
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Computer Science

7-2006

Extracting Web User Profiles Using a Modified
CARD Algorithm
Shahram Rahimi
Southern Illinois University Carbondale, rahimi@cs.siu.edu

Lisa Gandy
Southern Illinois University Carbondale

Bidyut Gupta
Southern Illinois University Carbondale

Follow this and additional works at: http://opensiuc.lib.siu.edu/cs_pubs
Published in Rahimi, S., Gandy, L., & Gupta, B. (2006). Extracting Web user profiles using a
modified CARD algorithm. 2006 IEEE International Conference on Fuzzy Systems, 582-589. doi:
http://dx.doi.org/10.1109/FUZZY.2006.1681770 ©2006 IEEE. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from the IEEE. This
material is presented to ensure timely dissemination of scholarly and technical work. Copyright and
all rights therein are retained by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by each author's copyright.
In most cases, these works may not be reposted without the explicit permission of the copyright
holder.

This Article is brought to you for free and open access by the Department of Computer Science at OpenSIUC. It has been accepted for inclusion in
Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Rahimi, Shahram, Gandy, Lisa and Gupta, Bidyut. "Extracting Web User Profiles Using a Modified CARD Algorithm." (Jul 2006).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenSIUC

https://core.ac.uk/display/60530905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

 Extracting Web User Profiles Using a
Modified CARD Algorithm

Shahram Rahimi, Lisa Gandy, Bidyut Gupta
Department of Computer Science

Southern Illinois University Carbondale
Carbondale, IL 62901, USA

[rahimi, lgandy, bidyut]@cs.siu.edu

Abstract - Clustering algorithms are widely used methods
for organizing data into useful information. The Competitive
Agglomeration for Relational Data (CARD) Algorithm is one
such clustering algorithm that is designed to organize user
sessions into profiles, where each profile would highlight a
particular type of user. The CARD algorithm is a viable
candidate for web clustering; however, it does have limitations
such as an extended execution time. In addition, the methods
that prepare the input data for the CARD algorithm’s use
employs concepts which seem to be incomplete. These
limitations of the CARD algorithm are explored and
modifications are introduced to yield a more practical and
efficient algorithm.

I. INTRODUCTION

 As the World Wide Web has grown in size, an
immense amount of data has been produced. If this data is
not retrieved and organized correctly then the information
that the data can provide is essentially wasted. Users often
become frustrated because they are certain that the
information that they are looking for is on a particular
website, but the website is so large that it is almost
impossible to find the information. In this case, an adaptive
website can become very helpful. This website would
follow the clickstream of the user. That is, the website will
keep account of web pages that the user is looking at, and
recommend other pages that previous users found useful.
 The website will implement this adaptability by
having a database of typical user profiles. A user profile is
defined as an “abstract model that summarizes the
relevance of each URL on a site relative to a group of users
sharing a similar interest [2].” The user profile will be
characterized by previous user sessions. A user session is a
set of web pages that a user examined within a specified
time period. To organize the user sessions into profiles, the
website administrator could examine each user session and
manually place them into profiles. However, this is
unrealistic for many reasons, for instance, many web sites
have millions of users accessing it daily and it is impossible
to find patterns by mere manual examination. Therefore,
we can easily see that an unsupervised clustering algorithm
is an attractive choice for clustering user sessions into
profiles of several types of typical users since it relies on
user access patterns and is capable of examining large
amounts of data in a fairly reasonable amount of time [1].

 Although the CARD algorithm has found useful user
profiles in prior publications, there are several assumptions
made during the implementation of the algorithm that are
questionable [1]. For example, when the relational data is
being formed, URL paths of HTML documents are
compared. We propose comparing web pages with an
algorithm that will scan the title of the page, and then scan
for keywords. The keywords of the two documents will
then be compared and a similarity in the range of [0, 1] will
be found. A comparison will then be implemented to find
whether the new clusters that result from the modified data
are more valid.
 In addition, the original algorithm takes a large amount
of time to run. From our initial experiments with 1800 web
sessions, the algorithm took approximately 6 hours to run.
We will analyze methods to decrease the execution time of
the algorithm when run serially, and also implement the
algorithm in a parallel computing environment. The
algorithm easily lends itself to parallel computation since it
is primarily based on matrix mathematics.

II. COMPETITIVE AGGLOMERATION FOR RELATIONAL DATA
ALGORITHM

 The CARD algorithm is characterized by equation (1):

C

i

N

j
ij

C

i

N

j
ijij uxdu

1

2

11 1
,

22)()(X)B;(U,J (1)

subject to
C

i
iju

1
,1 for j {1, N,, }.

 where X = {xj | j = 1,…N} is a set of N vectors and B =
(1,… c) corresponds to C-tuple prototypes, where each
prototype characterizes a cluster. In (1), d2(xj , i)
represents the distance from the feature vector xj to the
cluster i and uij represents the membership of the point xj

to the cluster i. The first term given in the equation
controls the size and the shape of the clusters. The second
term controls the number of clusters [1].
 To prepare data for the CARD algorithm, clustering
user sessions requires the use of relational data, which can
be represented by a matrix of similarities between each
session to all other sessions. To define this similarity
matrix of size Ns x Ns (where Ns is the number of user
sessions) we first assume that each session is defined by a

0-7803-9489-5/06/$20.00/©2006 IEEE

2006 IEEE International Conference on Fuzzy Systems
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

582

)(

1

)(
)(

1

)(

1

)()(),min(
),(

jNkey

k

j
k

iNkey

k

i
k

Uniqkey

k

j
k

i
k

key

keykey

keykey
jiS

vector known as s which has size Nurl (where Nurl is the
number of URLs) . Each entry contained in the vector can
either contain a 1 or 0 depending on whether ith URL was
visited during the particular user session. Thus, the relation
between two user sessions can be found by applying
equation (2), which is essentially then number of identical
URLs between the two sessions related to the number of
URLs used in both sessions [1].

urlurl

url

N

i

l
i

N

i

k
i

N

u

l
i

k
i

kl

ss

ss
S

1

)(

1

)(

1

)()(

,1

 (2)

for k=1..Ns ; l=k.. Ns

 Equation (2) relies on the fact that only identical URLs
between sessions are considered. However, two web
pages might not have the same URL but may have quite
similar content or usage, to take this into account, syntactic
similarity can be used. This syntactic similarity is known
as Su, and is displayed in equation (3) [1].

)1),max,1max
,1min),(

ji

ji
u pp

pp
jiS

 (3)

 This similarity will lie between [0,1]. For instance the
web page www.cs.siu.edu/~cs491-3/index.html and the
web page www.cs.siu.edu/materials.html would have a
syntactic similarity of 0.5. This syntactic similarity is then
incorporated into the intersession similarity equation to
form the updated equation (4).

url url

url url

N

i

N

j

l
j

k
i

N

i

N

j
u

l
j

k
i

kl

ss

jiSss
S

1 1

)()(

1 1

)()(

,2

),(
 (4)

 However, it can be shown that when the syntactic
similarities are low S1 is a better approximation of session
similarity and then the syntactic similarities are high S2 is a
better approximation. Therefore to get the optimal
similarity measure past research suggests that the maximal
result of the two equations should be taken as Skl , as shown
in equation (5).

),max(,2,1 klklkl SSS (5)

For further information concerning the CARD algorithm
please refer to [1].

III. IMPROVING CLUSTERING: THE FIRST MODIFICATION

A. Theory
 As stated previously, finding Su by comparing URL
paths can be problematic, in the sense that simply because
two web pages are in the same directory structure does not

guarantee that they will have similar content. I proposed
comparing each document to all other documents and
finding a keyword similarity that will be added to the
similarity found in (3). The proposed keyword similarity
is given in (6)

 (6)

UniqKey identifies the number of matching keywords
between two documents i and j. The identifier keyk

(i)

represents the number of occurrences of keyword k in
document i. Therefore in the numerator of (6), a running
total of the minimum occurrences of matching keywords in
the compared documents is taken. The denominator of (6)
is simply the number of occurrences of all keywords
occurring in documents i and j. This equation has the
attractive property that Skey(i,i) = 1 and Skey(i,j) = Skey(j,i)
and Skey(i,j) = [0..1].
 The use of min in the numerator deserves some
thoughtful consideration. The idea is that if a keyword
occurs very seldom in one document and very frequently in
another document then the two documents must not be very
similar in general. In this case it is better to take the
smaller value of keyword frequency to reflect this
dissimilarity. If the average was taken then the fact that
one document might have a small frequency for one
keyword and the compared document has a large frequency
might be masked.
 Once the keyword similarity is found it is added to the
similarity found in equation (5) to find a new similarity
measure given below in equation (7). When the combined
values of S and Skey exceed 1, we simply choose 1 as the
maximum value. Notice that Skey has been given a weight
of two thirds and S has been given a weight of one thirds.
In previous trials Skey was simply added to S, however at
these times, the clusters formed were too large, because all
pages had very high similarity measures. At the same
instance, however, we want keyword similarity to have
more weight than the URL similarity so that when
comparing using only URL weights and URLs and
keywords weights combined, we see a noticeable difference
in cluster size and shape.

)1,3/)2*min((keyukey SSS (7)

B. Implementation
 During keyword parsing the Porter Stemming
Algorithm is used. The purpose of this algorithm is to
remove suffixes that can cause keywords to seem different
when they actually have the same meaning. By using this
algorithm the performance of the keyword system will
improve, and will also be less complex, because there will
be less keywords per document [7]. The algorithm used is
taken from the URL

583

http://www.tartarus.org/~martin/PorterStemmer/java.txt.
After all keywords are found, keyword similarity is
generated and added to the URL similarity mentioned
previously.
 We should keep in mind that the keyword algorithm
that was used is not the most state of the art keyword
processing algorithm that can be found. It simply considers
words between certain html tags (such as <p>, <a>, <title>,
 and <i>), gleans out words such as possessives, articles
and commonly found scripting terms and then stems these
words. No document term frequency is found. More
advanced keyword processing was not possible due to time
constraints. However with further research enhanced
keyword processing should give enhanced results.

C. Results
 1) Performance: One of the key points of concern
when adding keyword similarity to the generation of
similarity data using URL syntactic similarity is that this
process will add too much execution time to the overall
algorithm. Although this computation did incur additional
execution time, this time was negligible. For instance
before intersession similarity can be found using keywords,
the actual keywords must be parsed from the html
documents that have been referenced by the users. With
1116 user sessions and 2151 html documents it took
approximately 40 seconds to find all keywords. After all
keywords have been found, then the keywords can be used
to find intersession similarity. The time between finding
intersession similarity when using just URLs and when
using URLs and keywords to generate intersession
similarity is also low. For instance with 1116 user sessions
and 2151 URLs it took approximately 58 seconds to find
similarity using URLs and approximately 66 seconds to
find similarity using URLs and keywords. Fig. 1 illustrates
the time differences between using URLs and URLs and
keywords for different numbers of user sessions.

2) Cluster Validity: Before results of using URL
similarity and combined URL and keyword similarity can
be examined, the proper validity measures must be chosen.
For this paper, the equation that finds clusters is given in
equation (8).

CiforijddSsX jkik
k

i 1,|)((8)

 Once we find the clusters using (8), then we find the
intra-cluster similarity. This is a cluster validity measure
that gives the approximate distance between all pairs of
sessions in a cluster. The formula used to find the intra-
cluster distance is given in equation (9).

)1(/)()(,
2

iXs klXs iklWi XXdD
i

K
j

l
 (9)

 Another useful validity measure for clusters is that of
URL probability per profile, given in equation (10) [1].

||
||

)|1()()(

Xi

Xi
XsspP j

i
k

j
k

jij
, (10)

 where)}0|{)()(k
ji

k
jij sXsX

Pij represents the probability that URL j will occur in
cluster i, where cluster i is represented by Xi. For cluster
validity, we tend to favor clusters where the intra-cluster
distance is low and the majority of URL probabilities per
cluster are high. If the URL probabilities are high then
there is a frequent pattern of URL access. A “bad” cluster
will generally have high intra-cluster distance and low URL
probabilities.

0

1000

2000

3000

4000

5000

6000

7000

100 300 500 700 900 1116

Number of user sessions

T
im

e
(m

s)

URL similarity

Keyword and URL
similarity

Fig. 1 Time to find intersession similarity using
just URLs and URLs and keywords

 3) Discussion
 The settings for the CARD algorithm to obtain the
results were following: at the beginning of the algorithm
50 rows of the membership matrix were chosen randomly
to be the centers of clusters. The time constant was set to
10, the decay constant n0 was set to 0.0002. A cluster was
discarded if its cardinality (Ni) was less than 22.0.
When using URL similarity only, five clusters were
generated (see Table I). In the results obtained, cluster 0 is
primarily referring to Dr. McGlinn’s pages (a computer
science professor at Southern Illinois University), cluster
12 is primarily referring to the CS pages and in some
instances the cs200b web site, cluster 13 is referring to a
combination of Dr. Wainer’s cs485 class and Mr. Fong’s
cs311 and cs220 classes (Mr. Fong is a computer science
instructor).

584

TABLE I
RESULTS WHEN USING URL SIMILARITY

I |Xi| URL Pij DWi

0 310 /~mcglinn/Courses/cs202/index.html 0.50 0.19
 /~mcglinn/Courses/cs202/home.html 0.46
 /index.html 0.28
 /materials.html 0.23
 /Courses/cs202/labsessions/Coords.html 0.22
 /Courses/cs202/homework/index.html 0.22
 /Courses/cs202/labs/index.html 0.20
 /~mcglinn/Courses/courses.html 0.12
 /~mcglinn/index.html 0.12
 /~mcglinn/home.html 0.12

12 695 /index.html 0.41 0.22
 /materials.html 0.24
 /~cs200b-1/index.html 0.13

13 5 /~wainer/485F04/485F04OL.html 0.40 0.26
 /materials.html 0.20
 /index.html 0.20
 /~wainer/485F04/assign485F04.html 0.20
 /~wainer/485F04/485HW1F04.html 0.20
 /~rahimi/flairs05/topics.html 0.20
 /~rahimi/flairs05/dates.html 0.20
 /~rahimi/flairs05/cfp.html 0.20
 /~kfong/index.html 0.20
 /~kfong/cs311/menu.html 0.20
 /~kfong/cs311/main.html 0.20
 /~kfong/cs311/lab_assignments/lab1/index.html 0.20
 /~kfong/cs311/lab_assignments/index.html 0.20
 /~kfong/cs311/index.html 0.20
 /~kfong/cs311/homework/hw3.html 0.20
 /~kfong/cs220/menu.html 0.20
 /~kfong/cs220/main.html 0.20
 /~kfong/cs220/java/index.html 0.20
 /~kfong/cs220/info.html 0.20
 /~kfong/cs220/index.html 0.20

25 47 /computing/unix/tar.html 0.04 0.25
 /~wainer/guide/guideLocal.html 0.02

34 58 /~kfong/cs220/index.html 0.26 0.22
 /~kfong/cs220/menu.html 0.26
 /~kfong/cs220/main.html 0.24

585

TABLE II
RESULTS WHEN USING URL SIMILARITY AND KEYWORD SIMILARITY

i |Xi| URL Pij DWi

0 36 /index.html 0.28 0.19
 /~cs200b-1/index.html 0.25
 /materials.html 0.17
 /~kfong/cs311/index.html 0.17
 /~kfong/cs311/main.html 0.14
 /~kfong/cs311/menu.html 0.14
 /~cs200a-1/index.html 0.11
 /~cs200b-1/Lab/All_Lab_assignments.html 0.11

1 75 /~mcglinn/Courses/cs202/index.html 0.81 0.36
 /~mcglinn/Courses/cs202/home.html 0.71
 /~mcglinn/Courses/cs202/homework/index.html 0.41
 /~mcglinn/Courses/cs202/labs/index.html 0.39
 /~mcglinn/Courses/cs202/labsessions/Coords.html 0.28
 /~mcglinn/Courses/courses.html 0.17
 /~mcglinn/Courses/courses.html 0.17
 /~mcglinn/Courses/cs202/McGlinnSlides/index.html 0.12

6 94 /~cs200b-1/Class_Assignments/assign3_10_13b.html 0.11 0.12
 /~cs200b-1/Lab/All_Lab_assignments.html 0.09

8 20 /~mcglinn/Courses/cs202/index.html 0.95 0.33
 /~mcglinn/Courses/cs202/home.html 0.95
 /index.html 0.90
 /~mcglinn/Courses/cs202/homework/index.html 0.80
 /~mcglinn/Courses/cs202/labs/index.html 0.60
 /materials.html 0.60
 /~mcglinn/Courses/cs202/labsessions/Coords.html 0.55
 /~mcglinn/home.html 0.40
 /~mcglinn/index.html 0.40
 /~mcglinn/Courses/courses.html 0.40
 /faculty.html 0.35

9 375 /~kfong/cs220/main.html 0.15 0.14
 /~kfong/cs220/index.html 0.15
 /~kfong/cs220/menu.html 0.15

10 504 /index.html 0.61 0.2
 /materials.html 0.39

12 12 /~mcglinn/Courses/cs202/index.html 1.00 0.32
 /~mcglinn/Courses/cs202/home.html 1.00
 /~mcglinn/index.html 0.67
 /~mcglinn/home.html 0.67
 /~mcglinn/Courses/courses.html 0.58
 /~mcglinn/Courses/cs202/labs/index.html 0.42
 /index.html 0.42
 /~mcglinn/Courses/cs202/labsessions/Coords.html 0.33
 /materials.html 0.33
 /~mcglinn/Courses/cs202/JavaInformation/index.html 0.25
 /~mcglinn/Courses/cs202/homework/index.html 0.25

586

In addition cluster 25 is referring to a UNIX description
page and cluster 34 is referring to primarily the cs220
pages. All of the clusters are valid clusters, in the sense
that their intra-cluster similarity (DWi) is low and that
inside the clusters the general URL access pattern is high.
 The only cluster that seems questionable is cluster
25, where the URL access patterns are very low. Because
of the unusually low URL access pattern this cluster
could be characterized as a collection of unrelated pages,
more like the leftovers from the other clusters.
 When using URL and keyword similarity together
(see Table II), seven clusters are generated. It seems that
the clusters from just using URL similarity have been
broken down into more identifiable clusters when
incorporating keyword similarity. For example when
using URL similarity alone, cluster 0 is primarily
composed of Dr. McGlinn’s pages and all other clusters
do not reference these pages. However when keyword
similarity, clusters 1, 8, and 12 all reference Dr.
McGlinn’s pages.
 The URLs that cause these three clusters to deviate,
are the following: in cluster 1, the url
/~mcglinn/Courses/cs202/McGlinnSlides/index.html is
present, in cluster 8 the two urls /~mcglinn/home.html
and /~mcglinn/index.html are present, and in cluster 12,
the two urls ~mcglinn/Courses/cs202/JavaInformation/
index.html and /~mcglinn/Courses/cs202/omework/
index.html are present. Table III shows the URL access
probabilities for the five previously mentioned urls in
cluster 0 when using URL similarity only and clusters 1,
8 and 12 when incorporating keyword similarity as well.
 What appears to be happening is that when using
keyword similarity the similarity of the URLs given in
Table 1 is increasing, since these pages share a common
theme with the other pages in Dr. McGlinn’s web site.
 This increased similarity gives these URLs a chance
to compete when the clusters are being formed and lend
enough similarity that they help delineate the one cluster
referring to Dr. McGlinn’s web site in Table 1 into three
separate clusters in Table 2.
 Another interesting development is that when using
URL similarity the URLs for cs200b class were simply
part of a cluster that primarily referred to several types of
computer science pages in cluster 12, however when
incorporating keyword similarity the cs200b class has
been assigned its own cluster.
 However, using keywords has rewards as well as
problems. If we examine the results further, we see that
when incorporating keyword similarity we often see low
URL probabilities. Also, in cluster 0, the url probability
for URLs index.html and ~cs200b-1/index.html the URL
probability is reasonable, but the other URLs in the
cluster do not have very high URL probability. One very
possible reason for this is that we were unable to parse
keywords from all documents. The session data was
obtained in Fall 2004 but the CARD Algorithm was not
fully tested until early Spring 2005. Therefore several
web pages were already taken off the web, rendering

them impossible to parse. In addition, several pages were
password protected and due to time constraints we were not
able to gather all of the passwords, therefore we could not
obtain the HTML source for these pages for parsing.
Therefore, these pages had no added keyword similarity.
However, keep in mind that the URL similarity was factored
in. Therefore in some instances, course web pages will still
be found together, for instance, although Mr. Fong’s 220
class was inaccessible for keywords, the pages were still
clustered together.

TABLE III
URL ACCESS PROBABILITIES WHEN USING ONLY URL SIMILARITY AND

WHEN INCORPORATING KEYWORD SIMILARITY

URLs Cluster 0
Pij

Clusters 1,
8, 12 Pij

/~mcglinn/Courses/cs202/Slides/index.html 0.040 0.120
(cluster 1)

/~mcglinn/home.html 0.120 0.400
(cluster 8)

/~mcglinn/index.html 0.120 0.400
(cluster 8)

/~mcglinn/Courses/cs202/JavaInfo/index.html 0.030 0.250
(cluster 12)

/~mcglinn/Courses/cs202/homework/index.html 0.210 0.250
(cluster 12)

IV. PERFORMANCE IMPROVEMENT: THE SECOND
MODIFICATION

A. Parallel Implementation
 When clustering user sessions into profiles, the actual
CARD algorithm is relatively fast. Most of the time spent in
execution is during the early data preparation phase. For
example (2) and (4), where the session similarity is
computed, take the majority of time to execute. However (2)
and (4) can be simply executed by using for loops. This
combination of for loops and matrix mathematics make the
algorithm easy to implement in parallel.
 If we look closely at (2) and (4), we can observe that
s[i][j] = s[j][i]. For example if we find the similarity
between session 0 and all other sessions yielding the row
S[0][0..Nurl-1] then on subsequent iterations we will not need
to find any other session’s similarity to session 0 because this
has already been computed. In general when using (2) and
(4) on a serial computation we only need an answer matrix S
which has the following number of elements exhibited in
equation (11).

1

0
)(*

Ns

i
ss iNNsnumElement (11)

 Therefore when we compute (2) and (4) we only
compare session 0 to sessions 1 through Ns, session 1 to
sessions 2 through Ns and so on. In general with each new
session we do one less comparison with the other sessions.
 In a parallel computation, where we will denote Nproc as
the number of processors available, it would seem most
appropiate that each processor should calculate the similarity

587

of Ns/ Nproc number of sessions to all other sessions. For
example if there are 1116 sessions and 9 processors then
each processor will calculate the intersession similarity
for 124 sessions. If the number of sessions does not
evenly divide by the number of processors, then we add
one session per processor, until all remaining sessions
have been distributed.
 To begin the parallel computation the root node in
the parallel cluster reads in a matrix s of dimensions Ns x
Nurl. It then distributes to each processor a beginID and a
endID. The beginID and endID are the ids of the sessions
for which each processor will compute intersession
similarity. For example if there are 1116 sessions and 9
processors, then processor 0 will compute intersession
similarity for sessions 0-123, as will processor 1 for
sessions 124-147 and so on until processor 8 will
compute intersession similarity for sessions 992-1115.
Once each processor has received its beginID and endID,
then the root node will distribute the row beginID through
the Ns-1 row to each processor.
 Before each processor can compute (2) and (4) it
must allocate space in which to hold its intersession
similarity. If we define Nrows as the number of sessions
per processor then the number of elements for the matrix
S per processor would be found in equation (12).

1

0
)(*__

Nrows

i
rowsrows iNNelementsmatrixSnum (12)

 Once the answer matrix S has been formed, (2) can
be computed. The modified equation, (2) for parallel will
simply find intersession similarity for sessions beginID
through endID as related to sessions beginID+1 through
Ns. Similarly. a modified equation, (4) can be computed,
this equation also finds intersession similarity for sessions
beginID through endID as related to sessions beginID+1
through Ns

B. Results and evaluation
 The computational complexity of finding the
intersession similarity is O(n4). We will consider p to be
the total number processing nodes available for the
computation. Therefore, we can define the efficiency (E)
as the time for the serial algorithm (referred to as Tc)
divided by the product of the parallel time (Tp) and p [8]:

 E
Tc

pTp

 (13)

And the speed up to be [8]:

 S
Tc

Tp

 (14)

 An efficiency of 1 implies that the scalability of the
system is unlimited as the problem size grows. Moreover

not considering the main memory and cache limitation effects
in a single computing node; speedup is bounded by a
threshold value subject to Amdahl’s law [8].
 For implementation and evaluation of the concepts
presented, a dedicated OSCAR cluster [9] of nine nodes was
utilized. All compilations were done using the LAM MPI
libraries, packaged with the OSCAR middleware. Each of
the computational nodes consists of a single Pentium 4 class
processor, with 786 megabytes of memory, a clock speed of
2.0 gigahertz and a 8 KB on board cache. The computer that
was used for serial computation had a Pentium 4 class
processor, with 512 megabytes of memory, a clock speed of
2.0 gigahertz and 512 KB on board cache.
 The data that was used in testing ranged from 100 to
1116 user sessions. The serial and parallel runtimes are
presented in Fig.3. The speedup of the parallel
implementation is illustrated in Fig. 4 and its efficiency is
shown in Fig. 5.
 The speedup and efficiency seem to reach a peak level at
about 500 user sessions and then the speedup levels to about
4. In general we have sped up the algorithm by about 3.5
times. Although this may seem modest, if we look at Fig. 3
we can see that with 1116 user sessions it originally took 4.4
hours to find the session similarity when using serial
computation and when using parallel computation we have
decreased this time to 1.25 hours.
 The suggested use of this parallel computation is to first
use the serial algorithm to find the similarity of all URLs to
each other, and the occurrence of each URL in each session.
This would give us two input files, urlSimilarity.txt, which
would contain a matrix of size Nurl x Nurl, and
urlOccurrence.txt, which would also contain a matrix of size
Ns x Nurl. These files could then be sent to the OSCAR
cluster and the session similarity could then be computed on
the cluster. After the session similarity has been computed,
the cluster will output a file called
sessionVsSessionSimilarity.txt which would be size Ns x Ns.
This file could then be fed back into the serial computation so
that the CARD algorithm can complete.
 One relatively simple way to speed up the parallel
computation further is to reduce the times that matrices are
being sent from the root node to the other nodes. In general
in the computation discussed, when the root node sends the
similarity matrix to each matrix, this could be stopped, and
instead each matrix could read in its portion of the similarity
matrix from a file. In this way the time to send the matrix is
completely diminished and all that is left is file access time
and data retrieval from the file, which is quite fast when
using the C programming language. However, this
implementation was not performed due to time constraints.

V. CONCLUSION AND FUTURE WORK

 Clustering algorithms have become an invaluable way to
form user sessions into profiles. Once these profiles have
been formed, then a recommendation engine can use these
profiles to give user’s suggestions on which URLs will be of
interest to them. This can not only be useful, but profitable.

588

For example a company who is selling items can use the
profiles to make suggestions to a user about other items
that they are interested in. Improvements in clustering are
being made very quickly and these algorithms are
becoming faster and more reliable.

In Section 2 we have shown that incorporating
keyword similarity into URL similarity creates some
clusters which have greater intra-cluster similarity. These
clusters also show high URL probability rates. However,
when incorporating keywords we have also seen that
results are not perfect and that some clusters are formed
with low intra-cluster similarity. A probable reason for
this discrepancy is HTML documents that are offline and
therefore cannot be parsed for keywords. In Section 3 we
have shown that there can be a large speedup in overall
computation when we find similarity using parallel
computing.
 Suggested improvements are to test modifications 1
and 2 on larger data sets. Another improvement would be
to change the dataset from a computer science web site to
a larger and more diverse website. Also, for the sake of
using keywords, one should make sure that the majority
of referenced HTML documents are online and if
password protected all passwords are known so that the
HTML source can be retrieved. In this way, also we
think that a more diverse, complete and/or a larger dataset
would demonstrate a more marked improvement due to
the modifications. Also, when finding updated similarity
the keyword similarity is given a weight of 2/3 and the
URL similarity is given a weight of 1/3. It would be
interesting to modify these weights and find the weights
that give the best clustering outcome.

0

50

100

150

200

250

300

100 300 500 700 900 1116

Number of user sessions

T
im

e
 (

m
in

u
te

s
)

serial
parallel

Fig. 3 Serial and parallel run times when finding session similarity

0

0.5

1

1.5

2

2.5

3

3.5

4

100 300 500 700 900 1116

Number of user sessions

S
p

e
e
d

u
p Speedup (Parallel

(T ime/Serial T ime

Fig. 4 Speedup Graph

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6
Number of user sessions

E
ff

ic
ie

nc
y

Eff iciency (Serial Time/(# Parallel Nodes * Parallel Time)

Fig. 5 Efficiency Graph

REFERENCES

[1] O. Nasroui, R. Krishnapuram et al. “Extracting web user profiles using
relational competitive fuzzy clustering” International Journal on Artificial
Intelligence Tools, Vol. 9, No. 4, 2000, pp. 509-526.
[2] O. Nasraoui, C. Petenes, “An intelligent web recommendation engine
based on fuzzy approximate reasoning” 12th IEEE International Conference
on Fuzzy Systems, Vol. 2, May 2003, pp. 1116 – 1121.
[3] R. Krishnapuram, A. Joshi et al, “Low-complexity fuzzy relational
clustering algorithms for Web mining,” IEEE Transactions on Fuzzy
Systems, Vol. 9, No. 4, Aug. 2001, pp. 595-607.
[4] M. Vazirgiannis, “Data Mining: Concepts and Techniques,” Tutorial
Paper, Proc. ADBIS 2001, Vilnius, Lithuania.
[5] F. Heylighen, “Collaborative filtering,” website:
http://pespmc1.vub.ac.be/COLLFILT.html, March 2001.
[6] G. Linden, B. Smith, and J. York, “Amazon.com Recommendations:
item-to-item collaborative filtering”, IEEE Internet Computing, Vol. 7, No.
1, Jan/Feb 2003, pp. 76-80 [7] M. F. Porter, “The Porter Stemming
Algorithm,” Program, Vol. 14, No. 3, 1980, pp. 130-137.
[8] A. Grama, Introduction to parallel computing 2nd edition, Addison
Wesley, 2003.
[9] “OSCAR (Open source cluster application resources),” website:
http://oscar.openclustergroup.org.

589

	Southern Illinois University Carbondale
	OpenSIUC
	7-2006

	Extracting Web User Profiles Using a Modified CARD Algorithm
	Shahram Rahimi
	Lisa Gandy
	Bidyut Gupta
	Recommended Citation

