solvent viscosity.
The measured quantity, the apparent relative viscosityh r

describes the viscous response due to the imposed shear rela-
tive to the base solvent.

This relative viscosityh r , itself may be decomposed
into various contributions arising from the force components
whereh r

H and h r
B denote the hydrodynamic and Brownian

contributions to the relative viscosity, and the interparticle
colloid force contribution to the viscosityh r

P , comes from
the sum of the repulsive and attractive components.

We measure the imposed shear rate in terms of the ac-
cepted nondimensional shear rate thePecletnumber. In the
simulations, the units are chosen so that the particle diameter
d, the solvent viscositym, and the thermal energykBT, Bolt-
zmann’s constant times the absolute temperature, are nu-
merically equal to unity. We define thePecletnumber Pe, as

Pe5
ġd3m

kBT
. ~5!

In these units, therefore, Pe is the shear rate. Consequently,
time is measured in units ofd3m/kBT and force in units of
kBT/d.

Although our simulations do not include Brownian
forces, we nevertheless insist on measuring the shear rate in

FIG. 1. Interparticle colloid pair-potentialU(r ), and force law2dU(r )/dr,
with the following set of parameters; polymer concentration parameterfp

50.7, size ratioRg /d50.1, polymer coat thicknessdc50.005d, and F0

5104, giving a maximal attractive force of 200 in these units.
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units of Pe, although it is not strictly correct to do so. Our
previous studies33 on model variations that compares sys-
tems with and without Brownian forces show that the inclu-
sion of Brownian forces plays no qualitative role in deter-
mining the rheology of such systems.

III. RESULTS

We reiterate some important points from our previous
studies.7,8,33 Concentrated and aggregated colloids undergo
shear thinning over many decades in shear rate, 1024<Pe
,10.0. In this regime, the viscosity scales with shear rates as
in Eq. ~1!; the suspension microstructure is disordered,
liquid-like short-range order exists plus a prepeak. No signs
of long-ranged ordering are observed in the shear-thinning
regime—ordering is not a feature of shear thinning in con-
centrated colloids. On average, the dominant contribution
~over 90%! to the jump in viscosity between aggregating and
nonaggregating systems is the contribution of the repulsive
coat interaction.

Beyond the shear-thinning regime, Pe.10.0, the system
viscosity levels and the rheology is Newtonian like. Equation
~1! no longer applies. The system now possesses a well-
ordered structure—the string phase atfc50.50 ~for Pe
.50.0! and its rheology is effectively that of hard spheres
with repulsive surface coatswithout attractive forces.

A. Stress distributions

To examine the mechanisms that give rise to this rheol-
ogy, we calculate the distribution of force or stress on bonds
in the system under shear. This comprises a histogram of
particle pair bonds binned according to the value of the force
or stress they carry~we recall that a bond is defined as a
Voronoi neighbor!. An ensemble, steady-state, average is
taken by averaging this over many particle configurations
throughout the simulation run.

The viscous response of these systems is characterized
by thexyelement of the stress tensor—the shear stress~recall
h5sxy /ġ). For convenience we drop the suffixxy when
discussing the stress in the system and it should be under-
stood that stress refers to the shear stress.

The stress distribution of a 700-particle system@where
the stress is defined as in Eq.~3!, i.e., we retain the volume
normalization# is plotted in Fig. 2. Here, we focus on one
particular shear rate, Pe51.0 @well into the shear-thinning
regime where Eq.~1! holds# at 50% volume fraction. The
data in Fig. 2 provide the backdrop to much of the remaining
discussion. Variations over shear rate are discussed later.

The different distribution curves in Fig. 2 represent the:
total stress~filled circles!, squeeze hydrodynamic, Hookean,
and the depletion components to the stress. Each of these is
computed individually and the normalization ofv~s! of Fig.
2 is such that the sum over the total number of bonds per

configurationNC is unity, S i 51
NC

v(s i)51.0
We note that the two points by the arrow in Fig. 2 indi-

cate that both the total distribution and the squeeze hydrody-
namic component distribution go to zero at zero values of the
stress. Although the choice of this bin is arbitrary, and we
could just as easily avoid this zero bin, we wish to reiterate

an important feature of the simulation technique: there are no
bonds which experience zero stress or force. This is to be
expected due to the presence of the hydrodynamic forces
which couple particle motions over relatively long-ranged
distances~compared with the colloid forces!. This is a sig-
nificant feature over those simulations which neglect hydro-
dynamic interactions and must account for the qualitative
differences between the two schemes.

By contrast, the distributions of the colloid forces, the
Hookean, and the depletion terms are actually finite at zero
stress. A significant fraction of bonds belong to this zero bin,
indicating that in the computation of the forces a large frac-
tion of Voronoi neighbor pairs do not interact through the
colloid forces, most significantly the Hookean term. Hence,
those pairs that do not contribute to the stress must be sepa-
rated by a distance greater than the interaction range. Even at
this high concentration,fc50.50, this suggests that many of
the particles have a separation,r i j /d.1.1. Computation of
the average gap does show that on average many of the par-
ticle pair bonds are greater than the interaction range.

Several other features are apparent: the total stress dis-
tribution extends out to large stresses, with values at least an
order of magnitude greater than the peak value. The positive
tail of the distribution extends out further than the negative
part. The ratio of positive-to-negative stress-carrying bonds
is, on average, 67:33. Likewise, the Hookean and the
squeeze hydrodynamic stress components to the distribution
extend out to large stresses, whereas the depletion term has a
finite cutoff to the stress, indicating the maximum force
which the depletion term can provide per bond~this was
noted in Fig. 1!.

From the distribution curve, it is possible to estimate the
total stress~and of the components! of the system by aver-
aging over the distribution curve~s!,

^s total&5K (
i 51

NC

v~s i !s i L , ~6!

where an ensemble average, denoted by^...&, is taken over
many particle configurations. The average number of par-
ticles per configurationNC provides an estimate of the num-

FIG. 2. The stress distribution of the nondimensionalized shear stress per
bond for an aggregating system atfc50.50 being sheared at Pe51.0. The
total and the individual contributions tosxy are shown. The two points
shown by the arrow indicate that both the total and the squeeze curves have
points at exactly~0, 0!.

4783J. Chem. Phys., Vol. 111, No. 10, 8 September 1999 Stress distributions in colloidal suspensions

Downloaded 01 Aug 2005 to 128.135.132.217. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ber of bonds each particle has attached to it, and hence, an
estimation of the average coordination number~the average
number of nearest neighbors per particle! Nnn. At Pe51.0
andN5700, the average number of bonds per configuration
sampled over the simulation is computed to beNC55165.
Therefore, the average number of nearest neighbors per par-
ticle is Nnn514. In the simulations, bonds are defined as
Voronoi neighbors. This value of the number of Voronoi
neighbors is a little higher than the number of nearest neigh-
bors found in a randomly packed static system of spheres.42

Using these values forNC and N, the average stress in
the system computed using Eq.~6! for the full distribution
curve presented in Fig. 2,^sdist& is

^sdist&543.3,

which is to be compared with the computed stress from the
simulation rheology data

^s rheo&543.260.2.

Thus, the average stress per bond, assuming that the stress
were distributed homogeneously over all the bonds, is
^sbond&58.37•1023.

In studies of granular systems, for example, see Refs. 15,
16, 19, and 20, significant attempts have been made to char-
acterize the distributions in the stresses or forces, a common
theme appears to be the exponential decay of the tails at
large stresses. Figure 3 shows the distributions of stress per
bond on a linear–log plot where we compare the distribu-
tions of an aggregating system~circles! with a nonaggregat-
ing system~squares!, at the same shear rate. We have diffi-
culty in fully characterizing the distribution of the
aggregating system, but we reason this is due, in part, to the
fact that the aggregating system experiences both compres-
sive and tensile forces, whereas granular systems are mostly
concerned with compressive forces only.

Both distributions in Fig. 3 are seen to be dominated by
exponential decays. The system without aggregating forces
and the bonds with negative stress in the system with aggre-
gating forces are well approximated by a single exponential.
However, the bonds carrying positive stress in the system
with aggregating forces have a more complex distribution.
One identifies three distinct regions. An inner most region
~, 0.05! and two outer regions well approximated by expo-

nential decays. The second between 0.05 and 0.25 with a
slope ;10 and the third beyond 0.25 with a slope;20.
There is a slight deviation from exponential in the middle
region. The distribution curve kinks around the mean value
;0.01, which roughly coincides with the region where the
contribution from the depletion force becomes small relative
to the Hookean spring. Study of the distribution curves of the
components indicate that the distribution of squeeze stresses
also contains a kink in a similar position to that seen in the
total distribution curve. The double-exponential form of the
distribution curves is also found in simulations of colloid
particles at high-shear rates in the regime of shear
thickening.43

Also clearly evident in Fig. 3, the aggregating system
has a broader distribution than the nonaggregating system,
thus reflecting the differences between the macroscopic
stress values of each system: the aggregating system has a
viscosity almost an order of magnitude greater than the non-
aggregating system at this shear rate. Therefore, the generic
appearance of exponential decays in stress distributions is
more a feature of concentrated particulate systems. Only the
quantitative shape of the curves are dependent on the specif-
ics of each system.

The positive side to the distribution must be significant
in the determination of the structural mechanisms associated
with the distribution of stress, as globally, on the macro-
scopic scale, the total stress is positive. To investigate this
issue the positive part of the stress distribution of the aggre-
gating system is further analyzed in Fig. 4 for a system
sheared at Pe51.0.

Figure 4 compares the percentage contribution of the
positive stress-carrying bonds to the positive stress when the
criterion to be a contributing bond is that the stress it carries
is greater than the cutoff valuesc. The corresponding per-
centage of stress-carrying bonds contributing at a particular
cutoff is also shown. It is clear from the data that a small
fraction of positive-stress bonds in the stress computation
can actually contribute a significant percentage to the posi-
tive stress, justifying the assumed dominance of these high-
stress-bearing bonds. For example, bonds which havesc

.0.15 ~i.e., over an order of magnitude larger than the av-

FIG. 3. Comparison of stress distributions for an aggregating system~open
circles! and a nonaggregating system~open squares! sheared at Pe51.0.

FIG. 4. Percentage contribution to the positive stress coming from positive-
stress-carrying bonds and the percentage of those positive-stress-carrying
bonds contributing to that amount, for different values of the cutoffsc that
defines positive-stress-bearing clusters. The inset highlights the low-
percentage region.
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erage! constitute only 2% of the number of bonds, but 22%
of the stress.

B. Variations in shear rate

We analyze the distribution curves over a range of shear
rates in Fig. 5. The range of shear rate studied covers the
shear-thinning regime, 0.01<Pe,10.0, intermediate shear
rates Pe510.0, and high shear rates, where ordered phases
exist, Pe5100.0.

In terms of the distribution curves in Fig. 5, the reason
why the stress increases with increasing shear rate is due to
the broadening of the positive side of the distributions. The
positive bonds are contributing a greater positive stress with
increasing shear rate. There is a particular change once the
system is at high-shear rates~Pe5100.0!. The distribution
curve at Pe5100.0 is qualitatively different from the other
curves. A shoulder appears in the distribution up to where
the curve is clearly approximately exponential~beyond stress
50.4!. These qualitative differences are mirrored by the rhe-
ology where the system at this high-shear rate is no longer
shear thinning, and has actually arranged into an ordered
flow phase~string phase ordering!. We note here that the
ordered phase still has an exponential tail, but the high-stress
regime is now dominated by the squeeze hydrodynamic con-
tribution rather than the Hookean component which domi-
nated at lower Pe.

IV. STRESS BEARING STRUCTURES

The distribution curves, Fig. 2, show disparities between
the stress carried by bonds, but also that many of the bonds
are inactive in the sense that they do not contribute to the
colloid forces. It is, therefore, hard to see how the high-stress
bonds can be evenly distributed throughout the system, and
the geometrical arrangements of these bonds should be im-
portant. We now investigate the positions of these high-stress
bonds within the bulk suspension, and hence, visualize the
geometrical arrangements of the structures associated with
these bonds. This may be achieved by running a simulation

and choosing a cutoff to the stresss1
c at which to analyze

configurations of those particles which belong to these high-
stress bonds.

The properties of these dominant bonds are still not
clear. This finally brings in the question of structure and
kinetics: whatare the structural mechanisms associated with
these bonds and their effect on the remaining particles
around them. Figure 6 shows several snapshots of particle
clusters which are picked out on the stress that their bonds
carry at Pe51.0. The pictures in Fig. 6 show that at the lower
stress cutoff, clusters are less well defined as separate entities
and exist as multiply connected structures. Even still, al-
though the number of bonds picked out in all the pictures is
still only a fraction of the total number of bonds in the sys-
tem, at lower stress cutoff many of the particles are included
in the clusters. However, clearly there is a propensity for the
clusters to form elongated structures, leading to rod-like
clusters at the higher cutoff.

Figure 7 shows an instantaneous snapshot of a full-size
simulation cell, differentiating between the high-stress net-
works ~dark gray!, immersed within the bulk suspension
~light gray!. This picture depicts the arrangement these net-
works have with respect to the surrounding particles in sus-
pension.

A. Cluster kinetics

Particle clusters, defined on their bond stresses, are
forming along the shear-compression direction through
which high-stress bonds are continually being formed and
broken. However, as yet we do not have a clear idea of their
longevity. The snapshots presented in Fig. 6 are instanta-
neous in time, therefore, they need not represent the absolute
configuration of these clusters over longer time periods. The
presence of the imposed shear is responsible for the direc-
tionality of these clusters—a simple model of shear-induced
clustering has been reported—44 yet intuitively, it is expected

FIG. 5. Stress distributions compared over a range of shear rates: Pe50.01,
0.10, 1.0, 10.0, and 100.0. The increasing stress with increasing shear rate is
seen to be due to the broadening of the positive tail to the distribution.

FIG. 6. Clusters of particles whose bonds carry a stress greater than the

cutoff value,s1
c85(a) 0.136,~b! 0.164,~c! 0.204, and~d! 0.250.
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that the shear will affect the kinetics of these clusters: the
clusters have the possibility to either break, group, or even
tumble with the flow. Thus, we need to have some view of
the kinetics of these clusters leading to an indication of
mechanisms through which these clusters contribute to the
stress.

Table I shows how contributions from the high-stress
clusters affect the global macroscopic stress. If the fraction
of high-stress bonds decreases, the contribution to the stress
from these clusters likewise decreases, leading to a lower
total ~positive! stress. Thus, the chains determine fluctuations
in the positive-stress values through their kinetics.

The temporal evolution of these clusters isqualitatively
examined in Fig. 8. Figure 8 shows a sequence of snapshots
of high-stress clusters of particles, separated by, of order,
0.01, 1.0, and 100 units of strain, for a 700-particle system
with s1

c 50.204 at Pe51.0.
Figure 8 presents us with a first view of the kinetics of

these clusters. Although the same coloring scheme is used in
the each of the four pictures of Fig. 8, the particles compos-
ing the clusters viewed in each picture are not necessarily the
same as in each of the other pictures of Fig. 8. However,
what becomes apparent is the persistence of the geometrical
arrangement or orientations of the individualclusters. Even
though the populations of the clusters are continually chang-
ing as the shear flow disrupts the arrangements of individual
particles, the orientations of these pathways or chains along
which the stress propagates persist around the compressional
axis ~see also Fig. 10!.

We plot the distribution of lifetimes of cluster bonds at
three different shear rates in Fig. 9. On the linear–log scale
we clearly see that these distributions are well characterized
by an exponential decay in lifetimes. On average, cluster
bonds live for only fractions of a shear time~one shear
time[one unit of strain!. Thus, it is clear the particles that
constitute the stress clustersare continually changing and the
populations of these clusters evolve with the flow.

The snapshots in Fig. 8 indicate that, at any one instant,
the geometrical manifestation of the stress concentration ex-
ists as particle clusters that appear as rod-like entities. We
have examined this behavior averaged over many
configurations—ensemble averaging over long times.
Through the simulation scheme we compute the ‘‘reduced’’
structure factorSr(k), where ‘‘r’’ denotes reduced in the
sense that these configurations are made up of high-stress
clusters only—a subset of the full particle configuration.

FIG. 7. The whole simulation cell looking into the flow-gradient plane~flow
is left to right!. The darker particles are picked out on the stress value that
their bonds carry. Here,s1

c 50.204 for Pe51.0.

TABLE I. Comparing the contributions to the total stress from high-stress
clusters and the relative number of high-stress bonds in the clusters for
different instantaneous values of the stress.

Total positive stress
Fractional contribution

from high-stress clusters
Fraction of bonds

belonging to these clusters

84.5 0.26 0.020
71.5 0.13 0.009
59.6 0.07 0.005

FIG. 8. A qualitative measure of the kinetics of stress bearing clusters at
Pe51.0, for a 700-particle system, where only those particles whose bonds
carry a stress greater thans1

c 50.204, are shown. Strain values are~a!
106.000,~b! 106.013,~c! 107.001, and~d! 289.001.

FIG. 9. Distribution of high-stress cluster bond lifetimes at Pe50.01, 0.1,
and 1.0~in units of straing!. Cluster bonds are defined as those bonds
experiencing a stress higher than the average bond stress by a factor of;25.
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Sr(k) is computed and we compare these against the corre-
sponding fullS(k).

In the Sr(k) ~top two pictures of Fig. 10! the regularity
of the correlation ridges along the compressional direction
are indicative of strong correlations between particles within
the same cluster. However, we see that these correlations
become less well defined towards lower shear rates, suggest-
ing that with decreasing Pe, the stress-bearing clusters be-
come less rod-like, possibly becoming more multiply con-
nected.

The peaks at low-k suggest correlations over intermedi-
ate ranges, between individual clusters. But again, these are
diminished at Pe50.1. However, it is suggestive that the
emergence of the low-k peaks in the top pictures of Fig. 10,
which are due to the stress-bearing clusters, are related to the
prepeaks, observed as small bumps at low-k, in total struc-
ture factorS(k) ~bottom pictures!; though the scales are dif-
ferent betweenSr(k) andS(k) in Fig. 10.

A further consequence of these high-stress bonds can be
inferred from Fig. 11. Because these evolving clusters con-
centrate the stress, with bonds/chains breaking and reforming
over time scales shorter than a shear time, as shown in Fig. 9,
one might expect that the short-time viscous response of the
system will reflect this behavior. In Fig. 11, the individually
sampled viscosities, which are continually averaged to com-
pute the total average viscosity, are shown against strain
~time!. Over this short-time scale, the sampled viscosity~dot-
ted line! exhibits broad fluctuations about the mean value of
the viscosity~solid line!.

B. Theoretical discussion

It has been shown that the rheology is controlled by
stress concentration into clusters carrying high stress on
bonds in compression. The temporal evolution of these

clusters—their kinetics—determines their size and geometri-
cal distribution. Given that there is such a large jump in
viscosity on turning on aggregation forces, we need to un-
derstand the role of these forces in the concentration of
stress. Although the analysis presented here is largely quali-
tative, it provides an impetus towards a theoretical under-
standing of these systems. As has been mentioned, current
theories on flowing colloids do not seem to be applicable to
the concentrated systems studied here. The observation of
these extended structures suggests that a many-body treat-
ment is required.

Theories of cluster kinetics have existed since the pio-
neering works of people like Smoluchowski, etc., for ex-
ample, see Ref. 6. The many-body, cluster treatment of jam-
ming in Ref. 29 utilizes~Smoluchowski! kinetic equations to
explain some of the features observed in simulations of bare
hard spheres.31,45 The population dynamics, in this case of
our stress chains, can be expressed as

FIG. 10. The ‘‘reduced’’ structure factorSr(k) ~top
pictures! computed over many high-stress cluster con-
figurations, compared against the the fullS(k) ~bottom
pictures! for bulk system sizeN5700, sheared at~a!
Pe50.1 and~b! Pe51.0. Note the scale of the verticle
axis S is different between the top and the bottom pic-
tures.

FIG. 11. Variations in the computed viscosity during the simulation. The
mean-bulk viscosity is denoted by the solid line, whereas the instanta-
neously sampled viscosity~dotted line! fluctuates about this mean value.
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dnk

dt
5 (

i , j 51

`

@Ki j ninj2Gi j ni 1 j #~d i 1 j ,k2d i ,k2d j ,k!, ~7!

where nk is the concentration of clusters of lengthkd, d
being the particle diameter. However, the real physical prob-
lem lies in the ability of correctly interpreting the forms of
the aggregation kernelKi j and the breakup kernelGi j , and
below we argue the physical mechanisms which these terms
describe. A full theoretical treatment, based on an extension
of the concepts introduced by Farr, Melrose, and Ball,29 has
recently been proposed.46

The first term on the right-hand side of Eq.~7! contains
information on the rate at which clusters of sizei and j pro-
duce clusters of size (i 1 j ). Effectively, K accounts for the
flow-induced clustering between particles and clusters. The
main factor contributing to this term will be the imposed
shear rateġ, which sets the time scale for these collisions, as
this is the driving force behind particle motions.

If we view the clusters as rods of particles under com-
pression, then the breakup termG is determined by the buck-
ling of these rods. We argue that the role of the aggregation
forces is to stabilize the rods against buckling—thereby set-
ting a time scale for the lifetime of these rods—and hence,
enhancing the compression of the springs within the rods. To
buckle, the rods must break aggregation forces on neighbor-
ing spectator particles. It is through this mechanism that the
aggregating forces enhance the shear stress despite their neg-
ligible contribution on average.

The time scale of breakup will have a dispersion depend-
ing on the local motions of the particles. This may then ac-
count for the slight variations in the shear-thinning behavior
between model variations studied previously.33

There has been considerable work on describing the rhe-
ology of aggregated suspensions in terms of cluster kinetics.
Such works attempt to include the relevance of the attractive
forces in determining the escape times of particles from
bonded chains within fractal aggregates4 and in more con-
centrated systems.47 Coarser-grained models also exist48 fol-
lowing energy landscape arguments, offering an alternative
view.

V. SUMMARY

Flow simulations that include an approximate form for
the hydrodynamic interactions in concentrated systems show
that the distribution of stresses in flowing aggregated suspen-
sions exhibit similarities with stress distributions in granular
systems, characterized by an approximately exponential de-
cay at large stresses, whereby a fraction of bonds experience
a stress one to two orders of magnitude larger than the mean
value.

The large stresses appear to be localized in only a small
fraction of the total number of bonds between particles, giv-
ing rise to particle clusters defined on the high stress that
they carry. These clusters appear to dominate the positive
contribution to the stress, and hence, the macroscopic behav-
ior. Essentially, we define a form of inhomogeneity accord-
ing to some criterion, in this case, particle structures based
on stress. However, we note with caution that we have only

considered one of the aspects of ‘‘microstructural inhomoge-
neities.’’ Anisotropy in the directionality of the forcesor the
anisotropy in the particle contacts are both likely,49 but
which of these dominates in each regime is still not clear.
We hope to report on such studies in the future. The discrete
regions of this stress concentration are necessarily generated
by the imposed shear with evolving populations of particles,
where cluster bond lifetimes are typically less than a shear
time.

The stress may also be computed from a dissipation ar-
gument, whereby the disturbance that the clusters cause on
the surrounding fluid causes an equivalent viscous response
through mean-field fluid power dissipation. Whether the
greatest dissipation occurs around the clusters, or within the
cluster bonds themselves, has not yet being resolved, and we
have not yet been able to reconcile such a mechanism with
the effects studied here. We hope to answer these questions
in the near future.

It is proposed that the kinetics of the stress chains can be
described by a Smoluchowski-type kinetic equation. By tak-
ing into consideration the rate at which shear-induced clus-
tering occurs, and the rate at which particle bonds are broken
~which is highly dependent on the strength of the attractive
forces!, this theory50 provides a first attempt at a many-body
approach to flowing colloids.

ACKNOWLEDGMENTS

This research was supported by the external Unilever
Colloid Physics Program and the BBSRC food directorate,
together with Dalgety plc., and the EPSRC under Grant No.
GR/L21747. The authors would like to thank K. G. Soga for
many useful discussions.

1R. Wessel and R. C. Ball, Phys. Rev. A46, R3008~1992!.
2A. H. L. West, J. R. Melrose, and R. C. Ball, Phys. Rev. E49, 4237
~1994!.

3V. Chaplain, P. Mills, and M. Djabourov, Colloid Polym. Sci.272, 991
~1994!.

4A. A. Potanin, R. de Rooij, D. van den Ende, and J. Mellema, J. Chem.
Phys.14, 5845~1995!, and references therein.

5A. A. Potanin and W. B. Russel, Phys. Rev. E53, 3702~1996!.
6R. Jullien and R. Botet,Aggregation and Fractal Aggregates~World Sci-
entific, Singapore, 1987!.

7L. E. Silbert, J. R. Melrose, and R. C. Ball, J. Rheol.43, 673 ~1999!.
8L. E. Silbert, J. R. Melrose, and R. C. Ball, Mol. Phys.96, 1667~1999!.
9R. Buscall, J. I. McGowan, and A. J. Morton-Jones, J. Rheol.37, 621
~1993!.

10H. Verduin, B. J. de Gans, and J. K. G. Dhont, Langmuir12, 2947~1996!.
11S. Jogun and C. F. Zukoski, J. Rheol.40, 1211~1996!.
12H. Huang and C. M. Sorensen, Phys. Rev. E53, 5075~1996!.
13J. Grindlay, Am. J. Phys.61, 469 ~1993!.
14Granular Matter An Interdisciplinary Approach, edited by A. Mehta

~Springer, New York, 1994!.
15C. h. Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar,

O. Narayan, and T. A. Witten, Science269, 513 ~1995!, and references
therein.

16D. M. Mueth, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E57, 3164
~1998!.

17S. N. Coppersmith, C. h. Liu, S. Majumdar, O. Narayan, and T. A. Witten,
Phys. Rev. E53, 4673~1996!, and references therein.

18M. Nicodemi, Phys. Rev. Lett.80, 1340~1998!, and references therein.
19F. Radjai, M. Jean, J.-J. Moreau, and S. Roux, Phys. Rev. Lett.77, 274

~1996!, and references therein.
20B. Miller, C. O’Hern, and R. P. Behringer, Phys. Rev. Lett.77, 3110

~1996!, and references therein.

4788 J. Chem. Phys., Vol. 111, No. 10, 8 September 1999 Silbert et al.

Downloaded 01 Aug 2005 to 128.135.132.217. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



21S. F. Edwards and C. C. Mounfield, Physica A226, 1 ~1996!.
22M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin, Phys. Rev.

Lett. 81, 1841~1998!.
23C. Thornton, Kona Powder Particle15, 81 ~1997!.
24A. Pavlovitch, J. Phys. I7, 1 ~1997!.
25J. R. Melrose, J. H. van Vliet, L. E. Silbert, R. C. Ball, and R. Farr, in

Modern Aspects of Colloidal Dispersions, edited by R. H. Ottewill and A.
R. Rennie~Kluwer Academic, Dordrecht, 1998!, p. 133.

26P. Claudin, J.-P. Bouchaud, M. E. Cates, and J. P. Wittmer, Phys. Rev. E
57, 4441~1998!.

27V. M. Kenkre, J. E. Scott, E. A. Pease, and A. J. Hurd, Phys. Rev. E57,
5841 ~1998!.

28S. F. Edwards and D. V. Grinev, Physica A263, 545 ~1999!.
29R. S. Farr, J. R. Melrose, and R. C. Ball, Phys. Rev. E55, 7203~1997!.
30M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin, Physica A

263, 354 ~1999!.
31J. R. Melrose and R. C. Ball, Europhys. Lett.32, 535 ~1995!.
32S. F. Edwards and D. V. Grinev, cond-mat/9905114~submitted to Jam-

ming and Rheology, edited by A. Liu and S. R. Nagel~Francis Taylor,
New York, 1999! ~unpublished!.

33L. E. Silbert, J. R. Melrose, and R. C. Ball, Phys. Rev. E56, 7067~1997!.

34R. C. Ball and J. R. Melrose, Physica A247, 444 ~1997!.
35G. Bossis and J. F. Brady, J. Chem. Phys.80, 5141~1984!.
36L. Durlofsky, J. F. Brady, and G. Bossis, J. Fluid Mech.180, 21 ~1987!.
37A. W. Lees and S. F. Edwards, J. Phys. C5, 1921~1972!.
38S. Kim and S. J. Karrila,Microhydrodynamics: Principles and Selected

Applications, Series in Chemical Engineering~Butterworth-Heinemann,
Washington, DC, 1991!.

39G. Bossis and J. F. Brady, J. Chem. Phys.91, 1866~1989!.
40W. B. Russel, D. A. Saville, and W. R. Schowalter,Colloidal Dispersions

~Cambridge University, Cambridge, 1991!.
41L. E. Silbert, Ph.D. thesis, University of Cambridge~1998!.
42J. D. Bernal and J. Mason, Nature~London! 185, 68 ~1960!.
43J. R. Melrose~unpublished!.
44O. J. O’Loan, M. R. Evans, and M. E. Cates, Physica A258, 109 ~1998!.
45R. C. Ball and J. R. Melrose, Adv. Colloid Interface Sci.59, 19 ~1995!.
46R. S. Farr, L. E. Silbert, R. C. Ball, and J. R. Melrose~unpublished!.
47Y. Baxter-Drayton and J. F. Brady, J. Rheol.40, 1027~1997!.
48P. Sollich, Phys. Rev. E58, 738 ~1998!.
49F. Radjai, D. E. Wolf, M. Jean, and J.-J. Moreau, Phys. Rev. Lett.80, 61

~1998!, and references therein.
50R. S. Farr, Ph.D. thesis, University of Cambridge~1998!.

4789J. Chem. Phys., Vol. 111, No. 10, 8 September 1999 Stress distributions in colloidal suspensions

Downloaded 01 Aug 2005 to 128.135.132.217. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


	Southern Illinois University Carbondale
	OpenSIUC
	9-1999

	Stress Distributions in Flowing Aggregated Colloidal Suspensions
	Leo Silbert
	R S. Farr
	J R. Melrose
	R C. Ball
	Recommended Citation



