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OPTIMAL AND SUBOPTIMAL DISTRIBUTED DECISION FUSION

Stelios C. A. Thomopoulos, Ramanarayanan Viswanathan
Dimitrios K. Bougoulias, Lei Zhang

Department of Electrical Engineering
Southern Illinois University
Carbondale, IL 62801

The problea of decision fesion i distributed sesser systems is coms
Distributed seasors pass their decisions abost the same hypotheses to 2 fusim
that conbines them into a fisal decigion. Assuming that the seasor decisions are
injepeadeat fros each other coaditiosed ca each Aypothesis, w provide 2 geaeral
proof that the optimal decision schese that mximiges the probability of detsctim
for fized probability of false alarm at the fusion, is the Jeymmn-Pearscm test at the
fusion and Likelibood-Batio tests at the seasors, The optisal set of thresholis is
given via & set of acalinear, compled equations that depead om the decigice poliey
but ot oa the priors. The ncalinesr threshold equatives canmot be solved in
general, ¥e provide a ssboptinal algorithe for solviag for the seasor thresholds
through a ose dimessional mimimization. The aigoritha applies to arbitrary type of
ginilar or disinilsr wensors. Hemerical resuits bave showm that the algoritha yields
solutions that are extresely close to the optimel solutioss in all the tested cases,
and it does not fail in singular cases.

idered,
ceater

THTRODOCYION

Systess of distributed semsors momitoring s comom volwe sad passing their
decisions into a ceatralised fusica cester which further coshives thes into a fiml
decigion Mave been receiving a Iot of attemtion in recent years (1), Such systems
are expected to incresse the relisbility of the detection and be fairly immse to
poise interference aad to failures. In & wesber of papers the problea of optimily
fuging the decisions from a samber of seagors has besn coegidered. fTemmey and
Sandell [2] bave coavidersd the Bayesim detection probles with distributed sensors
vithout congidering the design of dats fusion algevithes. Sadjadi [3] bas considered
the problea of lypothesis testing in a distributed eavircmmeat sad hag provided a
golation in terss of a musber of compled monlinesr equatioas. The decentralised
sequential detection probles bas bee ivestigated in [¢-5]. In [§] it ws shom
that the solution of distributed detection problems is aca-polymomial complete.
Quir, aad Varsiney [} have golved the probles of data fasion whea the a-priori
probabilities of the tested hypotheses are know aad the Likelibood-Batio {[-R) test
can be implesested at the receiver, Thomopoulos, Vieweaathan and Bowgonlias {4,8)
have derived the optiml fusion rule for winows a-priori probabilities in terss of
the Weymsa-Pesrson (K-P} test.

Recently, Srinivasan {10] has proved that the globally optimal solution to the
fugion problen that mxinises the probebility of detection for fired probsbility of
falge alarn when ssasors trengmit indepesdent, binary decisions to the fusion ceater,
congists of L-B tests at all sensors aad N-P test at the fusion ceater. This test
will be referred to as ¥-P/L-R hereafter. The optisel thresholds in [10] were
obtained in terss of a set of cospled, mcalinear equaticms that depead oo the
decision policy but not on the priors and caamot be solved in gesersl. Sevenl
suboptinal fugion rales have also been considered in [10] aad [11].

The proof of the optimslity of the M-P/I-R test in {10] is based on the (first-
order) lagrange wltipliers sethods turas the comstraist optimisation probles of
sininizing (marimizing) the fumction f(x) subject to a comstraint ¢{x) = 0, isto an
unconstrained optimization probles of minimizing {sarimizing) a fumction L of the
fors L{x) = f{x) +\g(x) without constraints, This yields the Lagrange mitipliers
rule W(x) = W{x) + Mgz} = 0 at the ninimm {amxiswm) poiat, in additios to the
original comstraint g{x} = 0, provided that the lagraagisn L is conver aad the

"Mis researd it susorsd by the SDIO/IET and mamaged by the Office of Baval
RBesearch wader Contract NOGO14-86-k-0515.

ainimm (maxissm) lies in the interior of the domain of x. Dewever, the (first-
or}er) lagrangs miltipliers methods oftes fails to convexify the fmctioa {13, Ch.
5], If the optiml solution lies on the bowndary of the dommin of x (ss in the
decision . fusion exrsple described mext), the lagrmgisma formlstion fails to
guarantee the converity of L and comsequently the optimality of the solstion shtained
using the Lagrange meitipliers method. I that sesse, the proof of the optimlity ia
{10] which is baged on 2 Lagrangiss formlatiom, is mot complete as the next ezample
descastrates.

i example of a distribated decizion fusion where the lagrange meltipliers nethod
failx to yield the correct operating points is given in
[17]. The exasple refers to & three similar semsor fusion systes, with all three
seasors operating at the same sigmal-to-noise ratio im a slowly-fading Rayleigh
environseat. The gensor decigions are assumed to be bimary. For m arbitrary
numbering of the three seasors, if the decision rale at the fusion is the Boolesn
fanctioa lﬁﬂl}) were ll=0 or 1, i=1,2,3, it is shown in [17] that the optimal
golution mrinizes “the probability of detection at the fegion for a fired
probability of falgs alars is to operate sensors one and three at the same threshold
and push sensor two at the bﬁnnmtiuprohbilityoffﬂndml'?=
probability of detection P = 1, With this cloice of operating points, the decision
rele is equivaleat to ar OR rule betwesn the two sensors. Nowever, Decawse ome of
the operating poiats in the optimal solution lies on the bouadaries of the domsin of
the variables involved (in this case the probebilities of false alars wod
probabilities of detsction at the seasors), the Lagrangima method fails. The
solutios that is obtained by the lagrangian method {I7] forces two out of the three
mwntoopentelttbeutreupoi.m?p:?flndreliuo\lyol ope of the
senzors for the final decision. Bemce, the Lagraagian approsach yields a solution
wich is by far inferior to the optimal solution, see Fige. 8.1 and 8.2, A detailed
analysis of thie singular case is given in [17].

Tn this paper we give a general proof of the optimality of the W-P/I-R test for
the distributed decision fegion probles that is independest om the Lagrangima
forslation. oreover, we develop s conputatiomally efficieat algoritha to solve
for the optimal fusion rale and the seasors operating poiats.

1. OPYINALTTY OF TNR N-P/L-P TRST IN DISTRIDUTRS DACISTON FUSION

A samber of sepsors, N, receives data from a common volwee. Seasor & receives
data n ad generates the first stage decision w, k=1,2,...,1, The decisions are
subecquently transsitted to the fusion ceater where they are coshined into o fisal
decigica up thoat which of the hypotheses is true, Fig. 1. Asswming bimary
hypothesis testing for gimplicity, we use u = 1 or 0 to dexigmate that semsor i
favors hypothesis ll or l° rupectivelyf In order to derive the globally optimal
fusion rule ve assume that the received dats 1, at the H seasors are statistically
independent conditioned on each kypothesis. This implies that the received decisions
at the fesion center are independeat cesditioned on each hypothesis. Improveseat ia
the perforsance of conveational diversity scheses is based on the validity of this
assmption [18]. Given & desired level of probebility of false alarm ot the fusien
center, PF H (0, the test that marimiges the probability of detectien PD {thes,

sininiges the probubility of miss By = 1-2)) is Ue lerma-harcn teed [12].

mofﬁemmulunlldtlil?e:twﬂlberefemdtoultiredold
optisal test hereafter.

¢ A fix-up nethod, in case the (first-order) lagrange mitipliers method fails, is
described in [13, G 5.
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Niext, we prove that the optimel solutios to the fasios probles iavoives aa M-P
test at the fusion ceater, and likelihood-ratio (IR} tests at the seasors.
Lat

LUNUNIRTLRES (LSRR % {2

be the decision fumction (rule) at the fusion.

Since d(ul,nz,...,nl) is either 0 or |, sad all the possible combimations
decisions hl.lz.n-.ll] that the fusios center caa ree;ive from the ¥ seasors is ¢,
the set of all possible decision fwctions contain 2 d fwctions. Nowever, aot
all these functions d can be threghold optimel 2s the mext lesma states.

lessa | let the decigions u be independent fros each other conditioned on each
hypothesis, A mecessary conditioa for a fumction ‘(ll.lz...-,l'} to be threshold
optiml is

d“i' lHk) =13 d(AI. U-A‘) = 1if Al } ‘k ' {3)
vhere U= [Il,lz.-.-,l'l desotes the set of the peripheral seasor decisions, ‘k isa
setofdeciximwiﬂkmtmiﬁimbshll(m&emlutntof
decigions lHl favors hypothesis K.}, and & iz say set that contains the decisions
from these k seasors. [The symbol °)° is to indicate “grester than' in the
standard maltidisessional coordimate-wise sease, i.e. A. )'ll if aod caly if
. !uk ¥i,i:=1,2,...,0 vith at Jeast ome bolding a8 a strict inequality, where
“nl (uk } indicates the decision of the same i-th seasor in the ‘n“’t) decision set.}

i i

Proof let P’.=P(Ui=l:l°) = probability of false alarn and ’n.:"'f“"l’ :
probability of deteotion st the i-th seamrs. d{k-) = 1 ifplies that the
likelibood ratio
plh AL _p(lk:ll)p(ll-lk:lil) ) "

T AT N T

which in turs implies that, for A. ) ‘i’
P, AR . ploy il Iplieh B Jp(0- L)
Fl, ) R 4,

]

 H L)

p(li:l’lp(H‘:l.i 0
gince, for every seasor i, we can asswme without loes of gemerality that
OCE A WETOE AR, § "
p(|i=m’) Pi P(li:l') 1- Fi

From (5}, it follows that dﬂl, U-l.l =L

Paactions that do not satisfy (3) cassot lead to the set of optimal thresholds.
A fwction d that satisfies Lesme 1, is called o nomotone increasing fumction in the
contest of swtiching and antomsta theory {15].

Lesma ? Poru:fixdtindoldot\.ndwfixedmt-ief-cﬁn
t(ul,uz,... |'), l’b is an incressing fmction of the l’D ' ith, L, o L
0 i

Proof The decision fmmction that corresponds to the likelibood test at the
fusion is contained in the set of momotose fuwnctions of N variables. Comsider ome
such momotone increasing decision fwction d(ll.lz.---ll). Te fmction d, shea
expreased in swa of product form iin the Boolean sesse [15], costains caly some of
the literals By in the uncomplemeated form and mome of the cosplesented
nrisbles (1, Ezi') Since the randon narisbles :ﬁ' are statistically
independent,” it” iz poseible to compute ?D Izowing the ) 's Ko.'s (28], (21) aad
{22) in (9], Taking partial derivatives of & PD wr.t, PDl’s, ose obtaing that
¥ 0 i
D0 3 0 ¥i, e, the desired remit. (is mn illustration, consider the function
#

D,

i . : : R .

d(u1.|2.|3] Ty + Gy For this feaction PDO H l’l)1 + l’n2 PD, PBl (l’n2 PDS). fron
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ah
which, _0)0i=z123) @

b,
1

Theorea 1 The optisal decision rule for the distributed decizion fasion proble
involves a Neyman-Pearson test at the fusion ceater and Likelibood-Batio tegts at all
sexsors.

Proof Given the decisions 1}, 3....,|'tttiefuim ceater, the best fusion

hich wliemnxi-?n for fix PF Tty is the Neymaa-Pearscn test. Call the
0 4 i

)

i

decigion function that correspomds to tigd\mtututhnnof&emtme
increasing fumctions d{u,,u,,...,0. ). Assume that the individual sensors uwse some
test other than the LB wre operating with {(2, , P ) ¥ i] sak that the
ooadition Py = € is met. Fron (8] asd [8] it is seen that P, s a fumction of the
By 's oly, aad that B is & faction of the P s ealy, Purbiermre, from Lema 2,
PDliuwt.uicmmxm' dasi faaction of f.leP; 's . Terefore, the [-R tegts at
ﬁg mniiciopnhe!itl(l’; z F,P;}lltillledtotiebutperfomutt
the fusion, sace in thi case, theehiched P is prenter thn or equl to B that
can be achieved with may other test at the seasicy, y !
Next we give 2 sore precise characterization of the set of fusios fumctions that
sstisfy Theorea 1. According to Lesms 1, caly sonotome increasing functions may be
candidate optimal solutions to the fusion probles, FRor ma arbitrary member of
seagorg N, the nwmber of monotome increasing functions d is wot imown in geseral
{15]. However, for nl, 2, ..., 6, the nusber of momotone functions cam be computed
Millim‘inhblel. Fron this table, one can see the dramatic reduction betweea

all the 2% decision fumctions that can be gesersted fron all the possible
cosbinatioas of N binary decisices, and the wember of somotonic fwctioss of N
varisbles. Tet, the nuaber of momotomic fwactioas is still prhibitively large for ¥
larger than five. Further reduction in the nusber of ceadidate optimal decision
functions is posgible as Lesma I suggests.

1

best test at the fusion ceater t(ll"""l) lo Fron [esms 1, it followe that the

lesma 3 The et of optiml decision (fusion) fuactions cen be geserated by
congideriag only the moootome fwnctions that dapend om all the sensors and ingoring
the monotone fuactions that depead om say subset of the seasors.

Proof Because of the somotoaicity of the M-P test, inclusion of sa additiomal
seasor can oaly improve the performsace of the fasion cemter. Purthermore, if the
quality of the semsor is poor (e.g., very low sigmal-to-soise ratiio), the algoritha
that detersines the optisal set of thresholds will disregard the semsor by setting
its threshold sppropriately. Thus, the fwction d will still depesd o all semsors
with come of the semsors operating at probebility of false alars equal to one or
sero., @

In order to reduce the number of nomotone fonctioas that correspond to N semsors
further by applying lemma 3, c2e needs to excinde all the momotose fmactioms that
correspond to any sebeet of Bk, k=1,...N-1, sensors,

If L indicates the nusber of the nomotope decision fwmctions for N semsors,
erclading the trivial omes d:Ollld:l.l.nH‘indiutuﬂeredleedmtane
functions due to the application of Lesms 3, the following relatiom iz true:

m‘u"r ,,'2{ ‘5‘1: (1)
§

N L
aichFleads FHEE ol lowing theores.

Theores 7  The mamber of candidate optimal fesion fwactions for the distributed
decision fusion problea is given by (7).
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Proof indicates the mamber of memotome decision funetions for N sessors
excludisg the trivial omes d = 1 and d = 6. Proa these fuctions, the omes that are
aosotone aad correspond to any subest of the N seasors mst be excluded. fince for
mubtefkmn&enmliuﬂiﬁewopﬁnlheﬁu.dtkn

e li: possible combinations for choosing the subeet, relstionship (1) follows. n

ion {7) can be solved recursively, and is being tabulated in Table IT for
Kly..0, 6. Theoren 2 can be used to estimate the namerical cosplerity of algorithms
that seek the optimal fusion rule by searching over all possible caadidate fusion
rules such s the two algorithas that are described ia the aext sectioa.

2, SUBOPTINAL SOLUTIONS T0 DISTRINUTED DICISTON FNION

Tn {6] the optisal cosbiniag rule in a paralle] sessor cosfiguration ws gives in
terss of a set of coupled, aoslinear equations vhose solution depenis on the decision
rule aad camsot be solved in general. Pezthermore, they exhibit mmerical probless
related to the [agrangisn method which ws weed to derive thea {?]. Two ssboptiml
algorithex that allow the determimation of the decision rale have beea developed.
The tw algorithas allos the deternination of a fesion rule using & e dimenzionsl
rinigization and a ome dincasions] search, and are comutatissally very efficieat.
The algorithes are besed ca the sequeatial optinisation of the lagrangime w.r.t. the
differeat seseors asvwaing that the thresholds of previowsly optisiced semsers are
set 5o that the seasors operate at either gero or ome probability of detectios. The
two algorithes will be referred as 30PA | sad SORL 2 respectively aad are presested
nert, For the derivation of the two algorithe see [18].

9071 | ALCORTTMM: et 1, 2, ..., Nbe ma arbitrary ovdering of I seasors,
Starting from the N-th seasor, the threshold of the k-th semsor as detersined by
008 1 is gives by

githet )

s} v
hh L

where !

Hok .
Y T

d“‘.""’."'ul,l-l.i,mll.l-l.....k:li' {9

iz L h(l)\'m&e&n‘oﬂdfhbﬂm,\.hﬂeﬂnﬁl‘
at the fosion, and

LT ORRY |I)=h(|°:x:|1, Y veortyl (10)
is the decision fmction ot the ferioe ceater with v, desipating the Visry decision
of the i-th seamr, mhciniu:tﬂefuin.-il!‘ yisthemtof
docisisas af 211 the seators excluling thoee (dacisions) ot BX L, .., K
seasors whose thregholds have already bees detersined. Perthermore, for the first
Seasor

\:\. {11
ﬁm‘\.ummmummm.

S0P 2 ALORTYMN:  Let |, %, ..., | e o arbitrary erdering of N seasors.
Starting Troa the I-th seasor, the threshold of the k-th seagor ag detersined by S0P
2 is givea by

lg'l_l""'k )

:1
\k &—nlvr'iw-ui
1

where
ghiFLok I L5k LD
t JHL ok

{0,008, i m )
P20, 1, I (1) shere , desiguatas the : u:’!ﬂ'ﬁ:ﬂ“.&u, 1, is te
threshold at the femiom,

d(‘]v 'r vesy ll, 2 h’(" 21} |1o ‘1’ veey .I) (14)

T

is the decision fmction at the fasioe cemter with o, desigmating the bisary decision
of the i-th seasor, muiumtuef-i-,hull is the st of
decisicas of all Y seasors erciuding those (decibibas)sl’Bhe b, -1, .., k
seasors shose thresholds have already been detersined. Purtbersore, for the first
seapr

Wiy (15}
ienl\‘ilﬁeﬂnimat&efni-eda.

Bemarks (a) In the suboptimal minimization process, the thresholis of the
differeat seasors are shtained isn 2 sequeatial fashion. Yo obtain the threshoid of
the k-th seagor caly the seasors with lower index are coagidered, whereas the seasers
vith higher indices are being ignored. This is equivaleat to asewming that the
ureﬁlhofﬂemwmmuthhﬁﬁty(d“nl.l.

(b} The derivation of 30FA 2 is similar to the derivation of S0MA 1. However,
S0Pk 2 is derived by first asewming that the operating points of previowmsly
wi&rdmmutnﬂltﬂqd-udnall,i.e.&hl?ﬂ =f, md
then aidinise the resideal terms in the lagrangise (19)) SOFA | sd' SR 2 were
fousd to yield idestical resuits wder O, Najority Logic (%), sad BB fusica rules
in all tested canses, Nowever, 30FA 1 wms fomd Lo be more robust thaa 0FA 1 in
sirgular cases, like the singular fusion rule discassed in introduction {see Sectios
T1I; also see [18] aad Appeadiz B in {18]).

{c} In deternining the thresholds throngh (8] or (12}, it mey o bappen that all
the terss ingide the pareatbesis in the swn of equation (§) or (13} are eqml to
tero. lowever, by raadomizing the decision function and wsing

“'tmu""’."l,l-l,...k' + u(.’."""’ul,l-l,...k) ingtesd of
d(i......,o.lll * t) w caa resolve the ashiguity of sero by gero divisim, if
L.

it occars in (8) and {12), by applying ('espital's rele and letting & o 0, The
nﬁoin(l)u(ll)ﬂahmepltoudh\fx

() In the case of cae seamor fasion mtan, k=1, the seloptisal schese bocomes
optim] ad 1, 21, (1),

3, AMOORITINIC DNPLIVNFTATION AN IRABRICAL IESWLYI

ﬂe#i-.lletofﬂrdoush'\ Tlgbgnd | cm be obtained
wisg S0P | or S 2 md 1 one dileasitenl’ winisichtiom rostine. The tm
algorithes have beea optimised to obtain 2 suboptiml slstion first md the optimal
one, if wated, sebsequeatly in a minimes sumber of sesrches. The two algerithms
have been implemented ou s IBN PC/AT as follows.

Pirst, o specific decision f-ctindh], ....l')ilulectd. Ml'ﬁll‘
=\°iuele¢tduthedoldforuofﬂe . Using the statistics] modeld
for’ the semssrs md equations (l)d(ltl.hﬁrﬂh&d(?,,?.}ll:

1,3,e00s8, for all seasors are obtained sequeatially. & sot of thresholdl fo the
other uuonhohﬁ.ndbywi&rinlwiﬁcf-cﬁul(ll,lz..... ). Using
tbeﬂ[lmtin.ﬁe?o attlefuiolixhtulindloﬂlﬂpu to the
pregpecified level, be. algorithe thes searches fn&nt'ofﬁm&t
-.xilimP' forﬂe&ird?l\.i"mill? {or, equivaleatly, \llhﬂerw

(0, 85). A1l the condidate switching functions d e searched, aad the owe that
yields mrism probability of detoction is mintaised. If the wser vishes to obtain
the globally optisl solutice, the tvo algorithes allow for this option. The optiml
set of thresholds is achieved by direct ninimisation of the Lagramgism over the
perating poists (P, D) of all the seasors d search over al] thresbod optim]
caadidate decision rales. The namerical complerity of S0FA | aad 90P1 2 is given by
Theorea 2.

Perfornance curves from the wae of the two algorithes in slowly fading Bayleigh
chassels [14] are givea in Figures 1 through 5. Perforssace curves from the use of
the tw algorithes in additive Cassxisa noise chamels [12] are giws ia Figwres
tirouh 9. Te mboptiml solntions obtaised by the tuo alforithes heve bees
conpared with the optiml solution asd fownd to be extresely close in most of the
testad cases. (Ror additiosal nemerical results see also [29).)

416
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CONCLUSTONS

1t is ghowm that the optimal fusion rule for the distribuwted detection probies of

Pigure 1 involves a Neyman-Pearsca test at the fesion and Likelibood-fatio tests at
all seasors. Two computatiosally efficiest suboptiml algorithms for solviag the
fusion probles for sizilar aad dissinilar seasor configuraticas were introdwced. The
tw alforithag were tested in slowly fading Rayleigh cheamels ad in additim
Gesssiza moice chamsels aad were found to yield soletioms which were very close to
the optimal omes in most tested cases.
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