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REDUCING THE COMPUTATIONAL COMPLEXITY OF RECONSTRUCTION IN
COMPRESSED SENSING NONUNIFORM SAMPLING

Ruben Grigoryan, Tobias Lindstrøm Jensen, Thomas Arildsen and Torben Larsen

{rug, tlj, tha, tl}@es.aau.dk
Department of Electronic Systems, Aalborg University

ABSTRACT

This paper proposes a method that reduces the computational

complexity of signal reconstruction in single-channel nonuni-

form sampling while acquiring frequency sparse multi-band

signals. Generally, this compressed sensing based signal ac-

quisition allows a decrease in the sampling rate of frequency

sparse signals, but requires computationally expensive recon-

struction algorithms. This can be an obstacle for real-time ap-

plications. The reduction of complexity is achieved by apply-

ing a multi-coset sampling procedure. This proposed method

reduces the size of the dictionary matrix, the size of the mea-

surement matrix and the number of iterations of the recon-

struction algorithm in comparison to the direct single-channel

approach. We consider an orthogonal matching pursuit recon-

struction algorithm for single-channel sampling and its mod-

ification for multi-coset sampling. Theoretical as well as nu-

merical analyses demonstrate order of magnitude reduction in

execution time for typical problem sizes without degradation

of the signal reconstruction quality.

Index Terms— compressed sensing, multi-coset sam-

pling, nonuniform sampling, reconstruction algorithm

1. INTRODUCTION

Signals generally must be sampled at the Nyquist rate, other-

wise aliasing will prevent correct reconstruction of the signal.

However, if we narrow the scope of signals to frequency

sparse signals, we can successfully apply sub-Nyquist rate

sampling [1, 2]. This type of signal acquisition assumes

that the number of the obtained samples (measurements) is

lower than the number of Nyquist rate samples. Frequency

sparsity implies that the energy of a signal is concentrated in

small joint or disjoint parts (i.e. bands or individual tones)

of the spectrum. If sub-Nyquist rate sampling is possible,

then cheaper analog front ends may be used, or signal acqui-

sition can be accelerated. Sub-Nyquist sampling has evolved

from bandpass sampling to various compressed sensing (CS)

architectures such as the random demodulator [3], the nonuni-

form sampler [4], the multi-coset sampler [2, 5, 6] and the

modulated wideband converter [7].

The key idea of CS is to use advanced reconstruction pro-

cedures to compensate for the lack of measurements. In the

language of linear algebra, the process of the CS signal recon-

struction is the process of solving an under-determined linear

system with fewer equations than unknowns. The concept of

sparsity is used to establish the rules under which a unique

signal reconstruction is possible [8]. By contrast to CS, tradi-

tional Nyquist rate sampling corresponds to a system with the

isometric matrix that can be easily solved.

An obstacle for real-time CS applications is the high com-

plexity of reconstruction [4]. Therefore, it is important to find

ways to reduce the computational costs of signal recovery.

There are two main groups of reconstruction algorithms [9]:

1) greedy algorithms which find the dominant components of

the solution; and 2) relaxation methods which solve convex

(such as �1-minimization) and non-convex problems.

In this paper, we propose a method that reduces compu-

tational complexity of signal reconstruction in single-channel

nonuniform sampling (SC-NUS). SC-NUS is one of the CS

approaches that can be used for acquisition of frequency

sparse signals. SC-NUS selects samples from a Nyquist grid

and uses them to recover the whole Discrete Fourier Trans-

form (DFT) of the Nyquist rate samples. Frequency sparse

signals that can be acquired with SC-NUS may have both in-

dividual tones and bands. However, in some applications such

as telecommunications, the energy of a signal is concentrated

in a small number of bands rather than in a large number of

independent tones. In this case, a multi-coset sampler (MCS)

architecture is beneficial [2, 5, 6]. MCS also selects samples

from a Nyquist grid, but does it periodically. Assume that a

real-valued multi-band signal has to be sensed with SC-NUS

with the predefined undersampling ratio. That can be done

in two ways: 1) in the direct SC-NUS manner; and 2) in the

MCS manner. We show that the computational complexity

of the signal reconstruction in MCS is lower than in direct

SC-NUS. This reduction of complexity is the result of two

factors. First, the size of the measurement and the dictionary

matrices in MCS is smaller than the size of the correspond-

ing matrices in SC-NUS. Secondly, the number of iterations

performed by the reconstruction algorithms in MCS is lower

than the number of iterations in SC-NUS reconstruction. On

the whole, we reduce the number of arithmetical operations
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that are performed at the reconstruction stage. Numerical

simulations show that this reduction of computational com-

plexity does not decrease the reconstruction quality. In this

paper, we consider the Orthogonal Matching Pursuit (OMP)

algorithm for SC-NUS and its modification for MCS. A noise

free scenario is assumed for simplicity, but the method can

also be applied to the noisy case.

A related method is presented in [4], where the authors

propose to jointly reconstruct a set of sequentially sampled

signals. However, this method works well only if the po-

sitions of tones and bands do not change significantly. In

[10], the authors pointed out that reconstruction in the modu-

lated wideband converter requires fewer FLoating-point OP-

erations (FLOP) than reconstruction in the random demodu-

lator. Our proposed method extends this observation.

The outline of the paper is as follows. In Section 2, we de-

scribe single-channel nonuniform and multi-coset sampling,

and present the main idea of the paper. Analytical and simu-

lation results are shown in Section 3. We conclude the paper

in Section 4.

2. SAMPLING SCHEMES

2.1. Single-channel nonuniform sampling

SC-NUS acquires only some of the Nyquist rate samples. In

the reconstruction procedure, these measurements are used to

recover the DFT of samples as they would be acquired at the

full Nyquist rate. Therefore, we decrease the average sam-

pling rate below the Nyquist rate. The process of sampling is

illustrated in Fig. 1(a). In total, there are N = 14 Nyquist rate

samples, and only M = 8 of them are acquired by SC-NUS.

The so-called sampling pattern Λ defines which samples are

obtained. In SC-NUS, the relation between the measurements

and the unknown DFT is

y = A·x = D·FN ·x; (1)

where y ∈ R
M×1 is a vector of the acquired samples, D ∈

Z
M×N is the decimation (measurement) matrix that corre-

sponds to the sampling pattern, FN ∈ C
N×N is the DFT

(dictionary) matrix of order N , and x ∈ C
N×1 is the unknown

DFT of the Nyquist rate samples. The vector x is assumed to

be sparse with K1<M non-zero elements. The support S is

the set of indices of these non-zero elements.

The OMP algorithm [9] can be used to recover the un-

known input signal in SC-NUS. A reconstruction with OMP

is performed in two steps: 1) OMP finds the support S of x
(see Algorithm 1); 2) the actual values of x in the support are

obtained with the least squares method applied to y ≈ AS·xS .

The symbol S in the superscript and in the subscript denotes

the column and the row restriction of the matrix and the vec-

tor, respectively. In Algorithm 1, we utilize the fact that real-

valued signals have conjugate-symmetric DFT [6].

(a) Direct single-channel nonuniform sampling, the SC-

NUS pattern Λ = {0, 3, 4, 6, 7, 8, 10, 13}.

(b) Multi-coset sampling, the MCS period L=7, the num-

ber of MCS periods W = 2, the number of sampling chan-

nels P =4, the MCS pattern Λ = {0, 1, 4, 6}.

Fig. 1. Illustration of SC-NUS and MCS, the Nyquist grid is

marked with the dotted lines.

2.2. Multi-coset sampling

MCS also selects the Nyquist rate samples but does it

periodically [2, 5, 6]. The principle behind MCS is to

use several parallel uniform samplers. These samplers ac-

quire signal’s values at the same rate but with different

time offsets. The offsets are defined by the MCS pattern

Λ = {λ1, . . . , λP } ⊂ {0, 1, . . . , L − 1}}. MCS can be

seen as a time-interleaved sampler with P out of L chan-

nels. Accordingly, only P samples are selected from every

bunch of L consecutive Nyquist-rate samples. L is called the

MCS period. The process of MCS is illustrated in Fig. 1(b)

where W =2 MCS periods are shown. Denote by zp,w ∈ R,

p ∈ {1, 2, . . . , P}, w ∈ {1, 2, . . . ,W} the wth output sample

of the pth sampling channel. In discrete MCS, the relation be-

tween the measurements and the unknown DFT is described

with the following equation [2, 5, 6]:

Y = B·X (2)

where Y ∈ C
P×W is the known measurements,

Y =

⎛
⎜⎝

FW ([z1,1 · · · z1,W ]T)
...

FW ([zP,1 · · · zP,W ]T)

⎞
⎟⎠ ◦

⎛
⎜⎝
δ1,1 . . . δ1,W

...
. . .

...

δP,1 . . . δP,W

⎞
⎟⎠ (3)

δp,w = exp

[−2πj · λp · (w − 1)

LW

]
, (4)

the matrix B ∈ C
P×L is the known matrix that comprises

both the measurement and the dictionary matrices. The ele-

ments of B are given by:

Bp,� =
1

L·T exp

[
j
2π

L
· λp · �

]
(5)
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Algorithm 1 Find the support S of x with OMP [9]

Input: y ∈ R
M×1,A ∈ C

M×N ,K1 ∈ N

Output: S ∈ N
K1
1

1: S ← ∅, r ← y, k ← 0
2: for k = 1 to �K1/2	 do
3: imax ← argmaxi∈{1,...,N}\S〈a∗i , r〉
4: isym ← N − imax + 1
5: S ← S ∪ {imax, isym}
6: Q ← Gram-Schmidt(AS)
7: r ← r − Q·Q∗ ·r
8: end for

and X ∈ C
L×W represents the unknown input signal, p ∈

{1, 2, . . . , P}, w∈{1, 2, . . . ,W}, �∈{1, 2, . . . , L}. The ma-

trix X is assumed to be sparse with K2 < P non-zero rows.

In (3), FW ([zp,1 · · · zp,W ]T) is DFT of the samples obtained

from the pth sampling channel, ◦ denotes the Hadamard prod-

uct and δp,w represents the delay of the wth DFT bin in the

pth sampling channel. The Nyquist sampling period T de-

pends on the highest frequency component in the input signal.

In total, the duration of the observed signal equals to LWT .

Consider the matrix X. If the unknown DFT of the input sig-

nal is sliced into L equal parts, then each row of X is one of

these consecutive slices [2, 5, 6]. Signals with a few bands in

the spectrum may result in a highly sparse X.

Reconstruction with a greedy method for MCS is simi-

lar to the reconstruction for SC-NUS. We use the M-OMP

algorithm that is the modification of OMP for multiple-

measurement vectors problem [11]. M-OMP finds the sup-

port S, the indices of non-zero rows, of X (see Algorithm 2).

Knowing the support, we can reconstruct the unknown signal

with the least squares method similar to the SC-NUS case.

2.3. Multi-coset reconstruction in single-channel nonuni-
form sampling

Consider the sampling scenario where SC-NUS acquires

multi-band signals. This can be done in two ways: 1) by the

direct single-channel sampling that is described by (1); and

2) SC-NUS can select samples from the Nyquist grid in the

same way as MCS. Therefore, SC-NUS can emulate MCS. In

this case, the reconstruction problem (1) is replaced by (2).

The notable thing is that the reconstruction in MCS has

lower computational complexity than the reconstruction in the

direct SC-NUS. This reduction of the complexity is the result

of two factors:

(1) in MCS, measurement and dictionary matrices are

smaller than the corresponding matrices in SC-NUS; in

other words, A ∈ C
M×N is replaced by B ∈ C

P×L

where P  M and N  L.

(2) in MCS reconstruction, the number of iterations per-

formed by the reconstruction algorithm is lower than

the number of iterations in the SC-NUS reconstruction.

This happens due to the fact that usually K2  K1.

Algorithm 2 Find the support S of X with M-OMP [11]

Input: Y ∈ C
P×W ,B ∈ C

P×L,K2 ∈ N1

Output: S ∈ N
K2
1

1: S ← ∅, R ← Y, k ← 0
2: for k = 1 to �K2/2	 do
3: imax ← argmaxi∈{1,...,L}\S ‖b∗

i ·R‖22
4: isym ← L− imax + 1
5: S ← S ∪ {imax, isym}
6: Q ← Gram-Schmidt(BS)
7: R ← R − Q·Q∗ ·R
8: end for

The drawback of the proposed method is a decrease in the fre-

quency support resolution. SC-NUS can reconstruct an indi-

vidual DFT bin, whereas MCS can reconstruct only the whole

frequency slice. This trade-off between the support resolution

and the reconstruction complexity is out of the scope of the

current paper and will be considered in our future research.

2.4. Complexity analysis

By computational complexity of a procedure we assume

the number of FLOPs performed in this procedure, and by

one FLOP we assume an arithmetic operation performed on

two real floating-point numbers. Then, the complexity of the

reconstruction in SC-NUS is

CSC-NUS = CSC-NUS
OMP + CSC-NUS

Least Squares, (6)

and the complexity of the MCS reconstruction is described

with

CMCS = CMCS
(3) + CMCS

M-OMP + CMCS
Least Squares, (7)

where CMCS
(3) denotes the complexity of the calculations (3).

Assume that we use SC-NUS and MCS to recover the DFT of

the Nyquist rate samples of a multi-band signal. The num-

ber of the samples is equal to N = LW with W ∈ N1,

SC-NUS and MCS are used with the same undersampling ra-

tio M/N = PW/(MW ) = P/L and the frequency bands

in a signal are aligned with the MCS frequency slices. We

say that a band is aligned with a frequency slice if it occu-

pies the whole slice (see Fig. 2). One MCS slice comprises

W DFT bins. If F is the number of bands in the signal,

then the number of non-zero elements of x in (1) is equal to

K1 = 2FW , where the factor 2 appears due to the symmetry

of DFT. At the same time, F bands result only in K2 = 2F
non-zero rows of the matrix X in (2). Knowing the values

of M,N,P, L,W,K1 and K2, we can compute the complex-

ity of the reconstruction in SC-NUS and MCS. For example,

consider the complexity of the stage 3 in Algorithm 1 and

Algorithm 2. For OMP, this number is

COMP
Stage 3 � (8M − 2)

K1/2∑
i=1

(N − 2(i− 1))

� 8PF (L− F + 1/W )W 3, (8)
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and for M-OMP

CM-OMP
Stage 3 � (8PW − 2)

K2/2∑
i=1

(L− 2(i− 1))

� 8PF (L− F + 1)W, (9)

The ratio between these two numbers is

COMP
Stage 3/C

M-OMP
Stage 3 � W 2, (10)

K1 and K2 are even due to the fact that we consider real-

valued signals. So, for this stage, the reduction in complexity

is the quadratic function of the number W . In MCS, the addi-

tional computations (3) have to be made prior to reconstruc-

tion. However, they have only O(W log(W )) cost. On the

whole, the direct counting shows that the MCS reconstruc-

tion requires fewer arithmetic operations than the SC-NUS

reconstruction (see Section 3). This counting done using the

code that computes the complexity according to (6) and (7).

The parts of the code that calculate the costs of the standard

operations, such as a matrix multiplication, a QR factoriza-

tion and a backward substitution, are validated by comparison

with the theoretical complexity available in the literature. The

least squares solutions are obtained via QR factorization.

In (10), we assume that SC-NUS and MCS operates with

the same undersampling ratio M/N = P/L. That is, we

assume that the same sampling ratio results in the same re-

construction quality for both MCS and SC-NUS. We check

this assumption with the numerical simulations.

3. NUMERICAL SIMULATIONS

The two analyzed signal acquisition methods were imple-

mented and benchmarked in MATLAB.1 In order to have a

well defined number of arithmetic operations, a standard and

naı̈ve implementation of QR factorization and a least squares

solver have been made [12]. Benchmarking is performed to

make an overall numerical evaluation of the potential recon-

struction speed-up in MCS compared to the direct SC-NUS.

3.1. Simulation setup

We consider simulation scenarios with multi-band frequency

sparse signals. The signals are noise-free, real valued and

generated in the time domain as N samples such that N =
LW . The highest frequency component of a signal does not

exceed fmax. All bands in a signal have the same bandwidth,

B. The average sampling rate fsamp is varied from 2fmax/L
to the Nyquist rate fNyq = 2fmax in steps of 2fmax/L. This

shows how the reconstruction quality depends on the sam-

pling rate. The reconstruction quality of one test signal is

1The source code is available online at http://www.sparsesampling.

com/discretemulticoset/.

Fig. 2. Absolute DFT values versus frequency for an illustra-

tive test signal with F = 2, L = 19, N = 494, K1 = 104
and K2 = 4. The vertical grid lines correspond to the MCS

frequency slices.

measured with the relative root mean squared error:

E =

⎧⎨
⎩
√
‖ x̂ − x‖22/‖x‖22,

√
‖ x̂ − x‖22/‖x‖22 < 1

1, otherwise
(11)

where x and x̂ denote the original and recovered DFT coeffi-

cients, respectively. It is useless to consider the values of E
greater than 1. Due to the possible spectrum leakage effect,

the vector x is not completely sparse but rather compress-

ible. Therefore, we cannot necessarily expect the error E to

converge to zero in our simulations. An example of a test

signal with F = 2 bands is illustrated in Fig. 2. The maxi-

mum frequency component is less than fmax = 5 MHz and

the Nyquist rate is fNyq = 10 MHz. The duration of the sig-

nal corresponds to N = 494 Nyquist rate samples which is

49.4 μs. The bands are placed randomly but always in the

centers of the frequency slices. We choose L to be a prime

number according to [9]; we use L = 19. The width of a

frequency slice is thus 2fmax/L � 526 kHz. The bandwidth

of the individual bands of a test signal is set to B = 486 kHz.

Such a bandwidth together with the spectrum leakage effect

results in full occupation of the spectrum slice. The power

of the individual bands are picked randomly over a dynamic

range of 20 dB. It is assumed that the numbers K1 and K2

in Algorithm 1 and Algorithm 2 are known prior to the re-

construction of every signal. Otherwise, the performance of

OMP and M-OMP are limited by methods chosen to evalu-

ate the number of non-zero elements in the solution. This

can distort the assessment. Simulations were performed for

F = {1, . . . , 6} bands in the test signals. For every number

of bands, we generate 1000 signal instances which was shown

to ensure convergence of the results.

Selection of proper sampling patterns is itself a nontriv-

ial problem. However, in case of noise free signals random

sampling patterns work well for both SC-NUS and MCS [5].

The benchmarks were performed on a computer with an Intel

X5670 2.93 GHz CPU running MATLAB R2012a.
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Fig. 3. Simulated average reconstruction error in SC-NUS

and MCS versus average sampling rate. The number of bands

is F = 4.

3.2. Reconstruction speed-up

As can be seen in Fig. 3, the proper reconstruction quality is

achieved with the same sampling rate for both SC-NUS and

MCS. By the proper quality, we mean the error-floor value of

E resulting from spectrum leakage which does not depend on

the sampling rate. This holds true for all F and ensures that

the replacing SC-NUS by MCS does not degrade the recovery

quality.

The theoretical and the benchmarked reconstruction

speed-up are presented in Fig. 4. The benchmarked speed-up

is the average value of the ratio of the benchmarked signal

recovery time in SC-NUS to that in MCS. The theoretical

speed-up is the ratio CSC-NUS/CMCS. As can be seen from the

figure, the benchmarked speed-up is 4 − 7 times lower than

the theoretical speed-up. This can be explained by the fact

that in the theoretical analysis, we disregard some practical

issues such as the memory organization, the processor archi-

tecture and the cost of the auxiliary operations. Nevertheless,

we do see the same behavior of the theoretical and benchmark

speed-up.

4. CONCLUSIONS

This paper proposed a method that decreases the computa-
tional complexity of the reconstruction procedure in com-
pressed sensing single-channel nonuniform sampling. We
consider sampling of multi-band real-valued signals in noise
free environment. The core idea of the proposed method
is to use the multi-coset sampling approach. The drawback
of the proposed method is the reduced frequency support
resolution which may be acceptable in many applications.
Depending on the number of bands in a signal, the number
of arithmetic operations in the signal reconstruction stage is
observed to decrease by the orders of magnitudes of 103 to
104. In addition, the proposed method does not degrade the
reconstruction quality in the tested cases.
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