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Abstract - Clustering algorithms are widely used methods 
for organizing data into useful information. The Competitive 
Agglomeration for Relational Data (CARD) Algorithm is one 
such clustering algorithm that is designed to organize user 
sessions into profiles, where each profile would highlight a 
particular type of user.  The CARD algorithm is a viable 
candidate for web clustering; however, it does have limitations 
such as an extended execution time. In addition, the methods 
that prepare the input data for the CARD algorithm’s use 
employs concepts which seem to be incomplete. These 
limitations of the CARD algorithm are explored and 
modifications are introduced to yield a more practical and 
efficient algorithm.

I. INTRODUCTION

 As the World Wide Web has grown in size, an 
immense amount of data has been produced.   If this data is 
not retrieved and organized correctly then the information 
that the data can provide is essentially wasted.  Users often 
become frustrated because they are certain that the 
information that they are looking for is on a particular 
website, but the website is so large that it is almost 
impossible to find the information.  In this case, an adaptive 
website can become very helpful.  This website would 
follow the clickstream of the user.  That is, the website will 
keep account of web pages that the user is looking at, and 
recommend other pages that previous users found useful.
         The website will implement this adaptability by 
having a database of typical user profiles.  A user profile is 
defined as an “abstract model that summarizes the 
relevance of each URL on a site relative to a group of users 
sharing a similar interest [2].”   The user profile will be 
characterized by previous user sessions.  A user session is a 
set of web pages that a user examined within a specified 
time period.  To organize the user sessions into profiles, the 
website administrator could examine each user session and 
manually place them into profiles.  However, this is 
unrealistic for many reasons, for instance, many web sites 
have millions of users accessing it daily and it is impossible 
to find patterns by mere manual examination.  Therefore, 
we can easily see that an unsupervised clustering algorithm 
is an attractive choice for clustering user sessions into 
profiles of several types of typical users since it relies on 
user access patterns and is capable of examining large 
amounts of data in a fairly reasonable amount of time [1]. 

 Although the CARD algorithm has found useful user 
profiles in prior publications, there are several assumptions 
made during the implementation of the algorithm that are 
questionable [1].  For example, when the relational data is 
being formed, URL paths of HTML documents are 
compared.  We propose comparing web pages with an 
algorithm that will scan the title of the page, and then scan 
for keywords.  The keywords of the two documents will 
then be compared and a similarity in the range of [0, 1] will 
be found.  A comparison will then be implemented to find 
whether the new clusters that result from the modified data 
are more valid.   
 In addition, the original algorithm takes a large amount 
of time to run.  From our initial experiments with 1800 web 
sessions, the algorithm took approximately 6 hours to run.  
We will analyze methods to decrease the execution time of 
the algorithm when run serially, and also implement the 
algorithm in a parallel computing environment.  The 
algorithm easily lends itself to parallel computation since it 
is primarily based on matrix mathematics. 

II. COMPETITIVE AGGLOMERATION FOR RELATIONAL DATA
ALGORITHM

 The CARD algorithm is characterized by equation (1):  
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 where X = {xj |  j = 1,…N} is a set of N vectors and B = 
( 1,…  c)  corresponds to C-tuple prototypes, where each 
prototype characterizes a cluster.   In (1), d2(xj ,  i)
represents the distance from the feature vector xj  to the 
cluster i  and uij represents the membership of the point xj

to the cluster i.   The first term given in the equation 
controls the size and the shape of the clusters.  The second 
term controls the number of clusters [1].   
 To prepare data for the CARD algorithm, clustering 
user sessions requires the use of relational data, which can 
be represented by a matrix of similarities between each 
session to all other sessions.   To define this similarity 
matrix of size Ns x Ns (where Ns is the number of user 
sessions) we first assume that each session is defined by a 
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vector known as s which has size Nurl (where Nurl is the 
number of URLs) .  Each entry contained in the vector can 
either contain a 1 or 0 depending on whether ith URL was 
visited during the particular user session.  Thus, the relation 
between two user sessions can be found by applying 
equation (2), which is essentially then number of identical 
URLs between the two sessions related to the number of 
URLs used in both sessions [1]. 
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 Equation (2) relies on the fact that only identical URLs 
between sessions are considered.    However, two web 
pages might not have the same URL but may have quite 
similar content or usage, to take this into account, syntactic 
similarity can be used.    This syntactic similarity is known 
as Su, and is displayed in equation (3) [1].  

)1),max,1max
,1min),(

ji

ji
u pp

pp
jiS

       (3) 

 This similarity will lie between [0,1].   For instance the 
web page www.cs.siu.edu/~cs491-3/index.html and the 
web page www.cs.siu.edu/materials.html would have a 
syntactic similarity of 0.5.  This syntactic similarity is then 
incorporated into the intersession similarity equation to 
form the updated equation (4). 
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 However, it can be shown that when the syntactic 
similarities are low S1 is a better approximation of session 
similarity and then the syntactic similarities are high S2 is a 
better approximation.  Therefore to get the optimal 
similarity measure past research suggests that the maximal 
result of the two equations should be taken as Skl , as shown 
in equation (5). 

   ),max( ,2,1 klklkl SSS            (5) 

For further information concerning the CARD algorithm 
please refer to [1]. 

III. IMPROVING CLUSTERING: THE FIRST MODIFICATION

A. Theory  
 As stated previously, finding Su by comparing URL 
paths can be problematic, in the sense that simply because 
two web pages are in the same directory structure does not 

guarantee that they will have similar content.  I proposed 
comparing each document to all other documents and 
finding a keyword similarity that will be added to the 
similarity found in (3).   The proposed keyword similarity 
is given in (6) 
                  

                   
                       (6) 

UniqKey identifies the number of matching keywords 
between two documents i and j.  The identifier keyk

(i)

represents the number of occurrences of keyword k in 
document i.  Therefore in the numerator of (6), a running 
total of the minimum occurrences of matching keywords in 
the compared documents is taken.  The denominator of (6) 
is simply the number of occurrences of all keywords 
occurring in documents i and j.  This equation has the 
attractive property that Skey(i,i) = 1 and Skey(i,j) = Skey(j,i)
and Skey(i,j) = [0..1].    
 The use of min in the numerator deserves some 
thoughtful consideration.  The idea is that if a keyword 
occurs very seldom in one document and very frequently in 
another document then the two documents must not be very 
similar in general.  In this case it is better to take the 
smaller value of keyword frequency to reflect this 
dissimilarity.  If the average was taken then the fact that 
one document might have a small frequency for one 
keyword and the compared document has a large frequency 
might be masked.   
 Once the keyword similarity is found it is added to the 
similarity found in equation (5) to find a new similarity 
measure given below in equation (7).  When the combined 
values of S and Skey exceed 1, we simply choose 1 as the 
maximum value.  Notice that Skey has been given a weight 
of two thirds and S has been given a weight of one thirds.  
In previous trials Skey was simply added to S, however at 
these times, the clusters formed were too large, because all 
pages had very high similarity measures.  At the same 
instance, however, we want keyword similarity to have 
more weight than the URL similarity so that when 
comparing using only URL weights and URLs and 
keywords weights combined, we see a noticeable difference 
in cluster size and shape. 

)1,3/)2*min(( keyukey SSS             (7) 

B. Implementation 
 During keyword parsing the Porter Stemming 
Algorithm is used.  The purpose of this algorithm is to 
remove suffixes that can cause keywords to seem different 
when they actually have the same meaning.  By using this 
algorithm the performance of the keyword system will 
improve, and will also be less complex, because there will 
be less keywords per document [7].    The algorithm used is 
taken from the URL 
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http://www.tartarus.org/~martin/PorterStemmer/java.txt. 
After all keywords are found, keyword similarity is 
generated and added to the URL similarity mentioned 
previously. 
 We should keep in mind that the keyword algorithm 
that was used is not the most state of the art keyword 
processing algorithm that can be found.  It simply considers 
words between certain html tags (such as <p>, <a>, <title>, 
<b> and <i>), gleans out words such as possessives, articles 
and commonly found scripting terms and then stems these 
words.  No document term frequency is found.  More 
advanced keyword processing was not possible due to time 
constraints.  However with further research enhanced 
keyword processing should give enhanced results. 

C.  Results  
 1)  Performance:  One of the key points of concern 
when adding keyword similarity to the generation of 
similarity data using URL syntactic similarity is that this 
process will add too much execution time to the overall 
algorithm. Although this computation did incur additional 
execution time, this time was negligible.  For instance 
before intersession similarity can be found using keywords, 
the actual keywords must be parsed from the html 
documents that have been referenced by the users.  With 
1116 user sessions and 2151 html documents it took 
approximately 40 seconds to find all keywords.  After all 
keywords have been found, then the keywords can be used 
to find intersession similarity. The time between finding 
intersession similarity when using just URLs and when 
using URLs and keywords to generate intersession 
similarity is also low.  For instance with 1116 user sessions 
and 2151 URLs it took approximately 58 seconds to find 
similarity using URLs and approximately 66 seconds to 
find similarity using URLs and keywords.  Fig. 1 illustrates 
the time differences between using URLs and URLs and 
keywords for different numbers of user sessions. 

2)  Cluster Validity:  Before results of using URL 
similarity and combined URL and keyword similarity can 
be examined, the proper validity measures must be chosen.  
For this paper, the equation that finds clusters is given in 
equation (8).  

CiforijddSsX jkik
k

i 1,|)(   (8) 

 Once we find the clusters using (8), then we find the 
intra-cluster similarity.  This is a cluster validity measure 
that gives the approximate distance between all pairs of 
sessions in a cluster.  The formula used to find the intra-
cluster distance is given in equation (9). 
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 Another useful validity measure for clusters is that of 
URL probability per profile, given in equation (10) [1].   
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Pij represents the probability that URL j will occur in 
cluster i, where cluster i is represented by Xi.  For cluster 
validity, we tend to favor clusters where the intra-cluster 
distance is low and the majority of URL probabilities per 
cluster are high.  If the URL probabilities are high then 
there is a frequent pattern of URL access. A “bad” cluster 
will generally have high intra-cluster distance and low URL 
probabilities.   
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Fig. 1 Time to find intersession similarity using 
just URLs and URLs and keywords 

 3)  Discussion  
 The settings for the CARD algorithm to obtain the 
results were following:  at the beginning of the algorithm 
50 rows of the membership matrix were chosen randomly 
to be the centers of clusters.  The time constant  was set to 
10, the decay constant n0 was set to 0.0002.  A cluster was 
discarded if its cardinality (Ni) was less than 22.0. 
When using URL similarity only, five clusters were 
generated (see Table I).  In the results obtained, cluster 0 is 
primarily referring to Dr. McGlinn’s pages (a computer 
science professor at Southern Illinois University), cluster 
12 is primarily referring to the CS pages and in some 
instances the cs200b web site, cluster 13 is referring to a 
combination of Dr. Wainer’s cs485 class and Mr. Fong’s 
cs311 and cs220 classes (Mr. Fong is a computer science 
instructor).
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TABLE I 
RESULTS WHEN USING URL SIMILARITY

I |Xi| URL Pij DWi

0 310 /~mcglinn/Courses/cs202/index.html 0.50 0.19 
  /~mcglinn/Courses/cs202/home.html 0.46  
  /index.html 0.28  
  /materials.html 0.23  
  /Courses/cs202/labsessions/Coords.html 0.22  
  /Courses/cs202/homework/index.html 0.22  
  /Courses/cs202/labs/index.html 0.20  
  /~mcglinn/Courses/courses.html 0.12  
  /~mcglinn/index.html 0.12  
  /~mcglinn/home.html 0.12  

12 695 /index.html 0.41 0.22 
  /materials.html 0.24  
  /~cs200b-1/index.html 0.13  

13 5 /~wainer/485F04/485F04OL.html 0.40 0.26 
  /materials.html 0.20  
  /index.html 0.20  
  /~wainer/485F04/assign485F04.html 0.20  
  /~wainer/485F04/485HW1F04.html 0.20  
  /~rahimi/flairs05/topics.html 0.20  
  /~rahimi/flairs05/dates.html 0.20  
  /~rahimi/flairs05/cfp.html 0.20  
  /~kfong/index.html 0.20  
  /~kfong/cs311/menu.html 0.20  
  /~kfong/cs311/main.html 0.20  
  /~kfong/cs311/lab_assignments/lab1/index.html 0.20  
  /~kfong/cs311/lab_assignments/index.html 0.20  
  /~kfong/cs311/index.html 0.20  
  /~kfong/cs311/homework/hw3.html 0.20  
  /~kfong/cs220/menu.html 0.20  
  /~kfong/cs220/main.html 0.20  
  /~kfong/cs220/java/index.html 0.20  
  /~kfong/cs220/info.html 0.20  
  /~kfong/cs220/index.html 0.20  

25 47 /computing/unix/tar.html 0.04 0.25 
  /~wainer/guide/guideLocal.html 0.02  

34 58 /~kfong/cs220/index.html 0.26 0.22 
  /~kfong/cs220/menu.html 0.26  
  /~kfong/cs220/main.html 0.24  
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TABLE II 
RESULTS WHEN USING URL SIMILARITY AND KEYWORD SIMILARITY 

i |Xi| URL Pij DWi

0 36 /index.html 0.28 0.19 
  /~cs200b-1/index.html 0.25  
  /materials.html 0.17  
  /~kfong/cs311/index.html 0.17  
  /~kfong/cs311/main.html 0.14  
  /~kfong/cs311/menu.html 0.14  
  /~cs200a-1/index.html 0.11  
  /~cs200b-1/Lab/All_Lab_assignments.html 0.11  

1 75 /~mcglinn/Courses/cs202/index.html 0.81 0.36 
  /~mcglinn/Courses/cs202/home.html 0.71  
  /~mcglinn/Courses/cs202/homework/index.html 0.41  
  /~mcglinn/Courses/cs202/labs/index.html 0.39  
  /~mcglinn/Courses/cs202/labsessions/Coords.html 0.28  
  /~mcglinn/Courses/courses.html 0.17  
  /~mcglinn/Courses/courses.html 0.17  
  /~mcglinn/Courses/cs202/McGlinnSlides/index.html 0.12  

6 94 /~cs200b-1/Class_Assignments/assign3_10_13b.html 0.11 0.12 
  /~cs200b-1/Lab/All_Lab_assignments.html 0.09  

8 20 /~mcglinn/Courses/cs202/index.html 0.95 0.33 
  /~mcglinn/Courses/cs202/home.html 0.95  
  /index.html 0.90  
  /~mcglinn/Courses/cs202/homework/index.html 0.80  
  /~mcglinn/Courses/cs202/labs/index.html 0.60  
  /materials.html 0.60  
  /~mcglinn/Courses/cs202/labsessions/Coords.html 0.55  
  /~mcglinn/home.html 0.40  
  /~mcglinn/index.html 0.40  
  /~mcglinn/Courses/courses.html 0.40  
  /faculty.html 0.35  

9 375 /~kfong/cs220/main.html 0.15 0.14 
  /~kfong/cs220/index.html 0.15  
  /~kfong/cs220/menu.html 0.15  

10 504 /index.html 0.61 0.2 
  /materials.html 0.39  

12 12 /~mcglinn/Courses/cs202/index.html 1.00 0.32 
  /~mcglinn/Courses/cs202/home.html 1.00  
  /~mcglinn/index.html 0.67  
  /~mcglinn/home.html 0.67  
  /~mcglinn/Courses/courses.html 0.58  
  /~mcglinn/Courses/cs202/labs/index.html 0.42  
  /index.html 0.42  
  /~mcglinn/Courses/cs202/labsessions/Coords.html 0.33  
  /materials.html 0.33  
  /~mcglinn/Courses/cs202/JavaInformation/index.html 0.25  
  /~mcglinn/Courses/cs202/homework/index.html 0.25  
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In addition cluster 25 is referring to a UNIX description 
page and cluster 34 is referring to primarily the cs220 
pages.  All of the clusters are valid clusters, in the sense 
that their intra-cluster similarity (DWi) is low and that 
inside the clusters the general URL access pattern is high.
 The only cluster that seems questionable is cluster 
25, where the URL access patterns are very low.  Because 
of the unusually low URL access pattern this cluster 
could be characterized as a collection of unrelated pages, 
more like the leftovers from the other clusters.   
 When using URL and keyword similarity together 
(see Table II), seven clusters are generated.  It seems that 
the clusters from just using URL similarity have been 
broken down into more identifiable clusters when 
incorporating keyword similarity.  For example when 
using URL similarity alone, cluster 0 is primarily 
composed of Dr. McGlinn’s pages and all other clusters 
do not reference these pages.  However when keyword 
similarity, clusters 1, 8, and 12 all reference Dr. 
McGlinn’s pages. 
   The URLs that cause these three clusters to deviate, 
are the following: in cluster 1, the url 
/~mcglinn/Courses/cs202/McGlinnSlides/index.html is 
present, in cluster 8 the two urls /~mcglinn/home.html 
and /~mcglinn/index.html are present, and in cluster 12, 
the two urls ~mcglinn/Courses/cs202/JavaInformation/ 
index.html and /~mcglinn/Courses/cs202/omework/ 
index.html are present.  Table III shows the URL access 
probabilities for the five previously mentioned urls in 
cluster 0 when using URL similarity only and clusters 1, 
8 and 12 when incorporating keyword similarity as well. 
 What appears to be happening is that when using 
keyword similarity the similarity of the URLs given in 
Table 1 is increasing, since these pages share a common 
theme with the other pages in Dr. McGlinn’s web site.   
 This increased similarity gives these URLs a chance 
to compete when the clusters are being formed and lend 
enough similarity that they help delineate the one cluster 
referring to Dr. McGlinn’s web site in Table 1 into three 
separate clusters in Table 2. 
  Another interesting development is that when using 
URL similarity the URLs for cs200b class were simply 
part of a cluster that primarily referred to several types of 
computer science pages in cluster 12, however when 
incorporating keyword similarity the cs200b class has 
been assigned its own cluster. 
 However, using keywords has rewards as well as 
problems.  If we examine the results further, we see that 
when incorporating keyword similarity we often see low 
URL probabilities.  Also, in cluster 0, the url probability 
for URLs index.html and ~cs200b-1/index.html the URL 
probability is reasonable, but the other URLs in the 
cluster do not have very high URL probability.  One very 
possible reason for this is that we were unable to parse 
keywords from all documents.  The session data was 
obtained in Fall 2004 but the CARD Algorithm was not 
fully tested until early Spring 2005. Therefore several 
web pages were already taken off the web, rendering 

them impossible to parse.  In addition, several pages were 
password protected and due to time constraints we were not 
able to gather all of the passwords, therefore we could not 
obtain the HTML source for these pages for parsing.  
Therefore, these pages had no added keyword similarity.  
However, keep in mind that the URL similarity was factored 
in. Therefore in some instances, course web pages will still 
be found together, for instance, although Mr. Fong’s 220 
class was inaccessible for keywords, the pages were still 
clustered together. 

TABLE III 
URL ACCESS PROBABILITIES WHEN USING ONLY URL SIMILARITY AND

WHEN INCORPORATING KEYWORD SIMILARITY

URLs Cluster 0 
Pij

Clusters 1, 
8, 12 Pij

/~mcglinn/Courses/cs202/Slides/index.html 0.040 0.120 
(cluster 1) 

/~mcglinn/home.html 0.120 0.400 
(cluster 8) 

/~mcglinn/index.html 0.120 0.400 
(cluster 8) 

/~mcglinn/Courses/cs202/JavaInfo/index.html 0.030 0.250 
(cluster 12) 

/~mcglinn/Courses/cs202/homework/index.html 0.210 0.250 
(cluster 12) 

IV. PERFORMANCE IMPROVEMENT: THE SECOND
MODIFICATION

A.    Parallel Implementation 
 When clustering user sessions into profiles, the actual 
CARD algorithm is relatively fast.  Most of the time spent in 
execution is during the early data preparation phase.  For 
example (2) and (4), where the session similarity is 
computed, take the majority of time to execute.  However (2) 
and (4) can be simply executed by using for loops.  This 
combination of for loops and matrix mathematics make the 
algorithm easy to implement in parallel.    
 If we look closely at (2) and (4), we can observe that 
s[i][j] = s[j][i].  For example if we find the similarity 
between session 0 and all other sessions yielding the row 
S[0][0..Nurl-1] then on subsequent iterations we will not need 
to find any other session’s similarity to session 0 because this 
has already been computed.  In general when using (2) and 
(4) on a serial computation we only need an answer matrix S
which has the following number of elements exhibited in 
equation (11). 

1

0
)(*

Ns

i
ss iNNsnumElement                 (11) 

 Therefore when we compute (2) and (4) we only 
compare session 0 to sessions 1 through Ns, session 1 to 
sessions 2 through Ns and so on.  In general with each new 
session we do one less comparison with the other sessions.  
 In a parallel computation, where we will denote Nproc as
the number of processors available, it would seem most 
appropiate that each processor should calculate the similarity 
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of Ns/ Nproc number of sessions to all other sessions.  For 
example if there are 1116 sessions and 9 processors then 
each processor will calculate the intersession similarity 
for 124 sessions.  If the number of sessions does not 
evenly divide by the number of processors, then we add 
one session per processor, until all remaining sessions 
have been distributed.    
 To begin the parallel computation the root node in 
the parallel cluster reads in a matrix s of dimensions Ns x
Nurl. It then distributes to each processor a beginID and a 
endID.  The beginID and endID are the ids of the sessions 
for which each processor will compute intersession 
similarity.  For example if there are 1116 sessions and 9 
processors, then processor 0 will compute intersession 
similarity for sessions 0-123, as will processor 1 for 
sessions 124-147 and so on until processor 8 will 
compute intersession similarity for sessions 992-1115.    
Once each processor has received its beginID and endID,
then the root node will distribute the row beginID through 
the Ns-1 row to each processor.
  Before each processor can compute (2) and (4) it 
must allocate space in which to hold its intersession 
similarity.  If we define Nrows as the number of sessions 
per processor then the number of elements for the matrix 
S per processor would be found in equation (12). 
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Nrows

i
rowsrows iNNelementsmatrixSnum     (12) 

 Once the answer matrix S has been formed, (2) can 
be computed.  The modified equation, (2) for parallel will 
simply find intersession similarity for sessions beginID 
through endID as related to sessions beginID+1 through 
Ns. Similarly. a modified equation, (4) can be computed, 
this equation also finds intersession similarity for sessions 
beginID through endID as related to sessions beginID+1 
through Ns

B. Results and evaluation 
 The computational complexity of finding the 
intersession similarity is O(n4).  We will consider p to be 
the total number processing nodes available for the 
computation.  Therefore, we can define the efficiency (E)
as the time for the serial algorithm (referred to as Tc)
divided by the product of the parallel time (Tp) and p [8]: 

     E
Tc

pTp

      (13) 

And the speed up to be [8]: 

     S
Tc

Tp

       (14) 

 An efficiency of 1 implies that the scalability of the 
system is unlimited as the problem size grows.  Moreover 

not considering the main memory and cache limitation effects 
in a single computing node; speedup is bounded by a 
threshold value subject to Amdahl’s law [8].   
 For implementation and evaluation of the concepts 
presented, a dedicated OSCAR cluster [9] of nine nodes was 
utilized.  All compilations were done using the LAM MPI 
libraries, packaged with the OSCAR middleware.  Each of 
the computational nodes consists of a single Pentium 4 class 
processor, with 786 megabytes of memory, a clock speed of 
2.0 gigahertz and a 8 KB on board cache.   The computer that 
was used for serial computation had a Pentium 4 class 
processor, with 512 megabytes of memory, a clock speed of 
2.0 gigahertz and 512 KB on board cache. 
 The data that was used in testing ranged from 100 to 
1116 user sessions.  The serial and parallel runtimes are 
presented in Fig.3.  The speedup of the parallel 
implementation is illustrated in Fig. 4 and its efficiency is 
shown in Fig. 5.   
 The speedup and efficiency seem to reach a peak level at 
about 500 user sessions and then the speedup levels to about 
4.  In general we have sped up the algorithm by about 3.5 
times.  Although this may seem modest, if we look at Fig. 3 
we can see that with 1116 user sessions it originally took 4.4 
hours to find the session similarity when using serial 
computation and when using parallel computation we have 
decreased this time to 1.25 hours.    
 The suggested use of this parallel computation is to first 
use the serial algorithm to find the similarity of all URLs to 
each other, and the occurrence of each URL in each session.  
This would give us two input files, urlSimilarity.txt, which 
would contain a matrix of size Nurl x Nurl, and 
urlOccurrence.txt, which would also contain a matrix of size 
Ns x Nurl.   These files could then be sent to the OSCAR 
cluster and the session similarity could then be computed on 
the cluster.  After the session similarity has been computed, 
the cluster will output a file called 
sessionVsSessionSimilarity.txt which would be size Ns x Ns.
This file could then be fed back into the serial computation so 
that the CARD algorithm can complete. 
 One relatively simple way to speed up the parallel 
computation further is to reduce the times that matrices are 
being sent from the root node to the other nodes.  In general 
in the computation discussed, when the root node sends the 
similarity matrix to each matrix, this could be stopped, and 
instead each matrix could read in its portion of the similarity 
matrix from a file.  In this way the time to send the matrix is 
completely diminished and all that is left is file access time 
and data retrieval from the file, which is quite fast when 
using the C programming language.  However, this 
implementation was not performed due to time constraints. 

V.  CONCLUSION AND FUTURE WORK

 Clustering algorithms have become an invaluable way to 
form user sessions into profiles.   Once these profiles have 
been formed, then a recommendation engine can use these 
profiles to give user’s suggestions on which URLs will be of 
interest to them.  This can not only be useful, but profitable.  

588



For example a company who is selling items can use the 
profiles to make suggestions to a user about other items 
that they are interested in.  Improvements in clustering are 
being made very quickly and these algorithms are 
becoming faster and more reliable. 

In Section 2 we have shown that incorporating 
keyword similarity into URL similarity creates some 
clusters which have greater intra-cluster similarity.  These 
clusters also show high URL probability rates.  However, 
when incorporating keywords we have also seen that 
results are not perfect and that some clusters are formed 
with low intra-cluster similarity.  A probable reason for 
this discrepancy is HTML documents that are offline and 
therefore cannot be parsed for keywords.  In Section 3 we 
have shown that there can be a large speedup in overall 
computation when we find similarity using parallel 
computing.    
 Suggested improvements are to test modifications 1 
and 2 on larger data sets.  Another improvement would be 
to change the dataset from a computer science web site to 
a larger and more diverse website.  Also, for the sake of 
using keywords, one should make sure that the majority 
of referenced HTML documents are online and if 
password protected all passwords are known so that the 
HTML source can be retrieved.  In this way, also we 
think that a more diverse, complete and/or a larger dataset 
would demonstrate a more marked improvement due to 
the modifications.  Also, when finding updated similarity 
the keyword similarity is given a weight of 2/3 and the 
URL similarity is given a weight of 1/3.  It would be 
interesting to modify these weights and find the weights 
that give the best clustering outcome.   
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