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Performance of Distributed
CFAR Test Under Various
Clutter Amplitudes

CHANDRAKANTH H. GOWDA

R. VISWANATHAN
Southern Illinois University at Carbondale

We evaluate the performances of several distributed constant

false-alarm rate (CFAR) tests operating in different background

clutter conditions. The analysis considers the detection of

Rayleigh target in various clutters with the possibility of differing

clutter power levels in the test cells of distributed radars.

Numerical results studied for a two-radar system show how

the false-alarm rate of the maximum order statistic (MOS) test

changes with differences in the clutter power levels of the test

cells. The analysis for the detection of Rayleigh target in Rayleigh

clutter indicates that, with the power levels of differing test

cells, the OR fusion rule can be quite competitive with the new

normalized test statistic (NTS). However, for the detection of

Rayleigh target in Weibull or K-distributed clutter, the results

show that NTS outperforms both the OR and the AND rules

under the condition of large signal-to-clutter power ratio and

moderate shape parameter values.
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I. INTRODUCTION

A constant false-alarm rate (CFAR) detector
employs an adaptive threshold in order to maintain
a CFAR irrespective of the clutter power. However,
because of the diversity of the radar search
environment (multiple target, abrupt changes in
clutter, etc.) there exists no universal CFAR scheme.
Typically, the adaptive threshold of a CFAR scheme
is the product of two terms, one is a fixed scaling
factor to adjust the probability of false alarm, and
the other is an estimate of the total unknown noise
(plus clutter) power of the test cell. The sample in
the test cell is compared with this threshold in order
to decide the presence or the absence of a target. A
variety of CFAR techniques are developed according
to the logic used to estimate the unknown noise
power level. Some examples are, cell averaging CFAR
(CA-CFAR), ordered statistics CFAR (OS-CFAR),
greatest of CFAR, smallest of CFAR [3], and selection
and estimation test [4].
Distributed signal detection schemes are needed

when system performance factors such as speed,
reliability, and constraint over the communication
bandwidth are taken into account. In distributed
detection techniques, each sensor (for example, radar)
sends either a binary decision or a condensed form
of information (statistics) about the observations
available at the sensor to the fusion center, where a
final decision about the presence of a target is made.
Such techniques have been applied to CA-CFAR,
adaptive CA-CFAR, and OS-CFAR. Barkat and
Varshney [5] considered CA-CFAR detection using
multiple sensors and data fusion. In their approach,
each CA-CFAR detector transmits a binary decision
to the fusion center where a final decision based
on the AND or the OR counting rule is obtained.
They have also addressed the adaptive CA-CFAR
detector problem for parallel and tandem distributed
networks [6]. Distributed OS-CFAR detectors with
the AND or the OR fusion rule are considered in
[7—9]. Distributed detection of signals in non-Gaussian
clutter is considered in [10—11]. A review of different
distributed CFAR target detection techniques is
given in [12]. In [13], a new distributed CFAR test
called the maximum order statistic (MOS) test was
proposed. In this test, the sum of the test samples
is compared with an adaptive threshold obtained
by the product of a fixed scaling factor and the
maximum of the received order statistics, to decide
the presence/absence of a target. It was shown in [13]
that MOS provides a considerable performance gain
over OR or AND fusion rules. In deriving the above
test, the problem formulation assumes that the test
cells of different sensors all have statistically identical
noise (clutter), and that if a target is present in the
surveillance regions, all the test cells have statistically
identical target returns.
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In Section II we define the distributed CFAR
problem and various clutter models. Section III
examines how the false alarm probability of MOS
changes when power levels of clutter at test cells of
sensors become different, under the assumption of
Rayleigh target in Rayleigh clutter. In Section IV, we
propose a new test, called the normalized test statistic
(NTS), which maintains a CFAR independent of the
clutter power variations of the test cells. Also, the
procedures for the performance evaluation of NTS
under various clutter models are mentioned. Section
V examines the detection performances of various
tests under different clutter distributions. We draw
conclusions in Section VI.

II. DISTRIBUTED CFAR PROCESSING AND CLUTTER
MODELS

Consider a collection of n distributed sensors, each
looking at a search volume consisting of mi+1 cells,
i= 1,2, : : : ,n. The leading mi=2 cells and the lagging
mi=2 cells form the reference window around the
test cell of the ith sensor. Denote the samples from
the reference cells as Yi1, : : : ,Yimi and the test samples
as Xi, i= 1,2, : : : ,n. The problem is to test whether
a target is present or absent in the test cell. The
signal absent and present hypotheses can be stated as
follows:

H0 : Xi = ci

H1 : Xi = jvi+ cij:
(1)

Equation (1) can be written as

H0 : Xi = ci

H1 : Xi =
q
v2i + c

2
i +2vici cos(µi¡Ái):

(2)

Here, vi is the target amplitude, ci is the clutter
amplitude, µi is the phase angle of the target signal,
and Ái is the phase angle of the clutter.
A Rayleigh distribution with parameter ¸1i,

i= 1,2, : : : ,n is used to model the target signal at
the ith sensor. The most commonly used model for
the clutter amplitude is the Rayleigh distribution. A
test can be formulated based on either the envelope
or the envelope squared. For Rayleigh target and
Rayleigh clutter, we assume in the sequel a test based
on the envelope squared sample. For distributed OR
and AND tests, both methods would yield identical
results, but for other distributed CFAR tests, the
results would vary somewhat. We still employ Xi to
denote the test cell sample, but it denotes an envelope
squared for Rayleigh, and an envelope for other clutter
models. Under this assumption, the two hypotheses
for Rayleigh clutter are as follows

H0 : Xi = c
2
i » exp(¸0i)

H1 : Xi = jvi+ cij2 » exp(¸1i):
(3)

In other words, we assume that the envelope
squared samples in the test cells to be independent
identically distributed (IID) exponential with
mean ¸1i, i= 1,2, : : : ,n under the target hypothesis
H1 and exponential with mean ¸0i, i = 1,2, : : : ,n
under no target hypothesis H0 (Rayleigh target and
Rayleigh clutter models). In the case of homogeneous
background, Yi1, : : : ,Yimi are IID as an exponential
with mean ¸0i. In the case of a nonhomogeneous
background, the above random variables are still
independent and exponentially distributed but with a
mean value of either ¸0i or ¸0i(1+ ICRi), depending
on whether a sample Yij is from clutter only, or
from an interfering target plus clutter, respectively.
Above, for the ith sensor, ICRi denotes the interfering
signal-strength-to-clutter ratio.
By denoting the mean of the test sample Xi as ¸i,

we have

¸i =
½
¸0i under H0

¸1i = ¸0i(1+ SCRi) under H1
(4)

where SCRi denotes the signal-to-noise power ratio of
the test sample at the ith sensor.
The Weibull probability density function has been

suggested as a model for sea and ground clutter at low
grazing angles and at high resolutions [14—15]. The
output of the magnitude envelope detector is assumed
to have the Weibull density given by

fcw1 (cwi) =
®i
¯0i

µ
cwi
¯0i

¶®i¡1
e¡(cwi=¯0i)

®i

cwi > 0

®i > 0

¯0i > 0

:

(5)

Here, ®i is the shape parameter and ¯0i is the
scale parameter of the Weibull distribution. Under
the assumption of Rayleigh target and a Weibull
distributed clutter, the signal-to-clutter power ratio at
the ith sensor is given by

SCRi =
¸1i

¯20i¡

µ
2
®i
+1
¶ : (6)

The test cells are assumed to be IID Weibull
distributed clutter under no target hypothesis H0
and Rayleigh signal plus the Weibull distributed
clutter under target hypothesis H1. In the case of
homogeneous background, Yi1, : : : ,Yimi are IID as
a Weibull distribution as in (5) and in the case of
nonhomogeneous background, a sample Yij is either
from a clutter-only region, or from an interfering
target in the presence of clutter.
Another clutter model considered is the

K-distributed clutter. This model has been proposed
based on experimental evidence reported in [16]. The
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density function of the K-distribution is given by

fcki (cki) =
4¯0i
¡ (®i)

(¯0icki)
®iK®i¡1(2¯0icki),

cki > 0

®i > 0

¯0i > 0
(7)

where ¡ (¢) is the Gamma function, K®i (¢) is the
modified second-kind Bessel function of order ®i, ®i
is the shape parameter, and ¯0i is the scale parameter.
The signal-to-clutter power ratio at the ith sensor is
defined as

SCRi =
¸1i
®i=¯

2
0i

: (8)

Here, the test cells are assumed to be IID
K-distributed clutter under no target hypothesis H0
and a Rayleigh signal in the presence of K-distributed
clutter under target hypothesis H1.
It is worth noting that when ®i = 2, the Weibull

distribution in (5) becomes a Rayleigh distribution
and similarly when ®i!1, the K-distribution in
(7) also becomes a Rayleigh distribution. These two
special situations allow us to verify the performance
results of some tests by comparing the results obtained
for Weibull and K clutter cases with those results
obtained for the Rayleigh case.

III. MOS TEST AND FALSE ALARM RATE CHANGE

Assume a Rayleigh target and a Rayleigh
distributed clutter model. If we assume that ¸0i is the
same for all i= 1,2, : : : ,n, then the MOS test defined
below is a CFAR test [13]:

nX
i=1

Xi

H1

R
H0

tmax(Y(ki), i= 1,2, : : : ,n) (9)

where Y(ki) is the kith-order statistic of the reference
samples Yi1, : : : ,Yimi of the ith sensor. For a two-sensor
system, let

a=
¸01
¸02

: (10)

Therefore, the changes in false alarm probability of
(9), when t is fixed assuming a= 1 and a desired false
alarm rate of ®, as a changes, can be investigated. The
numerical calculation of the false alarm probability
shows that for ®= 10¡6, m1 = 11, m2 = 13, k1 = 8,
k2 = 9, the probability can increase up to its largest
value of ¼ 10¡5, and that this largest increase occurs
for a being close to 0.1 or 10 (Fig. 1). Also, the
greatest change in the false alarm probability occurs
as a is varied from 0.1 through 10 as shown in Fig. 1.
Unfortunately, this means that the false alarm rate
of (9) is sensitive to small variations in a. Also, the
maximum of the values of false alarm probabilities
corresponding to a= 0 and a=1 is close to 10¡5.
If the worst case increase is to be at 10¡6 and not
at 10¡5, then the t value in (9) can be appropriately

Fig. 1. False alarm performance of MOS for various values of ®
in Rayleigh clutter.

chosen so as to achieve this condition. This is how the
MOS test threshold is computed while comparing its
performance against other schemes (see Section V).
If a is close to 1, then the MOS test performs much
better than the Boolean OR and the Boolean AND
fusion rules [13].

IV. NORMALIZED TEST STATISTIC AND OTHER
TESTS

Assume a Rayleigh target and a Rayleigh clutter as
in the previous section. For the sake of simplicity, the
following derivation is based on a two-sensor system.
Applying a likelihood ratio test to the test samples
yields

¤=
p(X1 jH1)p(X2 jH1)
p(X1 jH0)p(X2 jH0)

H1
><
H0

TL (11)

where TL is an appropriate threshold. With Rayleigh
target and Rayleigh clutter, (4), equation (11) can be
simplified to yieldµ

1
¸01

¡ 1
¸11

¶
X1 +

µ
1
¸02

¡ 1
¸12

¶
X2

H1
><
H0

T0: (12)

Assuming a homogeneous reference window for
each sensor (notice that sensor-to-sensor homogeneity
is not needed, i.e., ¸0i need not be identical for i=
1,2), but with identical SCRis (i.e., ¸11=¸01 = ¸12=¸02),
(12) reduces to

X1
¸01

+
X2
¸02

H1
><
H0

T¤ (13)

where T¤ is an appropriate threshold.
However, (13) cannot be realized since ¸01 and ¸02

are unknown. A CFAR test is obtained by replacing
¸01 and ¸02 by appropriate estimates. Using the order
statistic of the reference cells of each sensor as the
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estimates, we obtain the NTS

Z =
X1
Y(k1)

+
X2
Y(k2)

H1
><
H0

tb (14)

where tb is the threshold which can be adjusted to
yield a desired false alarm rate under homogeneous
background noise. Even though the test (14) was
derived for Rayleigh target and Rayleigh clutter
condition, such a test is still CFAR for other clutter
models also. In fact, later in this section we provide
performance equations of NTS for other clutter
models.
Since Y(ki) is not an unbiased estimator of ¸0i

[17], one can substitute a proportionality factor (that
corrects for the bias) in each of the estimates in (14)
and obtain an unbiased version of the NTS test:

Z =
X1
Y(ki)

+w
X2
Y(k2)

H1
><
H0

tu (15)

where w = E(Y(k1))=E(Y(k2)). Therefore, (14) and (15)
are the biased and unbiased versions, respectively, of
NTS.
Two other tests that are based on Y(ki) and Xi are

the MAX and MIN tests defined below.

MAX:

max

Ã
X1
Y(k1)

,
X2
Y(k2)

!
H1
><
H0

tM (16)

MIN:

min

Ã
X1
Y(k1)

,
X2
Y(k2)

!
H1
>
<
H0

tm: (17)

In the OR (AND) fusion rule [13], each sensor is
assumed to employ an OS-CFAR detector of the type

Zi =
Xi
Y(ki)

H1
><
H0

ti: (18)

The individual sensor decisions are combined using
the OR (AND) Boolean rule. The probability of
false alarm expressions for the OR (AND) rule
for Rayleigh target in Rayleigh clutter at the ith
sensor (PFi) can be found in [5]. Using this, the total
probability of false alarm for the OR and AND rules
for a two-sensor system (PFo and PFa) can be found to
be

PFo = PF1 +PF2 ¡PF1 ¢PF2 (19)

PFa = PF1 ¢PF2 : (20)

A. Performance Equations for Different Clutters

In order to assess the performance under
nonhomogeneous background conditions involving
multiple interferers [3], let us define

Si =
Y(ki)
¸0i
: (21)

Using [17] we obtain with Rayleigh clutter and
Rayleigh target, the density of Si as

fSi (si) =
miX
h=ki

min(h,mi¡bi)X
j=max(0,h¡bi)

jX
v=0

h¡jX
w=0

£
µ
mi¡ bi
j

¶µ
bi

h¡ j

¶µ
j

v

¶µ
h¡ j
w

¶
(¡1)v+w+1

£ [v+(mi¡ bi ¡ j)+ (w+ bi ¡ h+ j)=ci]
£ expf¡si[(v+mi¡ bi ¡ j)+ (w+ bi ¡ h+ j)=ci]g

(22)

where ci = ¸1i=¸0i and bi is the number of interfering
targets in the ith sensor reference window. Also

FZ(z) =
m1X

h1=k1

m2X
h2=k2

min(h1,m1¡b1)X
i=max(0,h1¡b1)

min(h2,m2¡b2)X
j=max(0,h2¡b2)

iX
v1=0

jX
v2=0

h1¡iX
w1=0

h2¡jX
w2=0

£
µ
m1¡ b1
i

¶µ
m2¡ b2
j

¶µ
b1

h1¡ i

¶µ
b2

h2¡ j

¶
£
µ
i

v1

¶µ
j

v2

¶µ
h1¡ i
w1

¶µ
h2¡ j
w2

¶
(¡1)v1+v2+w1+w2

£ ¯1¯2
"½

1
¯1
¡ 1
z+¯1 +¯2

¾½
1
¯2
¡ 1
z+¯2

¾

+
1

(z+¯1 +¯2)
2
log

¯1¯2
(z+¯1)(z+¯2)

#
(23)

where

¯1 = (v1 +m1¡ b1¡ i)+ (w1 + b1¡ h1 + i)=c1
¯2 = (v2 +m2¡ b2¡ j) + (w2 +b2¡ h2 + j)=c2:

The probability of false alarm in homogeneous
background is given by

PF = 1¡FZ(tb): (24)

The probability of detection PD is obtained by
replacing tb with tb=(1+ SCR) in (24), where SCR =
SCR1 = SCR2. The probability of false alarm under
homogeneous background can be obtained by setting
bi = 0 in (23).
Under the assumption of Weibull clutter, the

cumulative distribution function of Z of the NTS in
(14) can be shown to be

FZ(z) =
Z z

0

Z 1

0

®1m1!
(k1¡ 1)!(m1¡ k1)!

[1¡ e¡s®11 ]k1¡1

£ [e¡s®11 ]m1¡k1+1[1¡ e¡[s1(z¡y)]®1 ]s®1¡11 ds1

£
Z 1

0

®22m2!
(k2¡ 1)!(m2¡ k2)!

[1¡ e¡s®22 ]k2¡1

£ [e¡s®22 ]m2¡k2+1e¡(s2y)®2 (s2y)®2¡1s®22 ds2 dy:
(25)
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The probability of false alarm in homogeneous
Weibull clutter background is given by (24) using
the above cumulative distribution function. Under
the same clutter, the single-sensor probability of false
alarm expression is given by

PFi = 1¡FZi (ti) (26)

where

FZi (zi) =
Z 1

0

®imi!
(ki¡ 1)!(mi¡ ki)!

[1¡ e¡s®ii ]ki¡1

£ [e¡s®ii ]mi¡ki+1[1¡ e¡(sizi)®i ]s®i¡1i dsi:

(27)

Upon simplification, (26) reduces to [18, eq. (18)].
The overall probability of false alarm PFo and PFa can
be found using (19)—(20).
Similarly, for K-distributed clutter, the cumulative

distribution function of Z of the NTS in (14) can be
shown to be

FZ(z) =

43k1k2

µ
m1

k1

¶µ
m2

k2

¶
¡ (®1)¡ (®2)¡ (®2)

Z z

0

Z 1

0

Z 1

0
s®11 s

2®2+1
2 y®2

£K®1¡1(2s1)K®2¡1(2s2)K®2¡1(2ys2)

£
·
1¡ 2[s1(z¡ y)]

®1

¡ (®1)
K®1 [2s1(z¡ y)]

¸

£
·
1¡ 2s®11

¡ (®1)
K®1 (2s1)

¸k1¡1
£
·
2s®11
¡ (®1)

K®1 (2s1)
¸m1¡k1 · 2s®22

¡ (®2)
K®2 (2s2)

¸m2¡k2
£
·
1¡ 2s®22

¡ (®2)
K®2 (2s2)

¸k2¡1
ds1 ds2 dy (28)

and the probability of false alarm in homogeneous
K-clutter background is givenby (24) using the above
cumulative distribution function. Under the same
assumption, the single-sensor probability of false
alarms expressions are given by (26) where

FZi(z) =
Z 1

0
ki

µ
mi

ki

¶
4

¡ (®i)
s®ii K®i¡1(2si)

£
·
1¡ 2[si(z¡ y)]

®i

¡ (®i)
K®i [2si(z¡ y)]

¸

£
·
2s®1ii
¡ (®i)

K®i (2si)
¸mi¡ki

£
·
1¡ 2s®ii

¡ (®i)
K®i (2si)

¸ki¡1
dsi: (29)

As in the case of Weibull clutter, the overall
probability of false alarm PFo and PFa can be found
using (19)—(20). All the tests discussed in this section
maintain a CFAR. For the case of Rayleigh clutter,

these tests maintain CFAR even if the ¸0is are not
identical for i= 1,2. Similarly, for the case of Weibull
or K-distributed clutter, these tests maintain CFAR
even if the ¯0is are not identical for i= 1,2.

B. Simulation Studies

For the condition of Weibull and K-distributed
clutter, closed-form solutions for the probability of
detection for the NTS, OR, and AND fusion tests are
not easily derivable. Hence, the performance analysis
is carried out via simulation for all the three tests. The
signal-plus-clutter amplitude variate was generated
using (2) under hypothesis H1 with ci being a Weibull
or a K-distributed random variate, depending on the
assumed clutter model. We assume that the difference
between the target signal phase µi and the clutter
phase Ái, is uniformly distributed, i.e.,

µi¡Ái = 'i »Uniform(0,2¼): (30)

For the simulation, we generated different random
variates using the appropriate International
Mathematical and Statistical Library (IMSL) routines.
To calculate each probability of detection point,
10,000 iterations were used.

V. PERFORMANCE COMPARISON

For a two-sensor network, the following
parameters are used in our numerical analysis: m1 = 8,
m2 = 16, k1 = 6, and k2 = 12. It can be seen that the
first sensor can tolerate 2 interfering targets and the
second sensor can tolerate 4 interfering targets without
encountering target masking [3]. In (14), tb was solved
through a numerical search to satisfy the constraint
PF = 10

¡6. Similarly, for the OR rule, the two sensor
thresholds t1 and t2 are solved so that the individual
sensor false alarms are given by PF1 = PF2 = 5:0£ 10¡7.
This gives an overall false alarm rate of 10¡6. For the
AND rule, the two sensor thresholds are chosen so
that PF1 = PF2 = 10

¡3. Similarly, appropriate thresholds
for MAX and MIN are found so as to achieve a false
alarm rate of 10¡6 in the homogeneous background
condition. The threshold for the MOS test is fixed as
per the discussion at the end of Section III. In Fig. 2
the probability of detection is plotted against SCR,
for homogeneous clutter background, and in Figs. 3
and 4, the probability of detection is shown for two
interfering target cases. Fig. 5 shows the probability
of false alarm swing when a clutter transition occurs
in the middle of reference cells and the test cell
is in the high clutter region. Here CNR stands for
clutter-to-noise ratio which is used to denote the
ratio of the power of high clutter to the power of low
clutter (or noise).
In these figures (Figs. 2—5), the curves marked

biased and unbiased, correspond to the two forms of

1414 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 35, NO. 4 OCTOBER 1999

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 30, 2009 at 15:50 from IEEE Xplore.  Restrictions apply.



Fig. 2. Probability of detection versus SCR when background is
homogeneous Rayleigh clutter.

Fig. 3. Probability of detection versus b2 when b1 = 2 in
Rayleigh clutter.

NTS discussed earlier (see (14) and (15)). From these
figures we observe that the OR rule is competitive
with the NTS. In homogeneous background (Fig. 2),
the probability of detection of the OR rule is close
to that of NTS (biased or unbiased). In situation
corresponding to Fig. 3, the NTS performs slightly
better than the OR rule, whereas in the interfering
target situation corresponding to Fig. 4, the OR
rule even outperforms the biased and the unbiased
NTS, for b2 · 5. Therefore, considering that the
normalized test requires each sensor to send two real
numbers, a test cell sample and an order statistic,
whereas the OR rule requires each sensor to send
only a decision to the fusion center, it can be said that
the OR rule provides a competitive and acceptable
performance at a low cost in Rayleigh clutter. The
MOS detector performance, in interfering target

Fig. 4. Probability of detection versus b2 when b1 = 3 in
Rayleigh clutter.

Fig. 5. False alarm performance when test cells are in Rayleigh
clutter region.

case, is poor as compared with OR (Figs. 3, 4). The
only drawback of NTS and OR is the occurrence of
a large increase in false-alarm rate during a clutter
transition in the middle of the reference window
(Fig. 5). If the homogeneous background noise
power in all the sensors are nearly identical, then
the MOS test provides a much better performance
than the OR rule (and the NTS test) [13]. Since
the performance of biased NTS is similar to that
of the unbiased NTS, we only consider the biased
NTS (called NTS for short) for the remainder of
the performance analysis. Also, we observe that the
performances of the MAX and MIN test are similar
to the OR and AND fusion tests. Hence, these two
tests were not considered further in the performance
analysis corresponding to Weibull and K-distributed
clutters.
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Fig. 6. Probability of detection for homogeneous background
when ®1 = ®2 = 1:5 in Weibull clutter.

Fig. 7. Probability of detection for different interfering target
situations when ®1 = ®2 = 1:5 in Weibull clutter.

Figs. 6—11 correspond to a Weibull clutter. In
these cases, the power of the interfering targets
in the adjacent cells is assumed to be equal to the
power of the target signal in the test cell. Also, the
shape parameter of the Weibull distributed clutter is
assumed to be completely known. In Figs. 6 and 7,
the probability of detection is shown for homogeneous
background (b1 = b2 = 0) and for few interfering
target cases, corresponding to the shape parameters
®1 = ®2 = 1:5. Figs. 8 and 9 give the probability
of detection when ®1 = ®2 = 2. Similarly, Figs. 10
and 11 are for the case when ®1 = ®2 = 4. In [15],
for measurements done using an L-band long-range
air-route surveillance radar (ARSR) having a 3:0 ¹s
pulsewidth and a 1:23± beamwidth at very low grazing
angles, it was shown that the shape parameter of the
Weibull clutter varied from 1.507 to 2.0. Under these

Fig. 8. Probability of detection for homogeneous background
when ®1 = ®2 = 2 in Weibull clutter.

Fig. 9. Probability of detection for different interfering target
situations when ®1 = ®2 = 2 in Weibull clutter.

conditions, and for moderate to large SCR (Figs. 6—9),
the NTS performs better than OR and AND rules. For
large SCR and for large ®1 = ®2 values (Figs. 8, 9),
the NTS and OR rule significantly outperform the
AND rule. Unlike in Rayleigh clutter, where the OR
rule is competitive with NTS, in Weibull distributed
clutter, we observed the AND rule does better than
the NTS for low values of the shape parameter and
for low number of interfering targets. We did not
include figures corresponding to low ®s, for the sake
of brevity.
In Figs. 12—17, the performances of the NTS, OR,

and AND rules in K-distributed clutter are shown.
As before, the power of the interfering targets in the
adjacent cells are assumed to be equal to the power
of the target signal in the test cell. Also, the shape
parameter of the K-distributed clutter is assumed to be
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Fig. 10. Probability of detection for homogeneous background
when ®1 = ®2 = 4 in Weibull clutter.

Fig. 11. Probability of detection for different interfering target
situations when ®1 = ®2 = 4 in Weibull clutter.

completely known. In Figs. 12 and 13, the probability
of detection is shown for homogeneous background
(b1 = b2 = 0) and for few interfering target cases
when the shape parameter ®1 = ®2 = 0:5. Similarly,
Figs. 14 and 15 are for the case when ®1 = ®2 = 5
and Figs. 16 and 17 show the probability of detection
when ®1 = ®2 = 40.
Under the condition of ®1 = ®2 = 0:5, the AND

rule does significantly better than the OR and NTS
in homogeneous background. For low number of
interfering targets, AND performs slightly better
than OR, and it performs significantly better than
the NTS. For a large number of interfering targets
and for a large SCR, the NTS performs better than
the OR and AND rules. However, for high values of
®1 = ®2, and for moderate to large SCR (Figs. 14—17),

Fig. 12. Probability of detection for homogeneous and low
interfering target situations when ®1 = ®2 = 5 in K-distributed

clutter.

Fig. 13. Probability of detection for moderate number of
interfering target situations when ®1 = ®2 = 0:5 in K-distributed

clutter.

the NTS and OR rule perform significantly better
than the AND rule. For low SCR values, the OR
rule performs slightly better than both the NTS and
the AND rule (see Figs. 14—17). For large SCR
and for large ®1 = ®2 values, the NTS significantly
outperforms both the OR and the AND rules. Unlike
in Rayleigh clutter, where the OR rule is competitive
with NTS, in K-distributed clutter, the AND rule
does better than the NTS for low values of the
shape parameter. The usefulness of the OR rule
is limited to low SCR and large shape parameter
values.

VI. CONCLUSION

We evaluated for different clutter models the
performances of several two-sensor distributed CFAR
tests. The results show that the newly proposed NTS
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Fig. 14. Probability of detection for homogeneous and low
interfering target situations when ®1 = ®2 = 5 in K-distributed

clutter.

Fig. 15. Probability of detection for moderate number of
interfering target situations when ®1 = ®2 = 5 in K-distributed

clutter.

rule can be useful for different clutter situations,
but within a restricted set of parameter values. The
analysis for the detection of Rayleigh target in
Rayleigh clutter indicates that, with the power levels
of differing test cells, the OR fusion rule can be
quite competitive with the NTS. For the detection of
Rayleigh target in Weibull or K-distributed clutter,
the results show that NTS outperforms both the
OR and the AND rules under the condition of large
signal-to-clutter power ratio and moderate shape
parameter values.
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