
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Computer Science

5-2007

A Multi-Agent Based Approach for Particle Swarm
Optimization
Raheel Ahmad
Southern Illinois University Carbondale

Yung-Chuan Lee
Southern Illinois University Carbondale

Shahram Rahimi
Southern Illinois University Carbondale, rahimi@cs.siu.edu

Bidyut Gupta
Southern Illinois University Carbondale
Follow this and additional works at: http://opensiuc.lib.siu.edu/cs_pubs
Published in Ahmad, R., Lee, Y.-C., Rahimi, S., & Gupta, B. (2007). A multi-agent based approach
for particle swarm optimization. International Conference on Integration of Knowledge Intensive
Multi-Agent Systems, 2007. KIMAS 2007, 267-271. doi: 10.1109/KIMAS.2007.369820 ©2007
IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE. This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder.

This Article is brought to you for free and open access by the Department of Computer Science at OpenSIUC. It has been accepted for inclusion in
Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Ahmad, Raheel, Lee, Yung-Chuan, Rahimi, Shahram and Gupta, Bidyut. "A Multi-Agent Based Approach for Particle Swarm
Optimization." (May 2007).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

A Multi-Agent Based Approach for Particle Swarm
Optimization

Raheel Ahmad', Yung-Chuan Lee, Shahram Rahimi, Bidyut Gupta
Department ofComputer Science,

Southern Illinois University,
Carbondale, IL, USA

trahmad, ylee, rahimi, bidyut} c@cs.siu.edu
'Phone no.: 618-453-6025
Fax no.: 618-453-6044

Abstract. We propose a new approach towards Particle
Swarm Optimization named Agent-based PSO. The swarm
is elevated to the status of a multi-agent system by giving
the particles more autonomy, an asynchronous execution,
and superior learning capabilities. The problem space is
modeled as an environment which forms clusters ofpoints
that are known to be non-optimal and this transforms the
environment into a more dynamic and informative resource.

1. INTRODUCTION

Particle Swarm Optimization (PSO) is a stochastic
optimization technique, inspired by the idea of a flock of
birds moving towards a final goal through cooperation as
well as independent exploration. However, the particles in
the swarm have limited autonomy and intelligence. The
velocity of the particle in the problem space is governed by
a central algorithm that is the same for every particle and the
algorithm gives the particle limited flexibility and
knowledge about the environment. Although, this makes
every iteration computationally efficient, the overall
performance can be improved by adding some
sophistication to the algorithm. We argue that elevating the
particle to the status of an agent will make the whole
algorithm perform much more effectively, especially in a
large problem space with a complex structure. In this paper
we present a new approach for implementing a particle
swarm for optimization by viewing the swarm as a multi-
agent system.

2. BACKGROUND & MOTIVATION

Particle Swarm Optimization (PSO) was introduced by
Kennedy and Eberhart [4], as a stochastic, population based
optimization technique for efficiently finding an optimal or

near-optimal solution to a numerical problem. It involves a
"swarm" of "particles" that move through the problem
space, where the location of a particle represents a possible
solution. The particles adjust their velocity based on their
own best location and that of the neighboring particles in
search for the best location which minimizes a fitness
function. It has proven to be a very efficient and quick
technique for finding solutions to several optimization
problems [2], [5]. However, the simplicity of the PSO does
not provide any features for particles to effectively explore
the problem space such as preventing them from analyzing
points in the problem space that some particle may have
already visited earlier and found it to be non-optimal.

A Multi-Agent System (MAS) is composed of a collection
of autonomous software agents which are capable of
completing desired goals cooperatively. The basic attributes
of an agent that are considered typical are autonomy,
learning and cooperation [7]. These properties imply that
agents are capable of executing independently from any
other control and possibly asynchronously, discover
relevant knowledge from the the environment and other
agents that may help in attaining the desired goals, and work
cooperatively and competitively with other agents.

PSO and MAS are similar to each other in the first glance.
They both are population-based approach and accomplish
tasks cooperatively. However, agents are quite distinct from
particles in a very specific manner and we discuss three
reasons that are relevant to our approach. First of all, a
particle is not usually considered autonomous as it can only
move in the problem space according to the main algorithm,
but agent are able to explore the environment with much
more flexibility. Second, particles are purposely defined as
less intelligent to gain computational performance by
reducing their capability. On the other hand, learning, a
form of intelligence, is one of the main component required
by agents. Finally, PSO enforces synchronized execution in
order to maintain simplicity in design. However, because of
the autonomy, learning and cooperation components, agents
in MAS are naturally asynchronously executed.
Consequently, an approach that combines the simplicity of
the PSO with the autonomy and learning of the MAS can
benefit from both.

1-4244-0945-4/07/$25.00 02007 IEEE 267

By introducing autonomy and learning to the PSO, particles
become more intelligent and autonomous and can achieve
more effective performance and use of resource. Since each
particle is now able to take advantage of its surrounding
environment, it can, for example, determine whether a
costly fitness function evaluation is needed at all for each
point it visits. If not, it can request information from its
neighbors and update its location. In turn, this saves
computational resources and can accelerate the
performance.

Because of the introduced complexity of autonomy and
learning in the particle, the performance of PSO might
decrease to a certain degree. However, since each particle
only performs the costly fitness function when needed, the
modified PSO is in fact more effective and can easily
outperform the original PSO in optimization scenarios
where the problem space is non-trivial. In the rest of the
paper, we use the terms particle and agent interchangeably.

Since PSO and MAS are normally classified as two different
fields, optimization algorithm and artifact system
respectively, researchers have traditionally focused on
applying PSO as an optimizing algorithm in MAS and other
methodologies. To our knowledge, there is only one related
work which attempts at integrating PSO and MAS to form a
MAS-based PSO approach, called MAPSO [8]. The only
similarity between our modified PSO and MAPSO is that
the particles have been enhanced as agents. The definitions
of environment, the capability of particles and the approach
mechanism are quite different, and we believe that our
approach attempts at combining the two ideas at a much
more fundamental level. Also, since a particle in the
MAPSO approach utilizes another swarm at its own level to
speed up the optimization performance, it requires large
amount of resource to carry out optimization process and
thus limits its practicality.

3. APPROACH OUTLINES

By integrating autonomy and learning into the original PSO,
we propose a modified PSO approach, named Agent-based
PSO (APSO), where each particle is now termed as an
agent. Also the environment is modeled itself as an agent
and is responsible for providing extra information about the
problem space to the agents. We further attach a boolean
value with each point in the problem space to identify
whether that point has been already visited by an agent.
Obviously if the point has been visited, then it must not be a
solution, otherwise it would have resulted in the termination
of the algorithm. As in the original PSO, particles search for
the optimal solution by traveling through the problem space
in a multi-dimensional environment. Hence, if we can
limited the number of unvisited points that a particle can
possibly travel to in the future, this can increase the
efficiency in a large problem space.

Based on this methodology, the environment is now
transformed from a static one to a dynamic version where
the points in the problem space are being continuously

tagged by particles after they visit them for the first time. To
further decrease the chance that particles visit the tagged
points, the environment agent applies a density-based
cluster algorithm to discover clusters of tagged points.
Those clusters can then be utilized by an agent to identify
areas in the problem space that it can possibly stay away

from. The actual technique of clustering is described in the
next section.

The simple particles in PSO are now transformed to agents
in APSO with autonomy and learning capabilities. The
autonomy property enables particle agents to be more

proactive by allowing them to actively change the
environment; for e.g., by changing the status of non-optimal
points in the environment. Instead of the comprehensive
learning concept in the traditional MAS in which agents
adapt the changes in the environment to maximize its goal
achieving ability, the learning attribute added to the particle
agents in APSO is limited to only be more aware of the
changes in the environment. An agent can request cluster
information from the environment agent, and can use this to
considerably limit the performance overhead and still retain
the simplicity of the original PSO.

Since particle agents are now able to observe if a point is
visited, there is no need to enforce all particle agents to
perform fitness function evaluation as in PSO. Instead, if a
particle agent arrives at a visited point which means this
points has been evaluated before and not found optimal, the
agent can skip the fitness evaluation and request its
neighbors' positions and cluster information to update its
own position. This optimizing mechanism facilitates
asynchronous execution in APSO which can improve the
overall optimization performance as well as extend APSO to
be deployed in a heterogeneous environments. More
information regarding this mechanism is discussed in the
next.

Besides tagging points in problem space, each particle agent
is also given other abilities as well. These include inquiring
the current best solution from its neighbors to calculate the
global best location, return its personal best solution to its
neighbors, and to request information regarding the
surrounding clusters from the environment agent. These
extra methods also extend the particle's functionality beyond
a simple agent.

4. DETAILED METHODOLOGY

In this section, we define the essential elements inthe
proposed APSO and formulate the updating function to
utilize the introduced cluster property. We then describe the
functionalities of the environment agent and how it
classifies clusters in the environment.

Definition 1: The environment in APSO of n dimension
problem space, denoted by E, is defined as

E= {P,C,n,FF,c,Ed}

268

F is the set of points in the problem space where
p C P,p = {d1 x d2 x x dn, tag} is a point that
includes the n dimensional position and an extra boolean
value called tag.

C represents the set of clusters in E and is defined by

C {(PI,P2, ,**Pcenter, ,pm),d d >cd}

FF is the fitness function and is defined within the
environment because different criteria requires different
fitness functions. e is the minimum error criteria that is used
to terminate the APSO execution. A predefined maximum
iteration is employed to terminate the system when the
swarm cannot find any solution to fulfill e criteria. Ed is the
minimum density requirement for the environment agent to
identify if a group of tagged, non-optimal points can be
considered as a cluster in the problem space.

As we mentioned in the previous section, in APSO each
point, P, contains one extra field, tag, to indicate if the point
has been visited. The environment agent then use this
information to discover clusters. Each cluster, C, contains a
center point, Pcenter, and the current density of the cluster,
d. Those two entries can be requested by a particle agent to
compute the next position in its updating function.

Definition 2: The particle agent in APSO, denoted by PA,
is defined by PA: {pB, gB, N} . N contains a set of
particle agents which are predetermined as neighbors of
PA. PA is defined with following functions:

. requesting each neighbor's current personal best
location.

. returning its current personal best to neighbors.
* obtaining center location of each surrounding cluster.
* observing if the current position is visited.
* tagging current position if not optimal.

Each particle agent receives a set of its neighbors during the
system initiation. Different topologies can be used to create
different property of neighbors of a particle agent to obtain
different performance. For simplicity, we assume that each
particle agent receives a static set of neighbors.

A particle agent maintains its current best solution, pB,
which is the point in the problem space that it has found to
be closest to an optimal solution, and the best solution
among its neighbors, gB. In each iteration, a particle agent
observes the condition of its current position to determine if
it needs to perform fitness evaluation and it checks if the
termination criteria is fulfilled. If not, it updates its pB,
requests its neighbors' pB to compute the gB, and tags the
current position as visited. A detailed description of this
mechanism is described later in this section.

Definition 3: The original updating function in PSO is
enhanced in APSO to take advantage of the new cluster
concept and is defined by the followings:

Vc+j = Vd4 + RpBest (pBestm
+RgBest (gBestm -

CX= |(N i nterV
xm = xm m
'd+l -'d + Vdm+

Xm)xd)

xdm)
xd)

Here Vd+ i is the velocity of particle agent m in the iteration
d + 1 and is used to compute particle agent's next position.
The idea is to move toward the better solution area in the
problem space and move away from the clusters at the same
time. Furthermore, RpBest, RgBest and Re are random
numbers to retain the stochastic feature of the original PSO
algorithm.

To illustrate the importance of constructing clusters of
visited points and the improvement this will provide, let us
consider an example as shown in Figure 1. The cloud-like
areas indicate dense visited points in (a) for the original
PSO and discovered clusters in (b) for the the APSO. We
further assume Vd = 0 and RpBest = RgBest = Re 1 to
simplify the example but still maintain the correctness. In
Figure 1(a), a particle updates its next position solely
depending onpB and gB, the particle will move to a position
in the problem space that is surrounded by a large number of
non-optimal points, and therefore it is highly unlikely that
the new point itself will provide a final solution. Since the
particle cannot observe the condition of the new position
Xd+l± it computes the fitness function to determine if Xd+1 is
optimal. From the figure, we know that Xd+1 is either visited
by other particles or most likely not optimal as lots of its
surrounding points are not optimal.

0

p 3

(a)

C2 - Xd

' C3
d< ~~~C3- X

Xd C I Xd -g
pB 2

(b)

Ed

- X(

Figure 1 (a) original PSO (b) APSO

On the other hand, considering (b) in Figure 1, each particle
agent is aware of the condition of its position and the
information of surrounding clusters. Now, by taking the the
clusters into account, the new position Xd+1 has been
calculated by the new velocity update function as away from
the cluster C2. The particle agent then determines if XTd+1 has
been visited before evaluating fitness function. This
technique not only reduces the chance that a particle agent
visits non-optimal points in the problem space but also
accelerates the optimization process by preventing
unnecessary fitness function evaluation.

Optimization Procedure

269

After the APSO system is initialized, each particle agent is
assigned a set of particles as its neighbors and a starting
position which is normally distributed over the problem
space. The system then activates particle agents to search
for an optimal solution until either maximum iteration is
reached or the minimum error criteria is fulfilled.

Each particle agent first determines whether its current
position is visited by checking the tag of the position. If the
position is tagged, the agent skips the fitness function
evaluation and gathers necessary information to update its
position. It requests the pB values from its neighbors to
calculate its current gB and request the location of
neighboring clusters from the environment agent. Each
particle agent then compute its new velocity value Vd+1 in
order to move to the next position by using the velocity
updating function defined in definition 3 in this section.

On the other hand, if the current position is not tagged, the
particle agent follows the same procedure as particles in the
original PSO. It first evaluates the fitness value of the
current position by using the fitness function to check if the
minimum error criteria e is fulfilled. If e is fulfilled, the
particle agent notifies the system about the solution, and the
system then broadcasts a terminating message to all other
particle agents and returns the solution to the user. If e is not
fulfilled, the particle agent then check if the maximum
allowed iteration is reached. If reached, it notifies the
system and terminates itself. Else, it tags the current point as
visited and update its position as mentioned earlier. After all
the particle agents have terminated and none has reported an
optimal solution, the system returns a no solution found
message to the user. The overall optimization procedure can
is shown as a low-chart in Figure 2.

Not

Figure 2 - Particle Agent Optimization Procedure

Environment Agent

The main responsibilities of the environment agent are the
discovery of clusters of visited, non-optimal points with a
pre-defined density constraint and providing the
characteristics of discovered clusters such as their density
and the center point to particle agents. Although this
clustering process is managed in parallel of the other
particle agents by the environment agent, the clustering
algorithm needs to be efficient as it will effect the overall

performance of the swarm. There are several studies
regarding density-based clustering algorithms and each of
them performs differently and utilize different input
parameters to discover the clusters. We briefly review two
common density-based algorithms, CLARANS and
DBSCAN, and justify the reasons why we choose
DBSCAN.

CLARANS (Clustering Large Applications based on
RANdomized Search) proposed by Ng and Han is based on
randomized search technique [6]. It utilizes two input
parameters, the maximum number of neighbors examined
and the number of local minima obtained, to control the
quality of discovered clusters which also affects the
performance. On the other hand, Ester, Kriegel, Sander, and
Xu propose DBSCAN (Density Based Spatial Clustering of
Applications with Noise) to classify clusters by checking the
number of points in a given radius [3]. Therefore, even
though authors indicate that DBSCAN only requires one
input parameter, users can also supply two parameters:
maximum radius of the neighborhood and minimum points
in such neighborhood.

We have chosen DBSCAN mainly because DBSCAN
outperforms CLARANS at least 100 times as well as
discovers more clusters [3]. This is extremely important as
our improvement introduces the extra overhead in
recognizing clusters. In order to make and improvement
over the original PSO, the overhead has to be minimized.
Furthermore, because of monotonous property of our
environment e.g. the size of the a cluster can only increases,
DBSCAN only needs to check the boundary points in each
cluster after it has created the first set of clusters.

5. CONCLUSION & FUTURE WORK

In this paper we have proposed a unique approach towards
developing a PSO algorithm. The new approach combines
the optimization technique with the feature set of a multi-
agent system. The result is a new population-based
optimization algorithm where the simple particle is now
elevated to the status os an autonomous and intelligent
agent, and the cluster itself is now viewed as a multi-agent
system. The future research initiative will include a
comparison of the optimization performance ofAPSO with
the traditional PSO techniques and analysis of the
improvements made by varying the clustering algorithm. We
have recently introduced another improvement to PSO by
providing a novel approach to making the PSO run in a
parallel computing environment [1]. We intend to compose
the two proposals into a composite PSO algorithm to
provide a superior approach than any other previously
implemented.

REFERENCE

[1] Ahmad, R., Lee, Y., Rahimi, S., "A New Approach
Towards a Parallel Particle Swarm Optimization

270

Algorithm," in review, Scalable Computing: Practice and
Experiences Journal, special issue of Parallel
Evolutionary Algorithms, Dec. 2006.
[2] Correll, N. and Martinoli, A. (2004). Modeling and
optimization of a swarm-intelligent inspection system. In
Proceedings of the 7th Symposium on Distributed
Autonomous Robotic System (DARS), Springer-Verlag,
London.

[3] Ester, M., Kriegel, H., Sander, J., and Xu, X. (1996). A
Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. In Proceeding of 2nd
International Conference on Knowledge Discovery and Data
Mining, Portland, OR, pp. 226-231.

[4] Kennedy, J. and Eberhart R. (1995). Particle Swarm
Optimization. In Proceeding of the IEEE International
Conference on Neural Networks, Perth, Australia, Vol. 4. pp.
1942-1948.

[5] Kennedy, J. (1997). The particle swarm: social
adaptation of knowledge. IEEE International Conference on
Evolutionary Computation, pp. 303-308.

[6] Ng, R. T. and Han, J. (1994). Efficient and Effective
Clustering Methods for Spatial Data Mining, In Proceeding
of 20th International Conference on Very Large Data Bases,
Santiago, Chile, pp. 144-155.

[7] Nwana, H. S. and Ndumu, D. T. 1997. An Introduction
to Agent Technology. In Software Agents and Soft
Computing: Towards Enhancing Machine intelligence,
Concepts and Applications H. S. Nwana and N. Azarmi,
Eds. Lecture Notes In Computer Science, Springer-Verlag,
London, Vol. 1198, pp. 3-26.

[8] Zhao, B., Guo, C. X., and Cao, Y. J. (2005). A
Multiagent-Based Particle Swarm Optimization Approach
for Optimal Reactive Power Dispatch. IEEE transactions on
power system. Vol. 20, No. 2, pp.1070-1078

271

	Southern Illinois University Carbondale
	OpenSIUC
	5-2007

	A Multi-Agent Based Approach for Particle Swarm Optimization
	Raheel Ahmad
	Yung-Chuan Lee
	Shahram Rahimi
	Bidyut Gupta
	Recommended Citation

