
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Computer Science

2008

A Distributed System for Parallel Simulations
Mengxia Zhu
Southern Illinois University Carbondale, mzhu@cs.siu.edu

Nanda K. Yadav
Southern Illinois University Carbondale

Follow this and additional works at: http://opensiuc.lib.siu.edu/cs_pubs
Published in Zhu, M., & Yadev, N. K. (2008). A distributed system for parallel simulations. IEEE
Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008, 1-5. doi: 10.1109/
GLOCOM.2008.ECP.335 ©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. This material is presented
to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are
retained by authors or by other copyright holders. All persons copying this information are expected
to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works
may not be reposted without the explicit permission of the copyright holder.

This Article is brought to you for free and open access by the Department of Computer Science at OpenSIUC. It has been accepted for inclusion in
Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Zhu, Mengxia and Yadav, Nanda K. "A Distributed System for Parallel Simulations." (Jan 2008).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenSIUC

https://core.ac.uk/display/60529516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

A Distributed System for Parallel Simulations
Mengxia Zhu* and Nanda K. Yadav

Computer Science Department
Southern Illinois University

Carbondale, IL 62901
*corresponding author Email: mzhu,nanday@cs.siu.edu

Abstract—We presented the technologies and algorithms to
build a web-based visualization and steering system to monitor
the dynamics of remote parallel simulations executed on a
Linux Cluster. The polynomial time based algorithm to opti-
mally utilize distributed computing resources over a network
to achieve maximum frame-rate was also proposed. Keeping up
with the advancements in modern web technologies, we have
developed an Ajax-based web frontend which allows users to
remotely access and control ongoing computations via a web
browser facilitated by visual feedbacks in real-time. Experimental
results are also given from sample runs mapped to distributed
computing nodes and initiated by users at different geographical
locations. Our preliminary results on frame-rates illustrated that
system performance was affected by network conditions of the
chosen mapping loop including available network bandwidth and
computing capacities. The underlying programming framework
of our system supports mixed-programming mode and is flexible
to integrate most serial or parallel simulation code written in
different programming languages such as Fortran, C and Java.

I. INTRODUCTION

While visualization of 3D volumetric data is a powerful
tool to analyze and capture hidden knowledge embedded in
raw scientific data, the advantages are better reflected by real-
time simulation applications that have monitoring and steering
capabilities than applications dealing with preexisting datasets.
Current steering systems include SCIRun[1], CUMULVS[2],
VASE[3], Progress[4] and RealityGrid[5] that have found wide
applications in various scientific fields. However, there are
still some challenges that we seek to address: First of all,
most of these systems require the installation of various 3rd
party libraries such as Globus, SOAP, PVM [6] and AVS
[7] and it is usually tedious to set up and configure those
packages, which consequently impose a high learning curve
for users. Secondly, systems introduce separate visualization
packages, which compromise the system’s integrity to seam-
lessly combine various components for efficient computing
performance. Thirdly, most of these systems exploit a static
system configuration in terms of nodes and network links
utilization. Such static mapping strategy is simple and easy
to implement but could incur tremendous delay for some
applications whose characteristics require a totally different
configuration mode.

In order to tackle these challenges, we built a web-based vi-
sualization and steering system that can support various types
of large-scale simulations executed at remote supercomputers
or cluster systems. One of the primary goals of our system
is to provide a web interface with functionalities to monitor

M1 Mu-1 Mu Mv-1 Mw Mx-1

vs

vP[q-1]

vd

vP[2]

g1 g2 gq-1

mu-1 mv-1

ps pd

c1 cu-1 cu cv-1 cw cx-1

pP[2] pP[q-1]

Mx Mn+1

mx-1

cx cn+1

gq

b
s,P[2] bP[2],P[3]

b P[q-1],d

Fig. 1. Mathematical model for pipeline partitioning and network mapping.

and steer an ongoing simulation in real-time. Stray simulations
can be terminated or corrected to save computing cycles. The
user only needs to open a web browser to fully access the
system after proper identification check. Such web front-end
completely eliminates the need for any third party softwares
or libraries installation by users and makes the system highly
accessible. Furthermore, the steering functionality proves to
be crucial in saving unnecessary time spent on bad or stray
simulations. Our system also adopts the concept of Service
Oriented Architecture (SOA) to create a robust, flexible and
scalable computing environment, because various computing
modules or components coordinate with each other by provid-
ing a particular service responding to certain service request.
Most importantly, for simulation tasks with linear computing
pipelines, we develop and apply polynomial-time optimization
algorithms to choose the optimal network loop to achieve
maximum frame rate for streaming applications. Simulation
results based on distributed nodes are provided to illustrate
the importance of our algorithm.

Our system involves many aspects of modern computing
techniques such as parallel and distributed computing, network
communications, advanced hierarchical data managements,
scientific visualization, and rich client AJAX (Asynchronous
JavaScript and XML) web design etc. The Ajax web tech-
nology allows partial web page update without reloading the
whole page to improve the responsiveness at the user end.
Parallelism of computation is achieved by executing MPI
simulation commands at our Linux cluster machines. Pthreads
is utilized to support process parallelism and multiple-client
requests at each computing node. Visualization of 3D volu-
metric datasets are carried out by our own C++ code built
upon an open source visualization packages - Visualization
Cook Book (VCB) [8].

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 1

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on March 18,2010 at 11:06:43 EDT from IEEE Xplore. Restrictions apply.

II. OPTIMAL PIPELINE MAPPING

A. Analytical model

We now describe an analytical model for the general prob-
lem of computing pipeline decomposition and its network
mapping as in Fig. 1[9].

The computation pipeline consists of n + 1 sequential
modules, M1,M2, . . . ,Mu−1,Mu, . . . ,Mv−1, ,
Mw, . . . ,Mx−1,Mx, . . . ,Mn+1, where M1 is a data source.
Module Mj, j = 2, . . . ,n + 1performs a computational task of
complexity c j on data of size m j−1 received from module
Mj−1 and generates data of size m j, which is then sent over
the network link to module Mj+1 for further processing.

An underlying transport network consists of k + 1
geographically distributed computing nodes denoted by
v1,v2, . . . ,vk,vk+1. Node vi, i = 1,2, . . . ,k,k + 1 has a normal-
ized computing power pi

1 and is connected to its neighbor
node v j, j = 1,2, . . . ,k,k +1, j �= i with a network link Li, j of
bandwidth bi, j and minimum link delay di, j. The minimum
link delay is mostly contributed by the link propagation
and queuing delay, and is in general much smaller than the
bandwidth-constrained delay of transmitting a large message
of size m given by m/bi, j. The transport network is represented
by a graph G = (V,E), |V | = k + 1, where V denotes the set
of nodes (vertices) and E denotes the set of links (edges).
The transport network may or may not be a complete graph,
depending on whether the node deployment environment is
the Internet or a dedicated network.

We consider a path P of q nodes from a source node
vs to a destination node vd in the transport network, where
q ∈ [2,min(k +1,n+1)] and path P consists of nodes vP[1] =
vs,vP[2], . . . ,vP[q−1],vP[q] = vd . The pipeline is decomposed into
q visualization groups denoted by g1,g2, . . . ,gq−1,gq, which
are mapped one-to-one onto the q nodes on transport path
P. The data flow between two adjacent groups is the one
produced by the last module in the upstream group; We have
m(g1) = mu−1,m(g2) = mv−1, . . . ,m(gq−1) = mx−1. The client
residing on the last node vd sends control messages such as
simulation parameters, filter types, visualization modes, and
view parameters to one or more preceding visualization groups
to support interactive operations. However, since the size of
control messages is typically in the order of bytes or kilobytes,
which is often much smaller than the size of visualization data,
its transport time is assumed to be negligible.

B. Maximum frame-rate

In distributed computation applications producing streaming
data such as animations with a number of time steps, process-
ing and visualization data of the same modality is continuously
generated, manipulated, and rendered in a pipelined manner.
The maximum frame rate that a pipelining system can achieve
is limited by the slowest (bottleneck) transport link or com-
puting node along the pipeline. Our goal is to maximize the

1For simplicity, we use a normalized quantity to reflect a node’s overall
computing power without detailing its memory size, processor speed, and
presence of co-processors, which may result in different performances for
both numeric and graphics computations.

frame rate by minimizing the time incurred on a bottleneck
link/node for applications with streaming data.

Let 1/T j(vi) denote the maximal frame rate with the first j
messages (namely the first j+1 visualization modules) mapped
to a path from source node vs and node vi in an arbitrary
computer network. Let S j (vi)represent the sum of the message
sizes of all modules on node vi with the first j messages
mapped from node vs to vi. We have the following recursion
leading to T n(vd):

T j(vi)
j=2 to n,vi∈V

= min

⎧⎨
⎩

max
(

T j−1(vi),
(
S j−1 (vi)+ c j+1m j

)/
pvi

)
,

min
u∈ad j(vi)

(
max

(
T j−1(u),c j+1m j

/
pvi

,m j
/
bu,vi

))
(1)

with the base conditions computed as:

T 1(vi)
vi∈V,and vi �=vs

=

{
max

(
c2m1

/
pvi

,m1
/
bvs,vi

)
, ∀evs,vi ∈ E

∞ , otherwise

and T t(vs) =
t
∑

i=1

(
ci+1mi

/
pvs

)
, t = 1,2, . . . ,n.

At each step of the recursion, T j(vi) takes the minimal
of two subcases. In the first subcase, we do not map the
last message m j to any network link; instead we directly
place the last module Mj + 1 at node vi itself. In the second
subcase, the last message m j is mapped to one of the incident
network links from its neighbor nodes to node vi. With
the dynamic network configuration capability supported by
dynamic performance estimation modules, it is guaranteed that
the system will always choose the optimal network mapping
scheme resulting in best possible frame-rate on the client side.
Dynamic network configuration is essential for today’s scien-
tific computing needs where different applications may have
tremendously different computing complexities which need to
be handled by the changing network environment in terms
of constantly changing bandwidth and available computing
resources. We proposed a polynomial-time algorithm based
on dynamic programming method to achieve this capability
of dynamically configuring computing pipeline over a given
computing network. The computational complexity of this core
algorithm is O(n × |E|), which guarantees that our system
scales well as the network size increases.

III. SYSTEM DESIGN

The dynamic programming algorithm can be used appro-
priately group the pipeline modules and map them onto com-
puter network to achieve the optimal network performance.
Estimates on computing and transport time will be collected
by statistical approaches and network daemons.

A. Advanced web technology

The term RIA (Rich Internet Application) refers to web
applications built to replace traditional desktop applications.
We borrow and realize this concept by providing a graphic user
interface (GUI) that has widgets to allow any operations that a
traditional desktop-based system could do. We choose Google
Web Toolkit (GWT)[10] as the Ajax development framework.
GWT was released by Google in 2006 and the latest available

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 2

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on March 18,2010 at 11:06:43 EDT from IEEE Xplore. Restrictions apply.

Fig. 2. Implementation components diagram for Ajax Web Technology

stable version is 1.4. Gmail and Google maps are all successful
Ajax applications developed and marketed by Google Inc,.
GWT compiler can translate java code into Javascript, XML
and HTML code enabling users to create nice web applications
by writing pure java code. GWT also provides many widgets
which can be used to create visually pleasing customized
widgets. Some other open-source alternatives for creating
Ajax-based applications are Dojo Toolkit [11], Yahoo Ajax
library [12], and ASP.NET Ajax from Microsoft [13]. The
backend computing of GWT is driven by Remote Procedure
Call (RPC), where services of user verification, parameters
submission, images receiving, and error handling are all han-
dled through RPC mechanism initiated at the browser end and
executed at GWT server end. Building a web-based computing
system to replace a traditional desktop-based system provides
great flexibility and convenience to users, as people can access
the system from anywhere at anytime without installing any
software packages except web browser.

Fig.2 shows a implementation components diagram of
GWT. As discussed earlier, the client interface, a Ajax-based
GUI, allows users to enter steering and visualization parame-
ters and see the final images rendered from simulation datasets
generated at remote cluster machines. Ajax model is different
from traditional web-application model in such a way that it
has an intermediate module called Ajax engine sitting between
client and server. The Ajax engine provides asynchronous
communication between two ends and coordinates partial page
refresh, which only loads changing components and keep the
other web components unchanged.

B. System Modules

The system contains several inter-connected modules and all
of them will be discussed in detail. Our system contains the
following four modules or nodes. 1. Client Module, 2. Central
Management (CM), 3. Data Source (DS) and 4. Computing
Service (CS).
Central Management: Central Management (CM) node plays
the role of central director, as it gathers information about
the user requests, dispatch steering parameters to simulation

center, and estimate current network conditions when a new
steering request is submitted by a remote user etc. CM uses
collected information to compute the optimal mapping of
computing pipeline and establish a routing table to set up the
communication loop. The quit command from the user will
cause the CM to propagate quit message and tear down the
established communication sockets.

Client module: Client module is responsible for providing
a graphical user interface that allows users to make new
steering requests. The GUI contains an image widget to
displays sequences of rendered images computed by upstream
computing nodes. GWT framework and Ajax programming
technique are utilized. Ajax has gained rapid popularity as a
novel technology to build dynamic asynchronous web content
that is both rich in content and faster in page loads. We chose
Google Web Toolkit(GWT) along with Remote Procedure
Calls(RPC) mechanism of Java to build web client of the
system.

Data Source: Data Source is the node that keeps generating
simulated scientific raw datasets upon which the users can
perform steering and visualization operations. Data source
can also be used to house pre-generated data for simple
remote visualization purpose when users are only interested
in visualizing a static dataset. For streaming applications, DS
is usually chosen to be a Linux cluster or a Supercomputer
to carry out computing-intensive simulations with parallel
capabilities.

Computing Service: Computing Service nodes are mainly
responsible for processing, visualization and rendering tasks.
For visualization modules, we support surface extraction
for volume rendering, raycasting, Linear Integral Convolu-
tion(LIC) and streamline methods etc. CS can be a single
workstation or a cluster machine. Multiple CS nodes can
coordinate with each other to compute various visualization
modules and form a streaming pipeline.

C. Simulation codes integration

Our system serves as a universal placeholder for simulation
code because it can accommodate different simulation codes
written in various languages including C, C++, Fortran, Java
or combination of those with minor adaptation. A simulation
program usually involves an iterative loop which produces a
sequence of 3D datasets at different time steps. Such 3D raw
datasets will be processed in a streaming fashion to produce an
animation at the browser end. we do not want the steering pro-
cess to hinder the on-going simulation. The computation going
on in the server should be uninterrupted and be asynchronous.
To achieve this goal, we strategically insert C function calls
at appropriate locations within the simulation code to deal
with the two-way communication and passively intercept the
steering requests. Fig. 3 is the pseudocode that illustrated the
enhanced Virginia Hydrodynamics code [14] written in MPI-
based Fortran 90 with inserted C function calls developed
separately. For example, PushDataToVizNode will transport
the raw dataset from simulation node to processing node; Re-
ceiveHandleMessage will intercept and handle various requests

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 3

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on March 18,2010 at 11:06:43 EDT from IEEE Xplore. Restrictions apply.

Virginia Hydrodynamics MPI (VH1) Pseudocode

 MPI_INIT() // Start MPI enviroment
 StartSimulationServer();
 AcceptWaitConnection();

 do ReceiveHandleMessage();
 while (no new Steering request)

 Begin by reading input deck
 Check that arrays are large enough for desired number of zones
 Initialize variables for the new problem
 Restart from old dump files to save time
 Increment dump file name
 // Main Computational Loop
 do
 sweepx;
 MPI_ALLTOALL();
 sweepy;
 MPI_ALLTOALL();
 sweepz;
 MPI_ALLTOALL();
 if MPI_RANK = = 0
 PushDatatoVizNode();
 ReceiveHandleMessage();
 if (Message is new simulation params)
 UpdateSimulationParameters();
 endif
 MPI_BARRIER()
 Mergevh1data() //To merge all output from slave nodes
 endif
 while (cycles != endcycles)
 //End of Main computational Loop

 if MPI_RANK == 0
 Write to a file for data needed for post processing
 endif
 MPI_FINALIZE() //End MPI Environment

Fig. 3. System function calls inserted in MPI VH1 code.

such as new steering, quit, rotate and zoom requests, submitted
by users; and UpdateSimulationParameters will overwrite the
current simulation parameters for the simulation codes with
value intercepted by ReceiveHandleMessage.

IV. EXPERIMENTAL RESULTS

A. Parallel hydrodynamics simulations

Virginia Hydrodynamics(VH1) is a computational hydrody-
namics simulation code developed in 1990 [14]. It is written
in Fortran and the latest available parallel version is in For-
tran 90 with MPI support. VH1 can model several different
hydrodynamics problems like radiation cooling, formation of
shocks in tube and gravitational collapse of interstellar cloud.
In our system, we have incorporated the MPI version of
VH1 and modified the original code to meet the requirements
of the system. We have automated the merging process for
multivariate datasets, thus the multiple data slices generated
by independent processors will be combined into a single one
at the end of each step. The merged dataset in netCDF[15]
format will be filtered to extract a particular variable of interest
and converted to a binary file to save storage space. We run
tests on one subproblems of MPI-VH1, Stellar Wind problem.
The computing modules of the linear pipeline are mapped
to geographically distributed computer nodes to compare the
achievable frame rates.

Stellar Wind Problem This sub-problem is designed to
simulate the formation of bowshock around a star in a inter-
stellar medium. The parameter to be steered in this case is
“gamma”, also known as adiabatic index of gas. In this case,
we need to control the adiabatic index of hydrogen. To avoid
unsteady condition, gam should avoid values less than 1. We

Fig. 4. Web user interface with a Raycasting image of stellar wind problem.

3

Firewall

Linux Cluster
Athena@siuc

Workstation
WS1@siuc

Workstation
WS2@siuc

Client Side
WS3@siuc

Client Side
Laptop@LA

1

21

2

1

2

3

4

Loop1: Solid Line

Loop2: Dotted Line

Loop3: Broken Line

Loop4: Loop1 with
Client at LA

Loop5: Loop2 with
Client at LA

Loop6: Loop3 with
Client at LA

WAN

LAN

Data
Source

Fig. 5. Six network loops consisting of different nodes, and the number
denotes the link index for a particular loop.

used bounds checking at the web interface to prevent users
from entering invalid gamma values. We applied iso-surface
extraction and ray casting visualization techniques to expose
region of interest within the datasets. Fig. 4 showed a screen
shot of a rendering image using ray casting technique.

B. Framerates with different mapping schemes

We wish to demonstrate that the optimal pipeline partition
and mapping scheme chosen by our system outperforms all
other alternatives in terms of frame-rates. A MPI Simulation
on Stellar Wind problem using 8 cluster nodes with 16
processors is used with ray casting visualization technique.
We set up a testbed consisting of five nodes(three workstation
and one Linux cluster named as Athena housed in Faner
Hall at SIUC; one computer located at Los Angeles) across
the WAN and LAN to validate our algorithm and system
framework as shown in Fig. 5. Because our Linux cluster
machine running the MPI simulations and other workstations
are protected behind SIUC firewall without port exception, all
distributed computing nodes are chosen to be located within
SIUC campus except the web client node for convenience
purpose. The experimental results and conclusions drawn from
LAN tests can be applied to the scenario of WAN because of
the similar underlying assumptions. For all mapping schemes,
the simulation nodes acting as DS as well as the web server is
mapped to the Athena Linux cluster. The CS nodes and CM
nodes are mapped to different Linux workstations of WS1 and

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 4

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on March 18,2010 at 11:06:43 EDT from IEEE Xplore. Restrictions apply.

Fig. 6. The frame-rates achieved with different network loops

WS2 depending on the specific loops. The web client nodes
are either selected to be a computer in Los Angles or the
workstation of WS3 at SIUC.

We collected experimental results by running the system on
six different pipeline mapping loops for the same hydrody-
namics problems and visualization technique. In Fig. 5, the
first loop maps CM, DS and CS nodes to athena, and client
resides on WS3. The second loop maps CM and CS to WS1,
and client is on WS3. The third loop maps CM to WS1,
CS to WS2, and client is at WS3. The fourth loop is the
same as the first loop except the different client side at LA.
The fifth loop is the same as the second loop except the LA
client. The sixth loop is the same as the third loop except LA
client. We measured and compared the different frame-rates
achieved at the web client side by alternative pipeline loops in
Fig. 6. We observed that the optimal pipeline, namely loop 2
achieves the highest frame-rate due to the minimum bottleneck
computing time along that network path. Our experiments
further illustrate that different pipeline mapping schemes will
lead to considerably different streaming performance. Such
difference will be much bigger if applications are conducted
across WAN with unstable network conditions. Thus, choos-
ing the optimal network configuration in a dynamic way is
important to achieve interactivity with satisfactory network
performance. It is also interesting to note that that different
client sides did not cause noticeable disparities on the frame-
rate. For example, frame rates of loop 1 is similar to that of
loop 4. It indicates that the computing bottleneck is not on
the transport link from web server to client end. However,
we experienced different delays for the first image from loops
with different client sides.

V. CONCLUSION AND FUTURE WORK

We have presented the design and implementation issues of
a distributed web-based system for monitoring and steering of
large-scale simulation codes. Interactive steering has replaced
traditional “batch” simulations to boost the resource efficiency
and user interactivity. Although many current steering systems
have been developed to provide monitoring and steering ca-
pabilities for large-scale scientific simulations, there are still
some drawbacks and deficiencies that needed to be addressed.

We designed and implemented a fully functional web-based
monitoring and steering system that can be easily accessed
by users without installing third party packages. Such real-

time monitoring and steering functionality enables users to
“see” ongoing simulations on the fly. Users can track the
evolving dynamics of the simulation and can choose to either
correct the stray simulation or terminate bad simulation to
save computing cycle and time. We incorporated several sub-
problems of hydrodynamics applications into our system to
demonstrate the interactive steering feature of the system as
well as the responsive rich web interface built using Google
web toolkit based on Ajax techniques.

Our future work include the development and deployment
of automated network daemon across WAN and dedicated
network to measure and report the network conditions such
as available bandwidth and computing cycles to be used
as input for our dynamic programming algorithm. It would
allow our system to dynamically configure itself to achieve
the best possible performance. We also aim to provide more
functionality at the web interface. For example, some statistical
analysis tools can be added to analyze the data from many
aspects. In addition, we will look into ways to generate a
movie from history images to allow users to play back for
detailed examinations. In addition, we also plan to apply
these heuristics to the mapping problems for Directed Acyclic
Graph(DAG) structured workflows. The most effective solu-
tion will be integrated into the implementation of the future
system framework.

VI. ACKNOWLEDGEMENT

This project is supported by Oak Ridge National Laboratory
under contract number 6400006042-2224068. Authors would
like to express gratitude to N. S.V. Rao and Q. Wu for their
insightful advices, J. M. Blondin for providing MPI VH1 code
and L. Zhu for help with conducting remote client tests.

REFERENCES

[1] S. Parker and C. Johnson, “Scirun: A scientific programming environ-
ment for computational steering,” in The Proceedings of Supercomputing
Conference, 1995.

[2] G. G. II, J. Kohl, and P. Papadopoulos, “Cumulvs: Providing fault
tolerance, visualization, and steering of parallel applications,” The Inter-
national Journal of Supercomputer Applications and High Performance
Computing, pp. 224–235, 1997.

[3] “Common data format,” http://nssdc.gsfc.nasa.gov/cdf.
[4] J. Vetter and K. Schwan, “Progress: A toolkit for interactive program

steering,” in Proceedings of the 1995 International Conference on
Parallel Processing, 1995, pp. 139–142.

[5] B. Boghosian, P. V. Coveney, S. Dong, L. Finn, S. Jha, G. Karniadakis,
and N. Karonis, “Nektar, spice and vortonics: Using federated grids for
large scale scientific applications,” Journal of Cluster Computing, vol.
10(3), pp. 351–364, 2007.

[6] “Pvm,” http://www.csm.ornl.gov/pvm.
[7] “Avs,” http://www.avs.com.
[8] “Visualization cook book,” seelab, University of Tennessee.
[9] M. Zhu, Q. Wu, N. Rao, and S. Iyengar, “Optimal pipeline decom-

position and adaptive network mapping to support distributed remote
visualization,” Journal of Parallel and Distributed Computing, vol. 67,
pp. 947–956, 2007.

[10] “Google web toolkit,” http://code.google.com/webtoolkit.
[11] “Dojo toolkit,” http://dojotoolkit.org.
[12] “Yahoo ajax library,” http://developer.yahoo.com/yui.
[13] “Asp.net ajax framework,” http://ajax.asp.net.
[14] “Virginia hydrodynamics,” http://wonka.physics.ncsu.edu/pub/VH-1.
[15] “Network common data format,” unidata.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 5

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on March 18,2010 at 11:06:43 EDT from IEEE Xplore. Restrictions apply.

	Southern Illinois University Carbondale
	OpenSIUC
	2008

	A Distributed System for Parallel Simulations
	Mengxia Zhu
	Nanda K. Yadav
	Recommended Citation

