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Phase Jitter in MPSK Carrier Tracking Loops:
Analytical, Simulation, and Laboratory Results

Brian T. Kopp,Member, IEEE, and William P. Osborne,Senior Member, IEEE

Abstract—A performance characteristic of M-ary phase shift
keying (MPSK) receivers is the variance of the phase error
between the received and recovered signal carriers. For binary
phase shift keying (BPSK) and quadrature phase shift keying
(QPSK) loops utilizing integrate and dump filters and operating
in the linear region, closed-form solutions for this variance exist
[1], [2]. In this paper the variance is found by numerical methods
for M > 4. For verification and to investigate operation in the
nonlinear region, computer simulation and hardware modeling
were used [3].

Index Terms—BPSK, carrier tracking loops, equivalent noise,
loop bandwidth, MPSK, phase detector, phase detector gain,
phase jitter, phaselock loops, PSK, QPSK, self noise, squaring
loss, variance of phase error.

I. INTRODUCTION

PHASE JITTER is the most important design parameter in
a carrier tracking loop. Analytical results are available for

predicting phase jitter in binary phase shift keying (BPSK) and
quadrature phase shift keying (QPSK) loops, but there are no
results available forM-ary phase shift keying (MPSK). This
paper addresses the jitter in MPSK carrier loops for .
To study this phenomenon the quadrature crossover feedback
receiver configured for MPSK operation and utilizing integrate
and dump arm filters is considered. The baseband model of
this loop is shown in Fig. 1, from which a transfer function
relating the phase error to the equivalent noise in the loop can
be derived. The noise components in the equivalent noise
and are the noise samples from the quadrature correlators.
Each are Gaussian with variance where is the MPSK
symbol energy and the two-sided power spectral density of the
channel noise is . Note that perfect automatic gain control
has been assumed, i.e., the signal magnitude is assumed to be
unity. The desired transfer function for the second order loop
is [1]

(1)

and is the signal-to-noise ratio (SNR)-dependent phase
detector gain. This term reflects the fact that at low SNR’s,
when bad data decisions are being made, the phase detector,
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Fig. 1. The linear baseband model.

in effect, has less signal to track on. Therefore
with the upper limit corresponding to high-SNR operation.

The variance of the phase error is obtained by relating the
input and the output power spectral densities through the linear
system of (1) and is given by [1]

(2)

where is the ratio of the loop bandwidth to the
MPSK symbol rate and is the variance of the equivalent
noise in the loop.1 All three components are a function of SNR.

For MPSK in general, a closed-form solution to the variance
of the equivalent noise is unavailable. However, a numerical
solution can be obtained for any by the following process:
Express the variance of the equivalent noise, in terms of
the two-dimensional noise components and and the
transmitted modulation angle as

(3)

where

(4)

is the Gaussian probability density function (pdf) and
is the transmitted modulation angle pdf. If equally likely

transmitted symbols are assumed, (3) reduces to

(5)

where the zero modulation angle has been assumed. The
variance of the equivalent noise is obtained by the numerical
integration of (5). It is then possible to express the variance

1The equivalent noise is cyclostationary. See Hinedi and Lindsey [1] for
further discussion.
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in terms of the self-noise (a function of SNR) and the SNR
itself, as

(6)

Note that self-noise in a decision-directed loop refers to the
effect at low SNR’s of making bad decisions on the noise
inside the loop. At high SNR’s the self-noise for any is
unity. Further, BPSK exhibits unity self-noise for any SNR,
and for QPSK a closed-form [1] solution exists. To find the
self-noise for , and at any SNR, divide the result of the
numerical integration of (5) by the high SNR approximation
to (6).

The next component of interest in the calculation of the
variance of the phase error is the phase detector gain, which
is the partial derivative, with respect to phase error, of the
phase detector characteristic evaluated at zero phase error.
This characteristic can be expressed in terms of the transmitted
modulation angle, data estimates, and phase error as [4]

(7)

Noting that , , and are discreet random variables, and
assuming that the data symbols are equally likely, (7) becomes

(8)

The conditional probability in (8) is computed by integrating
the conditional density that describes the probability of re-
ceiving a particular phase given over the decision
region of phase that corresponds to the received modulation
angle. The density is configured to account for a phase error

and is expressed as [5]

(9)

Using (8) and (9), the phase detector characteristic is calculated
numerically.

Assuming a damping factorand natural frequency , the
loop noise bandwidth of the loop in Fig. 1 is given by

(10)

which can be rewritten as

(11)

where

(12)

is the loop bandwidth compression factor. Using (2), (6), and
(11), the variance of phase error is expressed as

(13)

Fig. 2. Calculated variance of phase error.

Fig. 3. The nonlinear baseband model.

The variance of phase error data is shown for BPSK through 16
PSK in Fig. 2. The variance is displayed for a high-SNR loop
bandwidth-to-symbol rate ratio of 1.0%. Unity loop damping
was selected for these analytical results.

II. SIMULATION AND HARDWARE RESULTS

To verify the numerical results, computer simulations were
conducted using the nonlinear baseband model of Fig. 3.
As a second means of verifying the variance of the phase
error, an MPSK carrier tracking loop was constructed in
hardware. Fig. 4 provides a block diagram of the hardware
testset. A simulated MPSK transmission was created and
used as an input to the loop. In fact, just as was done
with the numerical analysis and the computer simulations,
the MPSK transmission represented the transmission of the
same symbol continuously. This made the MPSK signal a
continuous-wave (CW) carrier signal that could be obtained
from a standard frequency synthesizer and it removed the
impact of intersymbol interference as a dependent variable
in the testing. White noise was added to the CW carrier
signal and the result passed to the demodulator front end
of the carrier tracking loop. This demodulator front end is a
quadrature structure that power-divides the CW carrier-with-
noise signal into two signals that are mixed in quadrature with
the voltage-controlled oscillator (VCO) signal. The outputs
of the quadrature mixers are fed through a set of low-pass
filters. Analog-to-digital conversion takes place after the low-
pass filters and the generated 8 bits ofchannel baseband data
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Fig. 4. The MPSK high-SNR carrier tracking hardware test configuration.

and 8 bits of channel baseband data are passed to a lookup
table which generates the error signal of the loop. This error
signal is processed by a digital filter that creates a second-order
transfer function for the loop. The output from the digital filter
is added to the carrier frequency of the output sinusoid from
the loop’s numerically controlled oscillator (NCO). The NCO
creates two analog quadrature sinusoids which return to the
demodulator front end.

The and baseband data at the output of the low-pass
filters are corrupted by the input channel noise and, thus,
variance measurements cannot be made using these data. To
facilitate making variance measurements, the outputs from the
NCO are mixed in quadrature with the “clean” CW carrier
from the synthesizer. The low-pass-filtered mixer outputs are
corrupted only with phase jitter from the NCO. Large sample
sets of this and data were taken using a modulation
analyzer; thus, any correlation between adjacent samples was
averaged out. Fig. 5 shows plots of the 8 PSK through 16 PSK
theory, simulation, and hardware results, respectively. QPSK
theory and simulation data are provided for reference. Tests
were conducted for through and over various
high-SNR loop bandwidth-to-symbol rate ratios.

III. D ISCUSSION OFRESULTS

As the simulation and hardware data indicate, there is
substantial verification of the general solution used to calculate
the variance of the phase error. With the exception of a

Fig. 5. Variance of phase error simulation and hardware data.

few samples, all of the simulation data falls within a 95%
confidence interval. Before the validity of the hardware results
can be discussed, an interesting phenomenon in that data must
be addressed. This phenomenon is the horizontal flare in the
hardware variance curves, indicating the presence of a phase
jitter floor. This floor is a result of phase jitter in the NCO,
which is unaccounted for in the analysis. This phase noise
floor in the hardware dominates the results at high SNR’s
only. At low SNR’s the variance in the phase error data is
accurately reflecting the mechanism of interest, i.e., the overall
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loss in performance due to making incorrect data decisions in
the carrier tracking loop. When the MPSK general solution
data are “corrected” by adding to them the phase noise floor
present in the hardware, the results are accurate at all SNR’s.
These curves are also shown in Fig. 5 and follow the hardware
results.

In the plots of simulation data and hardware data for 8
PSK and 16 PSK, the lowest SNR at which a data point is
plotted represents the minimum SNR for which phaselock can
be maintained. A striking result in this data is that the point
at which phaselock terminates seems to be a weak function
of loop bandwidth and a strong function of . For both
8 PSK and 16 PSK, the simulation and hardware data that was
collected cover a 5.4-dB range of high-SNR loop bandwidth-
to-symbol rate ratios (from 0.19% to 0.66%). However, the

phaselock threshold moves at most 1.6 dB for the 8 PSK
hardware results and not at all for the 16 PSK simulation
results.
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