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Time-invariant quadratic Hamiltonians via generalized transformations

Issa Amadou Tall
Department of Mathematics,

Southern Illinois University Carbondale,
Mail Code 4408, 1245 Lincoln Drive,

Carbondale IL, 62901, USA
Email: itall@math.siu.edu

Abstract— In this paper we give necessary and sufficient con-
ditions for achieving a quadratic positive definite time-invariant
Hamiltonian for time-varying generalized Hamiltonian control
systems using canonical transformations. Those necessary and
sufficient conditions form a system of partial differential equa-
tions that reduces to the matching conditions obtained earlier
in the literature for time-invariant systems. Their theoretical
solvability is proved via the Cauchy-Kowalevskaya theorem
and their practical solvability discussed in some particular
cases. Systems with time-invariant positive definite Hamiltonian
are known to yield a passive input-output map and can be
stabilized by unity feedback, which underlines the importance
of achieving the positive definiteness and time-invariancy for
the Hamiltonian. We illustrate the results with few examples
including the rolling coin.

I. INTRODUCTION AND NOTATIONS

Generalized Hamiltonian systems also known as port-
controlled Hamiltonian systems have been introduced in [7]
as a generalization of conventional Hamiltonian systems [9].
Fujimoto and Sugie [3] introduced generalized canonical
transformations for time-varying port-controlled Hamiltonian
systems that preserve the generalized Hamiltonian structure
of the system. Unlike unconstrained (affine) control systems
for which any diffeomorphism of the coordinates and any
invertible (affine) feedback preserve the structure of the sys-
tem, the situation is very different for constrained control sys-
tems, in particular for generalized Hamiltonian systems. For
this reason the class of generalized canonical transformations
is not a priori defined but only determined from the system
by solving a system of partial differential equations. Though
the solving of these partial differential equations is not
always straightforward, the usefulness of canonical transfor-
mations has been demonstrated for time-varying generalized
Hamiltonian systems (see [3], [4], [5], [8] and the references
therein). The stabilization of Lagrangian and Mechanical
systems have been intensively addressed in the literature
(see [1], [2], [6], [10], [13] and the references therein). In
much cases, a transformation is thought to simplify the prob-
lem and symmetries are exploited when present. For time-
invariant Hamiltonian systems however, only the change in
feedback is worth looking for, and the preserving conditions
are referred in the literature as matching conditions [1], [13]
though a change of coordinates can be applied to render
the Hamiltonian positive definite. This paper builds from
previous work by Fujimoto et al. [3]. It is centered around

the idea that achieving a time-independent positive definite
(possibly quadratic) Hamiltonian simplifies much more the
stabilization procedure, and is always theoretically possible.
As it is well known a zero-state detectable Hamiltonian
system with passive Hamiltonian can be stabilized by unity
feedback. A comparison with the conditions obtained in [3]
and the matching conditions of [1], [13] is also provided.
Let first fix some notations. Throughout the paper x will
denote a column vector x = (x1, . . . , xn)T, where T denotes
the transposition. For any function H we denote ∂H

∂x

T
the

column vector ( ∂H∂x1
, . . . , ∂H∂xn

)T. A similar notation extends
for vector-valued functions H(x) = (H1(x), . . . ,Hm(x))
for which ∂H

∂x

T
is the matrix (∂Hj

∂xi
)ij . Given two column

vectors x = (x1, . . . , xn)T and y = (y1, . . . , ym)T, the
column vector (xT, yT)T = (x1, . . . , xn, y1, . . . , ym)T will
be simply denoted by (x, y)T with an abuse of notation.
Time-varying generalized Hamiltonian control systems

ẋ = J(x, t)
∂H(x, t)
∂x

T

+ g(x, t)u,

y = g(x, t)T ∂H(x, t)
∂x

T

,

(I.1)

where x ∈ Rn is the state-space, u ∈ Rm is the control input,
y ∈ Rm the output of the system, J(x, t) ∈ Rn×n a skew-
symmetric matrix function: (J(x, t)T = −J(x, t), for all x ∈
Rn, t ∈ R), g(x, t) ∈ Rn×m a full rank matrix, and H(x, t)
the time-dependent generalized Hamiltonian function. When
J(x, t),H(x, t) and g(x, t) are time-independent, the system
(I.1) is simply referred to as a generalized Hamiltonian
system [3]. Moreover, if J(x, t) and g(x, t) are constant, say

J(x, t) = J =
[

0n In
−In 0n

]
and g(x, t) = G =

[
0n
In

]
,

where 0n and In denote respectively the null and identity
n-dimensional matrices, we then rediscover conventional
(symplectic) Hamiltonian systems

ẋ = J
∂H(x)
∂x

T

+ Gu.

The class of generalized Hamiltonian systems was analyzed
under the action of the following transformations:

x̄ = Φ(x, t), H̄ = H(x, t) + U(x, t),
ū = u+ β(x, t), ȳ = y + α(x, t). (I.2)
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The set of transformations (I.2) is called generalized canon-
ical transformations [3] if it takes the system (I.1) into
another generalized Hamiltonian control system

˙̄x = J̄(x̄, t)
∂H̄(x̄, t)
∂x̄

T

+ ḡ(x̄, t)ū,

ȳ = ḡ(x̄, t)T ∂H̄(x̄, t)
∂x̄

T

.

(I.3)

Necessary and sufficient conditions in terms of partial
differential equations were given in [3] for the equivalence of
the systems (I.1) and (I.3) via the transformation (I.2). Those
partial differential equations (see (II.2) below) are a mix
between the components of the system and the components
of the transformation. The authors of [3] (see also [4], [5])
noticed that the skew-symmetric matrix K(x, t) can be used
to simplify the structure of the matrix J̄(x̄, t). However, the
most important for the design and stability is a simplified
Hamiltonian function. Can we achieve a positive definite
Hamiltonian H̄(x̄, t)? Can H̄(x̄, t) be made positive definite
and time-invariant? Can H̄(x̄, t) be made quadratic and time-
invariant? Those questions have not been addressed explicitly
and are the focus of this paper. To address them we propose
a slightly different approach than [3]. Instead of finding the
diffeomorphism Φ(x, t) from predetermined scalar functions
U(x, t) and β(x, t), we set the goal for a time-invariant
positive definite Hamiltonian H̄(x̄, t) = H̄(x̄) (possibly
quadratic) and then determine U(x, t) and β(x, t) along with
Φ(x, t) that achieve such goal. Once the transformation that
yields a time invariant positive definite H̄(x̄) is found, all
the stabilization procedure follows easily. We will assume all
objects to be Cω analytic though the results are expected to
hold in the C∞ category. Section II contains the main result
of the paper. Quadratic time-varying Hamiltonian systems
are also discussed and several examples given in Section III.

II. MAIN RESULTS

In this section we establish our results. We show that
generalized transformations can be used to achieve a
Hamiltonian function that is quadratic, positive definite,
and time-invariant. As a corollary we completely charac-
terize quadratic time-varying Hamiltonian systems show-
ing that they can be transformed into a canonical time-
invariant Hamiltonian system via linear change of coordi-
nates and appropriate functions U and β obtained from a
system of ODEs.

Theorem II.1 Consider a system (I.1). There exists a canon-
ical transformation (I.2) that maps the system (I.1) into
a new Hamiltonian system (I.3) with a quadratic positive
definite Hamiltonian H̄(x̄, t) = (1/2)x̄Tx̄. Moreover, the
skew-symmetric matrix J̄ can be chosen to be constant.
The proof follows directly from the well-known Cauchy-
Kowalevskaya Theorem (see [11], [12]) and Lemma II.2.

Lemma II.2 The canonical transformation (I.2) maps the
system (I.1) into a new Hamiltonian system (I.3) with a
quadratic positive definite Hamiltonian H̄(x̄, t) = (1/2)x̄Tx̄

if and only if Φ(x, t) and α(x, t) satisfy

∂Φ
∂t

=−∂Φ
∂x

J(x, t)
∂H(x, t)
∂x

T

+ J̄(Φ(x, t), t)Φ(x, t),

α=gT(x, t)
∂H(x, t)T

∂x
.

(II.1)

Moreover, U(x, t) is uniquely determined.

Notice that this lemma has been stated for the simplest case
of canonical transformations (β = 0) but extends to general-
ized transformations by just adding the term ∂Φ

∂x g(x, t)β(x, t)
in the right side of the first equation of (II.1).
Proof: The proof of this lemma is constructive and can also
be adapted from Lemma 3 [3] with a slight modification.
Indeed, let x̄ = Φ(x, t) and using the fact that

H̄(x̄, t) = (1/2)x̄Tx̄ =⇒ ∂H̄(x̄, t)
∂x̄

T

= x̄,

we have

˙̄x =
∂Φ
∂x

ẋ+
∂Φ
∂t

=
∂Φ
∂x

[
J(x, t)

∂H(x, t)
∂x

T

+ g(x, t)u

]
+
∂Φ
∂t

=
∂Φ
∂x

J(x, t)
∂H(x, t)
∂x

T

+
∂Φ
∂t

+
∂Φ
∂x

g(x, t)u

= J̄(x̄, t)
∂H̄(x̄, t)
∂x̄

T

+ ḡ(x̄, t)ū

= J̄(Φ(x, t), t)Φ(x, t) + ḡ(Φ(x, t), t)ū.

The first condition of (II.1) follows by simple comparison
(ū = u). When a feedback β is used, the input u is
replaced by ū − β(x, t) and the term ∂Φ

∂x g(x, t)β(x, t) is
then generated. Before we give a proof of Theorem II.1 let
us make a comparison between our conditions and those in
the literature [1], [3], [5], [13]. To outline the differences
with the results obtained by Fujimoto et al, briefly recall
that they proved the following in [3]: for any scalar function
U(x, t) and any vector function β(x, t), there exists a pair
of functions Φ(x, t) and α(x, t) that yield a generalized
transformation if and only if the partial differential equation

∂Φ
∂(x, t)

[
J(x, t)∂U∂x

T
+ gβ +K(x, t)∂(H+U)

∂x

T

−1

]
= 0 (II.2)

holds with a skew-symmetric matrix K(x, t). First, the
unknowns in (II.2) are the diffeomorphism Φ and the skew-
symmetric matrix K but those really depend on the choices
of U and β. Second, it looks like that (II.2) has more degrees
of freedom (functionals) and hence would be easier solvable
than (II.1) but recall that the a priori given scalar function
U(x, t) and feedback β(x, t) must be chosen so as to satisfy
the system of partial differential inequalities

(i) H+ U ≥ 0

(ii) ∂(H+U)
∂x

[
J ∂U∂x

T
+ gβ

]
− ∂(H+U)

∂t ≥ 0.
(II.3)

Apparently, the choices of U(x, t) and β(x, t) are not
obvious as the solvability of (II.3) is not straightforward.
Moreover, we don’t have any apprehension on the new
Hamiltonian H̄ until U and Φ are obtained (see the com-
parative Example). In our case, there is only a single
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system of partial differential equations to be solved with
unknowns the diffeomorphism Φ(x, t) and function β(x, t).
Their obtention implies directly that of α(x, t) and U as
U(x, t) = (1/2)Φ(x, t)TΦ(x, t) − H(x, t) but most im-
portantly it implies that the resulting Hamiltonian H̄ is
time-independent and quadratic positive definite. Thus the
stabilization of the system is guaranteed without no further
need of solving partial differential inequalities (we refer to
Example III.2 for an illustration). The stabilizing feedback
can be constructed easily. Now, both conditions (II.1) and
(II.2) (see [3], [5] for more details) can be interpreted
as a generalization of the matching conditions obtained in
[1], [13]. The matching conditions were obtained for time-
invariant hamiltonian systems for which the change of coor-
dinates does not play any role in preserving the Hamiltonian
structure; hence Φ = Id. If we let x = (q, p)T, Φ(x, t) = x,
H(x, t) = (1/2)pTM−1(q)p + V (q), g(x, t) = (0, G(q))T,
then (II.1) with the feedback term g(x, t)β(x) incorporated
(resp. (II.2)), simplify down to the matching conditions.

To complete the proof of Theorem II.1 we recall the
well-known Cauchy-Kowalevskaya Theorem stated below
for quasilinear first-order systems [11], [12].
Theorem II.3 Consider the partial differential equations

∂Θi

∂xm
=
m−1∑
k=1

q∑
j=1

aki,j(p)
∂Θj

∂xk
+ bi(p), i = 1, . . . , q, (II.4)

where p = (x1, . . . , xm−1,Θ1, . . . ,Θq)T with

Θi = 0, i = 1, . . . , q on xm = 0. (II.5)

If the functions aki,j(p) and bi(p) are analytic at the origin,
then (II.4) with initial conditions (II.5) has a unique system
of solutions Θi that are real analytic at the origin.

Observe that Theorem II.3 is valid even if p depends explic-
itly on the variable xm and the constraints (II.5) replaced by

Θi = Θ0
i (x1, . . . , xm−1), i = 1, . . . , q on xm = 0, (II.6)

for arbitrary analytic functions Θ0
i (x1, . . . , xm−1). Indeed,

it is enough to take Θ̃1 = Θ1 = xm, ak1,j = 0 for all j, k,
b1 = 1, and Θ̃i = Θi + Θ0

i for i = 2, . . . , q.
Proof of Theorem II.1. The first equation of (II.1) rewrites

∂Φi
∂t

= −
n∑
k=1

Jk(x, t)
∂H(x, t)
∂x

T
∂Φi
∂xk

+ J̄i(Φ(x, t), t)Φ(x, t)

where Jk(x, t)∂H(x,t)
∂x

T
=

n∑
j=1

Jj,k(x, t)∂H(x,t)
∂xj

and

J̄i(Φ(x, t), t)Φ(x, t)=
n∑
j=1

J̄j,i(Φ(x, t), t)Φj(x, t), 1 ≤ i ≤ n.

Taking m = n+1, q = n and t = xm we obtain (II.4) after
identifying Φi with Θi, and taking the analytic functions

aki,j = −Jk(x, t)
∂H(x, t)
∂x

T

and bi(p1, . . . , p2n) =
n∑
j=1

J̄j,i(pn+1, . . . , p2n, pn)pn+j . Thus

an analytic solution satisfying Φ(x, t)|t=0 = x can be found.

Notice that, as pointed by some reviewer, the proof can
also be obtained directly form the flow-box theorem. We
will discuss that option in forthcoming paper where we also
provide explicit coordinates changes.
Time-varying Quadratic Hamiltonian Systems. A particu-
lar class of generalized Hamiltonian systems are time-varying
quadratic Hamiltonian systems, defined here as systems of
the form (I.1) with J(x, t) = J constant and quadratic Hamil-
tonian H(x, t) = 1

2x
TM(t)x. The following proposition is

a direct corollary of Theorem II.1 and is stated for even
dimension for simplicity but holds for arbitrary dimension.
Proposition II.4 Consider a time-varying quadratic Hamil-
tonian system, that is, system (I.1) with quadratic Hamil-
tonian H(x, t) = 1

2x
TM(t)x and J(x, t) = J. Then the

canonical transformation (I.1) with Φ(x, t) = Θ(t)x and

U(x, t) = (1/2)xT
(
ΘT(t)Θ(t)−M(t)

)
x

α(x, t) = gT(x, t)Θ(t)x

brings the system into the Hamiltonian system

˙̄x = J
∂H̄(x̄, t)
∂x̄

T

+ ḡ(x̄, t)u = Jx̄+ ḡ(x̄, t)u

if and only if holds the ordinary differential equation

Θ(t)JM(t) + Θ̇(t) = JΘ(t).

When the control vector field g is constant, say g(x, t) = G,
a change in the input ū = u+β(x, t) = u+ Ω(t)x might be
useful. It replaces the above ordinary differential equation by

Θ(t) (JM(t)−GΩ(t)) + Θ̇(t) = JΘ(t). (II.7)

Remark that the condition (II.7) can be written simply as
Θ̇(t) = A(t)Θ(t) for some time-dependent matrix A(t)
whose entries are functions of those of M , and Ω only.
If the matrix A(t) and its integral B(t) =

∫
A(t)dt are

bounded and commute (AB = BA), then a global solution
is Θ(t) = expB(t). In case A(t) is periodic, Floquet theory
can be used to solve the ordinary differential equation.

Although a canonical transformation making the Hamil-
tonian time-invariant and quadratic positive can always be
theoretically found, it is however very important to point out
that the change of coordinates (or its inverse) is not necessar-
ily bounded. Moreover, finding explicitly the transformation
is not an easy task. We will illustrate that by an example.
Before, let us mention that for the class of fully-actuated
mechanical systems, a positive definite quadratic Hamilto-
nian can be achieved due to the feedback linearizability of
those systems; but most importantly, the transformation can
be explicitly given without solving any system of PDE’s.
Fully actuated Systems. Consider the system described in
the coordinates x = (q, p) = (q1, . . . , qn, p1, . . . , pn)T by

[
q̇
ṗ

]
=
[
J11 J12

−J12 J22

] [ ∂H
∂q

T

∂H
∂p

T

]
+
[

0n
G2

]
u,

y = G2(q, p, t)T ∂H
∂p

T
,

where J11 =J11(q, p, t), J12 =J12(q, p, t), J22 =J22(q, p, t)
and G2=G2(q, p, t) are n-dimensional matrices with J12, G2
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and the Hessian ∂2H
∂p2 =

(
∂2H
∂pi∂pj

)
i,j

invertible. Such systems

are feedback linearizable; hence can be transformed by a
generalized transformation (I.2) to a new Hamiltonian system
with positive definite and quadratic Hamiltonian. What is
most important is that such transformation can be explicitly
computed. Indeed, define the generalized vector field X as

X=
[
J11

∂H
∂q

T
+ J12

∂H
∂p

T
]
∂
∂q +

[
−J12

∂H
∂q

T
+ J22

∂H
∂p

T
]
∂
∂p+

∂
∂t .

Then the transformation (I.2) where

x̄ = (q̄, p̄) ,

{
q̄ = q

p̄ = J11(q, p, t)∂H∂q
T

+ J12(q, p, t)∂H∂p
T

and the feedback

β(q, p, t) =
[
∂p̄

∂p
·G2(q, p, t)

]−1

·
(
q̄ + LX p̄

)
with appropriate choices of U and α brings the system into
[

˙̄q
˙̄p

]
=

[
0n In
−In 0n

] ∂H̄
∂q̄

T

∂H̄
∂p̄

T

+
[

0n
Ḡ2(·)

]
ū,

ȳ = Ḡ2(·)T ∂H̄
∂p̄

T

(II.8)

where the Hamiltonian H̄(q̄, p̄, t) = (1/2)(q̄Tq̄ + p̄Tp̄).
Notice that such transformation is not unique. Indeed,

replacing q̄ by q̃ = Φ1(q̄, t) and p̄ by p̃ = ∂Φ1
∂q̄ p̄ + ∂Φ1

∂t

above will yield a new function β̃. This fact is related to
symmetries and will be addressed in a forthcoming paper.

III. EXAMPLES

We illustrative our results by several examples.

Example III.1 Consider the time-varying system
ẋ = J(x, t)

∂H(x, t)
∂x

T

+ g(x, t)u,

y = g(x, t)T ∂H(x, t)
∂x

T

, x ∈ R2n, u ∈ Rm
(III.1)

where J(x, t) = J, g(x, t) = G = (0n In)T and

H(x, t) =
1
2
xTM(t)x with M(t) = f(t)

[
0n 0n
0n In

]
.

Above f(t) denotes a continuous positive function, and

x = (q, p) = (q1, . . . , qn, p1, . . . , pn)T.

A transformation (I.2) with x̄ = (q̄, p̄) = (Φ1,Φ2) achieves
a positive definite Hamiltonian H̄ = (1/2)(q̄Tq̄ + p̄Tp̄) if
and only if the following system of PDEs is satisfied

Φ2 = f(t)
∂Φ1

∂q
· p+

∂Φ1

∂t
− ∂Φ1

∂p
· β(q, p, t)

−Φ1 = f(t)
∂Φ2

∂q
· p+

∂Φ2

∂t
− ∂Φ2

∂p
· β(q, p, t).

(III.2)

This system is always solvable for any continuous function f ;
however the boundedness of its solutions is not guaranteed.
We will set some conditions on f that allow to find solutions
satisfying the boundedness property.

Case I. Assume that f is differentiable and that there are
two constant k2 ≥ k1 > 0 such that

k1 ≤ f(t) ≤ k2 and |f ′(t)| ≤ k2 ∀t ∈ R. (III.3)

A solution to (III.2) is simply obtained by taking

Φ1(q, p, t) = q, Φ2(q, p, t) = fp, β(q, p, t) =
q + f ′p

f
.

Completing with U(q, p, t) = (1/2)
[
qTq + (f2 − f)pTp

]
and α(q, p, t) = fp we thus define a transformation (I.2) that
maps the original system into (III.5) with Ḡ2 = f(t)In. .
Case II. Suppose f is twice continuously differentiable and
|f ′′(t)| ≤ k2 in addition of (III.3). The transformation (I.2)

Φ1(q, p, t) = γq, Φ2(q, p, t) = p+ γ′q,
α(q, p, t) = fp, β(q, p, t) = (γ + γ′′)q + γ′fp
U(q, p, t) = (γ2 + γ′2)qTq + (1− f)pTp+ 2γ′qTp

with γ = 1/f , brings the original system into a canonical
form, i.e., into (III.5) where Ḡ2 = In. .

In the two precedent cases the differentiability and bound-
edness of f and its derivatives were imposed by our will-
ingness to changing the control vector [0 G2]T into [0 Ḡ2]T

with Ḡ2 as simple as possible. If we drop those requirements
we can ease the conditions on f (see below).
Case III. Assume that f is such that

∫∞
0
f(s)ds <∞. An

example off is f(t) = 1
1+t2 for which

∫∞
0
f(s)ds = π/2.

Since H is quadratic in the state-space variables, we apply
Proposition II.4 by looking for a linear change of coordinates
x̄ = (q̄, p̄)T = Φ(x, t) = Θ(t)x where x = (q, p)T and

Θ(t) =

[
Θ11(t) Θ12(t)
Θ21(t) Θ22(t)

]
.

The system of ODEs given by Proposition II.4, which is
equivalent to (III.2) with β = 0, rewrites[

Θ̇11 Θ̇12

Θ̇21 Θ̇22

]
=
[

0n In
−In 0n

] [
Θ11 Θ12

Θ21 Θ22

]
−f(t)

[
Θ11 Θ12

Θ21 Θ22

] [
0n In
−In 0n

] [
0n 0n
0n In

]
and can further be simplified as{

Θ̇11 = Θ21 Θ̇12 = Θ22 − f(t)Θ11

Θ̇21 = −Θ11 Θ̇22 = −Θ12 − f(t)Θ21.
(III.4)

A simple solution is obtained by taking

Θ11(t) = (cos t)In, Θ12(t) = (sin t− µ(t) cos t)In
Θ21(t) = −(sin t)In, Θ22(t) = (cos t+ µ(t) sin t)In,

where µ(t) =
∫ t

0
f(s)ds. Thus x̄ = Φ(x, t) = Θ(t)x with

U(x, t) =
1
2
xT

[
In −µIn
−µIn µ2In

]
x

and output α(x, t) = gT(x, t)∂H∂x (x, t)T = f(t)M(t)x
transform the system (III.1) into a new Hamiltonian system
[

˙̄q
˙̄p

]
=

[
0n In
−In 0n

] ∂H̄
∂q̄

T

∂H̄
∂p̄

T

+

[
Ḡ1(·)
Ḡ2(·)

]
ū,

ȳ = Ḡ1(·)T ∂H̄
∂q̄

T
+ Ḡ2(·)T ∂H̄

∂p̄

T

(III.5)
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with Hamiltonian H̄(q̄, p̄, t) = (1/2)(q̄Tq̄ + p̄Tp̄) and

Ḡ1(·) = (sin t− µ(t) cos t)In, Ḡ2(·) = (cos t+µ(t) sin t)In.

Because the matrix

Θ(t) =
[

(cos t)In (sin t− µ(t) cos t)In
−(sin t)In (cos t+ µ(t) sin t)In

]
and its inverse

Θ−1(t) =
[
(cos t+ µ(t) sin t)In (− sin t+ µ(t) cos t)In

(sin t)In (cos t)In

]
are both bounded, there exists two positive constants λ1 > 0
and λ2 > 0 such that the uniform boundedness property

λ1|x| ≤ |x̄| ≤ λ2|x|

is satisfied. Thus the original system can be stabilized. .
Next we make a comparative study using Example 2 of [3].

Example III.2 Consider the system (Example 2 of [3])
[
q̇
ṗ

]
=
[

0n In
−In 0n

] [ ∂H
∂q

T

∂H
∂p

T

]
+
[

0n
In

]
u,

y = ∂H
∂p

T

where H(q, p, t) = (1/2)(1+a sin t)pTp and a is a constant
real-valued parameter (|a| < 1). A two step approach was
used to transform this system into the generalized system

[ ˙̂q
˙̂p

]
=

[
0n 1√

c−2a sin t
In

− 1√
c−2a sin t

In 0n

]∂ĤT

∂q̂

∂Ĥ
∂p̂

T

+

[
a cos t√
c−2a sin t

In

]
û,

ŷ =
[

a cos t√
c− 2a sin t

In In

] ∂Ĥ
∂q̂

T

∂Ĥ
∂p̂

T

 =
∂Ĥ
∂p̂

T

with Hamiltonian Ĥ(q̂, p̂, t) = (1/2)(q̂Tq̂ + p̂Tp̂). First, a
choice of U = −(a sin t/2)pTp and α = −ap sin t was used
to find change of coordinates (q̄, p̄)T = Φ(q, p, t) by solving

∂Φ
∂(q, p, t)

 [ −(a sin t)p
0n

]
+K

[
0n
p

]
−1

 = 0,

where K is an unknown skew-symmetric matrix. The sys-
tem was then transformed into an intermediate Hamiltonian
system with H̄ = (1/2)p̄Tp̄. Later a scalar periodic and
positive function θ(t) was sought so U(q̄, t) = θ(t)

2 q̄Tq̄
and β(q̄, t) = θ(t)q̄ solve the inequality (II.3). Once θ(t)
is found, the coordinates change (q̂, p̂)T = Φ̄(q̄, p̄, t) were
obtained solving another partial differential equation. The
choices of U and β here were merely intuitive but seeking
them directly from (II.3) would have been a big task. This
justifies in part the two-step approach in finding U and β.

Our approach consists of applying directly Proposi-
tion II.4. We seek for a linear change of coordinates

x̄ = (q̄, p̄)T = Φ(q, p, t) = Θ(t)(q, p)T

and a linear vector function β(q, p, t) = Ω1(t)q + Ω2(t)p
such that the ordinary differential equation (II.7) is satisfied.

Following similar steps as in the previous example, we
arrive to the system of ordinary differential equations{
Θ̇11 = Θ21 + Ω1Θ12 Θ̇12 = Θ22−(1 + a sin t)Θ11+Ω2Θ12

Θ̇21 =−Θ11+Ω1Θ22 Θ̇22 =−Θ12−(1 + a sin t)Θ21+Ω2Θ22.

If we take Θ12(t) = 0 and Θ22(t) = In, we find that

Θ11(t) =
1

1 + a sin t
In and Θ21(t) =

−a cos t
(1 + a sin t)2

In.

Reporting back we get Ω2(t) = (1 + a sin t)Θ21 and

Ω1(t) = Θ̇21 + Θ11 =
a2(1 + cos2 t) + a sin t

(1 + a sin t)3
In.

Notice that Θ11,Θ21,Ω1 and Ω2 are all bounded functions
on the interval t ∈ (−∞,∞) (recall that |a| < 1). Thus there
exist λ2 ≥ λ1 > 0 such that the change of coordinates

q̄ =
1

1 + a sin t
q, p̄ =

−a cos t
(1 + a sin t)2

q + p (III.6)

whose inverse is q = (1 + a sin t)q̄, p = a cos t
1+a sin t q̄ + p̄

satisfy the uniform boundedness property

λ1|(q, p)T| ≤
∣∣∣(q̄, p̄)T

∣∣∣ ≤ λ2

∣∣∣(q, p)T
∣∣∣ .

We easily verify that the transformation (q̄, p̄)T = Φ(q, p, t)

Φ(q, p, t) = Θ(t)(q, p)T, ū = u+ Ω1(t)q + Ω2(t)p,
H̄ = H(q, p, t) + U(q, p, t), ȳ = y(q, p, t) + α(q, p, t)

with α(q, p, t) = − a cos t
(1+a sin t)2 q − (a sin t)p and

U = 1+a2+2a sin t
2(1+a sin t)4 q

Tq − a sin t
2 pTp− a cos t

(1+a sin t)2 q
Tp (III.7)

brings the system into the canonical form
[

˙̄q
˙̄p

]
=
[

0n In
−In 0n

] ∂H̄
∂q̄

T

∂H̄
∂p̄

T

+

[
0n
In

]
ū,

ȳ = p̄

with quadratic Hamiltonian H̄(q̄, p̄, t) = (1/2)(q̄Tq̄ + p̄Tp̄).
The transformed system is zero state detectable with

positive definite Hamiltonian H̄ = (1/2)(q̄Tq̄+ p̄Tp̄). It thus
can be stabilized by the unity feedback ū = −ȳ (see [9] and
Lemma 1 [3]). Notice that Fujimoto [3] obtained a quadratic
positive definite Hamiltonian but the structure matrix J̄ and
the output ȳ remain time-dependent while we obtain a com-
pletely time-independent system. The transformation (III.6)-
(III.7) obtained via the ODE of Proposition II.4 coincides
also with that of Case II with γ = 1/(1 + a sin t). .

Remark that if the matrix function Ω = 0, that is, ū = u,
then no solution satisfying the uniform boundedness property
can be found. Indeed, a typical solution would be given by

q̄ = (cos t)q + (−t cos t+ 2 sin t+ a cos2 t)p
p̄ = = −(sin t)q + (t sin t+ 2 cos t− a sin t cos t)p

which fails to satisfy the uniform boundedness property.

The previous examples fall in the class of fully actuated
systems. Next, we will take a case of underactuated system.
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Example III.3 Consider a coin rolling on a horizontal plane
[3], where q1 denotes the heading angle, (q2, q3) the orthog-
onal coordinate of the point of contact between the coin and
the horizontal plane, p1 the angular velocity with respect
to the heading angle q1, and p2 the rolling angular velocity
of the coin. By u1 and u2 we denote the acceleration with
respect to p1, and p2, respectively. The dynamics of the coin
satisfy the port-controlled Hamiltonian system[

q̇

ṗ

]
= J(q, p)

[
∂H
∂q

T

∂H
∂p

T

]
+

[
03×2

I2

]
u

where q = (q1, q2, q3)T, p = (p1, p2)T, and the Hamiltonian
H(q, p) = (1/2)pTp with the structure matrix given by

J =


0 0 0 1 0
0 0 0 0 cos q1

0 0 0 0 sin q1

−1 0 0 0 0
0 − cos q1 − sin q1 0 0

 .
The identity transformation q̄ = q, p̄ = p and the feedback
ū1 = u1 + q1, ū2 = u2 + q2 cos q1 + q3 sin q1 give[

˙̄q
˙̄p

]
= J̄(q̄, p̄)

 ∂H̄
∂q̄

T

∂H̄
∂p̄

T

+

[
03×2

Ḡ2(q̄, p̄, t)

]
u (III.8)

with quadratic positive definite H̄(q̄, p̄) = (1/2)(q̄Tq̄+p̄Tp̄),
where J̄(q̄, p̄, t) = J(q, p, t)|(q,p)=(q̄,p̄). A stabilizing feed-
back is u1 = −q1 − p1, u2 = −p2 − q2 cos q1 − q3 sin q1.

Now, let’s take

J̄ =

 03×3 03×2

02×3
0 1
−1 0

 .
Then a change of coordinates exists if and only if it satisfies
the following system of partial differential equations

p1
∂Φj
∂q1

+ p2 cos q1
∂Φj
∂q2

+ p2 sin q1
∂Φj
∂q3

+
∂Φj
∂t

= 0,

p1
∂Φ4

∂q1
+ p2 cos q1

∂Φ4

∂q2
+ p2 sin q1

∂Φ4

∂q3
+
∂Φ4

∂t
= Φ5,

p1
∂Φ5

∂q1
+ p2 cos q1

∂Φ5

∂q2
+ p2 sin q1

∂Φ5

∂q3
+
∂Φ5

∂t
= −Φ4,

for 1 ≤ j ≤ 3. A local solution of this system is given by

Φ1(·) = cos(p1t− q1)
Φ2(·) = q2 sin(p1t− q1) + q3 cos(p1t− q1) + p2

−1+cos p1t
p1

Φ3(·) = q2 cos(p1t− q1)− q3 sin(p1t− q1)− p2
sin p1t
p1

Φ4(·) = p1 cos t+ p2 sin t
Φ5(·) = −p1 sin t+ p2 cos t
though this solution remains unbounded when t 7−→ ∞.
Changing the structure of the matrix and adding feedback
might yield bounded solutions but solving the corresponding
partial differential equations would not be quite simple. A
software might be required or the use of Taylor expansions
(were used to find this solution and would be in consideration
for future work). Aiming for a nonconstant matrix, J can be
simplified further, yet yielding a quadratic positive definite

Hamiltonian via a locally time-independent transformation.
Indeed, we check that the following change of coordinates

q̄1 = Φ1(q, p) = tan q1,
q̄2 = Φ2(q, p) = q2, p̄1 = Φ4(q, p) = p1 sec2 q1,
q̄3 = Φ3(q, p) = q3, p̄2 = Φ5(q, p) = p2 cos q1,

and feedback
ū1 = u1 + 2p1 tan q1 + sin q1 cos q1

ū2 = u2 − p1p2 tan q1 +
q2 cos q1 + q3 sin q1

cos2 q1
take the original system into (III.8) with Hamiltonian
H̄(q̄, p̄) = (1/2)(q̄Tq̄ + p̄Tp̄) and

Ḡ2(q̄, p̄, t) =
[

1 + tan2 q1 0
0 cos q1

]
.

The new Hamiltonian system as well as the transformation
are time-independent. There are other choices of J̄ that yield
different transformations (I.2) having all the common prop-
erty of producing a quadratic positive definite Hamiltonian. .

CONCLUSION
A straightforward approach was proposed to achieve a

quadratic positive definite Hamiltonian via generalized trans-
formations. The PDEs obtained generalize the matching con-
ditions and their solvability will be discussed in future work
using power series obtained for the straightening theorem.

REFERENCES

[1] G. Blankenstein, R. Ortega, A. J. Van Der Schaft, The match-
ing conditions of controlled Lagrangians and IDA-passivity
based control, Internat. J. Control, 75(9) (2002), pp. 645-665.

[2] A. Bloch, D. E. Chang, N. E. Leonard, and J. E. Marsden,
Controlled lagrangians and the stabilization of mechanical
systems II: potential shaping, IEEE Trans. Autom. Control,
46(10) (2001), pp. 1556-1571.

[3] K. Fujimoto and T. Sugie, Canonical transformation and
stabilization of generalized Hamiltonian systems, Systems &
Control Letters, 42(1) (2001), pp. 217-227.

[4] K. Fujimoto, K. Sakurama and T. Sugie, Trajectory tracking
control of port-controlled Hamiltonian systems via generalized
canonical transformations, Autom., 39(2003), pp. 2059-2069.

[5] K. Fujimoto and T. Sugie, Freedom in coordinate transfor-
mation for exact linearization and its application to transient
behavior improvement, Automatica, 37(2001), pp. 137-144.

[6] N. E. Leonard, Stabilization of underwater vehicle dynamics
with symmetry-breaking potentials, Systems & Control Letters,
vol 32, (1997) pp. 35-42.

[7] B. M. J. Maschke and A. J. van der Schaft, Port-controlled
Hamiltonian systems: modelling origins and system-theoretic
properties, IFAC Symp. Nonl. Contr. Syst., (1992) pp. 282-288.

[8] J. I. Mulero-Mart́inez, Canonical transformations used to de-
rive robot control laws from a port-controlled Hamiltonian
system perspective, Automatica, 44 (2008) pp. 2435-2440.

[9] H. Nijmeijer, A. J. van der Schaft, Nonlinear Dynamical
Control Systems, Springer, NY (1990).

[10] R. Olfati-Saber, Normal forms for underactuated mechanical
systems with symmetry, IEEE Trans. Autom. Contr., vol 47,
(2002) pp. 305-308.

[11] P. J. Olver, Applications of Lie Groups to Differential Equa-
tions, Graduate Texts in Mathematics, Springer-Verlag, 1986.

[12] P. J. Olver, Equivalence, Invariants and Symmetry, Cambridge
University Press, 1995.

[13] R. Ortega, M. W. Spong, F. Gomez-Estern, and G. Blanken-
stein, Stabilization of a class of underactuated mechanical
systems via interconnection and damping assignment, IEEE
Trans. Autom. Control, 47(8) (2002), pp. 1218-1233.

1433


	Southern Illinois University Carbondale
	OpenSIUC
	7-2010

	Time-Invariant Quadratic Hamiltonians via Generalized Transformations
	Issa Amadou Tall
	Recommended Citation



