
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Computer Science

5-2007

An Intelligence-Aware Process Calculus for Multi-
Agent System Modeling
Raheel Ahmad
Southern Illinois University Carbondale

Shahram Rahimi
Southern Illinois University Carbondale, rahimi@cs.siu.edu

Bidyut Gupta
Southern Illinois University Carbondale

Follow this and additional works at: http://opensiuc.lib.siu.edu/cs_pubs
Published in Ahmad, R., Rahimi, S., & Gupta, B. (2007). An intelligence-aware process calculus for
multi-agent system modeling. International Conference on Integration of Knowledge Intensive
Multi-Agent Systems, 2007. KIMAS 2007, 210-215. doi: 10.1109/KIMAS.2007.369811 ©2007
IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE. This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder.

This Article is brought to you for free and open access by the Department of Computer Science at OpenSIUC. It has been accepted for inclusion in
Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Ahmad, Raheel, Rahimi, Shahram and Gupta, Bidyut. "An Intelligence-Aware Process Calculus for Multi-Agent System Modeling."
(May 2007).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

An Intelligence-Aware Process Calculus
for Multi-Agent System Modeling

Raheel Ahmad, Shahram Rahimi, Bidyut Gupta
Department ofComputer Science,

Southern Illinois University,
Carbondale, IL - 62901

{rahmad, rahimi, bidyut}@cs.siu.edu

Abstract In this paper we propose an agent modeling
language named CAML that provides a comprehensive
frameworkfor representing all relevant aspects ofa multi-
agent system: specially, its configuration and the reasoning
abilities of its constituent agents. The configuration
modeling aspect of the language supports natural grouping
and mobility, and the reasoning framework is inspired by
an extension of the popular BDI theory of modeling
cognitive skills ofagents. We present the motivation behind
the development of the language, its syntax, and an
informal semantics.

1. INTRODUCTION

Multi-Agent Systems have appeared as a crucial and
exciting field in computer science in the last couple of
decades. A relevant and popular definition of an agent is
given by Wooldridge [17]: "An agent is a computer system
situated in some environment and that is capable of
flexible, autonomous action and communication with other
agents in this environment in order to meet its design
objectives." An agent is often specified by its autonomous
nature, communication capabilities, its location in an
environment, and its ability to react to and affect change in
its environment. A multi-agent system then is a recognized
collection of such agents that coexist and interact in an
environment where the overall control and information is
generally distributed (decentralized). Multi-agent systems
find application in a wide range of domains including:
business and finance including e-commerce, human-
computer interactions, information management, traffic
control, social sciences, computer games, and several
Internet-based applications such as search agents.

The ad-hoc nature of development, analysis and
verification of today's multi-agent systems has resulted in
largely unreliable products for the end-user. Formal
methods are almost a necessity when it comes to
developing systems in critical scenarios such as military,
medical systems, and air traffic control [1, 2]. Although

they represent a significant investment in time and
expertise, the advantages are significant: formal
specification of a system by itself can be useful in terms of
getting the system requirements right by eliminating errors
at the design phase; verification of a system can allow
designers to ascertain the correctness of a system design - if
it is behaving properly, in a correct fashion, and if it is
functioning according to a set of requirements; further
analysis of a formally specified system can provide
significant insights into its internals such as its
performance; and with proper and mature tools available,
the formal specification can be used directly or indirectly
as a guide to the final implementation of the system.
However, current formal methods do not provide features
suitable for representing a comprehensive view of multi-
agent systems. Either they are geared towards representing
its evolving configuration and structure, or they are used
primarily to reason about the behavior of the agents. Both
these aspects are crucial when dealing with multi-agent
systems, and cannot be effectively studied in isolation of
the other.

In this paper we present a formal modeling language called
CAML that will fill this void. CAML is a process algebra
that is inspired partly from -calculus based formalisms
and also the popular Belief-Desire-Intention theory of
modeling the cognitive skills of agents to represent their
behavior. The result is a formal framework that provides
the proper primitives and constructs to model and analyze a
typical multi-agent system.

2. CURRENT STATE OF THE ART

The last couple of decades have seen a growing interest in
the development of formal foundations for multi-agent
systems. Due to the complexity, non-determinism, and
variety of applications, no single theory or framework has
claimed prominence, with the possible exception of BDI.
Not only that, a number of "formal" tools cannot really be
termed as such, in the stricter meaning of the term. At least
the following conditions should hold: the formalism should
have a system specification language with multi-agent
system related constructs for abstractions such as agents,
agent communication, reasoning, system hierarchy, and

1-4244-0945-4/07/$25.00 ©2007 IEEE 210

Mi]

4,

Figure 1. Structural representation of a multi-agent system and its expression in API-Calculus

agent mobility; it should have a complete set of
operational semantics; and these semantics should allow
for verification either through system refinement or
automatic model checking. Several formalisms that are
currently in use in this field do not meet these
requirements. These can be classified as: specification
languages originally meant for software engineering, such
as VDM [7], ETL [3], and tools and languages built
around diagrammatic system specification, including
UML-related tools such as AML [4], and PASSI [5].

The major approaches towards formal modeling and
analysis can be divided into two broad classes in terms of
the particular aspects of multi-agent system they are geared
towards:

a) Formalisms for modeling structural organization: multi-
agent system tend to have an incredibly complex structure
because of a number of reasons: the number of agents, the
creation and destruction of agents, the evolving nature of
the communication structure, possible mobility of agents,
and issues of coordination and cooperation between agents,
among other complexities. Traditionally, system structure
has been studied best using formalisms which support
concurrent computation such as Petri Nets, Actor model,
and process calculi. Process calculi that extend pi-calculus
[10], itself an extension of CCS [11], have been particularly
popular for describing systems with concurrent computing
elements. These calculi treat the communication of names
as the basic primitive and pi-calculus itself is known to be
Turing complete [12]. Although this class of formal
methods is suitable in modeling aspects of concurrent
computation, to model the reasoning, behavior, and
planning, inherent in all multi-agent system, would be
difficult if not totally impossible, due to the unavailability
of any high-level constructs for this purpose. Figure 1

shows a typical example of how formalisms of this class
represent multi-agent systems.

b) Formalisms for modeling behavioral aspects: Possibly
the more exciting part of multi-agent system research is the
analysis of agent behavior, reasoning, and planning.
Indeed, this is where the intelligence of individual agents
come into play - decades of artificial intelligence research
provide a solid foundation here. The formal methods that
have gained prominence in this area have their foundation
in logic, specifically modal logic such as temporal and
epistemic, that model agent reasoning as a set of its
cognitive skills. This includes the seminal work done by
Rao and Georgoff [13] on formalisms for the Belief-
Desire-Intention (BDI) model. BDI has since then formed
the core of several research undertakings for reasoning
about agent behavior in both formal and practical contexts
[14]. Figure 2 shows a typical representation of a multi-
agent system by formalisms of this class.

What's Missing

Both classes of formalisms discussed above suffer from
several shortcomings that make it hard to adopt any of the
formal methods available today as a comprehensive multi-
agent system modeling tool. The two classes represent a
significant divide in objectives that has not been bridged.
The structural organization and behavior of a multi-agent
system are both integral to the understanding and analysis
as well as the implementation process. Class a) has a
significant drawback in itself: although pi-calculus and its
extensions have enjoyed considerable success for
specifying and reasoning about concurrent systems, the
complexity of multi-agent systems requires a much more
sophisticated framework than what they offer, including
high-level abstractions such as those for agents and
communication. There have been some efforts in this

211

defineAgentClass Client(?prod ?s) {
knowledge = {money(?s)}
goals = null;
capabilities f
searchProduct {

capability for searching the departments selling a certain product
message=search(?pr);
condition=null;
do{send(?AgI: EMarket needProduct(?pr)) }
effects=null;

foundProduct {
capability for adding to the knowledge base the names of the interesting domains

message=haveProduct(?pr ?price);
condition=null,
do{send(this,tell(sell(sender,?pr,?price)) .Java(EM.wait(20)).
send(this,goShopping(?pr)).send(this,tell(migratingo)) }

effects=null;

goShopping {
capability for migrating to all the domains that sell the product and buying it

message=goShopping(?pr);
condition=not(hasKnowledge(migratingo));
dofforAllKnowledges(sell(?d,?pr,?price)){

move(?d) .send(?d buy(?pr)).
changeNumKnowledge(money(?m) ,1 -?price)}.

move(authority)}
effects=null;

I

processes={send(this,search(?prod))I

Figure 2. Behavioral representation of an multi-agent system and its expression in CLAIM

direction, most significantly Ambient Calculus [16] and its
extensions, and API-Calculus. For class b), the BDI model
of agent behavior and planning has been recognized as a
very suitable foundation. However, none of the BDI based
formalisms or specification languages deal with the
configuration and structure of multi-agent systems.

Two formal methods have specific relevance to our work:
the first is psi-calculus [9], a process algebra that intends to
formalize, in an abstract manner, the plan execution model
of agent computation that is common to several BDI-based
frameworks such as PRS [6] and dMARS [8]. However, it
does not deal with the configuration and composition of the
agent system as a whole. Another process calculus that
makes a significant attempt to provide a comprehensive
formalism is CLAIM [CLAIM]. CLAIM meets the need of
tackling both the configuration and reasoning. Specifically,
the aspects of hierarchical composition of agents, agent
mobility, and agent communication are handled in depth.
However, the model of agent reasoning is not mature -
agent execution is carried out by message communication,
and initiation of agent methods. Although this kind of a
model helps in translating a formal model of a system into
an executable implementation, it does away with the more
realistic and adaptable reasoning models of BDI and its
extensions.

In our opinion, the unavailability of a single formal method
which can be used for both the structural and behavioral
analysis is a crucial aspect that needs to be addressed in
multi-agent system research. At least part of the problem is
the complexity of such an undertaking. Besides the task of
composing the right syntax for such a formalism (which
should deal with the sticky problems of what an agent and
a multi-agent system is), the major work will be in working
out the operational semantics. The latter can be extremely
complex if the operational semantics of the much simpler
calculi such as API-Calculus and Ambient Calculus are any
indication. Also, any formal method that hopes to be

adapted in the field of multi-agent system, should provide a
concrete methodology for verification of the systems that
can be described using it. These may include basic
techniques such as bisimulation or more advanced ones like
model-checking.

3. A COMPREHENSIVE INTELLIGENT AGENT
MODELING CALCULUS

In Fig. 3, a comprehensive view of a multi-agent system is
presented. It is obvious that such a view will be closer to
the reality of implemented systems than the ones in last
section - it recognizes the necessity of representing not
only an agent's behavior (its intelligence/reasoning) but
also how that agent is situated in its environment in terms
of its hierarchy, mobility and communication. Although the
choice of primitives can always be debated upon, the
intention of developing a formal language that is able to
allow the representation of all relevant and characteristic
features of multi-agent system has not been shared by other
formalisms in the past. Of course, the involvement of such
a variety of constructs makes the calculus much more
complicated than the ones we have described in the last
section, but we believe that the availability of the calculus
will be of tremendous benefit in the near future, specially
as a foundation for more high-level tools that are easier to
interact with. This includes the development of a high-
level language that uses the operational semantics of the
formal language and provides a much more usable syntax
and programming ability, and also a visual development
environment that will allow defining and composing
CAML based agents. Also, the availability of a robust and
comprehensive formal language like CAML will serve to
foster a more constructive dialog between researchers who
are involved in the different aspects of multi-agent system
with a more holistic outlook. In practice, it will also
advance the development of more robust and easily
analyzable multi-agent system-based applications.

212

I

proactive behavior of an agent.

Knowledge, K. The knowledge construct is a repository for
information that reflects an agents view or belief of its
environment including other agents. K is an abstract
representation of the agent's belief state and does not
provide the composition of individual belief items. The
change in agent's knowledge in the progress of a multi-
agent system's execution is handled by knowledge
transitions. These transitions form the core of defining the
agent behavior and are described in detail later.

Process Calculi
view of MAS

Agent Programming Language
view of MAS

Knowledge)

Quu

(Plans

,--,P
i tio

Figure 3. A comprehensive view of representing Multi-
Agent Systems

The proposed formalism, named Complete Agent Modeling
Language (CAML), is a process algebra that promises a

formal framework in which a comprehensive model of
multi-agent systems may be represented, including its
organization and the reasoning ability of its constituent
agents. The syntax and semantics of CAML are not based
on any other formalisms (which is true for some other
languages such as API-calculus, -calculus or SEAL).
With the tradeoff of more work in the development of
semantics, it allowed for much more freedom and
flexibility. For modeling the organizational aspects of a

system, CAML provides single-level grouping primitives
named milieus. A milieu can constrict agents in a boundary
which defines a specific execution entity as well as restricts
the visibility of an agent to those in its parent milieu. For
modeling the execution and reasoning abilities the relevant
primitives are knowledge, events, actions, conditions, event
queues, intention queues, and actions - constructs that are

inspired by the BDI model of cognitive skills and plan
execution, also adopted in agent-oriented programming
languages such as AgentSpeak [15]. For the sake of brevity,
we only present the syntax and an informal semantics of
CAML in this paper; a more detailed treatment of the
syntax and a formal operational semantics based on

reduction rules such as those defined for API-Calculus will
follow in a future paper.

4. SYNTAX AND SEMANTICS

In this section, we present the syntax of CAML and an

informal semantics that will give the reader an

understanding of the mechanics of the language.

As detailed later, an agent is composed of its knowledge,
Conditions, Capabilities, Event Queue, Plan, and Intention
Queue. These basic primitives make up the reactive and

213

Events, E. An event can be external (initiated by another
agent message, change in environment) or internal (change
in an agent's knowledge). These events initiate the
execution chain of agents by triggering actions under the
guard of contexts. Again, an event is an abstracted entity
and does not represent any internal composition.

Conditions, C. A condition acts as a guard for triggering an

action for an agent. Each condition acts as a post-condition
that needs to be satisfied in order for an action or actions to
take place for the occurrence of an event. Every agent
keeps a set of conditions which hold true in a particular
state.

Actions, Act. An action represents the tasks an agent can

perform in the future. Actions are modeled as processes in
the tradition of process calculi based on -calculus. An
action in CAML can be:

* T, an internal action

* TK, internal knowledge transition

* join(m), agent joins milieu m

* leave, agent leaves its parent milieu

* send(e), agent sends event e as a broadcast

T, the internal action represents any action that is not
explicitly defined such as those required for internal
housekeeping. T7 is an explicit knowledge transition of the
agent, instead of those initiated by the an external event.
The join (m) and leave actions represent the mobility of the
agent and instruct the agent to join milieu m or leave its
parent milieu. The action send(e) broadcasts the event e to
its environment and replaces the low-level send and receive
actions of -calculus based algebras. The action is not
directed towards a particular agent in the environment,
rather it is supposed to represent an event that takes place
in multi-agent system to which any agent can respond
depending on its own capabilities. This also makes a

receive action unnecessary. The significance of these
actions will be apparent in the next sub-section when we

describe the semantics. Actions can be composed by the the
following operators: ., and + which result in sequential,
parallel and non-deterministic execution.

Knowledge Transition, Knowledge or an agent's belief
system plays a crucial role in its behavior. The transitions
between the knowledge states represents the changing

Mil:

beliefs of the agent either due to internal actions and events
or external events. A transition is written as:

elelaki I kz2

where the transition from knowledge state k1 to k2 is
qualified by the occurrence of event e, under the condition
c, and results in the action a. Either of the three qualifiers
can be null or compound constructs. For example, a
transition with a null action implies that the event is only
meant to bring about the transition in knowledge of the
agent and no actual execution needs to carried out;
similarly, a transition with a null condition implies one
without any restriction. Although, it is named as such, the
transition does not have to actually result in a change in the
agent's knowledge, i.e., k1 can be equal to k2 in which case
the purpose for the event is the action alone.

Capabilities, Q. The capabilities of an agent represent the
possible transitions that can occur in that agent. Therefore
the capabilities is a set of transitions

Event Queue, Eq. Any event that needs to be handled by an
agent is acknowledged by adding it to the event queue.

Intention Queue, Iq. This serves as a temporally task buffer.
Any action that an agent intends to take is added to its
intention queue.

Plan, P. A plan is what drives an agent's execution
according to what it needs to achieve in order to satisfy its
goal. In this sense and how it is implemented in the
semantics, it can be seen as a cross between plan and desire
of the classical BDI model. Specifically it is an eventless

cla
transition ki c+ k2 where the transition takes place by
the satisfaction of the condition alone.

Agent, A. An agent is a composition of some of the
constructs defined above. Specifically, an agent is defined
as:

A-=[K,Q,C,P,EQ,IQ]

Therefore, an agent can be identified by specifying its
knowledge, its capabilities, the conditions that hold true,
the set of plans that will let the agent achieve its goals, and
its intention and event queues. An agent changes its states
throughout its lifetime as a result of the transitions of its
constituents. Therefore, the state space of the four
constructs reflects the agent configuration in CAML.

Milieu, M. A milieu acts as a grouping container that also
constricts its agents in terms of execution and
communication. Inspired from API-Calculus [18], it will
provide an isolated computational unit where agents can
reside and execute. Agents can join and leave a milieu, and
the communication with agents external to the milieu is
restricted. Milieus provide the basic support for mobility as

well, and will be able to model different real-world entities
such as a single computer, a network, an execution-
sandbox, etc. It can be both, an abstract idea (a milieu of
agents that are responsible for a very specific task), as well
as a physical reality (agents present in the local network). It
is devoid of any capabilities to perform actions, and other
agent-specific tendencies and in that sense it is also
different from the idea of an environment, which is
supposed to act as more than a container like a milieu does.

An Informal Semantics of CAML

A complete and formal operational semantics is not
provided in this paper for the sake of brevity and clarity. It
includes basic reduction rules in the style of -calculus that
describe the execution of agents as guided by events and
plans, and also communication and configuration aspects of
the multi-agent system such as mobility across milieus. In
the following, we describe a more informal semantics of
the language with the aim of giving the reader an idea of
the intention behind the choice of the primitives, how the
composition of these primitives constructs a multi-agent
system, and the mechanics and dynamics of agent
execution and configuration.

Agent Execution. The core of agent execution revolves
around the knowledge transition. As mentioned earlier, the

elela
transition k1 + k2 is the result of an external event e
which in the presence of condition c, will lead to the
knowledge transition of k1 to k2 itself and also the action a.
An external event, when it occurs, is added to the agent's
event queue. The selection of an event from the queue
depends on the selection policy of the particular agent, and
can be non-deterministic, ordered temporally or by a
priority value assigned to the events either externally or
internally. After the selection of an event, it is matched
syntactically with the agent's capabilities. When a match is
found with a particular transition's triggering event, the
transition is then said to be initialized. At this point, the
condition c is matched with the conditions in C and if the
condition holds true, then the knowledge transition takes
place and the action a is added to the intention queue. The
intention queue works under the same selection principle as
the event queue, and tasks (actions) are selected for
execution.

The event based execution of tasks described above is
solely for external events triggered by other agents or by
the change in the system configuration. Tasks triggered
internally are guided by the agent's plans. At every iteration
of system progress, each plan of an agent is checked for
possible execution: if the eventless-transition's condition is
satisfied, the knowledge transition takes place along with
the addition of the corresponding action to the intention
queue. As for the actions triggered by external events,
actions in the event queue corresponding to plan execution
can include the send(event) action, which is responsible for
inter-agent communication.

Agent mobility. Agent mobility is handled by the two action
primitives, join and leave, which of course can be activated

214

by either an event or plan execution. This allows an agent
to move around milieus and gives it different contexts for
execution.

5. CONCLUSION AND FUTURE WORK

We have presented a new formal language for specification
of multi-agent systems. The stress is on providing a
comprehensive and holistic outlook towards viewing agents
- their composition, execution, and mobility. The syntax
provides provides all the basic primitives for the general
representation of a typical multi-agent system. The BDI-
inspired behavioral representation is able to model both the
proactive and reactive nature of an autonomous, intelligent
agent, while mobility and organization is handled by
composing agents in milieus.

We intend to present a complete operational
semantics in an extended paper in the future. A major
motivation behind developing CAML has been to
eventually provide a mechanism for verification of multi-
agent systems. This would require a robust operational
semantics, including type-checking that will enforce
consistency in system composition, and equivalence
relations of both structural congruence and bisimulation
varieties. In the long run, CAML is intended to form a
foundation for a high-level programming language and also
a visual development environment that will allow the
design, analysis and implementation of multi-agent systems
in a comprehensive and easy to use framework.

REFERENCES

[1] J. Bowen and M. Hinchey. "Ten Commandments of
Formal Methods," Oxford University Computing
Laboratory Technical Monograph, 1994

[2] J. P. Bowen and M.G. Hinchey, "Seven More Myths of
Formal Methods", IEEE Software, Vol.12, n.4, July 1995

[3] S Conrad, G Saake, C Tuerker, "Towards an Agent-
Oriented Framework for Specification of Information
Systems," Lecture Notes In Computer Science, 1999

[4] M. Cossentino, S. Gaglio, L. Sabatucci, V. Seidita, "The
PASSI and Agile PASSI multi-agent system Meta-models
Compared with a Unifying Proposal," CEEmulti-agent
system, 2005

[7] C.B. Jones, "Systematic Software Development using
VDM," Prentice-Hall, Englewood Cliffs, New Jersey, 1986
[8] D. Kinny, "The Distributed Multi-Agent Reasoning
System Architecture and Language Specification,"
Australian Artificial Intelligence Institute, Melbourne,
Australia, 1993

[9] David Kinny, "Algebraic specification of agent
computation," Appl. Algebra Eng. Commun. Comput. 16
(2-3): 77-111, 2005

[10] R. Milner, "The polyadic Pi-calculus: a tutorial,"
Technical Report ECSLFCS -91-180, Computer Science
Department, University of Edinburgh, UK, October 1991

[11] R. Milner, "A Calculus of Communicating Systems,"
Lecture Notes in Computer Science, Volume 92, Springer-
Verlag, 1980

[12] R. Milner, "Functions as Processes," Mathematical
Structures in Computer Science, Vol. 2, pp. 119-141, 1992

[13] A. Rao, M. Georgeff, "BDI Agents from Theory to
Practice," Technical Note 56, AAII, April 1995

[14] A. S. Rao and M. P. Georgeff, "Formal models and
decision procedures for multiagent systems," Technical
Note 61, Australian Al Institute, Level 6, 171 La Trobe
Street, Melbourne, Australia, June 1995

[15] A. S. Rao, "AgentSpeak(L): BDI agents speak out in a
logical computable language" In W. Van de Velde and J. W.
Perram, editors, Agents Breaking Away: Proceedings of the
7th 24 European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, (LNAI Volume 1038),
42-55. Springer-Verlag, 1996

[16] I. Scagnetto and M. Miculan, "Ambient calculus and
its logic in the calculus of inductive constructions," In
Proc. of LFM, ENTCS 70.2. Elsevier, 2002

[17] M. Wooldridge, and N. Jennings, "Intelligent agents:
Theory and practice," The Knowledge Engineering
Review, 10, 115-152, 1995

[5] R. Cervenka, I. Trencansky, and Calisti. "Modeling
Social Aspects of Multiagent Systems: The AML
Approach," In J.P. Muller and F. Zambonelli, editors, The
Fourth International Joint Conference on Autonomous
Agents & Multi Agent Systems (AAmulti-agent system
05). Workshop 7: Agent-Oriented Software Engineering
(AOSE), pages 85--96, Universiteit Utrecht, The
Netherlands, 2005

[6] M. P. Georgeff, F. Ingrand, "Decision-making in an
embedded reasoning system," In Proceedings of IJCAI-89,
pp. 972-978, Detroit, MI, 1989

215

	Southern Illinois University Carbondale
	OpenSIUC
	5-2007

	An Intelligence-Aware Process Calculus for Multi-Agent System Modeling
	Raheel Ahmad
	Shahram Rahimi
	Bidyut Gupta
	Recommended Citation

