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Abstract 
 
Euchemotrema hubrichti (Pilsbry, 1940) is a polygyrid land snail known only from the Larue 
Pine Hills region of southwestern Illinois, USA.  Despite the restricted range of the species, 
observations in the field suggested that patterns of genetic variation within E. hubrichti might 
show geographic structure.  To assess the dispersal potential of E. hubrichti, a mark-recapture 
experiment was performed at two sites <100 meters apart.  To evaluate the geographic 
distribution of genetic variation, a region of the mitochondrial cytochrome c oxidase subunit I 
gene was sequenced from 53 snails collected from sites spanning the species range.  Mark-
recapture experiments suggested that population sizes at two sites were low and migration 
between sites was not detected.  AMOVA and nested clade analysis (NCA) revealed 
significant genetic structure among sites.  Two sites in particular appeared to be isolated from 
the others based on nested clade analysis.  AMOVA also detected significant genetic 
differentiation among sites, but partitioning the data into two groups (populations 1 and 2) 
based on the NCA results did not explain a significant amount of genetic variation.  
Coalescent methods suggested that population sizes and migration rates for populations 1 
and 2 are unequal.  These patterns are likely due to the low dispersal ability of E. hubrichti 
and patchiness of preferred E. hubrichti habitat rather than an ancient vicariant event.  These 
preliminary findings have implications both for the conservation of this species and for the 
population genetics of any spatially restricted endemic species with low dispersal ability. 
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Introduction 
 
Gene flow or lack thereof can be of critical importance in the maintenance of genetic diversity 
in endangered or threatened species.  A major factor determining the amount of gene flow 
within and among animal populations is dispersal ability (vagility) (Bohonak 1999).  In 
terrestrial habitats, small flightless animals without a phoretic, airborne or aquatic dispersal 
phase might be expected to show higher levels of population differentiation—i.e., lower 
levels of gene flow—than more vagile animals like birds or mammals, even in the absence of 
historic barriers to gene flow (Irwin 2002).  Dispersal ability also has implications for species 
conservation, as low-vagility species could be particularly sensitive to environmental 
perturbations as well as habitat loss or degradation.  Furthermore, sensitivity to 
environmental perturbation may be exacerbated if the species is rare and has a small range or 
a patchy distribution. 
 
Land snails are often presumed to be low-vagility organisms, although there is some evidence 
that they can disperse via occasional hitchhiking on other organisms (Dundee et al. 1967; 
Gittenberger et al. 2006; Rees 1965).  High levels of cryptic genetic diversity have been found 
in several land snail species (e.g., Arnaud et al. 1999; Thomaz et al. 1996; Watanabe & Chiba 
2001), suggesting that the limited dispersal ability of land snails can have an important effect 
on the geographic distribution of genetic variation.  Land snail species with restricted ranges 
and/or patchy distributions may therefore be of particular conservation concern. 
 
The carinate pillsnail, Euchemotrema hubrichti (Pilsbry, 1940), is a polygyrid land snail with a 
highly restricted range and a patchy distribution (Anderson 2005).  Euchemotrema hubrichti 
was described based on shell material collected from Pleistocene talus at the base of a 
limestone bluff in the Larue–Pine Hills region of southwestern Illinois, USA.  Initially, the 
species was believed to be extinct (Pilsbry 1940), because no live individuals had been found.  
Hubricht (1943) subsequently described his first encounter with live carinate pillsnails, and 
much later noted the distribution of the species and described the habitat of E. hubrichti as 
“crevices of shaded cliffs, often more than 20 ft above the ground” (Hubricht 1985).  These 
snails seem to prefer the xeric tops of relatively exposed limestone outcrops, where they often 
can be found in high abundance aestivating beneath limestone slabs (Anderson 2005; 
Anderson & Smith 2005). 
 
The restricted distribution of this species may qualify it for federal threatened or endangered 
status.  Euchemotrema hubrichti is considered a Regional Forester Sensitive species by the 
United States Department of Agriculture Forest Service.  It has a NatureServe 
(www.natureserve.org) Global Status of G1—critically imperiled across its entire range—and 
an IUCN Red List of Threatened Species designation of DD (“data deficient”) (Mollusc 
Specialist Group 1996).  An IUCN status of “DD” indicates that there is insufficient 
information to assess the extinction risk of a taxon.  Fortunately, the known range of E. 
hubrichti lies entirely within the LaRue–Pine Hills/Otter Pond Research Natural Area, a part 
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of the Shawnee National Forest where collections are prohibited.  The total known range of E. 
hubrichti extends roughly north to south along the edge of the Larue-Pine Hills limestone 
bluff system for approximately 5 km.  Within this region, the distribution of E. hubrichti 
appears to be rather patchy.  E. hubrichti is found in high abundance (>100 individuals) at 
only three sites and in low abundance at a few other sites (Anderson 2005). 
 
If E. hubrichti is truly a low-vagility organism, geographic population structure could arise 
even across relatively small distances, particularly given the apparent preference of these 
snails for patchily distributed exposed limestone outcrops.  If geographically based genetic 
structure does exist in E. hubrichti, an understanding of this structure could be valuable for 
species conservation.  This leads to two questions: 1) Is Euchemotrema hubrichti actually a low-
vagility organism?  2) If so, is this low vagility reflected in the genetic structure of the species? 

 
Several approaches were used to address these questions.  First, mark-recapture methods 
were used to estimate the number of snails at two proximate sites (< 100 meters apart) and to 
determine if migration of snails between the two sites could be directly detected over a period 
of three years.  To investigate population structure, a region of the mitochondrial cytochrome 
oxidase subunit I (COI) gene was PCR amplified and sequenced from snails collected 
throughout the Larue-Pine Hills region.  The sequence data were analyzed using nested clade 
analysis (NCA) to investigate the geographic component of population structure.  Results of 
the NCA were evaluated further using a combination of standard population genetic 
methods (AMOVA) and coalescent-based methods. 
 
Methods 
 
Mark-recapture 
 
Population sizes, overwinter survivorship and migration rates at two sites (C and D; Figure 1) 
were estimated via mark-recapture methods.  When the mark-recapture work was initiated, 
only sites C and D were known to harbor large numbers of E. hubrichti individuals.  Snails 
were collected by hand from each site, and shells of live snails were marked with different 
colors of nail polish to denote collection site and year.  Population size estimates for each site 
were combined across years using the Schnabel method; samples taken during the summer of 
2003 were also analyzed with the Jolly-Seber method.  The Schnabel method makes stringent 
assumptions (i.e., no birth, death, immigration or emigration have occurred), but specimens 
do not have to be individually marked.  The Jolly-Seber method allows for an open 
population, but requires that snails be individually marked so that date of last capture can be 
recorded (Krebs 1999). 
 
Specimen collection, DNA extraction, PCR amplification and sequencing 
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53 snails were collected from seven sites in the Larue–Pine Hills Research Natural Area in 
Union County, southwestern Illinois (Figure 1).  Rarity of snails at several sites is the primary 
reason for the small sample sizes; all snails captured at “low abundance” sites (A, B, E and G) 
were assayed for COI.  Small pieces of foot tissue (~1–2 mm2) were isolated from live snails 
using sterile razor blades, as recommended by Holland and Hadfield (2002).  Most of the 
snails were marked and allowed to recover for several days in the lab prior to being released 
alive at the sites from which they were collected.  Four voucher specimens were retained for 
morphological study and deposited at the Field Museum of Natural History (catalogue 
number 307844) as part of a redescription of this species (Anderson & Smith 2005).  Total 
DNA was extracted using the DNeasy DNA isolation kit (QIAGEN).  A ~650-bp region of the 

mitochondrial COI gene was amplified via PCR (25-µL reactions, annealing temperature = 
42oC) using HotStar Master Mix (QIAGEN) and primers from Folmer et al. (1994), along with 
a negative control.  PCR amplicons were gel-purified from a 1% TBE agarose gel using a 
MinElute Gel Purification Kit (QIAGEN) to remove primer dimers, and gel-purified 
amplicons were sequenced in both directions using the PCR primers with BigDye Terminator 
Ready Reaction v.3.0 mix (one-eighth reactions).  Sequencing reactions were cleaned using 
Centri-Sep spin columns (Princeton Separations) and run out on an ABI 377 automated 
sequencer.  All kits were used following manufacturer’s protocols. 
 
Phylogenetic analysis 
 
Maximum parsimony (MP) and maximum likelihood (ML) phylogenies were inferred for the 
haplotypes using branch-and-bound searches in PAUP* 4.0b10 (Swofford 2002).  To select an 
appropriate model for ML analysis, fifty-six ML substitution models were evaluated on the 
MP tree using hierarchical likelihood-ratio tests (hLRT’s) and the Akaike Information 
Criterion (AIC) in Modeltest 3.7 (Posada & Crandall 1998).  All ML model parameters were 
estimated from the data during the tree search.  Strength of support was assessed via 
nonparametric bootstrapping (one hundred pseudoreplicates, each analyzed with branch-
and-bound searches under MP and ML) (Felsenstein 1985). 
 
Nested clade analysis and AMOVA 
 
Nested cladistic analysis (NCA; also referred to as “nested clade phylogeographical analysis” 
or NCPA), as described in a series of papers by Templeton and colleagues (Templeton 1998; 
2004; Templeton et al. 1992; Templeton et al. 1995; Templeton & Sing 1993) is a method for 1) 
testing the null hypothesis of no association between haplotypes (and clades) and geography 
and 2) using an inference key for a posteriori discrimination among historical events that may 
have produced significant haplotype/geography associations.  NCA has been summarized by 
several authors (including Paulo et al. 2002; Pearse & Crandall 2004; Turner et al. 2000; 
Verovnik et al. 2004 and citations therein).  A parsimony network was constructed using TCS 
version 1.21 (Clement et al. 2000) and nesting of haplotypes and clades was performed 
following the methods outlined in Templeton and Sing (1993).  Statistical analyses of 
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geographical associations were performed with GEODIS version 2.4 (Posada et al. 2000).  The 
GEODIS program calculates clade (D

c
) and nested clade (D

n
) distances for all clades. D

c
 

measures the geographic spread of a clade; D
n
 measures the geographic spread of a group 

relative to all haplotypes present in the nesting clade.  Statistical significance of these values 
was tested using permutational analysis (1000 resamples).  The GEODIS output was 
evaluated using the inference key from Templeton (2004), available online at 
http://darwin.uvigo.es/download/geodisKey_14Jul04.pdf. 
 

The geographical pattern of population structure was also assessed using Φ statistics 
calculated via an analysis of molecular variance (AMOVA, Excoffier et al. 1992), which 

partitions the observed genetic variation into within-population (Φ
ST

), among-populations-

within-groups (Φ
SC

) and among-group (Φ
CT

) components, taking both sequence divergence 
and haplotype frequencies into account.  For this study, populations were hierarchically 
arranged in two ways: as members of a single group including all sites or partitioned into one 
of two groups based on inferences from nested clade analysis.  Tamura distances (Tamura 
1992) were used to construct the distance matrix for AMOVA.  AMOVA’s were performed 
with the Arlequin version 2.000 software package (Schneider et al. 2000).  Statistical 

significance of the variance components and Φ statistics was evaluated by obtaining the null 

distributions of ΦST, ΦSC and ΦCT using 10,000 permutations of haplotypes within sites, 
haplotypes within groups and sites between groups, respectively (Excoffier et al. 1992).  
Population pairwise F

ST
’s were also calculated using Arlequin. 

 
Coalescent analyses 
 
The IM program (Hey & Nielsen 2004) was used to estimate several population genetic 
parameters of interest.  The program uses an “isolation with migration” model developed by 
Nielsen and Wakeley (2001) and modified by Hey and Nielsen (2004) to generate coalescent-

based estimates of mx ( = mx/µ, where mx is the immigration rate of individuals into 

population x and µ is the mutation rate per gene per generation), the genetic diversity 

parameter θ ( = 4N
e
µ) and time of population divergence t (= tµ, where t is the time since 

splitting).   
 
The sequence data were partitioned into two groups based on results from the NCA analysis: 
one including all sequences recovered from sites A-D and G (referred to hereafter as 
Population 1) and the other including sequences from sites E and F (Population 2).  An initial 

run was performed with the upper limits of the prior distributions for θ
1
, θ

2
, m

1
, m

2
 and t all set 

to 10, with a burn-in of 1 million steps followed by a 12-hour run using an infinite-sites 
model.  The inheritance scalar was set at 0.5 to make the results comparable to those from a 
diploid autosomal locus.  The mitochondrial genome is haploid and maternally inherited, so 
the scalar should normally be 0.25, but E. hubrichti is hermaphroditic (Anderson & Smith 
2005), so all adults can potentially reproduce as females.  Three subsequent runs were 
performed with priors conditioned on the initial run, each with different starting seeds and 
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the following upper prior distribution bounds: θ1 = 20, θ2 = 10, m1 = 10, m2 = 30 and t = 100, 
with a run length of eight hours and burn-in as described above.  Estimates of effective 
sample sizes for each parameter were used to assess mixing, and runs were assumed to be 
sampling from the stationary distribution for each parameter if posterior distributions 
generated by all runs were similar. 
 
Additional parameters of interest can be extracted from IM output if the mutation rate and 
generation time are known.  The COI mutation rate in E. hubrichti is unknown, but mutation 
rates for this gene have been estimated for several other mollusks, including geminate species 
across the Isthmus of Panama.  For this study, a range of divergence rates (0.67 – 2.4% per 
million years) was used to estimate Ne and migration rates for E. hubrichti, following Donald 
et al. (2005).  This range encompasses COI divergence rate estimates from trans-Panamanian 
arcid bivalves (Marko 2002), the marine gastropod Tegula (Hellberg & Vacquier 1999) and the 
freshwater gastropod Hydrobia (Wilke & Pfenninger 2002).  This equates to a range of 
mutation rates of 0.335 – 1.2% per million years (i.e., one-half the divergence rate), or (after 
multiplying by 576, the number of COI nucleotides examined here) 1.92 – 6.912 mutations per 
gene fragment per million years = 1.92 – 6.912 x 10-6 mutations per year.  The generation time 
of E. hubrichti is also unknown, but a generation time of one year is reasonable given findings 
with lab cultures of larger species of polygyrid snail (T. Pearce, pers. comm.), leading to a 
mutation rate range of 1.92 – 6.912 x 10-6 mutations per generation. 
 
 
 
Results 
 
Mark-recapture 
 
Results of the mark-recapture surveys are shown in Table 1.  An additional “high abundance” 
site (F) was found in the last year of the study; this site was not included in the mark-
recapture study.  Mature E. hubrichti can survive over at least two winters; several snails that 
were marked in the summer of 2001 were recovered alive in the summer of 2003.  Across the 
three years of mark-capture work at the two sites, no individuals originally from site C were 
found at site D or vice-versa. 
 
Sequence comparisons and statistics 
 
A total of 53 COI sequences were generated, revealing eight unique haplotypes (Table 2). 
Data alignment was unambiguous, and translation of the nucleotide sequences into amino 
acids revealed no stop codons, suggesting that the sequences are functional mitochondrial 
protein-coding gene sequences.  Across the 576 base pairs analyzed, uncorrected (“p”) 
pairwise distances among the haplotypes ranged from a high of 0.01389 (between haplotypes 
I-VIII) to a low of 0.00174 (between haplotypes III-IV).  Variation among the haplotypes was 
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low: only 10/576 sites (1.73%) were variable and, of these, only five were parsimony-
informative.  Nine substitutions were at the third codon position, one was at the first codon 

position, and all changes were transitions (3 A⇔G, 7 C⇔T).  Nucleotide diversity (π) ranged 
from zero (sites A, B, G) to 0.005022 (site E). 
 
Phylogenetic analysis 
 
The best-fitting model for the data set was the HKY85 (Hasegawa et al. 1985) model with no 
among-site rate variation parameters.  P-values for the LRT’s were (null model vs. alternative 
model) as follows: F81 (Felsenstein 1981) vs. HKY = 0.000001, HKY vs. Tamura-Nei (Tamura 
& Nei 1993) = 0.325023, HKY vs. HKY+ G > 0.999999, HKY vs. HKY + I > 0.999999.  The AIC 
value for the HKY model was 1645.2354, and the Akaike weight was 0.2361 (the model with 
the second highest Akaike weight was TrN = 0.1410).  MP and ML analyses of the eight 
haplotypes resulted in one tree (Figure 2; TL = 10, -lnL = 818.62845).  There is a well-
supported separation of the haplotypes into two clades, one containing haplotypes I, II, III 
and IV and the other containing the remaining haplotypes. 
 
Nested clade analysis and AMOVA results 
 
The haplotype network produced by TCS for the E. hubrichti data is shown in Figure 3.  
Nested clade analysis was performed only on clades showing both geographic and genetic 
variation (clades 1-2, 1-3, 2-1, 2-2 and the total network), and significant associations between 
haplotype and geography were found for all five of these groups (Table 3).  Clade distances, 
nested clade distances, D

c
I- D

c
T and D

n
I- D

n
T values for all clades are shown in Figure 4, and 

NCA inferences for all five groups are listed in Table 3.  Contiguous range expansion was 
inferred for Clade 1-2.  Two clades—Clade 2-2 and the total cladogram—showed evidence of 
restricted gene flow (with evidence for some long-distance dispersal for Clade 2-2 and 
isolation by distance for the total cladogram).  Allopatric fragmentation was inferred for the 
remaining two clades (Clades 1-3 and 2-1).  These inferred fragmentation events separate 
most individuals found in E and F from the rest of the network (Figure 3). 
 
When all sites were considered members of one hierarchical group for AMOVA, significant 

genetic structure was detected among sites (ΦST = 0.52439, P < 0.00001; Table 4).  NCA 
suggested a fragmentation event between E+F and all other sites, but when sites were 
segregated into two groups—population 1 (all sites but E and F) and population 2 (sites E and 

F)—to match this inference, no significant structure was detected (ΦCT = 0.34662; P < 0.14218).  

Variation among sites within these two groups was significant (ΦSC = 0.36458, P < 0.00001).  

Pairwise site ΦST values are shown in Table 5. 
 
Coalescent analyses 
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The location of the highest values of m1, m2, θ1 and θ2 in the marginal posterior distributions 

computed by IM, averaged across three independent runs, were: θ
1
 = 2.3899 (0.6983-6.0903), θ

2
 

= 0.8938 (0.1311-3.0866), m1 = 0 (0.0050-2.8350), m2 = 0.855 (0.0150-6.6450) (ranges in 
parentheses are the shortest intervals in each distribution that include 90% of the probability) 

(Figure 5).  The marginal posterior distributions of θA (θ for the ancestral population) and t 
were flat, and will not be discussed further.  Assuming a range of plausible gastropod COI 
mutation rates, Ne for population 1 = 86,440 - 311,185, Ne for population 2 = 32,328 - 116,380, 
m

1
 (the rate of migration of gene copies from population 2 into population 1) = 0 and m

2
 = 

1.6414 - 5.9098 x 10-6 per year (or generation, assuming a generation time of one year). 
 
Discussion 
 
Mark-recapture experiments at two of the sites studied here suggest that migration rates 
among sampling sites are not substantial.  Over three summers, no snails from C were found 
at D or vice-versa, despite relatively high numbers of snails at both sites and the small 
distance (< 100 m) between them (Table 1, Figure 1).  This finding initially suggested that 
gene flow among E. hubrichti populations may be limited.  Estimates of population sizes 
varied depending on the method used, but ranged from about 200 individuals to nearly 1000 
individuals. 
 
COI variation in E. hubrichti is relatively low compared with levels of variation in this gene 
region in other gastropod species (e.g., Holland & Hadfield 2002; Liu et al. 2003), but those 
studies focused on species with much broader geographic ranges than E. hubrichti.  The 
relatively low level of sequence variation within the species could be due to a number of 
factors.  The species could be relatively young (i.e., thousands to tens of thousands of years 
old, in which case substantial sequence variation has not had time to accumulate), or it could 
be hundreds of thousands or millions of years old and simply have a low substitution rate.  
Although the Illinoian glaciation stopped just north of the Larue-Pine Hills region (and 
certainly must have had a profound impact on the local biota), the Larue-Pine Hills region 
itself was not glaciated during the Pleistocene (Killey 1998).  Thus, it is possible that E. 
hubrichti persisted through the glacial maximum.  Euchemotrema hubrichti fossils have been 
found from Pleistocene talus at the base of the main bluff (Pilsbry 1940), but precise dating of 
these fossils has not been attempted.  If the origin of E. hubrichti substantially predates the 
Illinoian glaciation, there are at least two explanations for the low level of sequence variation: 
1) the rate of mtDNA evolution in the species has been low, or 2) E. hubrichti has gone 
through one or more bottlenecks that have reduced genetic variation. 
 
Despite the low level of genetic variation, the AMOVA and NCA results demonstrate that 
there are significant associations between geography and genetic variation in this species.  Of 
particular interest is the apparent separation of E and F (i.e., Population 2) from the remaining 
sites (Population 1).  E and F share a haplotype (VI) found nowhere else.  In addition, two 
other haplotypes (I and II) are found only at E and another (VIII) is found only at F.  Given 
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the proximity of E and F (they are ~200 m apart), the sharing of a haplotype is unsurprising.  
However, the failure to find other haplotypes at E and F is somewhat peculiar.  E and F lie 
almost directly on a north-south line between D and G (Figure 1), which share a haplotype 
(IV) that was also found at the northernmost sites sampled (A and B; Figure 3). 
 
NCA infers an allopatric fragmentation between populations 1 and 2, but the separation 
between these populations does not match all of the possible patterns resulting from 
allopatric fragmentation as described by Templeton et al. (1995).  For example, the 
clades/haplotypes isolated by the presumed fragmentation event are not connected to the 
rest of the cladogram by a “larger-than-average” number of mutational steps.  However, as 
also noted by Templeton et al. (1995), fragmentation is presumably an event of some sort, and 
as such different subsets of the haplotype network should coincide with geographically 
congruent populations.  This is the case for E. hubrichti.  Two groups of haplotypes at 
opposite ends of the haplotype network—Clade 1-1 (comprising haplotypes I and II) and 
haplotypes VI and VIII—are separated from the rest of the network by an inferred 
fragmentation event, and these haplotypes are only found at E and F.  The separation 
between Population 1 and Population 2 is not complete, however—although four haplotypes 
are found only at either E or F, haplotype III is found at C, D and E. 
 
There is some discrepancy between the NCA and AMOVA results.  As noted previously, 
NCA infers an allopatric fragmentation event separating E and F from the remaining sites.  
When the data were partitioned into two groups—one including E and F (Population 2), the 
other including all remaining sites (Population 1)—no significant genetic structure was 

detected.  All pairwise Φ
ST

 comparisons involving F were significant, supporting the inference 
that F is genetically differentiated from most of the other populations. 
 
Although the presence of a phylogeographic discontinuity in the COI gene tree for E. hubrichti 
may be due to a fragmentation event at some point in the past, as suggested by NCA, such a 
discontinuity could also arise at random.  Such discontinuities, which are not associated with 
any historical barrier to gene flow, may be especially common in species with low population 
sizes or dispersal rates (Irwin 2002; Kuo & Avise 2005).  Furthermore, variation in habitat 
quality throughout the range of a species can exacerbate the tendency for random 
phylogeographic breaks to arise within a single gene genealogy (Irwin 2002).  In the absence 
of additional evidence (e.g., data from multiple loci or other species), such random 
phylogeographic breaks are difficult to distinguish from discontinuities produced by historic 
barriers to gene flow.  The mark-recapture experiment described here strongly suggests that 
E. hubrichti has both a low dispersal rate and small population sizes (but see below).  E. 
hubrichti is also patchily distributed—all sites where E. hubrichti has been found in abundance 
are exposed limestone.  The Larue-Pine Hills bluffs are composed of a lower Devonian cherty 
(Bailey) limestone that is covered in many places by a layer of loess (Harris et al. 1977; Killey 
1998; Wiggers 1997).  This loess layer (now covered with grasses or hardwood forest and leaf 
litter) has produced a series of exposed limestone “islands” that appear to be the preferred 
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habitat for E. hubrichti.  Loess and vegetation may act as a partial dispersal barrier for E. 
hubrichti, limiting movement among exposed outcrops.  Thus, for several reasons, E. hubrichti 
(and many other low-dispersal species with patchy distributions and small population sizes) 
may be particularly prone to displaying phylogeographic breaks in the absence of historic, 
long-term barriers to gene flow. 
 
Coalescent methods offer a way to incorporate the stochasticity of the coalescent process into 

estimation of population genetic parameters such as θ and m
 
(Knowles 2004; Pearse & 

Crandall 2004).  The results from the IM analyses are largely concordant with aspects of the 
biology of E. hubrichti, although estimates of Ne are substantially larger than census 

population size estimates at two sites would suggest.  The asymmetry in estimated θ (and 
thus Ne) values for populations 1 and 2 are reasonable—population 1 includes two known 
“high-abundance” sites (C and D, the sites evaluated in the mark-recapture study) and covers 
a much larger spatial range than population 2—even though the absolute values are higher 
than expected.  The migration rate estimates suggest that migration from population 1 to 
population 2 has occurred (although it is very infrequent), but migration from population 2 to 
population 1 has effectively been zero.  This is analogous to expectations from island 
biogeography theory (MacArthur & Wilson 1967).  If population 1 is analogous to a 
continental population (relatively large in number of species/individuals and area), and 
population 2 (relatively small by both measures) is analogous to an island population, 
asymmetric migration rates are unsurprising.  Site F in particular stands out in this respect, as 
it is a small limestone outcrop that is separated by several meters from the other limestone 
bluffs that constitute preferred E. hubrichti habitat.  As such, site F may act as an island for 
this species, with zero dispersal back to the “mainland” population 1.  The inference from 
NCA of restricted gene flow via isolation by distance for the total cladogram also seems to 
support this explanation. 
 
Low-dispersal species—species that should be ideal candidates for phylogeographic 
research—may be particularly prone to displaying phylogeographic discontinuities in the 
absence of long-term barriers to gene flow (Irwin 2002), but this may be largely irrelevant for 
conservation considerations.  These results demonstrate that 1) the distribution of COI 
haplotypes in E. hubrichti is geographically structured (AMOVA and NCA) and 2) E. hubrichti 
migration rates among some sites are extremely low over short (mark-recapture) and long 
(IM) time spans.  This study shows that factors that limit gene flow (particularly low dispersal 
rates coupled with small population sizes and patchy habitat) can be important even over 
small spatial scales.  The two populations revealed here may not merit special protection as 
separate conservation units (Moritz 1995), but they do suggest that natural recolonization of 
sites from which snails have been extirpated (either naturally or by human activities such as 
controlled burns) may be a very slow process, given the low migration rates detected by 
mark-recapture experiments and coalescent-based population genetic analyses.  Given these 
observations, protecting both populations may be prudent. 
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Figure Legends 
 
Figure 1.  Map showing the positions of E. hubrichti collection sites along the limestone bluff 
line in the Larue-Pine Hills Research Natural Area, Union County, southwestern Illinois, 
USA.  The approximate location of the Larue-Pine Hills region is highlighted on the inset 
map.  Population 1 comprises sites A-D and G; population 2 comprises sites E and F. 
 
Figure 2.  Maximum likelihood phylogram for the eight unique E. hubrichti COI haplotypes 
found in this study.  Numbers on branches are MP (above) and ML (below) bootstrap support 
values.  The scale bar indicates 0.001 substitutions per site.  The tree is arbitrarily rooted. 
 
Figure 3.  Haplotype network estimated from the E. hubrichti COI data.  Haplotype 
frequencies are proportional to the area of the associated circle (e.g., haplotype I was found in 
a single snail).  Small open circles indicate missing haplotypes that were not observed.  Each 
haplotype is coded by locations where the haplotype was found (see Table 2 for further 
information).  The figure also shows the nesting design used for nested clade analysis.  
Haplotype III has the highest outgroup probability (0.274).  Thick bars between clades 1-1 and 
1-2 and haplotypes V and VI denote inferred allopatric fragmentation events. 
 
Figure 4.  Results of the nested geographical analysis of the E. hubrichti COI haplotypes.  The 
nested design, haplotypes and clade designations are shown in Figure 3.  Clade (Dc) and 
nesting clade (Dn) distances are reported for each level of the nesting design.  Superscripts 
refer to significantly small (S) and large (L) distances.  The average differences between 
interior (I) and tip (T) clade and nested clade distances, where available, are presented in 
rows labeled “D

x
I-D

x
T”. 

 

Figure 5.  Marginal posterior distributions for θ (A, B) and m (C, D) for populations 1 and 2, 
averaged over three independent runs. 
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