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A Class of Optimal Rectangular Filtering Matrices
for Single-Channel Signal Enhancement in the Time

Domain
Jesper Rindom Jensen∗, Member, IEEE, Jacob Benesty, Mads Græsbøll Christensen, Senior Member, IEEE, and

Jingdong Chen, Senior Member, IEEE

Abstract—In this paper, we introduce a new class of op-
timal rectangular filtering matrices for single-channel speech
enhancement. The new class of filters exploits the fact that the
dimension of the signal subspace is lower than that of the full
space. By doing this, extra degrees of freedom in the filters,
that are otherwise reserved for preserving the signal subspace,
can be used for achieving an improved output signal-to-noise
ratio (SNR). Moreover, the filters allow for explicit control of
the tradeoff between noise reduction and speech distortion via
the chosen rank of the signal subspace. An interesting aspect is
that the framework in which the filters are derived unifies the
ideas of optimal filtering and subspace methods. A number of
different optimal filter designs are derived in this framework,
and the properties and performance of these are studied using
both synthetic, periodic signals and real signals. The results show
a number of interesting things. Firstly, they show how speech
distortion can be traded for noise reduction and vice versa in
a seamless manner. Moreover, the introduced filter designs are
capable of achieving both the upper and lower bounds for the
output SNR via the choice of a single parameter.

Index Terms—Noise reduction, signal enhancement, time-
domain filtering, maximum SNR filtering matrix, Wiener filtering
matrix, MVDR filtering matrix, tradeoff filtering matrix.

I. INTRODUCTION

The problem of speech enhancement, namely that of esti-
mating a desired speech signal from noisy observations [1]–
[3], is one of the oldest problems of our community, with a
history that dates back to the dawn of signal processing, and
it remains a widely studied problem today. It occurs in many
systems and devices, including voice over IP, hearing aids,
teleconferencing, mobile telephony, etc. There are primarily
two reasons for this. Firstly, noise has a detrimental impact
on the perceived quality and intelligibility of speech signals
and causes listener fatigue under extended exposure. Secondly,
many speech processing systems or components are designed
under the premise that only one, clean signal is present at
the time. This is, most often, done to simplify the design of
these, like in the codebooks used in speech coders and in
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the statistical models used in automatic speech recognizers.
Even though more and more systems are now using multiple
channels obtained using, for example, microphone arrays,
many systems today are still based on only a single channel,
and this is also the context in which we will study the speech
enhancement problem.

The speech enhancement problem can be posed as a filtering
problem, wherein an estimate of the desired speech signal
is obtained via filtering of the observed, noisy signal. An
example of this is the classical Wiener filter. Such filtering
approaches often require that either an estimate of the speech
statistics or the noise statistics be found or known, and in the
past decade, most efforts in improving speech enhancement
algorithms has been devoted to the problem of estimating the
noise statistics, with some examples being [4]–[7]. Recently,
a number of important advances have, however, been made
formulating different kinds of optimal filters. These include
the adaptation of the linearly constrained minimum variance
(LCMV) and the minimum variance distortionless response
(MVDR) principles to speech enhancement [3], [8] in combi-
nation with the orthogonal [3] and harmonic decompositions
[9], as well as the extension of these to non-causual filters
[10].

An alternative approach to speech enhancement is so-called
subspace methods [11], [12], wherein bases of the signal and
noise subspaces are obtained from the eigenvalue decomposi-
tion of the covariance matrix. Then enhancement is performed
by modifying the eigenvalues corresponding to the signal and
noise subspaces after which an estimate of the clean signal
can be obtained. In the literature, the subspace methods are
usually described as a competing approach to speech enhance-
ment, although some interpretations of these approaches as
filtering exist [13]. For an up-to-date and complete overview
of subspace methods for speech enhancement, we refer the
interested reader to [14].

In this paper, we introduce a new class of optimal filters
that combines the notion of subspace-based enhancement with
classical filtering approaches. As such, the proposed approach
unifies subspace and filtering methods in a common frame-
work. More specifically, we show how to exploit the nullspace
of the desired signal correlation matrix to derive a class of
optimal rectangular filtering matrices for single-channel signal
enhancement in the time domain. In this framework, we show
that it is clear how the output SNR is bounded, how we can
design a filter to reach this bound, and how we can design
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filters with lower output SNRs that instead give lower or no
distortion of the desired signal. In some of the filter designs,
a tuning parameter is available, which directly enables trading
off noise reduction for a lower distortion of the desired signal.

The remainder of this paper is organized as follows. In
Section II, the basic signal model is introduced and the speech
enhancement problem is stated, after which the linear filtering
approach with a rectangular filtering matrix is introduced in
Section III. Then, in Section IV, some performance measures
are introduced and used to analyze and bound the performance
of the enhancement filters. In Section V, various optimal
rectangular filtering matrices are derived. These include the
maximum SNR, Wiener, and MVDR filters as well as two
tradeoff filters. The performance and properties of these filters
are then studied in Section VI for the case of periodic signals,
a class of signals to which voiced speech belongs. Finally,
some results obtained for real speech signals are presented in
Section VII, and Section VIII concludes on the work.

II. SIGNAL MODEL AND PROBLEM FORMULATION

The signal enhancement (or noise reduction) problem con-
sidered in this work is one of recovering the desired signal (or
clean signal) x(k), with k being the discrete-time index, from
the noisy observation (sensor signal):

y(k) = x(k) + v(k), (1)

where v(k) is the unwanted additive noise, which is assumed
to be uncorrelated with x(k). All signals are considered to be
real, zero mean, broadband, and stationary.

The signal model given in (1) can be put into a vector form
by considering the L most recent successive time samples of
the noisy signal, i.e.,

y(k) = x(k) + v(k), (2)

where

y(k) =
[
y(k) y(k − 1) · · · y(k − L+ 1)

]T
(3)

is a vector of length L, (·)T denotes the transpose of a vector
or a matrix, and x(k) and v(k) are defined in a similar way
to y(k) from (3). Since x(k) and v(k) are uncorrelated by
assumption, the correlation matrix of size L× L of the noisy
signal can be written as

Ry = E
[
y(k)yT (k)

]
= Rx + Rv, (4)

where E[·] denotes the mathematical expectation, and Rx =
E
[
x(k)xT (k)

]
and Rv = E

[
v(k)vT (k)

]
are the correlation

matrices of x(k) and v(k), respectively. The noise correlation
matrix, Rv, is assumed to be full rank, i.e., its rank is equal
to L. In the rest, we assume that the rank of the desired signal
correlation matrix, Rx, is equal to P , where P is smaller
than L. This assumption is reasonable in several applications
such as speech enhancement, where the speech signal can be
modeled as the sum of a small number of sinusoids. In any
case, we can always choose L much greater than P . Then,
the objective of signal enhancement (or noise reduction) is to
estimate the desired signal vector, x(k), or any known linear
transformation of it from y(k). This should be done in such a

way that the noise is reduced as much as possible with little
or no distortion of the desired signal.

Using the well-known eigenvalue decomposition, the de-
sired signal correlation matrix can be diagonalized as [15]

Rx = QxΛxQT
x , (5)

where

Qx =
[

qx,1 qx,2 · · · qx,L

]
(6)

is an orthogonal matrix, i.e., QT
xQx = QxQT

x = IL, with IL
being the L× L identity matrix, and

Λx = diag (λx,1, λx,2, . . . , λx,L) (7)

is a diagonal matrix. The orthonormal vectors
qx,1,qx,2, . . . ,qx,L are the eigenvectors corresponding,
respectively, to the eigenvalues λx,1, λx,2, . . . , λx,L of the
matrix Rx, where λx,1 ≥ λx,2 ≥ · · · ≥ λx,P > 0 and
λx,P+1 = λx,P+2 = · · · = λx,L = 0. Let

Qx =
[

Tx Υx

]
, (8)

where the L × P matrix Tx contains the eigenvectors corre-
sponding to the nonzero eigenvalues of Rx and the L×(L−P )
matrix Υx contains the eigenvectors corresponding to the null
eigenvalues of Rx. It can be verified that

IL = TxTT
x + ΥxΥT

x . (9)

Notice that TxTT
x and ΥxΥT

x are two orthogonal projection
matrices of rank P and L − P , respectively. Hence, TxTT

x

is the orthogonal projector onto the desired signal subspace
where all the energy of the desired signal is concentrated and
ΥxΥT

x is the orthogonal projector onto the null subspace.
Using (9), we can write the desired signal vector as

x(k) = QxQT
xx(k) = Txx̃(k), (10)

where x̃(k) = TT
xx(k) is the transformed desired signal vector

of length P . Therefore, the signal model for noise reduction
becomes

y(k) = Txx̃(k) + v(k). (11)

Fundamentally, from the L observations, we wish to estimate
the P components of the transformed desired signal, i.e., x̃(k).
Thanks to this transformation and the nullspace of Rx, we
are able to reduce the dimension of the desired signal vector
that we want to estimate. Indeed, there is no need to use the
subspace Υx since it contains no desired signal information.
From (11), we give another form of the correlation matrix of
y(k):

Ry = TxRx̃TT
x + Rv = TxΛx̃TT

x + Rv, (12)

where

Rx̃ = E
[
x̃(k)x̃T (k)

]
= TT

xRxTx

= TT
xQxΛxQT

xTx

= diag (λx,1, λx,2, . . . , λx,P ) = Λx̃ (13)

and, obviously, Rx = TxRx̃TT
x = TxΛx̃TT

x .
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III. LINEAR FILTERING WITH A RECTANGULAR MATRIX

From the general linear filtering approach [1], [3], [11],
[16], [12], we can estimate the desired signal vector, x̃(k),
by applying a linear transformation to the observation signal
vector, y(k), i.e.,

z̃(k) = H̃y(k) = H̃ [x(k) + v(k)]

= x̃fd(k) + ṽrn(k), (14)

where z̃(k) is supposed to be the estimate of x̃(k),

H̃ =
[

h̃1 h̃2 . . . h̃P

]T
(15)

is a rectangular filtering matrix of size P × L,

h̃p =
[
h̃p,0 h̃p,1 · · · h̃p,L−1

]T
, p = 1, 2, . . . , P (16)

are finite-impulse-response (FIR) filters of length L,

x̃fd(k) = H̃x(k) = H̃Txx̃(k) (17)

is the filtered transformed desired signal, and

ṽrn(k) = H̃v(k) (18)

is the residual noise. As a result, the estimate of x(k) is
supposed to be

z(k) = Txz̃(k) = TxH̃y(k) = Hy(k), (19)

where

H = TxH̃ =
[

h1 h2 . . . hL
]T

(20)

is the filtering matrix of size L×L that leads to the estimation
of x(k). The correlation matrix of z̃(k) is then

Rz̃ = E
[
z̃(k)z̃T (k)

]
= Rx̃fd

+ Rṽrn
, (21)

where

Rx̃fd
= H̃RxH̃T = H̃TxΛx̃TT

x H̃T , (22)

Rṽrn
= H̃RvH̃T . (23)

We also observe that Rz = TxRz̃T
T
x and tr (Rz) = tr (Rz̃),

where tr(·) denotes the trace of a square matrix. The correla-
tion matrix of z̃(k) or z(k) is helpful in defining meaningful
performance measures.

IV. PERFORMANCE MEASURES

In this section, we define the most useful performance
measures for time-domain signal enhancement in the single-
channel case with a rectangular filtering matrix. We can
divide these measures into two categories. The first category
evaluates the noise reduction performance while the second
one evaluates the desired signal distortion. We also discuss
the very convenient mean-square error (MSE) criterion and
show how it is related to the performance measures.

A. Noise Reduction

One of the most fundamental measures in all aspects of
speech enhancement is the SNR. The input SNR is a second-
order measure which quantifies the level of noise present
relative to the level of the desired signal. It is defined as

iSNR =
tr (Rx)

tr (Rv)
=
σ2
x

σ2
v

,

where σ2
x = E

[
x2(k)

]
and σ2

v = E
[
v2(k)

]
are the variances

of x(k) and v(k), respectively.
The output SNR, obtained from (21), helps quantify the

SNR after filtering. It is given by

oSNR
(
H̃
)

=
tr (Rx̃fd

)

tr (Rṽrn
)

=
tr
(
H̃RxH̃T

)
tr
(
H̃RvH̃T

) (24)

=

∑P
p=1 h̃Tp Rxh̃p∑P
p=1 h̃Tp Rvh̃p

.

The objective is to find an appropriate H̃ to make the output
SNR greater than the input SNR. Consequently, the quality of
the noisy signal will be enhanced. It can be shown that [3]

oSNR
(
H̃
)
≤ max

p

h̃Tp Rxh̃p

h̃Tp Rvh̃p
, (25)

which implies that

oSNR
(
H̃
)
≤ λmax

(
R−1

v Rx

)
, (26)

where λmax

(
R−1

v Rx

)
is the maximum eigenvalue of the

matrix R−1
v Rx. This shows how the output SNR is upper

bounded. It is easy to check that

oSNR (H) =
tr
(
HRxHT

)
tr (HRvHT )

= oSNR
(
H̃
)

(27)

and

oSNR (H) ≤ max
l

hTl Rxhl
hTl Rvhl

. (28)

Fundamentally, there is no difference between H̃ and H. Both
matrices lead to the same result as we should expect.

The noise reduction factor quantifies the amount of noise
being rejected by H̃. This quantity is defined as the ratio of
the power of the noise at the sensor over the power of the
noise remaining after filtering, i.e.,

ξnr

(
H̃
)

=
tr (Rv)

tr
(
H̃RvH̃T

) = ξnr (H) . (29)

Any good choice of H̃ should lead to ξnr
(
H̃
)
≥ 1.
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B. Desired Signal Distortion

The desired speech signal can be distorted by the rectangular
filtering matrix. Therefore, the desired signal reduction factor
is defined as

ξsr

(
H̃
)

=
tr (Rx̃)

tr (Rx̃fd
)

=
tr (Λx̃)

tr
(
H̃TxΛx̃TT

x H̃T
) (30)

= ξsr (H) .

Clearly, a rectangular filtering matrix that does not affect the
desired signal requires the constraint:

H̃Tx = IP , (31)

where IP is the P ×P identity matrix. Hence, ξsr(H̃) = 1 in
the absence of distortion and ξsr(H̃) > 1 in the presence of
distortion. Taking the minimum `2-norm solution of (31), we
get

H̃ =
(
TT

xTx

)−1
TT

x = TT
x . (32)

This solution corresponds to the MVDR filter for the white
noise case (see Subsection V-C).

By making the appropriate substitutions, one can derive the
relationship among the measures defined so far, i.e.,

oSNR
(
H̃
)

iSNR
=
ξnr

(
H̃
)

ξsr

(
H̃
) . (33)

When no distortion occurs, the gain in SNR coincides with
the noise reduction factor.

Another way to measure the distortion of the desired signal
due to the filtering operation is via the desired signal distortion
index defined as

υsd

(
H̃
)

=
E
{

[x̃fd(k)− x̃(k)]
T

[x̃fd(k)− x̃(k)]
}

tr (Rx̃)
(34)

=

tr

[(
H̃Tx − IP

)
Λx̃

(
H̃Tx − IP

)T]
tr (Λx̃)

= υsd (H) .

The desired signal distortion index is always greater than or
equal to 0 and should be upper bounded by 1 for optimal
rectangular filtering matrices; so the higher is the value of
υsd

(
H̃
)

, the more the desired signal is distorted.

C. MSE Criterion

Since the transformed desired signal is a vector of length
P , so is the error signal. We define the error signal vector
between the estimated and desired signals as

ẽ(k) = z̃(k)− x̃(k) = H̃y(k)− x̃(k),

which can also be expressed as the sum of two orthogonal
error signal vectors:

ẽ(k) = ẽds(k) + ẽrs(k), (35)

where

ẽds(k) = x̃fd(k)− x̃(k) =
(
H̃Tx − IP

)
x̃(k) (36)

is the signal distortion due to the rectangular filtering matrix
and

ẽrs(k) = ṽrn(k) = H̃v(k) (37)

represents the residual noise. Therefore, the MSE criterion is

J
(
H̃
)

= tr
{
E
[
ẽ(k)ẽT (k)

]}
(38)

= tr (Λx̃) + tr
(
H̃RyH̃T

)
− 2tr

(
H̃TxΛx̃

)
.

Using the fact that E
[
ẽds(k)ẽTrs(k)

]
= 0, J(H̃) can be

expressed as the sum of two other MSEs, i.e.,

J
(
H̃
)

= tr
{
E
[
ẽds(k)ẽTds(k)

]}
+ tr

{
E
[
ẽrs(k)ẽTrs(k)

]}
= Jds

(
H̃
)

+ Jrs

(
H̃
)
, (39)

where

Jds

(
H̃
)

= tr

[(
H̃Tx − IP

)
Λx̃

(
H̃Tx − IP

)T]
= tr (Λx̃) υsd

(
H̃
)

(40)

and

Jrs

(
H̃
)

= tr
(
H̃RvH̃T

)
=

tr (Rv)

ξnr

(
H̃
) . (41)

We deduce that

Jds

(
H̃
)

Jrs

(
H̃
) = iSNR · ξnr

(
H̃
)
· υsd

(
H̃
)

= oSNR
(
H̃
)
· ξsr

(
H̃
)
· υsd

(
H̃
)
. (42)

From (40)–(42), we observe how the MSEs are related to the
performance measures.

V. OPTIMAL RECTANGULAR FILTERING MATRICES

In this section, we derive the most important rectangular
filtering matrices that can help mitigate the level of the noise
picked up by the sensor signal. We will see how these optimal
matrices depend explicitly on the desired signal subspace and,
in some cases, how the nullspace of Rx is exploited.

A. Maximum SNR

From Subsection IV-A, we know that the output SNR is
upper bounded by λmax

(
R−1

v Rx

)
, which we can consider as

the maximum possible output SNR. Then, it is easy to verify
that with

H̃max =


ς1b

T
max

ς2b
T
max
...

ςPbTmax

 , (43)

where ςp, p = 1, 2, . . . , P are arbitrary real numbers with at
least one of them different from 0, and bmax is the eigenvector
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of the matrix R−1
v Rx corresponding to λmax

(
R−1

v Rx

)
, we

have

oSNR
(
H̃max

)
= λmax

(
R−1

v Rx

)
. (44)

As a consequence, H̃max can be considered as the maximum
SNR filtering matrix. Clearly,

oSNR
(
H̃max

)
≥ iSNR (45)

and

0 ≤ oSNR
(
H̃
)
≤ oSNR

(
H̃max

)
,∀H̃. (46)

The choice of the values of ςp, p = 1, 2, . . . , P is extremely
important in practice; with a poor choice of these values,
the transformed desired signal vector can be highly distorted.
Therefore, the ςp’s should be found in such a way that
distortion is minimized. We can rewrite the distortion-based
MSE as

Jds

(
H̃
)

= tr (Λx̃) + tr
(
H̃RxH̃T

)
− 2tr

(
H̃TxΛx̃

)
= tr (Λx̃) +

P∑
p=1

h̃Tp Rxh̃p − 2

P∑
p=1

λx,ph̃
T
p qx,p.

(47)

Substituting (43) into (47), we get

Jds

(
H̃max

)
= tr (Λx̃) + bTmaxRxbmax

P∑
p=1

ς2p

−2

P∑
p=1

ςpλx,pb
T
maxqx,p (48)

and minimizing this expression with respect to the ςp’s, we
find

ςp =
λx,pb

T
maxqx,p

bTmaxRxbmax
=

λx,pb
T
maxqx,p

λmax

(
R−1

v Rx

) , (49)

where λmax

(
R−1

v Rx

)
= bTmaxRxbmax. Substituting these

optimal values in (43), we obtain the optimal maximum SNR
filtering matrix with minimum desired signal distortion:

H̃max = Λx̃TT
x

bmaxb
T
max

λmax

(
R−1

v Rx

) . (50)

We also deduce that the maximum SNR filtering matrix for
the estimation of x(k) is

Hmax = TxH̃max = Rx
bmaxb

T
max

λmax

(
R−1

v Rx

) . (51)

B. Wiener

If we differentiate the MSE criterion, J(H̃), with respect to
H̃ and equate the result to zero, we find the Wiener filtering
matrix:

H̃W = Rx̃TT
xR−1

y = TT
xRxR−1

y

= TT
x

(
IL −RvR−1

y

)
. (52)

We deduce that the equivalent Wiener filtering matrix for the
estimation of the vector x(k) is

HW = TxH̃W = TxRx̃TT
xR−1

y

= RxR−1
y = IL −RvR−1

y , (53)

which corresponds to the classical Wiener filtering matrix
[1]. It is extremely important to observe that, thanks to the
eigenvalue decomposition and the nullspace of Rx, the size
(P × L) of the proposed Wiener filtering matrix is smaller
than the size (L× L) of the classical Wiener filtering matrix,
for the estimation of the desired signal vector x(k), while the
two methods lead to the exact same result. We deduce that
the optimal Wiener filter for the estimation of x(k − l), l =
0, 1, . . . , L− 1 is

hW,l+1 = R−1
y Rxil+1

=
(
IL −R−1

y Rv

)
il+1, (54)

where il+1 is the (l + 1)th column of IL.
By applying the Woodbury’s identity in (12) and then

substituting the result in (52), we easily deduce another form
of the Wiener filtering matrix:

H̃W =
(
IP + Λx̃TT

xR−1
v Tx

)−1
Λx̃TT

xR−1
v

=
(
Λ−1

x̃ + TT
xR−1

v Tx

)−1
TT

xR−1
v . (55)

The expression is interesting because it shows an obvious link
with some other optimal rectangular filtering matrices as it
will be verified later. We also have

HW = Tx

(
IP + Λx̃TT

xR−1
v Tx

)−1
Λx̃TT

xR−1
v . (56)

If Rv is diagonal, i.e., Rv = σ2
wnIL, the previous expression

simplifies to

HW = Tx (IP + Λx̃)
−1

Λx̃TT
x . (57)

This shows how the desired signal subspace is modified to get
a good estimate of x(k) from y(k) with Wiener.

Property 5.1: The output SNR with the Wiener filtering
matrix is always greater than or equal to the input SNR, i.e.,
oSNR

(
H̃W

)
≥ iSNR.

Obviously, we have

oSNR
(
H̃W

)
≤ oSNR

(
H̃max

)
(58)

and, in general,

υsd

(
H̃W

)
≤ υsd

(
H̃max

)
. (59)

C. Minimum Variance Distortionless Response

The celebrated minimum variance distortionless response
(MVDR) filter proposed by Capon [17], [18] is usually derived
in a context where we have at least two sensors available.
Interestingly, with the signal model proposed in this work, we
can also derive the MVDR with one sensor only by minimizing
the MSE of the residual noise, Jrs

(
H̃
)

, with the constraint
that the desired signal is not distorted. Mathematically, this is
equivalent to

min
H̃

tr
(
H̃RvH̃T

)
subject to H̃Tx = IP . (60)
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The solution to the above optimization problem is

H̃MVDR =
(
TT

xR−1
v Tx

)−1
TT

xR−1
v , (61)

which is interesting to compare to H̃W [eq. (55)]. We deduce
that the MVDR filter for the estimation of x(k) is

HMVDR = Tx

(
TT

xR−1
v Tx

)−1
TT

xR−1
v . (62)

Of course, for P = L, the MVDR filtering matrix degenerates
to the identity matrix, i.e., HMVDR = IL. As a consequence,
we can state that the higher is the dimension of the nullspace
of Rx, the more the MVDR is efficient in terms of noise
reduction. The best scenario corresponds to P = 1. If Rv =
σ2
wnIL, the MVDR simplifies to [19], [11]

HMVDR = TxTT
x . (63)

In this case, signal enhancement consists of projecting y(k)
onto the desired signal subspace. Obviously, with the MVDR
filtering matrix, we have no distortion, i.e.,

ξsr

(
H̃MVDR

)
= 1 and υsd

(
H̃MVDR

)
= 0. (64)

Using the Woodbury’s identity, we can rewrite the MVDR
filtering matrix as

H̃MVDR =
(
TT

xR−1
y Tx

)−1
TT

xR−1
y . (65)

From (65), we deduce the relationship between the MVDR
and Wiener filtering matrices:

H̃MVDR =
(
H̃WTx

)−1

H̃W. (66)

Expression (65) can also be derived from the following rea-
soning. We know that

x(k) = Txx̃(k), (67)

where Tx can be seen as a temporal prediction matrix. Left
multiplying the previous expression by H̃, we see that the dis-
tortionless constraint is H̃Tx = IP . Now, by minimizing the
energy at the output of the filtering matrix, i.e., tr

(
H̃RyH̃T

)
,

with the distortionless constraint, we find (65).
Property 5.2: The output SNR with the MVDR filtering

matrix is always greater than or equal to the input SNR, i.e.,
oSNR

(
H̃MVDR

)
≥ iSNR.

Moreover, we have

oSNR
(
H̃MVDR

)
≤ oSNR

(
H̃W

)
≤ oSNR

(
H̃max

)
. (68)

D. Tradeoff I

In the tradeoff approach [1], [3], we minimize the speech
distortion index with the constraint that the noise reduction
factor is equal to a positive value that is greater than 1.
Mathematically, this is equivalent to

min
H

Jds

(
H̃
)

subject to Jrs

(
H̃
)

= βtr (Rv) , (69)

where 0 < β < 1 to insure that we get some noise
reduction. By using a Lagrange multiplier, µ > 0, to adjoin
the constraint to the cost function and assuming that the matrix

TxΛx̃TT
x + µRv is invertible, we easily deduce the tradeoff

filtering matrix:

H̃T,µ = Λx̃TT
x

(
TxΛx̃TT

x + µRv

)−1
, (70)

which can be rewritten, thanks to the Woodbury’s identity, as

H̃T,µ =
(
µΛ−1

x̃ + TT
xR−1

v Tx

)−1
TT

xR−1
v , (71)

where µ satisfies Jrs

(
H̃T,µ

)
= βtr (Rv). Usually, µ is

chosen in a heuristic way, so that for
• µ = 1, H̃T,1 = H̃W, which is the Wiener filtering matrix;
• µ = 0, the problem in (69) does not have a solution since

(TxΛx̃TT
x + µRv) is not invertible but one can obtain

from (71) that H̃T,0 = H̃MVDR, which is the MVDR
filtering matrix;

• µ > 1, results in a filtering matrix with low residual
noise at the expense of high desired signal distortion (as
compared to Wiener); and

• µ < 1, results in a filtering matrix with high residual
noise and low desired signal distortion (as compared to
Wiener).

Property 5.3: The output SNR with the tradeoff filtering
matrix is always greater than or equal to the input SNR, i.e.,
oSNR

(
H̃T,µ

)
≥ iSNR, ∀µ ≥ 0.

We should have, for µ ≥ 1,

oSNR
(
H̃MVDR

)
≤oSNR

(
H̃W

)
(72)

≤ oSNR
(
H̃T,µ

)
≤ oSNR

(
H̃max

)
,

0 = υsd

(
H̃MVDR

)
≤υsd

(
H̃W

)
≤ υsd

(
H̃T,µ

)
, (73)

and for µ ≤ 1,

oSNR
(
H̃MVDR

)
≤oSNR

(
H̃T,µ

)
(74)

≤ oSNR
(
H̃W

)
≤ oSNR

(
H̃max

)
,

0 = υsd

(
H̃MVDR

)
≤υsd

(
H̃T,µ

)
(75)

≤ υsd
(
H̃W

)
≤ υsd

(
H̃max

)
.

Let us end this subsection by writing the tradeoff filtering
matrix for the estimation of x(k):

HT,µ = Tx

(
µΛ−1

x̃ + TT
xR−1

v Tx

)−1
TT

xΦ−1
v , (76)

which clearly shows how the desired signal subspace should
be modified in order to make a compromise between noise
reduction and desired signal distortion.

E. Tradeoff II

We can also come up with another, and maybe more useful,
tradeoff filter than the classical one by inheriting the principle
behind the MVDR filter in Section V-C. Here, the principle is
used to obtain a filter that minimizes the MSE of the residual
noise, Jrs(H̃), with the constraint that the filter should be
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distortionless with respect to the (P − q)th most dominant
subspace components, i.e.,

min
H̃q

tr
(
H̃qRvH̃T

q

)
subject to H̃qTx,q =

[
IP−q

0q×(P−q)

]
,

(77)

where

Tx,q =
[
qx,1 qx,2 · · · qx,P−q

]
(78)

and 0 ≤ q ≤ P . Obviously, q needs to be an integer, as it
refers to a certain number of columns in Tx. Solving (77)
wrt. the unknown filter response, H̃q yields

H̃T-II,q =

[
IP−q

0q×(P−q)

] (
TT

x,qR
−1
v Tx,q

)−1
TT

x,qR
−1
v . (79)

We can then deduce that the tradeoff filter for the estimation
of x(k) is given by

HT-II,q = Tx,q

(
TT

x,qR
−1
v Tx,q

)−1
TT

x,qR
−1
v . (80)

We can then obtain different filters by using different values
of q which enable us to trade off signal distortion for noise
reduction. Moreover, we observe the following:

• if q = 1 and the noise is white, the tradeoff filter in (80)
resembles the maximum SNR filter in (51), i.e., HT-II,1 =
Hmax;

• if q = P , the tradeoff filter in (80) resembles the MVDR
filter in (62), i.e., HT-II,P = Hmax; and

• if 1 < q < P , a tradeoff filter, HT-II,q , is obtained
that has noise reduction and signal distortion measures in
between those of the maximum SNR and MVDR filters,
respectively.

The tradeoff filter proposed in this section exhibits a smooth
and always increasing/decreasing behaviour in terms of output
SNR and signal distortion index as a function of q. That is,

oSNR(H̃T-II,P ) < oSNR(H̃T-II,P−1) < · · · < oSNR(H̃T-II,1),
(81)

0 = υ(H̃T-II,P ) < υ(H̃T-II,P−1) < · · · < υ(H̃T-II,1). (82)

We note that the tradeoff filter, H̃T-II,q , can attain the maximum
output SNR with a signal distortion bounded by the distortion
of the maximum SNR filter in white Gaussian noise scenarios.
This is opposed to the tradeoff filter in Section V-D which
may never reach the maximum SNR, and it will most likely
introduce much more signal distortion than the maximum SNR
filter. More details and observations on the comparison of the
tradeoff filters can be found in the experimental part of the
paper.

VI. CASE STUDY: PERIODIC SIGNALS

Then, we proceed with a case study of the rectangular
filtering methods proposed in Sec. V. In this study, the
desired signal is assumed to be periodic, which is a valid
assumption for short segments of, e.g., recordings of voiced
speech and musical instruments. As it becomes clear later,
the periodicity assumption enables us to derive closed-form
expressions for the performance measures of the filters that,
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Fig. 1. Plots of (a) the output SNR and (b) the signal reduction factor for
the HMVDR, HW, and Hmax filters as functions of the filter length, L.

eventually, facilitates evaluation of the filters’ performance
without having to estimate any statistics. This is an important
observation since we can then conduct evaluations of the filters
that are not disturbed by estimation errors in the statitistics.
On a side note, the resemblance between the filters proposed
herein and previously proposed filtering methods for periodic
signals [20], [21] also becomes clear from this case study.

When the desired signal is periodic, we can rewrite the
signal model in (1) as

y(k) =

C∑
c=1

(
αce

jcω0k + α∗
ce

−jcω0k
)

+ v(k), (83)

where C is the number of harmonics constituting the periodic
signal, ω0 is the fundamental frequency relating the harmonics,
αc = Ace

jφc , Ac > 0 and φc are the complex amplitude, the
real amplitude and the phase of the cth harmonic, respectively,
and (·)∗ denotes the elementwise conjugate of a scalar, vector
or matrix. The single snapshot, signal model in (83) can be
extended to a vector model as

y(k) = Z(ω0)α + v(k), (84)



8 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. YY, JUNE 28, 2013

20 30 40 50 60 70 80 90 100
8

10

12

14

16

18

20

22

24

26

L

o
S
N
R
(H

)
[d
B
]

 

 

HMVDR
HHLCMV
HW
Hmax
iSNR

(a)

20 30 40 50 60 70 80 90 100
−1

0

1

2

3

4

5

L

ξ s
r(
H
)
[d
B
]

 

 

HMVDR
HHLCMV
HW
Hmax

(b)

Fig. 2. Plots of (a) the output SNR and (b) the signal reduction factor for
the HMVDR, HHLCMV, HW, and Hmax filters as functions of the filter length,
L, when two harmonics are missing.

where

Z(ω0) =
[
Z̄(ω0) Z̄∗(ω0)

]
, (85)

[Z̄(ω0)]:c =
[
1 e−jcω0 · · · e−jcω0(K−1)

]T
, (86)

α =
[
ᾱT ᾱH

]T
, (87)

ᾱ =
[
α1 · · · αC

]T
, (88)

with (·):c denoting the cth column of a matrix, and (·)H
denoting the complex conjugate transpose of a vector or
matrix.

A. Link between MVDR and Harmonic LCMV Filters

In cases where the desired signal is indeed periodic and
the above-mentioned model holds, the matrix Z(ω0) spans
the signal subspace, i.e., range{Z(ω0)} = range{Tx} and we
have that [21]

Tx = Z(ω0)Q, (89)
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Fig. 3. Plots of (a) the output SNR and (b) the signal reduction factor for
the HMVDR, HW, and Hmax filters as functions of the input SNR.

with

Q = PZH(ω0)TxΛ−1
x , (90)

[P]ij =

{
|[α]k|2 , for k = i = j

0, for i 6= j
. (91)

Substituting (89) and (90) into, e.g., the expression for the
MVDR filter in (61), we get

H̃MVDR = Q−1
[
ZH(ω0)R−1

x Z(ω0)
]−1

ZHR−1
x . (92)

This is clearly related to the harmonic LCMV filterbank,
H̃HLCMV, proposed in [20], [21] for fundamental frequency
estimation as

H̃MVDR = Q−1H̃HLCMV. (93)

By means of the framework considered in this paper, the
harmonic LCMV filterbank can be interpreted as a filterbank
estimating the amplitudes of the harmonics in a transform
domain where the inverse transform is Z(ω0):

α̂ = H̃HLCMVy(k). (94)

Adopting the idea of estimating parameters in a transform
domain and applying an inverse transform on those to get an
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Fig. 4. Plots of (a) the output SNR and (b) the signal reduction factor for
the HMVDR, HT-I,µ, HW, and Hmax filters as functions of µ.

estimate of x(k) yields the following version of the harmonic
LCMV filterbank:

HHLCMV = Z(ω0)
[
ZH(ω0)R−1

y Z(ω0)
]−1

ZH(ω0)R−1
y .

(95)

Interestingly, it can be shown that this filterbank is identical
to the corresponding version of the MVDR filterbank, i.e.,

HMVDR = HHLCMV. (96)

B. Performance Evaluation for Periodic Signals

We can also further specify the model of the covariance
matrix of the desired signal, when the desired signal is
periodic. In that case, Rx is given by [22]

Rx = Z(ω0)PZH(ω0). (97)

That is, the covariance matrix of the desired signal is fully
specified by the fundamental frequency, the model order, and
the amplitudes of the harmonics in cases with periodic, desired
signals. If the covariance matrix of the noise is also known
as in, e.g., the white Gaussian noise case where Rv = σ2

vI,
these expressions for the covariance matrices can be inserted in
the expressions for the performance measures of the different
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Fig. 5. Plots of (a) the output SNR and (b) the signal reduction factor for
the HMVDR, HT-II,q , HW, and Hmax filters as functions of q.

filter designs proposed herein to get closed-form performance
measure expressions.

In this way, we evaluated the filters in different scenarios
with periodic signals as described in the following. The so-
obtained results provide insight into how the filters would per-
form for enhancement of, e.g., speech and musical instrument
recordings, as most of such signals can be assumed periodic
for short segments. In these scenarios, we assumed that the
desired signal was periodic, having a fundamental frequency of
ω0 = 0.175 and C = 6 harmonics. The amplitudes of the har-
monics were assumed to be |ᾱ| =

[
1, 0.8, 0.6, 0.3, 0.15, 0.1

]T
.

Using this setup, we first evaluated the MVDR, Wiener, and
maximum SNR filters for different filter lengths, L, and the
results are depicted in Fig. 1. From the figure, we see that the
maximum SNR filter expectedly has the highest output SNR,
but also the highest signal reduction factor, for all different
filter lengths. The Wiener filter outperforms the MVDR filter
in terms of output SNR, but at the expense of signal distortion.
At high filter lengths, the Wiener and MVDR filters have
similar performances. Then, we again investigated the filters’
performance versus the filter lengths, but with two missing
harmonics, i.e., the second and fourth. In this case the rank
of the signal subspace is only P = 8, whereas it was
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Spectrograms for (a) a clean speech signal, (b) the speech signal in noise, and the noisy signals enhanced using the (c) maximum SNR, (d) Wiener,
and (e)–(f) MVDR filters. The MVDR filters were applied with two different assumed model orders, i.e., (e) P = 10 and (f) P = 50.

P = 12 in the previous setup. This means that the MVDR
filter can be designed with fewer constraints compared to the
HLCMV filter, while still being distortionless. Effectively, this
should leave more degrees of freedom in the filter for noise
reduction. This was also confirmed by our experimental results
in Fig. 2, where the MVDR filter is shown to outperform
the HLCMV filter in terms of output SNR, while both filters
are distortionless. We then proceeded to evaluate the filters
versus different input SNRs as shown in Fig. 3. An interesting
observation from this experiment is that the Wiener filter has a
higher signal reduction factor than the maximum SNR filter at
low iSNRs, while it also has a lower output SNR. Furthermore,
the MVDR and Wiener filters asymptotically yield the same
performance. Finally, we investigated the performance of the
different tradeoff filters. Both filters are indeed able to trade
off the signal reduction factor for a higher output SNR (see
Fig. 4 and 5). The second tradeoff filter, HT-II,q , seems more
efficient in doing this, though, as both its output SNR and
signal reduction factor are bounded by those of the maximum
SNR and MVDR filters. This is opposed to the first, classical
tradeoff filter, which never attains the output SNR of the

maximum SNR filter, and it introduces even more distortion
than the maximum SNR filter.

VII. EXPERIMENTAL STUDY

In this section, we present the evaluation of the maximum
SNR, Wiener, and MVDR filters on real-life speech. This
is to verify that the filters are indeed applicable on real-
life signals, and that the relations between the performance
measures of the different filters hold. For this experiment,
we used a 2.4 seconds long, female, speech excerpt from the
Keele database [23], with the spectrogram shown in Fig. 6a.
Then, we added white Gaussian noise to the speech signal so
the average input SNR was 10 dB, and the maximum SNR,
Wiener and MVDR filters were applied to the noisy, speech
signal. The spectrogram of the noisy signal is shown in Fig.
6b. To design the filters at each time instance, we used outer
product averaged, statistics estimates obtained from the past
400 samples. The length of the filters was L = 128, the
maximum SNR filter was designed with P = 50, and the
MVDR filter was designed with both P = 10 and P = 50.
Using this setup, the filters were designed and applied for
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Fig. 7. Plots of the (a) output SNRs and (b) signal reduction factors of
the maximum SNR filter (P = 50), the Wiener filter, and the MVDR filter
(P = 10 and P = 50) obtained from an experiment with real, female speech
in white Gaussian noise at an input SNR of 10 dB.

enhancement, and the resulting spectrograms of the enhanced
signals, output SNRs and signal reduction factors are depicted
in Figs. 6 and 7. Note that since we get a vector of time-
consecutive speech estimates at every time instance, these
vectors will be overlapping for one time instance and the
following. For one time instance, the final speech estimate
is therefore obtained from all vectors containing a speech
estimate related to this time instance by averaging those
estimates.

From the plots, we first of all observe that all filters improve
the SNR. Our informal listening tests also confirmed this.
Secondly, the output SNR and signal reduction factor of the
MVDR filter depends heavily on the choice of P which is not
known in practice. In this experiment, we just used a fixed P ,
whereas it is known to be time-varying in practice. In most
cases, the MVDR filter seems to give a lower signal reduction
factor than the Wiener filter, especially so for P = 50. The
maximum SNR filter yields the highest output SNR but also
gives by far the most signal distortion. This was also confirmed
by listening. The maximum SNR filter should therefore be
regarded as the filter setting a bound on the output SNR
rather than a competitor in practical solutions. The above
observations are also consistent with the spectrograms of the
enhanced signals.

VIII. CONCLUSIONS

In this paper, a new class of optimal filters for speech
enhancement has been introduced. These are derived based on
the ideas of subspace-based speech enhancement methods so
that the observed signal is projected onto the signal subspace
after which filtering is performed. By doing this, additional
degrees of freedom are achieved in the filter, which means
that filters derived this way have the potential to achieve
improved output SNRs compared to traditional approaches.
In this framework, a number of classical as well as some new
filters have been derived. With the new filters, it is possible
to trade off signal distortion for better noise reduction. The
results confirm that this is indeed the case for both synthetic,
periodic signals and real speech signals. In fact, it is possible
to seamlessly achieve the maximum output SNR at the cost
of speech distortion.
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