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Analytic Normal Forms and Symmetries
of Strict Feedforward Control Systems

Issa Amadou Tall∗and Witold Respondek

Southern Illinois University carbondale, Department of mathematics,
MC 4408, Carbondale, IL 62901, itall@math.siu.edu

Institut National des Sciences Appliquées de Rouen, LMI, Place Emile Blondel BP 08,
76131 Mont-Saint-Aignan, Rouen , France, wresp@insa-rouen.fr

SUMMARY

This paper deals with the problem of convergence of normal forms. We identify a n-dimensional
subclass of control-affine systems, called special strict feedforward form, shortly (SSFF), possessing a
normal form which is a smooth (resp. analytic) counterpart of the formal normal form of Kang. We
provide a constructive algorithm and illustrate by several examples. The second part of the paper is
concerned about symmetries of single-input control systems. We show that any symmetry of a smooth
system in special strict feedforward form is conjugated to a scaling translation and any 1-parameter
family of symmetries is conjugated to a family of scaling translations along the first variable. We
compute explicitly those symmetries by finding the conjugating diffeomorphism. We illustrate our
results by computing the symmetries of the Cart-Pole system.

Copyright c© 2009 John Wiley & Sons, Ltd.
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1. Introduction

In the past twenty five years the problem of feedback equivalence of control systems under
change of coordinates and input has been studied extensively. Several methods have been
proposed to deal with the problem of transforming the nonlinear control system

Π : ẋ = f(x, u), x ∈ Rn, u ∈ Rm

into a simpler form
Π̃ : ż = f̃(z, v), z ∈ Rn, v ∈ Rm

by an invertible feedback transformation of the form

Γ :
z = φ(x)
u = γ(x, v),

∗Correspondence to: Southern Illinois University carbondale, Department of mathematics, MC 4408,
Carbondale, IL 62901, itall@math.siu.edu
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where the dynamics of the equivalent system are given by

f̃(z, v) = dφ(φ−1(z)) · f(φ−1(z), γ(φ−1(z), v)).

When the system Π̃ takes its simplest form ż = Az + Bv, that is Π̃ is linear, then the system
Π is said to be linearizable via feedback. Necessary and sufficient geometric conditions for this
to be the case have been given in [16] and [19]. Except for the planar case, those conditions
turn out to be restrictive and a natural problem of finding normal forms for non linearizable
systems arose and has been extensively studied during the last two decades (see, e.g., [6], [7],
[20], [22], [23], [24], [27], [37], [61], [62] and the recent survey [42]).

A very fruitful approach leading to normal forms has been proposed by Kang and Krener
[24] and then followed by Kang [22], [23]. Their idea, which is closely related with classical
Poincaré’s technique for linearization of dynamical systems (see e.g. [1]), is to analyze, step by
step, the action of the Taylor series expansion of the feedback transformation Γ on the Taylor
series expansion of the system Π. Using that approach, results on normal forms of single-input
control systems with controllable linearization have been obtained by Kang and Krener [24] for
the quadratic terms, and then generalized by Kang [22] for higher order terms. The results of
Kang and Krener [24],[22] have been completed by Tall and Respondek who obtained canonical
forms and dual canonical forms for single-input nonlinear control systems with controllable
linearization [47], [48] and then with uncontrollable linearization [49] (see also [29]). Recently
those results have been generalized by Tall [45], [46] to multi-input nonlinear control systems.

The theory of normal forms, although formal, has been very useful in analyzing control
systems. Using this method, bifurcations of nonlinear systems were treated in [25], [26] and
the references therein, a complete description of symmetries around equilibria were presented
in [38], [39], a characterization of systems equivalent to feedforward forms in [52], [53].
Their counterparts, in the discrete case, have also been obtained using a similar approach
[9, 10, 11, 12, 13, 14, 15].

The convergence of these normal forms and their normalizing transformations in the C∞

and analytic categories is still an open problem (see [4]).
A starting point is a result of Kang [22] derived from [27], and [28] (see also [17]) stating

that, if an analytic control system is linearizable by a formal transformation, then it is
linearizable by an analytic transformation. Kang [22] also gave a class of non linearizable
3-dimensional analytic control systems which are equivalent to their normal forms by analytic
transformations. In [57], we gave the largest class ever of n-dimensional systems, namely
the subclass of special strict feedforward forms, that can be brought to their normal form
via smooth and analytic feedback transformations. Notice however, that C∞-smooth and/or
analytic normal forms were obtained in [6], [18], [20], [36], [43], [63] via singularity theory
methods.

We will first address the problem of convergence of normal forms in section 3 by providing
the largest class ever of smooth (resp. analytic) control systems that can be brought to their
normal forms via smooth (resp. analytic) feedback transformations. The class of special strict
feedforward forms we consider here (see definition later) is a generalization of that, of the same
name, studied in [56] with the difference that the linearization is uncontrollable.

Although it is not clear if any smooth (resp. analytic) strict feedforward system can be
brought to its smooth (resp. analytic) normal form, we will define in section 4 a strict
feedforward normal form, that is close as much as possible to the normal form, to which

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 00:1–31
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any smooth (resp. analytic) strict feedforward form can be transformed via smooth (resp.
analytic) feedback transformation.

For simplicity of notations, we will deal with single-input nonlinear control system of the
form

Π : ẋ = f(x, u),

where x ∈ Rn and u ∈ R. This system is in strict feedforward form if we have

(SFF )





ẋ1 = f1(x2, . . . , xn, u)
. . .

ẋn−1 = fn−1(xn, u)
ẋn = fn(u).

A basic structural property of systems in strict feedforward form is that their solutions can
be found by quadratures. Indeed, knowing u(t) we integrate fn(u(t)) to get xn(t), then
we integrate fn−1(xn(t), u(t)) to get xn−1(t), we keep doing that, and finally we integrate
f1(x2(t), . . . , xn(t), u(t)) to get x1(t).

Another property, crucial in applications, of systems in (strict) feedforward form is that we
can construct for them a stabilizing feedback. This important result goes back to Teel [59] and
has been followed by a growing literature on stabilization and tracking for systems in (strict)
feedforward form (see e.g. [21], [32], [44], [60], [3], [33]).

The natural question of which systems are equivalent to (strict) feedforward forms arose
and has been investigated by several authors. In [31], the problem of transforming a system,
affine with respect to controls, into (strict) feedforward form via a diffeomorphism, i.e., via a
nonlinear change of coordinates, was studied. A geometric description of systems in feedforward
form has been given in [2]. Using the formal approach, we proposed a step-by-step constructive
method to bring a system into a feedforward form in [52] and strict feedforward form in [53].
Recently, (see [40]), we have shown that feedback equivalence (resp. state-space equivalence) to
the strict feedforward form can be characterized by the existence of a sequence of infinitesimal
symmetries (resp. strong infinitesimal symmetries) of the system.

Another topic of interest that we have been investigating is about symmetries of nonlinear
systems. We showed, even in the formal case, that there is a strong connection between the
existence of symmetries and the feedback equivalence to (strict) feedforward systems.

We will further that topic here by providing explicit symmetries of systems in strict
feedforward form via the smooth (resp. analytic) normalizing feedback transformation
constructed in section 3.

The paper is organized as follows. In section 2 we will recall the Kang normal form and our
canonical form for single-input control systems. Analytic normal forms for strict feedforward
and special strict feedforward systems are given in section 3, followed by their proofs. In
section 4, we discuss symmetries of control systems. Illustrative examples (cart-pole, Kapitsa
pendulum, etc) are given throughout the sections.

2. Normal and Canonical Forms

We start by briefly reviewing the results on normal and canonical forms obtained using the
formal approach.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 00:1–31
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2.1. Formal Normal Forms

All objects, i.e., functions, maps, vector fields, control systems, etc., are considered in a
neighborhood of 0 ∈ Rn and assumed to be C∞-smooth (or real analytic, if explicitly stated).
Let h be a smooth function. By

h(x) = h[0](x) + h[1](x) + h[2](x) + · · · =
∞∑

m=0

h[m](x)

we denote its Taylor expansion around zero, where h[m](x) stands for a homogeneous
polynomial of degree m.

Similarly, for a map φ of an open subset of Rn to Rn (resp. for a vector field f on an
open subset of Rn) we will denote by φ[m] (resp. by f [m]) the term of degree m of its Taylor
expansion at zero, i.e., each component φ

[m]
j of φ[m] (resp. f

[m]
j of f [m]) is a homogeneous

polynomial of degree m in x.
Consider the Taylor series expansion of the single-input system Π, given by

Π∞ : ẋ = f(x, u) = Fx + Gu +
∞∑

m=2
f [m](x, u), (2.1)

where F = ∂f
∂x (0, 0) and G = ∂f

∂u (0, 0). Except otherwise stated, we will assume the linear
approximation around the origin to be controllable.

Consider also the Taylor series expansion Γ∞ of the feedback transformation Γ given by

Γ∞ :
z = φ(x) = Tx +

∞∑
m=2

φ[m](x)

u = γ(x, v) = Kx + Lv +
∞∑

m=2
γ[m](x, v),

(2.2)

where the matrix T is invertible and L 6= 0. The action of Γ∞ on the system Π∞ step by step
leads to the following normal form obtained by Kang [22] (see also [24] and [47]).

Theorem 2.1. The control system Π∞, defined by (2.1), is feedback equivalent, by a formal
transformation Γ∞ of the form (2.2), to the formal normal form

Π∞NF : ż = Az + Bv +
∞∑

m=2

f̄ [m](z, v),

where (A,B) is the Brunovský canonical form and for any m ≥ 2, we have

f̄
[m]
j (z, v) =





n+1∑
i=j+2

z2
i P

[m−2]
j,i (z1, . . . , zi), 1 ≤ j ≤ n− 1,

0, j = n,

(2.3)

with P
[m−2]
j,i being homogeneous polynomials of degree m − 2 of the indicated variables, and

zn+1 = v.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 00:1–31
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The Kang normal form has been re-normalized [47] to obtain a canonical form

Π∞CF : ż = Az + Bv +
∞∑

m=m0

f̄ [m](z, v),

with the components f̄
[m]
j (z, v) satisfying (2.3) and, in addition

∂m0 f̄
[m0]
j∗

∂zi1
1 · · · ∂z

in−s

n−s

= ±1. (2.4)

Moreover, for any m ≥ m0 + 1,

∂m0 f̄
[m]
j∗

∂zi1
1 · · · ∂z

in−s

n−s

(z1, 0, . . . , 0) = 0.

For the definitions of the integers m0, j∗, and s, we refer the reader to [47].
The importance of the canonical form resides in the fact that two systems Σ∞1 and Σ∞2 are

formally feedback equivalent if and only if their canonical forms Σ∞1,CF and Σ∞2,CF coincide.
The canonical form played a key role in computing the symmetries of control systems.

If the linearization of the system around the origin is uncontrollable, we introduced weights
corresponding to the uncontrollable variables [49]. Assuming the linearly uncontrollable part
to be of dimension s, we split the coordinates as (x1, . . . , xs), denoting the uncontrollable
variables, and (xs+1, . . . , xn), denoting the controllable variables. We then proved [49] (see
[55]) that any single-input system, with uncontrollable linearization, is feedback equivalent to
a weighted normal form

Π∞NF :





żj = Rj(z1, . . . , zs) + zs+1Sj(z1, . . . , zs) +
n+1∑

i=s+1

z2
i Q∞j,i(z1, . . . , zi), 1 ≤ j ≤ s

żj = zj+1 +
n+1∑

i=j+2

z2
i P∞j,i (z1, . . . , zi), s + 1 ≤ j ≤ n− 1

żn = zn+1 = v ,

where the functions Q∞
j,i and P∞j,i are formal power series in the controllable variables

zs+1, . . . , zn, v whose coefficients are smooth (resp. analytic) functions of the uncontrollable
variables (z1, . . . , zs). Those results stand for the single-input case, and have been generalized
in the multi-input case [45, 46].

The problem whether an analogous result holds in the smooth (resp. analytic) category
is actually a challenging question, which can be formulated as whether for a smooth (resp.
analytic) system Π the normalizing feedback transformation Γ∞ gives rise to a smooth (resp.
convergent) Γ and thus leads to a smooth (resp. analytic) normal form ΠNF or canonical form
ΠCF . One of the difficulties resides in the fact that it is not clear at all how to express, in
terms of the original system, homogeneous invariants transformed via an infinite composition
of homogeneous feedback transformations. We will study in this paper a special class of smooth
(resp. analytic) control systems, namely special strict feedforward systems, that can be brought
to their thus normal form by smooth (resp. analytic) transformations.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 00:1–31
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3. Smooth and Analytic Normal Forms

Let start by recalling the results obtained by Kang for 3-dimensional systems. He pointed out
that any system of the form




ẋ1 = x2 + f1,2(x2) + x3f1,3(x2) + x2
3P (x1, x2, x3)

ẋ2 = x3 + x3f2,3(x2, x3)
ẋ3 = u,

where f1,2, f1,3, and f2,3 are analytic functions, is feedback equivalent to its normal form




ż1 = z2 + z2
3P̃ (z1, z2, z3)

ż2 = z3

ż3 = v.

Indeed, the change of coordinates and feedback

z1 = x1 −
∫ x2

0

f1,3(ε)dε

z2 = x2 + f1,2(x2)
z3 = x3 + x3f2,3(x2, x3)
v = ż3 = (∂z3/∂x1)ẋ1 + (∂z3/∂x2)ẋ2 + (∂z3/∂x3)ẋ3

do the job.
He also gave a class of 3-dimensional systems with one uncontrollable mode, namely, systems

of the form 



ẋ0 = λx0 + f0(x0, x1, x2)
ẋ1 = x2 + f1(x0, x1, x2)
ẋ2 = u,

that can be brought to a normal form



ż0 = λz0 + z1Q0(z0) + z2
1Q1(z0, z1) + z2

2P (z0, z1, z2)
ż1 = z2

ż2 = v

with Q0(z0) ≡ 0 if λ 6= 0.
Notice that while the first class is linearly controllable, the second class has a controllability

index p = 2 and is the analytic counterpart of our weighted normal form when s = 1 and
n = 3.

In the following we will give an n-dimensional class of smooth (resp. analytic) control
systems, with uncontrollable linearization, that can be brought to their normal form (weighted
normal form) via smooth (resp. analytic) feedback transformation.

Consider the class of smooth (resp. analytic) single-input control systems

Π : ẋ = f(x, u),

either locally in a neighborhood X × U of (0, 0) ∈ Rn × R or globally on Rn × R, in strict
feedforward form (SFF), that is, such that

(SFF ) fj(x, u) = fj(xj+1, . . . , xn, u), 1 ≤ j ≤ n.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 00:1–31
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Notice that for any 1 ≤ i ≤ n, the subsystem Πi, defined as the projection of Π onto Rn−i+1

via π(x1, . . . , xn) = (xi, . . . , xn), is a well defined system whose dynamics are given by

ẋj = fj(xj+1, . . . , xn, u)

for i ≤ j ≤ n. Define the linearizability index of the (SFF)-system to be the largest integer p
such that the subsystem Πr, where p+r = n, is feedback linearizable. Clearly, the linearizability
index is feedback invariant and hence the linearizability indices of two feedback equivalent
systems coincide.

Notice that each component of a strict feedforward system (SFF) decomposes uniquely,
locally or globally, as: 




fj(x, u) = hj(xj+1) + Fj(xj+1, . . . , xn, u)
Fj(xj+1, 0, . . . , 0) = 0, 1 ≤ j ≤ n,

Fn = 0.

(3.1)

Let s be the smallest integer such that
∂hj

∂xj+1
(0) 6= 0 for s + 1 ≤ j ≤ n, (3.2)

where xn+1 = u. This means, in particular, that the linearization of the system around the
origin is controllable when s = 0 and is uncontrollable when s > 0.

A strict feedforward form for which

hj(xj+1) = kjxj+1, s + 1 ≤ j ≤ r − 1, (3.3)

for some non zero real numbers ks+1, . . . , kr−1, will be called a special strict feedforward form,
shortly, (SSFF).

The first result of this paper is stated as following.

Theorem 3.1. Consider a smooth (resp. analytic) special strict feedforward form (SSFF)
given by (3.1)-(3.2)-(3.3) in a neighborhood of (0, 0) ∈ Rn × R. There exists a smooth (resp.
analytic) local feedback transformation that brings the system (3.1)-(3.2)-(3.3) into the normal
form

ΠSSFNF :





żj = Rj(zj+1, . . . , zs) + zs+1Sj(zj+1, . . . , zs) +
n+1∑

i=s+1

z2
i Qj,i(zj+1, . . . , zi),

if 1 ≤ j ≤ s

żj = zj+1 +
n+1∑

i=j+2

z2
i Pj,i(zj+1, . . . , zi),

if s + 1 ≤ j ≤ r
żr+1 = zr+2,

· · ·
żn−1 = zn,

żn = zn+1 = v ,
(3.4)

where Rj(zj+1, . . . , zs) and Sj(zj+1, . . . , zs) are smooth (resp. analytic) functions depending
on the uncontrollable variables only, Qj,i(zj+1, . . . , zi) and Pj,i(zj+1, . . . , zi) are smooth (resp.
analytic) functions of the indicated variables and zn+1 = v. Moreover, if the system is defined
globally on Rn × R, then so are the feedback transformation and the normal form.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 00:1–31
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This result, although stated for strict feedforward systems, remains true even if the
uncontrollable part corresponding to the variables (x1, . . . , xs)> is not in strict feedforward
form. In other words, if the projection Πs is in strict feedforward form (with s defined as
above), then the system is smoothly (resp. analytically) feedback equivalent to its normal
form. This provides the largest class ever of nonlinear control systems that can be brought to
their normal form via a smooth (resp. analytic) feedback transformation.

When s = 0, that is, the linearization about the origin is controllable, the normal form
reduces to (see [41], [56])

ΠSSFNF :





ż1 = z2 +
n+1∑
i=3

z2
i P1,i(z2, . . . , zi),

. . .

żj = zj+1 +
n+1∑

i=j+2

z2
i Pj,i(zj+1, . . . , zi),

. . .

żr = zr+1 +
n+1∑

i=r+2

z2
i Pr,i(zr+1, . . . , zi),

żr+1 = zr+2,

. . .

żn−1 = zn,

żn = v.

A main observation is that the above normal form ΠSSFNF given by (3.4) is itself a (SSFF)-
system and, on the other hand, it constitutes a smooth (resp. analytic) counterpart ΠNF of
the formal normal form Π∞NF (actually, the weighted normal form) given by Theorem 2.1.
However, the convergence to the canonical form is only guaranteed in the analytic case.

A question of importance is whether we can always transform a strict feedforward form, say
(3.1)-(3.2), into a special strict feedforward form (3.1)-(3.2)-(3.3). To answer that question,
consider another smooth (resp. analytic) system

Π̃ : ż = f̃(z, v),

in strict feedforward form (SFF), that is, such that




f̃j(z, u) = h̃j(zj+1) + F̃j(zj+1, . . . , zn, v),

F̃j(zj+1, 0, . . . , 0) = 0, 1 ≤ j ≤ n,

F̃n = 0.

(3.5)

Let q̃ denote the smallest integer such that

∂h̃j

∂zj+1
(0) 6= 0, for s̃ + 1 ≤ j ≤ n. (3.6)

It is in the special strict feedforward form (SSFF) if

h̃j(zj+1) = k̃jzj+1, s̃ + 1 ≤ j ≤ r̃ − 1 (3.7)

for some non zero real numbers k̃s̃+1, . . . , k̃r̃−1.
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Theorem 3.2. If two smooth (resp. analytic) (SFF)-systems given, respectively, by (3.1)-(3.2)
and (3.5)-(3.6) are feedback equivalent, then s = s̃, r = r̃ and

h̃j(lj+1zj+1) = ljhj(zj+1), s + 1 ≤ j ≤ r − 1,

for some non zero real numbers ls+1, . . . , lr−1.

The following corollary provides the answer to the question stated above.

Corollary 3.3. A strict feedforward system (SFF), given by (3.1)-(3.2), is feedback equivalent
to the special strict feedforward form (SSFF), given by (3.5)-(3.6)-(3.7), if and only if

hj(xj+1) = kjxj+1,

for s + 1 ≤ j ≤ r − 1, that is, the (xs+1, . . . , xr−1)-part of the system is already in (SSFF) in
its original coordinates.

Notice that the terms hj(xj+1) for s + 1 ≤ j ≤ n are feedback linearizable (actually hj form
exactly the feedback linearizable terms of the form ΠSFNF given by Theorem 3.1). Basically,
Theorem 3.2 and Corollary 3.3 imply that the linearizable terms hj(xj+1), for s+1 ≤ j ≤ r−1,
of a strict feedforward form (SFF) cannot be linearized (unless they are already linear) via
any feedback transformation that preserves the strict feedforward structure of the system.
This means that special strict feedforward forms (SSFF) define the only subclass of strict
feedforward systems that can be brought to the Kang normal form ΠNF still being in the
strict feedforward form. Whether it is possible to bring a (SFF)-system into its normal form
ΠNF by a smooth (resp. analytic) transformation is unclear but if true, then the normal form
ΠNF will loose the structure of (SFF) (unless the system is (SSFF)). On the other hand,
any strict feedforward form (SFF) can be brought to a form ΠSFNF , called strict feedforward
normal form (introduced by the authors in [52] in the formal category), which is close as much
as possible to the normal form ΠNF that is generalized here as

ΠSSFNF :





żj = Rj(zj+1, .., zs) + zs+1Sj(zj+1, .., zs) +
n+1∑

i=s+1

z2
i Qj,i(zj+1, .., zi),

if 1 ≤ j ≤ s

żj = hj(zj+1) +
n+1∑

i=j+2

z2
i Pj,i(zj+1, .., zi),

if s + 1 ≤ j ≤ r
żr+1 = zr+2,

. . .

żn−1 = zn,

żn = v.

Moreover, if the system is defined globally on Rn×R, then so are the feedback transformation
and the normal form.

In order to explain relations between various results proved in this section, let us recall that
according to Theorem 2.1, we can bring the infinite Taylor expansion Π∞ of a control system
into its formal normal form Π∞NF :

Π∞
formal−−−−−−−→ Π∞NF .
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Theorem 3.1 says that any smooth (resp. analytic) strict feedforward system can be
transformed into its strict feedforward normal forms via a smooth (resp. analytic) feedback
transformation, locally or globally:

ΠSFF
C∞−−−−−−→
Cω

ΠSFNF .

Provided that the linear approximation is controllable, the linearizability index of a general
(SFF)-system on R2 is at least one while the linearizability index of a general control-affine
system on R3 is at least two. It follows that in those two cases the functions hj are not invariant
(compare Theorem 3.2), which implies the following:

Corollary 3.4. Any smooth (resp. analytic) strict feedforward form (SFF) on R2, given by
(3.1)-(3.2), is feedback equivalent to the normal form

ΠSSFNF :

{
ż1 = z2 + v2P1,3(z2, v)
ż2 = v,

where P1,3 is a smooth (resp. analytic) function of the indicated variables.
Any smooth (resp. analytic) control-affine strict feedforward (SFF) on R3 is feedback

equivalent to the normal form

ΠSSFNF :





ż1 = z2 + z2
3P1,3(z2, z3)

ż2 = z3

ż3 = v.

where P1,3 is a smooth (resp. analytic) function of the indicated variables.

Normal forms for strict feedforward systems on R2 with noncontrollable linearization are given
in [40].

Examples

Example 3.5. Cart-Pole System. In this example we consider a cart-pole system that is
represented by a cart with an inverted pendulum on it [34], [58]. The Lagrangian equations of
motion for the cart-pole system are

(m1 + m2)q̈1 + m2l cos(q2)q̈2 = m2l sin(q2)q̇2
2 + F

cos(q2)q̈1 + lq̈2 = g sin(q2),

where m1 and q1 are the mass and position of the cart, m2, l, q2 ∈ (−π/2, π/2) are the mass,
length of the link, and angle of the pole, respectively.

Taking q̈2 = u and applying the feedback law (see [34])

F = −ul(m1 + m2 sin2(q2))/ cos(q2 + (m1 + m2)g tan(q2)−m2l sin(q2)q̇2
2 ,

the dynamics of the cart-pole system are transformed into




ẋ1 = x2,

ẋ2 = g tan(x3)− lu/cos(x3),
ẋ3 = x4,

ẋ4 = u,

(3.8)
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where we take x1 = q1, x2 = q̇1, x3 = q2, and x4 = q̇2.
This system is in strict feedforward form (SFF) with the linearizability index p = 2. We

showed in [38] that the diffeomorphism

z = σ(x) = (σ1(x), σ2(x), σ3(x), σ4(x))>

defined by

z1 = σ1(x) = µx1 + µl

∫ x3

0

ds
cos s

,

z2 = σ2(x) = µx2 + µl
x4

cosx3

z3 = σ3(x) = µg tanx3,

z4 = σ4(x) = µg
x4

cos2 x3

takes the system into its canonical form ΣSFCF :




ż1 = z2,

ż2 = z3 + z3
(1+(g/l)z2

3)3/2 z2
4 ,

ż3 = z4,

ż4 = v.

In the next example, we consider a case where the linearization about the origin is not
controllable.

Example 3.6. (Kapitsa Pendulum) We consider in this example the Kapitsa Pendulum
whose equations (see [5] and [8]) are given by





α̇ = p + w
l sin α

ṗ = (gl − w2

l2 cosα) sin α− w
l p cosα

ż = w,

(3.9)

where α denotes the angle of the pendulum with the vertical axis z, w the velocity of the
suspension point z, p is proportional to the generalized impulsion, g is the gravity constant
and l the length of the pendulum.

Assume we control the acceleration a = ẇ. Introducing the coordinates system
(x1, x2, x3, x4) = (α, p, z/l, w/l), we take u = a/l as a control.

The system (3.9) considered around an equilibrium point (α0, p0, z0, u0) = (kπ, 0, 0, 0),
rewrites 




ẋ1 = x2 + x1x4 + x4P1(x1)
ẋ2 = εg0x1 − x2x4 + x2x4P2(x1) + x2

4Q2(x1) + R2(x1)
ẋ3 = x4

ẋ4 = u,

(3.10)

where g0 = g /l , ε = ±1, P1, P2, R2 are analytic functions whose 1-jets at (kπ, 0, 0, 0) vanish
and Q2 an analytic function vanishing at (kπ, 0, 0, 0). Above, ε = 1 corresponds to α0 = 2nπ
and ε = −1 to α0 = (2n + 1)π.
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We can notice that the linearization about any equilibrium point is uncontrollable with a 2-
dimensional controllable part. Since the projection of the system on the controlled variables is
in linear canonical form, hence in strict feedforward form, we expect the system to be brought
to its normal form via analytic feedback transformation (according to Theorem 3.1).

Indeed, one can easily check that the quadratic feedback transformation

Γ2 :

y1 = x1 − x1x3

y2 = x2 + x2x3

y3 = x3

y4 = x4

brings the system (3.10) into the system





ẏ1 = y2 + y2y3P̃1(y3) + y4Q̃1(y1, y3)

ẏ2 = εg0y1 + y1y3P̃2(y1, y3) + y4Q̃2(y1, y2, y3) + y2
4R̃2(y1, y3) + S̃2(y1)

ẏ3 = y4

ẏ4 = u

(3.11)

where P̃1, Q̃1, P̃2, Q̃2, R̃2 and S̃2 are analytic functions.

Since the vector field defined in R3 by

f = Q̃1(y1, y3)∂/∂y1 + Q̃2(y1, y2, y3)∂/∂y2 + ∂/∂y3

does not vanish neither at (0, 0, 0)> ∈ R3 nor at (π, 0, 0)> ∈ R3, there exists an analytic
transformation z = Φ(y) of the form

z1 = φ1(y1, y2, y3)
z2 = φ2(y1, y2, y3)
z3 = y3

such that

(Φ∗f)(z) = ∂/∂z3.

This latter transformation, completed by z4 = y4 and u = v, brings the system (3.11) into its
normal form 




ż1 = z2 + R1(z1, z2) + z3P̄1(z̄3) + z2
4Q1,4(z̄3)

ż2 = εg0z1 + R2(z1, z2) + z3P̄2(z̄3) + z2
4Q2,4(z̄3)

ż3 = z4

ż4 = v,

where z̄3 = (z1, z2, z3). Notice that

P̄j(z̄3) = Sj(z1, z2) + z3Pj,3(z1, z2, z3), j = 1, 2.
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3.1. Proof of Theorem 3.1

Consider a system ΠSFF in strict feedforward form with linearizability index p = n − r
and uncontrollable linearization of dimension s. The system ΠSFF is given by (3.1)-(3.2)-
(3.3). Since the projection Πs+1 on Rn−q depends exclusively on the controllable variables
xs+1, . . . , xn we will first show that Πs+1 can be brought to its normal form. For simplicity
in the notation, we will assume s = 0. Notice that a short constructive proof was given in
[41] and an alternative proof in [56] in the case of controllable linearization. For the sake of
completeness we will provide a more detailed proof here that generalizes to the uncontrollable
linearization. Without loss of generality we assume the system in the form





ẋ1 = h1(x2) + F1(x2, . . . , xn, u)
ẋ2 = h2(x3) + F2(x3, . . . , xn, u)

. . .

ẋr = hr(xr+1) + Fr(xr+1, . . . , xn, u)
ẋr+1 = xr+2

. . .

ẋn−1 = xn

ẋn = u,

(3.12)

where hj , and Fj are smooth functions such that

hj(xj+1) = kjxj+1

Fj(xj+1, 0, . . . , 0) = 0
(3.13)

for any 1 ≤ j ≤ r − 1.
We will provide a constructive algorithmic proof by defining explicit changes of coordinates

whose composition takes the system into its normal form. The algorithm will be divided into n
major steps. The first step consists of normalizing linear terms in u in the first n−1 components.
Then, in the second step we will normalize linear terms in xn in the first n−2 components, and

so on. The algorithm consists of at most (n− 1) + (n− 2) + · · ·+ 2 + 1 =
n(n− 1)

2
changes of

coordinates. Actually, there are fewer changes of coordinates if the linearizability index p > 2.
Applying the change of coordinates and feedback

zj = k1 · · · kj−1xj , 1 ≤ j ≤ r

zr+1 = k1 · · · kr−1hr(xr+1),
zj+1 = żj , r + 1 ≤ j ≤ n− 1

v = żn,

we can assume hj(xj+1) = xj+1 for 1 ≤ j ≤ r.
Step 1. Denote the system (3.12)-(3.13) by Πn+1. We first decompose the component
Fr(xr+1, . . . , xn, u) uniquely as

Fr(xr+1, . . . , xn, u) = F̄r(xr+1, . . . , xn) + uΘr,n+1(xr+1, . . . , xn) + u2Pr,n+1(xr+1, . . . , xn, u)

with F̄r(xr+1, 0, . . . , 0) = 0.
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The diffeomorphism z = σn+1
r (x) whose components are

zj = σn+1
rj (x) = xj , if j 6= r

zr = σn+1
rr (x) = xr −

∫ xn

0

Θr,n+1(xr+1, . . . , xn−1, ε)dε,

allows to normalize the linear terms in u in the rth component, and transforms it as

żr = zr+1 + F̂r(zr+1, . . . , zn) + u2Pr,n+1(zr+1, . . . , zn, u),

where

F̂r(zr+1, . . . , zn) = F̄r(zr+1, . . . , zn)−
n−1∑

k=r+1

zk+1

∫ zn

0

∂Θr,n+1

∂zk
(zr+1, . . . , zn−1, ε)dε.

Notice that the inverse of z = σn+1
r (x), say x = ηn+1

r (z), is given by

xj = ηn+1
rj (z) = zj , if j 6= r

xr = ηn+1
rr (z) = zr +

∫ zn

0

Θr,n+1(zr+1, . . . , zn−1, ε)dε,

Assume that the linear terms in u are normalized in the rth component through the (i + 1)st
component, that is, 




ẋ1 = x2 + F1(x2, . . . , xn, u)
ẋ2 = x3 + F2(x3, . . . , xn, u)

. . .

ẋr = xr+1 + Fr(xr+1, . . . , xn, u)
ẋr+1 = xr+2

. . .

ẋn−1 = xn

ẋn = u,

where Fj are smooth (resp. analytic) functions such that

Fj(xj+1, 0, . . . , 0) = 0

and moreover,

Fj(xj+1, . . . , xn, u) = F̂j(xj+1, . . . , xn) + u2Pj,n+1(xj+1, · · · , xn, u)

for any i + 1 ≤ j ≤ r.
Decompose the ith component Fi(xi+1, . . . , xn, u) uniquely as

Fi(xi+1, . . . , xn, u) = F̄i(xi+1, . . . , xn) + uΘi,n+1(xi+1, . . . , xn) + u2Pi,n+1(xi+1, . . . , xn, u)

with F̄i(xi+1, 0, . . . , 0) = 0.
The diffeomorphism z = σn+1

i (x) whose components are

zj = σn+1
ij (x) = xj , if j 6= i

zi = σn+1
ii (x) = xi −

∫ xn

0

Θi,n+1(xi+1, . . . , xn−1, ε)dε,
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allows to normalize the linear terms in u in the ith component, and transforms that component
as

żi = zi+1 + F̂i(zi+1, . . . , zn) + u2Pi,n+1(zi+1, . . . , zn, u),

where

F̂i(zi+1, . . . , zn) = F̄i(zi+1, . . . , zn)−
n−1∑

k=i+1

zk+1

∫ zn

0

∂Θi,n+1

∂zk
(zi+1, . . . , zn−1, ε)dε.

Notice that the inverse of z = σn+1
i (x), say x = ηn+1

i (z), is given by

xj = ηn+1
ij (z) = zj , if j 6= i

xi = ηn+1
ii (z) = zi +

∫ zn

0

Θi,n+1(zi+1, . . . , zn−1, ε)dε.

The recursive method can be then applied to define diffeomorphisms σn+1
r , . . . , σn+1

1 , allowing
to normalize the linear terms in u of the corresponding component.

The composition σn+1 = σn+1
1 ◦ · · · ◦ σn+1

r of the successive coordinates changes transforms
the system into (we reset the variable to x)





ẋ1 = x2 + F1(x2, . . . , xn, u)
ẋ2 = x3 + F2(x3, . . . , xn, u)

. . .

ẋr = xr+1 + Fr(xr+1, . . . , xn, u)
ẋr+1 = xr+2

. . .

ẋn−1 = xn

ẋn = u,

where Fj are smooth (resp. analytic) functions such that

Fj(xj+1, 0, . . . , 0) = 0, 1 ≤ j ≤ r,

and moreover,

Fj(xj+1, . . . , xn, u) = F̂j(xj+1, . . . , xn) + u2Pj,n+1(xj+1, . . . , xn, u)

for any 1 ≤ j ≤ r.
Step 2. Let Πn = σn+1(Πn+1) be the system Πn+1 transformed via the diffeomorphism σn+1.

We deduce from above that F̂j(xj+1, 0, . . . , 0) = 0 for 1 ≤ j ≤ r. Let decompose the
component F̂r(xr+1, . . . , xn) uniquely as following

F̂r(xr+1, . . . , xn) = F̄r(xr+1, . . . , xn−1) + xnΘr,n(xr+1, . . . , xn−1) + x2
nPr,n(xr+1, . . . , xn)

with F̄r(xr+1, 0, . . . , 0) = 0.
The diffeomorphism z = σn

r (x) whose components are

zj = σn
rj(x) = xj , if j 6= r

zr = σn
rr(x) = xr −

∫ xn−1

0

Θr,n(xr+1, . . . , xn−2, ε)dε,
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allows to normalize the linear terms in xn in the rth component, and transforms the component
as

żr = zr+1 + F̂r(zr+1, . . . , zn−1) + z2
nPr,n(zr+1, . . . , zn) + u2Pr,n+1(zr+1, . . . , zn, u),

where

F̂r(zr+1, . . . , zn−1) = F̄r(zr+1, . . . , zn−1)−
n−2∑

k=r+1

zk+1

∫ zn−1

0

∂Θr,n

∂zk
(zr+1, . . . , zn−2, ε)dε.

Following the same line as in step 1, we would suppose that coordinates changes σn
r , . . . , σn

i+1

has been defined such that their composition transforms the original system into (we keep the
variable as x) 




ẋ1 = x2 + F1(x2, . . . , xn, u)
ẋ2 = x3 + F2(x3, . . . , xn, u)

. . .

ẋr = xr+1 + Fr(xr+1, . . . , xn, u)
ẋr+1 = xr+2

. . .

ẋn−1 = xn

ẋn = u,

where Fj are smooth (resp. analytic) functions such that

Fj(xj+1, 0, . . . , 0) = 0, 1 ≤ j ≤ r,

and moreover,

Fj(zj+1, . . . , zn) = F̂j(xj+1, . . . , xn−1) + x2
nPj,n(xj+1, . . . , xn) + u2Pj,n+1(xj+1, . . . , xn, u)

for any i + 1 ≤ j ≤ r.
Decompose the ith component F̂i(xi+1, . . . , xn, u) as

F̂i(xi+1, . . . , xn) = F̄i(xi+1, . . . , xn−1) + xnΘi,n(xi+1, . . . , xn−1)
+x2

nPi,n(xi+1, . . . , xn) + u2Pi,n+1(xi+1, . . . , xn, u)

with F̄i(xi+1, 0, . . . , 0) = 0.
The diffeomorphism z = σn

i (x) whose components are

zj = σn
ij(x) = xj , if j 6= i

zi = σn
ii(x) = xi −

∫ xn−1

0

Θi,n+1(xi+1, . . . , xn−2, ε)dε,

allows to normalize the linear terms in xn in the ith component, and transforms the ith
component as

żi = zi+1 + F̂i(zi+1, . . . , zn−1) + z2
nPi,n(zi+1, . . . , zn) + u2Pi,n+1(zi+1, . . . , zn, u),
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where

F̂i(zi+1, . . . , zn−1) = F̄i(zi+1, . . . , zn−1)−
n−2∑

k=i+1

zk+1

∫ zn−1

0

∂Θi,n

∂zk
(zi+1, . . . , zn−2, ε)dε.

Keeping up with the algorithm we define, successively, σn
r , . . . , σn

1 whose composition is the
diffeomorphism σn = σn

1 ◦ · · · ◦ σn
r that takes the system into





ẋ1 = x2 + F1(x2, . . . , xn, u)
ẋ2 = x3 + F2(x3, . . . , xn, u)

. . .

ẋr = xr+1 + Fr(xr+1, . . . , xn, u)
ẋr+1 = xr+2

. . .

ẋn−1 = xn

ẋn = u,

where Fj are smooth (resp. analytic) functions such that

Fj(zj+1, . . . , zn) = F̂j(xj+1, . . . , xn−1) + x2
nPj,n(xj+1, . . . , xn) + u2Pj,n+1(xj+1, . . . , xn, u)

for any 1 ≤ j ≤ r with
F̂j(xj+1, 0, . . . , 0) = 0.

We notice that all coordinate changes defined in step 2 depend only on the variables
x1, . . . , xn−1 but not on the variables (xn, u), which is the reason why the linear terms in
u are not created after the completion of step 1. Now, step 2, like the remaining steps of the
algorithm, could have been viewed as step 1 carried over on lower dimensional systems. Indeed,
taking Π̂n as the restriction of system Πn on Rn−1 with coordinates (x1, . . . , xn−1) and control
xn, step 1 would be applied to normalize the linear terms in the new control xn.

Starting from the original system Πn+1, we then define a successive sequence of
diffeomorphisms σk+1 given in each step as σk+1 = σk+1

1 ◦ · · · ◦ σk+1
r for k = n, n − 1, . . . , 2

yielding a successive sequence of strict feedforward systems Πn, Πn−1, . . . , Π2, where for any
2 ≤ k ≤ n, the system Πk is the transform of Πk+1 via σk+1. Moreover, each system Πk is in
the form 




ẋ1 = x2 + F1(x2, . . . , xn, u)
ẋ2 = x3 + F2(x3, . . . , xn, u)

. . .

ẋr = xr+1 + Fr(xr+1, . . . , xn, u)
ẋr+1 = xr+2

. . .

ẋn−1 = xn

ẋn = u,

where for any 1 ≤ j ≤ r

Fj(xj+1, . . . , xn, u) = F̂j(xj+1, . . . , xk) +
n+1∑

i=k+1

x2
i Pj,i(xj+1, . . . , xi)
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with F̂j(xj+1, 0, . . . , 0) = 0. The functions Pj,i(xj+1, . . . , xi) are smooth (resp. analytic) in
their arguments, and are zero if i ≤ j + 1.

The composition σ(x) = σ3 ◦ · · · ◦ σn+1(x) of these diffeomorphisms transforms the original
system Πn+1 into its strict feedforward normal form, which indeed coincides with Π2.

To complete the proof we need to show that the uncontrollable part can be brought to a
normal form without changing the components of the controllable part, already in normal
form.

Reconsider ΠSFF given by (3.1)-(3.2)-(3.3), and assume its linear uncontrollable part to be
of dimension s. We will denote, for the sake of clarity, the controllable variables xs+1, . . . , xn

by x1, . . . , xm, where m = n− s. Without loss of generality, we can assume ΠSFF in the form

ΠSFF :





ẋ1 = F1(x2, . . . , xs, x1, . . . , xm, u),
. . .

ẋj = Fj(xj+1, . . . , xs,x1, . . . , xm, u),
. . .

ẋs = Fs(x1, . . . , xm, u),

ẋ1 = x2 +
n+1∑
i=3

x2
i P1,i(x2, . . . , xi)

. . .

ẋj = xj+1 +
n+1∑

i=j+2

x2
i Pj,i(xj+1, . . . , xi)

. . .

ẋm−1 = xm + u2Pm−1,m+1(xm, u)
ẋm = u.

The projection Πs+1 is already in normal form following the normalization algorithm
underlined above.

This part of the proof follows a similar line as previously. Decompose the component
Fs(x1, . . . , xm, u), uniquely as:

Fs(x1, . . . , xm, u) = F̂s(x1, . . . , xm) + uQs(x1, . . . , xm) + u2Ps(x1, . . . , xm, u).

The change of coordinates (z, x) = (τm+1
s (x), x) whose components are defined by

zj = τm+1
sj (x) = xj , 1 ≤ j ≤ s− 1,

zs = τm+1
ss (x) = xs −

∫ xm

0

Qs(x1, .., xm−1, ε)dε

allows to cancel the linear terms in u in the sth component. Assume that linear terms in u in
the sth-component through the (i + 1)st component have been canceled. Then decompose the
ith component Fi(xi+1, . . . , xs, x1, . . . , xm, u) uniquely as follows:

Fi(xi+1, . . . , xs,x1, . . . , xm, u) = F̂i(xi+1, . . . , xs, x1, . . . , xm) + uQi(xi+1, . . . , xs, x1, . . . , xm)
+u2Pi(xi+1, . . . , xs, x1, . . . , xm, u).
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The change of coordinates (z, x) = (τm+1
i (x), x) whose first s components are defined by

zj = τm+1
ij (x) = xj , 1 ≤ j ≤ i− 1,

zi = τm+1
ii (x) = xi −

∫ xm

0

Qi(xi+1, .., xs, x1, .., xm−1, ε)dε

zj = τm+1
ij (x) = xj , i + 1 ≤ j ≤ s

allows to cancel the linear terms in u in the ith component.
The composition τm+1 = τm+1

1 ◦ · · · ◦ τm+1
s allows to cancel all linear terms in u in all s

components.
Similarly, we define transformations τm, . . . , τ2, where for any 2 ≤ k ≤ m+1, τk = τk

1 ◦· · ·◦τk
s

is the transformation that linearizes the terms in xk in all the s components. Notice that
the linear terms in x1 cannot be canceled in any of the first s components. The composition
τ = τ2 ◦· · ·◦τm+1 takes the system into its normal form. Each transformation is smooth (resp.
analytic) and the algorithm involves a finite number of such transformations whose inverses
are also smooth (resp. analytic). Moreover, due to the structure of the strict feedforward form,
the components of the controllable part remain unchanged during the normalization of the
uncontrollable part. This completes the proof of the theorem.

4. Symmetries of Nonlinear Systems

We will first recall our results on symmetries obtained in the single-input case using the
canonical form. In the second subsection, we will give explicit symmetries of strict feedforward
systems, and finally we will discuss, in term of symmetries, the feedback equivalence to a strict
feedforward system

4.1. Symmetries via Canonical Form

Consider the single-input control-affine system

Σ : ẋ = f(x) + g(x)u,

where x ∈ X, is an open subset of Rn, and u ∈ U = R, f and g are smooth vector fields on X.
The field of admissible velocities is the field of affine lines

A(x) = {f(x) + ug(x) : u ∈ R} ⊂ TxX.

A diffeomorphism ψ : X −→ X is a symmetry of Σ if it preserves the field of affine lines A (in
other words, the affine distribution A of rank 1), that is, if ψ∗A = A.

A local symmetry at p ∈ X is a local diffeomorphism ψ of X0 onto X1, where X0 and X1

are, respectively, neighborhoods of p and ψ(p), such that

(ψ∗A)(q) = A(q) for any q ∈ X1.

A local symmetry ψ at p is called a stationary symmetry if ψ(p) = p and a nonstationary
symmetry if ψ(p) 6= p.

Symmetries take a very simple form if we bring the system into its canonical form. Indeed,
we have the following result (see [38] and [39] for proofs and details):
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Proposition 4.1. Assume that the system Σ is analytic, the linear approximation (F,G) of Σ
at an equilibrium point p is controllable and Σ is not locally feedback linearizable at p. Assume,
moreover, that the local feedback transformation, bringing Σ into its canonical form ΣCF , is
analytic at p.

(i) Σ admits a nontrivial local stationary symmetry if and only if the drift

f̄(x) = Ax +
∞∑

m=m0

f̄ [m](x) of the canonical form Σ∞CF satisfies

f̄(x) = −f̄(−x),

that is, the system is odd.
(ii) Σ admits a nontrivial local nonstationary symmetry if and only if the drift f̄(x) of the

canonical form Σ∞CF satisfies

f̄(x) = f̄(x1 + c1, x2, . . . , xn), for some c1 ∈ R
that is f̄ is periodic with respect to x1.

(iii) Σ admits a nontrivial local 1-parameter family of symmetries if and only if the drift
f̄(x) of the canonical form Σ∞CF satisfies

f̄(x) = f̄(x2, . . . , xn).

In the case the diffeomorphism transforming the system Σ into its canonical form ΣCF is not
analytic, we have obtained formal symmetries (see [39, 38]).

4.2. Explicit Symmetries of Strict Feedforward Systems

In this subsection we consider the case when Π is affine in control, that is, the class of smooth
(resp. analytic) single-input control systems in strict feedforward form (SFF)

ΣSFF :





ẋ = f(x) + g(x)u,

fj(x) = fj(xj+1, . . . , xn), 1 ≤ j ≤ n− 1,

gj(x) = gj(xj+1, . . . , xn), 1 ≤ j ≤ n− 1
fn(x) = fn ∈ R and gn(x) = gn ∈ R∗.

Following section 3, for any 1 ≤ i ≤ n, the subsystem Σi
SFF denotes the projection of ΣSFF

onto Rn−i+1 via πi(x1, . . . , xn) = (xi, . . . , xn) with dynamics given by

ẋj = fj(xj+1, . . . , xn) + gj(xj+1, . . . , xn)u, i ≤ j ≤ n.

The linearizability index of ΣSFF is thus the largest integer p such that the subsystem Σr+1
SFF ,

where p + r = n, is feedback linearizable. We will assume here that the linear approximation
around the origin is controllable which implies that p ≥ 2. The set E = {xe ∈ Rn | f(xe) = 0} of
equilibrium points consists of lines parallel to the x1-axis; in other words, any equilibrium point
is of the form xe = (c1, . . . , cr+1, 0, . . . , 0)>. For any nonzero real numbers λ1, . . . , λr, λ ∈ R∗
and any c1, . . . , cr+1 ∈ R, put Λ = (λ1, . . . , λr, λ, . . . , λ) and C = (c1, . . . , cr+1, 0, . . . , 0) and
define a scaling translation by

TΛ,C(x) = (λ1x1 + c1, . . . , λnxn + cn)>,

with cr+2 = · · · = cn = 0 and λr+1 = · · · = λn = λ.
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Theorem 4.2. Consider a smooth system ΣSFF in strict feedforward form with linearizability
index p = n− r. Any symmetry ψ of ΣSFF is of the form

ψ = σ−1 ◦ TΛ,C ◦ σ,

for a fixed (Λ, C), where z = σ(x) is the diffeomorphism of the transformation taking ΣSFF into
its strict feedforward normal form ΣSFNF given by Definition 4.3 below. Any local 1-parameter
family of symmetries ψc1 of ΣSFF is of the same form with c1 ∈ (−ε1, ε1).

Theorem 4.2 says basically that strict feedforward systems have 1-parameter families of
symmetries conjugated to scaling translations. Recall that in [38] we showed that any symmetry
is conjugated to at most two 1-parameter families of translations along the first variable; those
translations being the only symmetries of the canonical form (Proposition 4.1).

The constant parameters λ1, . . . , λr, λ are likely to be either +1 or −1 and will be uniquely
determined by c2, . . . , cr (given by other equilibrium point) because, together, they should
satisfy some strong conditions (SC), see below. The only free parameter is c1. In Example 4.9
we provide a case where some of the parameters λ1, . . . , λr, λ are not equal to +1 or −1 as
well as some constants c2, . . . , cr+1 that are non zero. We then compare the results obtained
here with those of [38], and show no ambiguity between them.

The importance of this result is that we can always put a (SFF)-system into a strict
feedforward normal form (SFNF) via smooth feedback transformation while the canonical
form is only guaranteed in the formal category. Moreover, the feedback transformation taking
the system into its strict feedforward normal form (SFNF) can be constructed explicitly, for
smooth systems, see section 3.1.

The notion of strict feedforward normal form plays a crucial role in proving Theorem 4.2
and, in the affine case, takes the following form.
Definition 4.3. A smooth strict feedforward normal form, denoted ΣSFNF , is a strict
feedforward form 




ẋ1 = F̂1(x2, . . . , xn)
. . .

ẋr = F̂r(xr+1, . . . , xn)
ẋr+1 = xr+2

. . .

ẋn−1 = xn

ẋn = u

for which p = n− r is the linearizability index and

(SFNF ) F̂j(x) = hj(xj+1) +
n∑

i=j+2

x2
i Pj,i(xj+1, . . . , xi)

for any 1 ≤ j ≤ r, where hj and Pj,i are smooth functions of the indicated variables.

The above strict feedforward normal form ΣSFNF was introduced in [41], where we proved the
following:

Theorem 4.4. Any smooth strict feedforward form can be transformed into a strict
feedforward normal form via smooth feedback transformation.
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Remark 4.5. (i) The explicit construction of the feedback transformation (in particular, the
diffeomorphism z = σ(x)) taking a (SFF)-system into its (SFNF), was given in the proof of
Theorem 3.1. We have assume there, without loss of generality, that hj(xj+1) = xj+1 but the
algorithm remains the same.

Then using the commutative diagram

ΣSFF
- ΣSFF

?
ΣSFNF ΣSFNF

?
-

σσ

ψ

ψ̃

where ψ̃ is a symmetry of the strict feedforward normal form ΣSFNF , all we will have to prove
is that all ψ̃’s are exhausted by scaling translations TΛ,C defined above.

(ii) We will use this item to deduce, as a corollary, necessary and sufficient condition for a
system to be brought to a strict feedforward form (see Theorem II.4 of [40]).

B1. Proof of Theorem 4.2

We will prove Theorem 4.2 by showing that symmetries of systems in strict feedforward normal
form ΣSFNF are exhausted by scaling translations TΛ,C defined above. Let us consider a system
in the strict feedforward normal form ΣSFNF , given by definition 4.3.

Notice that if x̃ = ψ̃(x) is a symmetry of ΣSFF (in particular, of ΣSFNF ), then it
preserves the structure of the strict feedforward form. Hence (see [51]), we have x̃j = ψ̃j(x) =
ψ̃j(xj , . . . , xn−1) for 1 ≤ j ≤ n−1. This implies that πr(ψ̃) = (ψ̃r(x), . . . , ψ̃n(x)) is a symmetry
of the projection Σr+1

SFNF of ΣSFF whose dynamics are




ẋr = hr(xr+1) +
n∑

i=r+2

x2
i Pr,i(xr+1, . . . , xi)

ẋr+1 = xr+2

. . .

ẋn−1 = xn

ẋn = u.

We claim that ψ̃j(x) = ψ̃j(xj) for any r ≤ j ≤ n− 1. Indeed, we have ψ̃n−1(x) =

ψ̃n−1(xn−1). Let k be the largest integer, r ≤ k ≤ n−2, such that
∂ψ̃k

∂xs
6= 0 for some s ≥ k +1

(we can take s to be the largest integer that yields this property). Thus

˙̃xk =
∂ψ̃k

∂xk
ẋk + · · ·+ ∂ψ̃k

∂xs
xs+1 = x̃k+1 = ψ̃k+1(x)

gives a contradiction because ψ̃k+1(x) = ψ̃k+1(xk+1). We conclude that ψ̃j(x) = ψ̃j(xj) for
r ≤ j ≤ n− 1. Since

˙̃xj = ψ̃′j(xj)xj+1 = x̃j+1 = ψ̃j+1(xj+1),
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we deduce that ψ̃j(xj) = λjxj +cj for all r+1 ≤ j ≤ n−1. Similarly we get ψ̃r(xr) = λrxr +cr

and hence
πr(ψ̃(x)) = (λrxr + cr, λr+1xr+1 + cr+1, . . . , λnxn + cn)>.

In fact, it is easy to see that λr+1 = · · · = λn = λ and cr+2 = · · · = cn = 0 but for
homogeneity of notation, we will carry those constants as such.

Notice that λr, and the pairs (λk, ck), r + 1 ≤ k ≤ n should satisfy the strong condition:

(SC)r F̂r(λr+1xr+1 + cr+1, . . . , λnxn + cn)) = λrF̂r(xr+1, . . . , xn),

and

F̂r(xr+1, . . . , xn) = hr(xr+1) +
n∑

i=r+2

x2
i Pr,i(xr+1, . . . , xi).

We can remark that (SC)r is equivalent to the conditions

(SC)a hr(λr+1xr+1 + cr+1) = λrhr(xr+1)

(SC)b Pr,i(λr+1xr+1 + cr+1, . . . , λixi + ci) =
λr

λ2
i

Pr,i(xr+1, . . . , xi), r + 2 ≤ i ≤ n.

A similar argument will imply that ψ̃j(x) = ψ̃(xj) for all 1 ≤ j ≤ r − 1. Taking j = r − 1,
we should have

˙̃xr−1 = ψ̃′r−1(xr−1)F̂r−1(xr, . . . , xn) = F̂r−1(x̃r, . . . , x̃n)

which implies that ψ̃′r−1(xr−1) = λr−1, and consequently, ψ̃r−1(xr−1) = λr−1xr−1 + cr−1.

A straightforward recurrence shows that for any 1 ≤ j ≤ r, we have ψ̃j(xj) = λjxj + cj .
At each step, the constant λj is related to the pairs (λk, ck), for j + 1 ≤ k ≤ n, by the strong
conditions

(SC)j F̂j(λj+1xj+1 + cj+1, . . . , , λixn + cn) = λjF̂j(xj+1, . . . , xn),

and

F̂j(xj+1, . . . , xn) = hj(xj+1) +
n∑

i=j+2

x2
i Pj,i(xr+1, . . . , xi).

Notice that the constant c1 can be chosen arbitrarily. The proof of Theorem 4.2 is then
completed by the commutative diagram giving the explicit diffeomorphism z = σ(x) of the
feedback transformation bringing ΣSFF into its strict feedforward normal form (see Proof of
Theorem 3.1).

B2. Feedback Equivalence to Strict Feedforward Systems

The problem of transforming a system, affine with respect to controls, into (strict) feedforward
form via a nonlinear change of coordinates was studied in [31], and a geometric description of
systems in feedforward form has been given in [2]. We proposed a step-by-step constructive
method to bring a system into a feedforward form in [54] and into a strict feedforward form
in [50].
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Recently (see [40]), we have proved that feedback equivalence (resp. state-space equivalence)
to the strict feedforward form can be characterized by the existence of a sequence of
infinitesimal symmetries (resp. strong infinitesimal symmetries) of the system. We give here
as a corollary, a restatement of the equivalence conditions obtained in [40] in terms of the
symmetries of strict feedforward systems.

Corollary 4.6. Consider a smooth affine system Σ with linearizability index p = n− r. The
following conditions are equivalent.

(i)Σ is, locally at q ∈ X, feedback equivalent to the affine strict feedforward form (SFF);
(ii)Each system Σ1, Σ2,. . . ,Σr possesses an infinitesimal symmetry vi, whose local flow γvi

ci

is conjugated to a scaling translation

γvi
ci

= σ−1
i ◦ Ti

Λ,C ◦ σi, ci ∈ (−εi, εi),

where Σ1 is the restriction of Σ to a neighborhood Xq and

Σi+1 = Σi/∼vi
, 1 ≤ i ≤ r − 1.

Above, the equivalence relation ∼vi is induced by the local action of the 1-parameter local
group γvi

ci
defined by vi, that is, such that q1 ∼vi q2 if and only if they belong to the same

integral curve of vi, and for any 1 ≤ i ≤ r − 1 the scaling translation Ti
Λ,C is the composition

of TΛ,C with the projection πi:

Ti
Λ,C(x) = (λixi + ci, . . . , λrxr + cr, λxr+1, . . . , λxn)>.

Examples

Example 4.7. (Cart-Pole Cont’d) Reconsider the cart-pole system given in Example 3.5.
It has been shown that the cart-pole system can be put into its canonical form





ż1 = z2,

ż2 = z3 +
z3

(1 + (g/l)z2
3)3/2

z2
4 ,

ż3 = z4,

ż4 = v

via analytic feedback transformation. It is straightforward to verify that

TId,C(z) = (z1 + c1, z2, z3, z4)> and T−Id,C(z) = (−z1 + c1,−z2,−z3,−z4)>

constitute two 1-parameter families of symmetries for the canonical form. By Theorem 4 (see
[38]), they exhaust all possible symmetries of the canonical form.

The symmetries of (3.8) are obtained by computing

ψ(x) = σ−1 ◦ T±Id,C(x) ◦ σ(x)

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 00:1–31
Prepared using rncauth.cls

Page 24 of 31

http://mc.manuscriptcentral.com/rnc-wiley

International Journal of Robust and Nonlinear Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

ANALYTIC NORMAL FORMS AND SYMMETRIES OF (SFF)-CONTROL SYSTEMS 25

where the inverse x = η(z) = σ−1(z) is given by

x1 = η1(z) = µ̃gz1 + θ(z3),

x2 = η2(z) = µ̃gz2 − µ̃l
z4√

1 + (µ̃z3)2

x3 = η3(z) = arctan(µ̃z3),

x4 = η4(z) =
µ̃z4

1 + (µ̃z3)2

for a suitable function θ(z3). It follows easily that

σ−1 ◦ TId,C ◦ σ(x) = TId,C̄(x) and σ−1 ◦ T−Id,C ◦ σ(x) = T−Id,C̄(x)

are both 1-parameter families of translations along the first component x1 of (x1, x2, x3, x4)>.
The meaning of the symmetries here, when expressed back in the original physical coordinates
(q̃1, ˙̃q1, q̃2, ˙̃q2) = (q1 + c1, q̇1, q2, q̇2), is that the experiment conducted on two similar carts
traveling at the same speed (either forward or backward) yields the same conclusions.

In the following, we give examples showing that symmetries as nonstationary translations and
scaling translations are possible.

Example 4.8. Consider the system in R4 described by



ẋ1 = sin x2 + x2
4 sinx3,

ẋ2 = sin x3 + x3
4,

ẋ3 = x4,

ẋ4 = u.

This system is clearly in (SFNF) with linearizability index p = 2. It is easy to check that the
forward and backward translations

TId,C(x) = (x1+c1, x2+c2, x3+c3, x4)> and T−Id,C(x) = (−x1+c1,−x2+c2,−x3+c3,−x4)>

are symmetries, where c2 and c3 are any multiples of 2π.

Example 4.9. Consider the system

ΣSFF :





ẋ1 = x2 + 2x2e
x3 sin x3 + 2x2e

x3x2
4,

ẋ2 = ex3 sin x3 + ex3x2
4,

ẋ3 = x4,

ẋ4 = u,

in strict feedforward form with linearizability index p = 2. Due to the terms 2x2e
x3 sin x3, this

system is not in strict feedforward normal form. However, it is straightforward to check that
the diffeomorphism z = σ(x) defined by

z1 = x1 − x2
2, z2 = x2, z3 = x3, z4 = x4

takes ΣSFF into the strict feedforward normal form

ΣSFNF :





ż1 = z2,

ż2 = ez3 sin z3 + ez3z2
4 ,

ż3 = z4,

ż4 = u.
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We can notice that the scaling translations

z̃ = TΛ,C(z) = (λz1 + c1, λz2, z3 + c3, z4)>

with c3 = 2kπ, k ∈ Z, and λ = ec3 form a family of symmetries of ΣSFNF parameterized
by c1. Indeed, it is easy to see that they map ΣSFNF into ΣSFNF given, around the equilibrium
q = (0, 0, c3, 0)>, by

Σ(q)
SFNF :





˙̃z1 = z̃2,

˙̃z2 = ez̃3 sin z̃3 + ez̃3 z̃2
4 ,

˙̃z3 = z̃4,

˙̃z4 = u.

The composition x̃ = σ−1◦TΛ,C ◦σ(x) expresses the coordinates x̃ in terms of the coordinates x
as follows

x̃1 = λx1 + (λ2 − λ)x2
2 + c1,

x̃2 = λx2,

x̃3 = x3 + c3

x̃4 = x4,

where c3 = 2π and λ = ec3 .
A straightforward calculation shows that

˙̃x1 = λ(x2 + 2x2e
x3 sin x3 + 2x2e

x3x2
4) + 2(λ2 − λ)x2(ex3 sin x3 + ex3x2

4)
= λx2 + 2λ2x2(ex3 sin x3 + ex3x2

4)
= x̃ + 2x̃2e

x̃3 sin x̃3 + 2x̃2e
x̃3 x̃2

4

because λx2 = x̃2 and

λex3 sin x3 = ex3+c3 sin(x3 + c3) = ex̃3 sin x̃3.

Similarly, we can show that

˙̃x2 = λ(ex3 sin x3 + ex3x2
4) = ex̃3 sin x̃3 + ex̃3 x̃2

4.

Since ˙̃x3 = x̃4 and ˙̃x4 = u, it follows that the composition x̃ = σ−1 ◦ TΛ,C ◦ σ(x) maps ΣSFF ,
defined around the equilibrium (0, 0, 0, 0)>, into ΣSFF described, around the equilibrium
q = (0, 0, 2π, 0)>, by the same dynamics

ΣSFF :





˙̃x1 = x̃2 + 2x̃2e
x̃3 sin x̃3 + 2x̃2e

x̃3 x̃2
4,

˙̃x2 = ex̃3 sin x̃3 + ex̃3 x̃2
4,

˙̃x3 = x̃4,

˙̃x4 = u.
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We have the commutative diagram

Σ(o)
SFF

- Σ(q)
SFF

?
Σ(o)

SFNF Σ(q)
SFNF

?
-

σσ

ψ

TΛ,C

Hence x̃ = ψ(x) = σ−1 ◦ TΛ,C ◦ σ(x) is a 1-parameter family of symmetries of ΣSFF .
For convenience of notation, we will denote ΣSFF , defined around (0, 0, 0, 0)>, by Σ(o)

SFF and
the system ΣSFF , defined around q = (0, 0, 2π, 0)>, by Σ(q)

SFF . The same notations apply to
the systems Σ(o)

SFNF and Σ(q)
SFNF .

Now, in view of the results obtained in [41], we will compute the canonical form of Σ(o)
SFF

and the transformations taking Σ(o)
SFF and Σ(q)

SFF to this canonical form.
It is easy to verify that y = Φ(x), given by

y1 = x1 − x2
2,

y2 = x2,

y3 = ex3 sin x3

y4 = ex3(sinx3 + cos x3)x4,

followed by an appropriate feedback, takes the system Σ(o)
SFF into its canonical form

ΣSFCF :





ẏ1 = y2,

ẏ2 = y3 + Θ(y3)y2
4 ,

ẏ3 = y4,

ẏ4 = v,

where Θ(y3) =
1

ex3(sinx3 + cos x3)2

∣∣∣
x3=θ−1(y3)

with θ(x3) = ex3 sin x3.

On the other hand, applying the translation

x̂ = T (x̃) = (x̃1, x̃2, x̃3 − c3, x̃4)

to the system Σ(q)
SFF , we can shift back the equilibrium point to (0, 0, 0, 0). In the new

coordinates, Σ(q)
SFF becomes

Σ̃(o)
SFF :





˙̂x1 = x̂2 + 2λx̂2

(
ex̂3 sin x̂3 + ex̂3 x̂2

4

)
,

˙̂x2 = λ
(
ex̂3 sin x̂3 + ex̂3 x̂2

4

)
,

˙̂x3 = x̂4,

˙̂x4 = u,
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where λ = ec3 . The diffeomorphism ỹ = Ψ(x̂) given by

ỹ1 = λ−1(x̂1 − x̂2
2),

ỹ2 = λ−1x̂2,

ỹ3 = ex̂3 sin x̂3

ỹ4 = ex̂3(sin x̂3 + cos x̂3)x̂4,

followed by an appropriate feedback, takes the system Σ̃(o)
SFF into its canonical form

ΣSFCF :





˙̃y1 = ỹ2,

˙̃y2 = ỹ3 + Θ(ỹ3)ỹ2
4 ,

˙̃y3 = ỹ4,

˙̃y4 = v.

It follows that the composition ỹ = Ψ ◦ T ◦ ψ ◦ Φ−1(y) is a 1-parameter family of symmetries
of the canonical form according to the diagram.

Σ(o)
SFF

- Σ(q)
SFF

?
ΣSFCF ΣSFCF

A
AAU
Σ̃(o)

SFF

¢
¢

¢®
-

T

Φ

ψ

Ψ

Ψ ◦ T ◦ ψ ◦ Φ−1

We explicitly find this family of symmetries by expressing the coordinates ỹ as functions of
the coordinates y:

ỹ1 = λ−1(x̂1 − x̂2
2) = λ−1(x̃1 − x̃2

2)
= λ−1

(
λx1 + (λ2 − λ)x2

2 + c1 − λ2x2
2

)

= x1 − x2
2 + c̃1 = y1 + c̃1.

Similarly, we get

ỹ2 = λ−1x̂2 = λ−1x̃2 = λ−1(λx2) = x2 = y2;

ỹ3 = ex̂3 sin x̂3 = ex̃3+2π sin(x̃3 + 2π) = ex3 sinx3 = y3

and
ỹ4 = ex̂3(sin x̂3 + cos x̂3)x̂4

= ex̃3+2π(sin(x̃3 + 2π) + cos(x̃3 + 2π))x̃4

= ex3 sin x3 + ex3x2
4 = y4.

We conclude that the symmetries of the canonical form are exhausted here by a 1-parameter
family of translations along the first variable. This is in concordance with the results in [38].
Notice that the composition Φ◦ψ◦Φ−1 does not yield a symmetry for the canonical form. The
reason is that, the system Σ(q)

SFF , being defined around the equilibrium q, is not transformed
into the canonical form ΣSFCF by the same diffeomorphism Φ as Σ(o)

SFF is.
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Berlin-Heidelberg, 2002, pp. 269-286.

51. I. A. Tall and W. Respondek, Feedback Equivalence to a Strict Feedforward Form for Nonlinear Single-
Input Systems, to appear in Int. Journal of Control.

52. I. A. Tall and W. Respondek, Transforming a Single-Input Nonlinear System to a Strict Feedforward Form
via Feedback, Nonlinear Control in the Year 2000, A. Isidori, F. Lamnabhi, and W. Respondek, (eds.),
Springer-Verlag, 2, pp. 527-542, London, England, (2001).

53. I. A. Tall and W. Respondek, Feedback Equivalence to Feedforward Form for Nonlinear Single-Input
Systems, Dynamics, Bifurcations and Control, F. Colonius and L. Grune (eds.), LNCIS, 273, pp. 269-286,
Springer-Verlag, Berlin Heidelberg, (2002).

54. I.A. Tall and W. Respondek, Transforming a single-input nonlinear system to a feedforward form via
feedback, in Nonlinear Control in the Year 2000, A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek
(eds.), Springer, 2 (2000), pp. 527-542.

55. I.A. Tall and W. Respondek, Weighted Canonical Forms, inProc. 43rd IEEE Conference on Decision and

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 00:1–31
Prepared using rncauth.cls

Page 30 of 31

http://mc.manuscriptcentral.com/rnc-wiley

International Journal of Robust and Nonlinear Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

ANALYTIC NORMAL FORMS AND SYMMETRIES OF (SFF)-CONTROL SYSTEMS 31

Control, Atlantis, Bahamas (2004), pp. 1617-1622.
56. I. A. Tall and W. Respondek, Smooth and analytic normal forms: A special class of strict feedforward forms,

in Control and Observer Design in Nonlinear Finite and Infinite Dimensional Systems, Th. Meurer, K.
Graichen E.D. Gilles (eds.), LNCIS, 322, Springer-Verlag, Berlin Heidelberg, (2005).

57. I. A. Tall and W. Respondek, Explicit Symmetries of Strict Feedforward Control Systems, Proc. 45th IEEE
Conference on Decision and Control, San Diego, USA (2006), pp. 3813-3818.

58. D.G. Taylor and S. Li, stable inversion of continous-time nonlinear systems by finite-difference methods,
IEEE Trans Autom Control, 47 (2002), pp. 537-542.

59. A. Teel, Feedback stabilization: nonlinear solutions to inherently nonlinear problems, Memorandum
UCB/ERL M92/65.

60. A. Teel, A nonlinear small gain theorem for the analysis of control systems with saturation, IEEE Trans
Autom Control, 41 (1996), pp. 1256-1270.

61. M. Zeitz, Controllability canonical (phase-variable) form for non-linear time-variable systems, Int. J.
Control, 37 ( 1983), pp. 1449-1457.

62. M. Zeitz, Canonical forms for nonlinear systems, Nonlinear Control Systems Design, A. Isidori (ed.),
IFAC-Symp., Pergamon Press, Oxford, 1989, pp. 33-38.

63. M. Zhitomirskii and W. Respondek, Simple germs of corank one affine distributions, Banach Center
Publications, 44, (1998), 269-276.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 00:1–31
Prepared using rncauth.cls

Page 31 of 31

http://mc.manuscriptcentral.com/rnc-wiley

International Journal of Robust and Nonlinear Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


	Southern Illinois University Carbondale
	OpenSIUC
	8-14-2009

	Analytic Normal Forms and Symmetries of Strict Feedforward Control Systems
	Issa Amadou Tall
	Witold Respondek
	Recommended Citation



