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Chapter 0: Introduction 

This book concerns knots and links in dynamical systems. 

Knot and link theory is an appealing subject. The bthSic idetk,) and results may 
be appreciated intuitively, simply by playing with pieces of string (e.g.[11, 1]). 
Nonetheless, in spite of seafarers) development of sophisticated knots over thou­
sands of years, the mathematical theory of knots began only in the IliIleteenth 
century. Its origins lie in Gauss's interest in electromagnetic field lincs [67] and in 
attempts to cltkSSify knotted strings in the n,;~thcr) which Lord Kelvin and others 
thought might correspond to different chemical clements [176, 174]. It rapidly 
shed its physical origins and became a cornerstone of low-dimeIlsional topology. 

The roots of dynamical systems theory are considerably older and more tan­
gled; they may be found in the Principia lvlathematica of Isaac Newton and in 
attempts to model the motions of heavenly bodies. Ab initio the subject requires 
more technical apparatus: the differential and integral calculus, for a start; but 
at the same time it hth,) kept closer touch with its physical origins. :0.-'1oreover, in 
the lttst hundred years, it too htts (re)acquired a strong geometrical flavor. In 
fact it wttS in an (lssault on the (restricted) three body problem of celestial me­
chanics [1451, in response to the prize competition to celebrate the 60th birthday 
of King Oscar II of Sweden and Norway, that Henri Poincare essentially invented 
the modern, geometric theory of dynamical systems. He went on to develop his 
ideas in considerable detail in No'u'Uel/e8 Methode8 de la Mccaniq'Ue Ccle8te [146], 
Today, following this work, that of the Soviet school, including Pontriagin, An­
dronov, Kolmogorov, Anosov, and ArnoPd, and of :0.-'1oser and Smale and their 
students in the "Vest, the subject htls reached a certain maturity. Over the Ittst 
twenty years, it has escaped from :0.-'1athematics Departments into the scientific 
world at large, and in its somewhat ill-defined incarnations as "chaos theory" 
and "nonlinear science," the methods and idctis of dynamical systems theory are 
finding broad application. 

The basic world of a dynamical system is its state space: a (smooth) mani­
fold, AI, which constitutes all possible states of the system, and a mapping or 
flow defined on AI. In one of our principal motivating examples, systems of 
first order ordinary diffenmtial equations (ODEs), the vector field thus specified 
generates a flow CPt : AI ~ AI, t E IR. The general problem tackled by d:ynamical 
systems theorists is to describe CPt geometrically, via its action on subsets of AI. 
This implies classification of the as}'1nptotic behaviors of all possible solutions, 
by finding fixed points, periodic orbits and more exotic recurrent sets, tiS well tiS 
the orbits which flow into and out of them. In many applications CPt also depends 
on external parameters, and the topological changes or bii'urcations that occur 
in AI as these parameters are varied, are also of interest. In studying these and 
related phenomena, one abandons the fruitless search for closed form solutions 
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2 CHAPTER O. INTRODUCTION 

in terms of elementary or special fUIlctioIls, and seeks instead qualitative infor­
mation. 

Over the pth'St decade, knot theory, once in the inner sanctum of pure math­
ematics, ht4') been leaking out into other fields through several successful appli­
catioIls. These range from molecular biology, involving topological structures of 
closed DNA strands [1731, to physics, led by surprising cOIlIlectioIls with statis­
tical mechanics [99] and quantum field theory [197, 14]. Likewise, over the past 
ten to fifteen years, several attempts have been made to draw knot theory and 
d:ynamical systems closer together. The key idea is simple: a closed (periodic) 
orbit in a three-dimeIlsional flow is an embedding of the circle, 5 1) into the 
three-manifold that cOIlstitutes the state space of the system, hence it is a knot. 
Similarly, a finite collection of periodic orbits defines a link. 

Several natural questions immediately arise, directed at the following goal: 
given a flow, perhaps generated by the vector field of a specific ODE, describe 
the knot and link types to be found among its periodic orbits. Do nontrivial 
knots occur? How many distinct knot types are represented? How many of each 
type? Do well-known families, such thS torus knots, algebraic knots, or rational 
tangles, appear in particular C<1ses? In any c,1ses? Are there "new" families 
of knots and links which arise naturally in certain flows? Do Hamiltonian and 
other systems with conservation laws or symmetries support preferred families of 
links? Do "chaotic" flows contain inherently richer knotting than simple (:0.-'1orse­
Smale) flows? Indeed, how complicated can things get? is there a single ODE 
among whose periodic orbits can be found representatives of all knots and links? 
Such questions might occur to topologists. Indeed, it wttS R.F. \Villiams, in the 
context of a seminar on turbulence conducted in the :0.-'1athematics Department 
at Berkeley in 1976, who first conjectured that nontrivial knotting occurs in a 
well-known set of ODEs called the LoTCnz equations [193]. 

Dynamicists, in contrttst, might seek to use knot and link invariants to de­
scribe periodic orbits and so help them better understand the underlying ODEs. 
In a parametrised family of flows, for example, one can observe sequences of 
bifurcations in which a simple invariant set containing, say, one or two periodic 
orbits, "grows" into a chaotic set of great complm .. ity, containing a countable 
infinity of periodic orbits. In many cttses, the periodic orbits are dense in the set 
of interest; sometimes that set is a so-called strange attractor. The m .. istence­
uniqueness theorem for solutions of ODEs implies that, ttS periodic orbits deform 
under parameter variation, they cannot intersect or pttSS through one another. 
Knot and link t:)1)es therefore provide topological invariants which may be at­
tached to families of periodic orbits. Can such invariants be used to identify 
orbit genealogies to trace the bifurcation sequences in which they arose? (A 
favorite problem is to describe bifurcation sequences in the two-parameter family 
of maps introduced by Henon [831, which provides a model for Smale's famous 
horseshoe map.) Can operations in which new knots are created from old, such 
ttS composition and cabling, be ttssociated with specific local bifurcations? Is the 
complexity of knotting related to other mettSUr(lS of dynamical complexity, such 
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thS topological entropy? Docs knot theory provide finer invariants than entropy 
for the clthSSificatioIl of flows? 

Of course, since periodic orbits form knots only in three-dimeIlsional flows, 
applicatioIls to dynamical systems in general arc severely limited. Nonetheless, 
many of the rich and wonderful behaviors that currently engage dynamicists 
arc already manifest in three dimeIlsioIls, and 80 it seems well worth applying 
whatever tools we can to this CthSC. In any event, we hope the reader will find 
the subject thS beautiful, and attractive, thS we do. 

0.1 The contents of this volume 

This book attempts to bring together two largely disparate and well developed 
fields, which have thus far only met in the pages of specialised research journals. 
As such, it cannot substitute for a proper course or tm .. -t in either field. Chapter 
I, to follow immediately, provides a rapid review of the principal tkSpects of knot 
theory and d:ynamical systems theory required for the remainder of the book. 
In Chapter 2 we develop the major tool which allows us to pttSS back and forth 
between hyperbolic flows and knots: the template. This wttS introduced (under 
the name "knot holder") over twelve years ago in two papers of Birman and 
vVilliams [23, 24]. In d:ynamical systems it is common to usc Poincare or ret'UITt 
maps to reduce a flow to a mapping on a manifold of one lower dimension. vVhile 
Poincare maps preserve certain periodic orbit data, information on how the 
orbits arc embedded in the flow is lost. The template preserves that information, 
and likewise reduces dimension. In Chapter 2 we develop a host of related 
tools: subtemplates, template inflations and nmormalisations, and the s:ymbolic 
language which allows us to manipulate templates and mq)lore relations among 
them. vVe also introduce some of the particular (families of) templates which 
will concern us later. 

Equipped with our bttsic tools, in Chapter 3 we obtain some general results on 
template knots and links, including the facts that, while specific templates may 
not contain all knots and links, every template contains infinitely many distinct 
knot t:)1)es. vVe then describe a 'universal tmnplate, which does contain all (tame) 
knots and links, and which, moreover, arises rather naturally in certain clttsses 
of structurally stable three dimensional flows. In the final section, we e}..l)lore 
the "embedding problem:" the question of which templates can be embedded in 
other templates. By considering isotopic mnbeddings, we arc able to recognise 
universal templates hidden in ostensibly simpler ones. 

The fourth chapter concerns bifurcations and knots, and directly addresses 
the kinds of d:ynamical systems questions raised in our opening paragraphs. In 
particular we focus on specific templates related to the Henon mapping and the 
creation of horseshoes. Here, in contrttst to the limitless riches of Chapter 3, 
there arc severe restrictions on links (all crossings arc of one sign), which lead 
to uniqueness results and order relations on orbit creation in local bifurcations. 
vVe also explore knot types born in certain global or homoclinic bifurcations, 
by lifting the contrttst between dynamically simple and d:ynamically complex 
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bifurcatioIls to the knot-theoretic level. In 80 doing, we derive a rather general 
set of sufficient conditioIls for a third-order ODE to support all links thS periodic 
orbits. 

Chapter 5 returns to bth'Sic template theory and presents the current state 
of affairs in template clthSSificatioIl and invariant theory. vVc commence with 
a discussion of what a seIlsible definition of template equivalence should be, 
btk'Scd OIl intuition developed in Chapters 3 and 4, and continue with a primitive 
but useful invariant: a zeta-function for a restricted clthSS of templates. This 
will be seen to relate nicely to the underlying symbolic dynamics, yielding an 
cthsily-computcd invariant which encodes "twisting" information in the compact 
packa,ge of a rational function. 

Chapter 6 is comprised of a short list of concluding remarks and open pro­
belms that pertain to template theory and its applications. 

Throughout Chapters 2-5 we strive to present, for the first time, a fairly 
complete picture of the theory of templates. As such, we include key results 
of Franks, Birman, vVilliams and others, although we focus primarily on our 
own work, relegating to an appendix some related work beyond the immediate 
scope of this monograph. Accordingly, Appendix A contains brief reviews of 
work by rv'Iorgan, vVada, and others on nonsingular rv'Iorse-Smale flows on three­
manifolds, which contain only limited cltksses of knots. This is then contrtksted 
with the work of Franks and work in progress by Sullivan on nonsingular Smale 
flows on the three-sphere. 

Despite the title, we in no way claim to include every major result in the 
overlap of d:ynamics and knot theory. In particular, there is a natural dichotomy 
between knots arising from suspended surface homeomorphisms and those aris­
ing tiS closed orbits in flows on three-manifolds: this tm .. -t focuses on the latter 
situation. The forthcoming book by P. Boyland and T. Hall [31] deals with the 
former there is a great deal of beautiful work being done in this area: Nielsen 
theory and "braid types" for surface automorphisms [30, 29]. In addition, knot 
theory intersects with dynamics in examining problems of integrable Hamilto­
nian systems [501, the m .. istence of minimal flows on three-manifolds [79] and 
contact geometry [45]. Finally, analogues of knotting and linking for nonperi­
odic, minimal orbits [15, 116] and "tts}'1nptotic" linking of orbits [64, 62] are very 
exciting, particularly since there are applications to magneto hydrodynamics [7] 
and fluid mechanics [129]. 



Chapter 1: Prerequisites 

Before introducing the tools for examining knotted periodic orbits in flows, we 
provide a concise review of relevant definitioIls, idetk", and results from the topo­
logical theory of knots and links and the d:ynamical theory of flows in three 
dimeIlsioIls. This provides a language for describing phenomena, thS in: a pcriod­
do'ubling bifurcation rli'UC" ri"c to a (2,n) cabling, 

Our treatment of both of these (large) bodies of theory is necessarily brief; we 
wish merely to describe the main ide;:;k') to be used in subsequent chapters. Several 
good rcfcnmccs m .. ist for these growing fields. Standard texts for the theory of 
knots and links includes the books by Rolfsen [154]' Bunle and Zieschang [33], 
and Kauffman [101]. In the theory of dynamical systems, a wealth of good 
books can be found, including those by Robinson [153], 81mb [162]' Arnold [6], 
and Bowen [26]. Devaney's book [41] is a good introductory text OIl iterated 
mappings. A more applied viewpoint can be found in the texts by Guckcnhcimcr 
and Holmes [76] or Arrowsmith and Place [9], 

1.1 The theory of knots and links 

Given a piece of string, one may tic it up into all sorts of complicated knots. 
Nevertheless, thS long thS the ends arc frec, the mess may be untied completely 
(though in practice this may be frustrating!). If one should join the two free 
ends of the string together, then (intuitively) a knotted loop remains knotted no 
matter how one tries to undo it. This is the idea behind knot theory. 

1.1.1 Basic definitions 

Definition 1.1.1 A knot is an embedding K : S1 4 Sa of a I-sphere into the 
3-sphere, A link L : U 51 y Sa is a disjoint, finite collection of knots, 

The three-sphere Sa is defined thS the unit sphere in n«.4. The reader who 
is uncomfortable with Sa may replace it by n«a without loss, since Sa can be 
considered tkS 1I«.a with an additional "point at infinity." The simplest knot is 
the 'unkrwt, pictured in Figure 1.1(a). An unknot is any embedding of S1 in Sa 
whose image is the boundary of an embedded disc D'2 C Sa. The nm .. -t "sim­
plest" knots1 arc the trefoil knot and the jig'ure-eight knot depicted in Figure 1.1. 
vVe will usually consider knots and links which arc oriented, tiS depicted by an 

l'I'he first knot theorists tabulated knots a<:<:ording to the minimal number of <:rossings in a 
planar proje<:tion. In these tables (see [1M] or [:n]) the knots of Figure 1.1 are simplest: i.£.) 
they have the fe\vest possible number of crossings. Other notions of "simplicity~' are of course 
possible [115]. 
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6 CHAPTER 1. PREREQUISITES 

(a) (b) (c) 

Figure 1.1: (a) the unknot; (b) the trefoil knot; (c) the figure-eight knot. 

aITOW along the knot in a diagram. Given some regular (i.e.) transverse) planar 
representation of an oriented knot or link, each crossing point hth,) an induced 
orientatioIl, given by the cOIlvention of Figure 1.2. "Vhile our cOIlvention is op­
posite that which is standard in knot theory: it hth'S prevailed in the study of 
knots in dynamical systems [23, 24, 93, 88, 89, 70]. 

+ 

Figure 1.2: Sign cOIlvention for crossings. 

The fundamental problem of knot (link) theory is the following: when arc two 
knots (links) the same? In knot theory: the notion of "sameness" is cOIlstructed 
to match our intuition of deforming loops of knotted string. 

Definition 1.1.2 Two knots K and K are ambient isotopic if there exists a 
continuous one-parameter family h! of homeomorphisms of Sa such that ho is 
the identity map and hI 0 K = K. 

Remark 1.1.3 The natural analogue of Definition 1.1.2 holds for CInbeddings 
of spaces in Sa other than SI, e. g., surfaces and solids. "V hen working with 
knots and links in Sa, it is common to refer to ambient isotopic knots thS being 
isotopic, even though isotopy is technically a weaker equivalence when working 
with noncompact spaces [33]. vVe use the terms interchangeably to denote the 
equivalence of Definition 1.1.2. 

Unless specified mq)licitly, the term "knot" may refer to either the actual 
embedding, or the image of the embedding, or the entire isotopy cIttss of embed-
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dings. vVe will formulate most of the theory in terms of knots 
to links are automatic. 

7 

generalizations 

Given Definition 1.1.2, the fundamental problem of knot theory can be stated 
th'S follows: 

Problem 1.1.4 vVhen are two knots isotopic? 

One of the first triumphs of knot theory wttS a reformulation of Problem 1. 1.4 
from a global-topological problem to a local-combinatorial one due to Reide­
meister [149]. Given a knot or link, consider all its presentations; that is, planar 
projections with overcrossings and undercrossings marked tiS in Figure 1. 1. Any 
presentation may always be chosen such that it is reg'ular, having only transverse 
double-points. 

Theorem 1.1.5 (Rcidcmcistcr [149]) Two reg'ular presentations correspond to 
isotopic links if and only if the diagrams arc related by isotopy (jiJ:ing the cross­
ing points) and by a finite seq'uence of the three Reidemeister moves, given in 
Firrure L1, 

Figure 1.3: The three Reidemeister moves: Rl, R2, R3. 

Even with Theorem 1.1.5, Problem 1.1.4 is very difficult to solve: however, 
restricted versions of this problem have dean solutions. 

Consider the clttss of torus knots: that is, knots which lie on a torus T'2 = 
51 X 51 C 5a, where each 51 is unknotted. These knots are described by their 
winding number in the meridional and longitudinal directions. A type (nl,n) 
torus knot (rn andn relatively prime positive integers) is a simple dosed curve 
on T'2 which winds about the longitudinal direction 'In times and about the 
meridional directionn times [154, 33]. 
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Example 1.1.6 The trefoil knot of Figure I.I(b) is a (2,3) torus knot. 

The family of torus knots is well-understood; in particular) we have: 

Proposition 1.1.7 ([154, 33]) Toru" knot" oj type (m,n) and (m',n') arc '''a­
topic if and only if rH = 'fHI and n =nl (or, eq'ui'Uulently, rH =nl andn = nil). 

1.1.2 New knots from old 

One possible method for building and citkSSifying knots is to begin with a simple 
family (e.g.) the torus knots) and combine its members in various ways. Given 
two knots, there arc certain cOIlstructioIls for creating a new knot: we shall 
cOIlsider two such operatioIls which also have d:ynamical interpretatioIls. 

Connected sums 

The first operation we COIl sider is a form of "multiplication" for knots called, 
oddly enough, the 8'urn. 

Figure 1.4: The cOIlIlected sum of two knots. 

Definition 1.1.8 Given two oriented knots K and K. their connected s'um, 
K #K, is formed by placing each in disjoint embedded 3-balls, Band B, such 
that some closed arc of K (k) lies on the boundary of B (13 resp.). Then, delete 
the interior of each arc and identify the boundaries of the arcs via an orientation 
preserving homeomorphism. See Figure 1.4 for an illustration. 

Remark 1.1.9 In Definition 1.1.8, the choice of balls and arcs does not affect 
the connected sum. This operation is comIIlutative and tkssociative, but is not a 
group operation due to the lack of inverses [154]. 

If a knot can be decomposed into the connected sum of two or more nontrivial 
knots, it is said to be composite, else it is prime. The torus knots, for example, 
are prime (a nice proof can be found in [33, pp. 92-93]. A cltkssical theorem 
due to Schubert states that every knot htk'S a unique prime factorization ttS the 
connected sum of prime knots. R. F. vVilliams and Ivt Sullivan have explored 
the presence of prime decompositions of periodic orbits of flows [195, 169]. 
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Companions and satellites 

If one thinks of the connected sum tk'S a form of multiplication on the space of 
all knots (complete with prime factorization tiS with the integers); the operation 
of taking satellites is akin to taking powers. Let 1/ D'2 x SI be a solid torus 
which sits in Sa in the standard way. Let K be a knot essentially embedded in 
1/, i.e., K is not contained in any 3-ball B C 1/. Let K be an arbitrary knot and 
1vk a tubular neighborhood of this knot in Sa. A homeomorphism II : 1/ ~ 1vk 
is said to be faithful if it takes the longitude of (TV to a longitude of (}l'Vk which 
is homologically trivial (it bounds a surface) in the complement Sa \ lVk' 

Definition 1.1.10 The image of K under a faithful homeomorphism II is a 
satellite krwtwith companion K and pattern (K; 1/): see Figure 1.5. If K isotopes 
to a subset of iJV T', then K is a (p, q) torus knot and h( K) is said to be the 
(p, q) cable of k. 

:> 

v h(K) 

h(V) 

Figure 1.5: A companion (K) and a satellite (II(K)) knot. 

If we take K to be the unknot, a (Pl, ql) cable of K is a (Pl, ql) torus knot. If 
we build a (P'2; q'2) cable of this torus knot; we obtain a new knot. By continuing 
this procedure; with (Pi; qi) cablings at each step; one produces an iterated torus 
knot of t~)1)e {(pi; qi)}i~l' Alternatively; we say that the set of knots generated 
from the unknot by the operation of cabling is called the set of iterated torus 
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knots. Following Fomcnko and Nguyen [501, we will denote the sct of knots 
generated from the unknot by the operatioIls of cabling and cOIlIlected sum the 
sct of generalized iterated torus knots. Both of these families of knots arise 
naturally in a dynamical context t4') shown in Appendix A. 

1.1.3 Braid theory 

Knot and link theory studies mnbcddings of circles in Sa. "Vith some slight 
restrictioIls OIl the range of the embeddings, one can also embed arcs in topo­
logically distinct ways. Braid theory studies these phenomena (sec [19, 81]): 

Definition 1.1.11 Given1\[ a positive integer, a braid on 1v strand" is a collec­
tion b = {bill\' of 1v disjoint mnbcddings of the interval [0,1] into Euclidean TI«a 
such that for each 'i, 

1. b,(O) = (i, 0, 1); 

2. b,(l) = (T(-i) , 0, 0) for some permutation T; and 

3. pa[bi(t)] is a monotone deCrCth'Sing fUIlction of t, where Pa denotes projection 
onto the third coordinate. 

Definition 1.1.12 Two braids, band b, arc isotopic if there m .. ists an isotopy 
ht from b to b th'S pCI' Definition L 1.2 and if lIt 0 b satisfies Definition L L 11 for 
all t E [0,1]. 

The study of braids differs from the study of knots chiefly in that there is a 
natural group structure OIl the set of braids. Restricting to the set of all braids 
OIl 1v strands, there is a group operation given by concatenation. Given braids 
band b, one forms the braid sum bb by appending the top of the 'ith strand of 
b to the bottom of the 'ith strand of b: sec Figure 1.6. In this way, one obtains 
the braid gro'up on 1v strands, BN. 

+ 
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The standard generators for BN are denoted {CT i : 'i = 1. .. OV - I)} and are 
given geometrically thS the crossing of the 'ith strand over the ('i + l)st strand, 
ttS depicted in Figure 1. 7. The presentation for BN under these generators wttS 
given by Artin [10] to be the following: 

CTiCTj = CTjCTi 

CTiCTi+ l CTi = CTi+ l CTiCTi+ l 

Ii - jl > 1 
'i<N-1 

The relations for this presentation are illustrated in Figure 1.8. 

Figure 1. 7: Examples of generators for the braid group B 4 . 

} J 

) 

f 
f -r 

{ { 
(a) (b) 

(11) 

) 

Figure 1.8: Relations for the braid group BN: (a) CTiCTj = CTjCTi for I'i - jl > 1; 
(b) CTiCTi+lCTi = CTi+lCTiCTi+ l for'i < 1v 1. 

A relationship between braid theory and link theory is established by a simple 
operation on braids known ttS clos'U1t:. Given a braid b, one forms a closed braid, b, 
by connecting the top and the bottom of each strand of b in the obvious fttshion: 
see Figure 1.9. The question of the extent to which closed braids represent knots 
and links wttS answered by Alexander [3]: 
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> 

(a) (b) (c) 

Figure 1.9: (a) the braid aia2; (b) its closure; (c) this IS isotopic (via the first 
Reidmneister move) to the Hop! link. 

Theorem 1.1.13 (Alexander [3]) Any link L is isotopic to a closcd braid on 
some Tt'umber of strands. 

To understand the proof of Theorem L L 13, the reader IS encouraged to isotope 
a closed piece of string into a closed braid: choose a provisional braid u'J:is, about 
which the strands should revolve, and then try to maneuver the strands into a 
closed braid. One naturally uscs certain "moves" which arc detailed in the proof 
(see [33, 19]. 

vVc will make usc of closed braids in Chapter 3 tkS a way to build knots and 
links, thanks to Theorem 1.1.13. 

Certain dthSSCS of braids and closed braids will be prevalent in our treatment 
of knots and links. A braid bEEn will be called positive if b, thS a word in 
the generators {(Td, contains either no inverses or all inverses, i. c., either all 
crossings in the braid arc positive, in the sign convention of Figure 1.2, or all 
arc negative.:2 A link L will be called positivc if L hth'S a representation tiS the 
closure of a positive braid. 

Remark 1.1.14 There exist knots with diagrams containing only positive cross­
ings, but which arc not positive braids [182]. The proof is nontrivial, and uses 
the Alc'J:andcr-Conway polynomial a link invariant. 

1.1.4 Numerical invariants 

The equivalence problem (Problem 1. 1.4) for knots and links is e"A-trmncly difficult 
and htiS not yet been solved in a computationally rettsonable manner. However, 

2'fhe term positiv£ is used in both cases, either all posi ti ve croR.'{ings or all negative crossings. 
\Ve find this confusing and\vould prefer the t erm uniforrn; however,\ve yield to the common 
pra<:tice in the remainder of this\vork. 
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many advances have been made through the use of algebraic irruariants (see 
[101, 99, 20, 21, 94, 59] for examples). Here we merely describe some simpler, 
clthssical, rmmerical invariants, which will suffice for out purposes. 

A rmmerical invariant is a well-defined function from link equivalence clthSSes 
to the integers. For example, the function which maps a link L to the number 
of its components ft( L) is obviously invariant under isotopy, and hence defines 
a numerical invariant. However, this invariant hth'S rather poor eyesight, since it 
does not distinguish differentn-component links. 

Consider a link L of two components, K and K. There is a well-defined notion 
of how "entwined" K and K are, encoded in the linking rmmber, ek(K, K) E Z. 
There are numerous ways to define linking number [1541, the simplest of which 
involves a presentation of the link (recall Theorem 1.1.5). For an oriented link, 
one can label each crossing of a regular link presentation with an integer ± 1, tiS 
per the convention of Figure 1.2. 

Definition 1.1.15 Given two knots K and K, the linking n-umber, tk(K,K), is 
given ttS half the sum of the signs over all crossings of K with K, 

tk(K,K) = 1 
2 :L fi, (L2) 

Kri? 

where fi = ±1 is the sign of the 'ith crossing and K n K denotes the crossings of 
K and K in some regular presentation. 

Lemma 1.1.16 Linking rmmber is a link isotopy invariant. 

Proof: By Theorem 1.1.5, isotopy is generated by the Reidemeister moves of 
Figure 1.3. It is C(;tsy to verify that linking number does not change under these 
local moves. 0 

The linking number ek(K, K) is related to the intuitive notion of linking. 
For example, define a separable link to be one for which there exists a smooth 
embedded 2-sphere S'2 in Sa which separates one (or more) component(s) of L 
from the remainder of L. Any two separated components of a link are said to 
be 'unlinked, and, indeed, their linking number must be zero, since there exists 
a presentation for the link in which the components do not cross at all. vVe 
note, however, that it does not follow that two knots with linking number zero 
are necessarily separated: see the VVhitehead link of Figure 2.16 for a clttssical 
example. 

One of the most important numerical invariants is the germs of a link. Recall 
that closed orient able surfaces are cl;:;tssified by germs, or the number of handles in 
a handle body decomposition. Similarly, the genus of any surface with boundary 
is defined ttS the genus of the surface obtained by abstractly gluing in a disc 
along each boundary component. 

Definition 1.1.17 Given a link L, the germs, g(L), is defined tiS the minimum 
genus over all orient able surfaces S which span L: that is, as = L, where as 
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is the oriented boundary. A spanning surface of minimal genus is known thS a 
Seifert 8'UTfaee. 

Genus is by definition an invariant. Since by definition a knot in Sa bounds a 
disk if and only if it is the unknot, then among knots, only the unknot may have 
genus zero. 

There arc numerous formulae available for computing genera of links. \Vc 
include one, due to Birman and \Villiams [231, following work of Stallings [1671, 
which will be particularly useful in later chapters. 

Theorem 1.1.18 (Birman and Williams [24]) Let L be a nan-8eparable link of 
ft components, presented as a closed positive braid on 1v strands, 'With c crossings. 
Then g(L), the germs of L, '18 gwen us 

c-1V-f! 
.1(L) = 2 + 1. (1.3) 

Example 1.1.19 In Figure 1.10(a)) we show the trefoil knot along with a span­
ning surface. An Euler number calculation reveals that the surface is a punctured 
torus whose genus is one. By using Equation (1.3) on the (positive) braid repre­
sentation in Figure 1.10(b), we get ft = I, c = +3, and 1v = 2; hence, the genus 
is one, and the surface of part (a) is actually the Seifert surface. This proves 
that the trefoil is indeed knotted. 

(a) 
(b) 

Figure 1.10: (a) A spanning surface for the trefoil knot; (b) a positive braid 
presentation 

Example 1.1.20 vVe may extend the idea of Example 1.1.19 to compute a 
general formula for the genus of a torus knot. For K a (rn,n) torus knot with 
rn >n, we present a presentation of K t4') a positive braid in Figure 1.11: 
there are rn strands on a cylinder (the logitudinal direction),n of which twist 
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around the back (the meridional direction). The closure of this braid is K. It 
is an exercise for the reader to count the crossings in this illustration and, using 
Equation (1.3), compute the genus of K to be: 

(
K _ (In - l)(n - 1) 

g ) - 2 . (14) 

n 'Ill n 

Figure 1.11: The (rH,n) torus knot thS a positive braid on rH strands. 

Exercise 1.1.21 The figure-8 knot htis genus one and braid word (1 1(12'1(11(12' 1 . 

Show that it cannot be presented ttS a positive braid. Hint: use induction on the 
number of strands. 

Sol'ution: Clearly, one or two strands will not suffice. For three strands, there 
must be precisely four crossings to ensure genus one. Show that any positive 
braid with four crossings is either a trefoil or a link with more than one compo­
nent. For 1v > 3 strands, c = 1v + I, and, given a positive braid on 1v strands 
with 1v + 1 crossings, there must be one braid generator that is only used once. 
Thus, by "flipping" tiS in the first Reidemeister move, one can reduce the num­
ber of strands while retaining positivity, and thus obtain a counter example on 
1v 1 strands. 0 

The condition of having a positive closed braid is crucial to Theorem 1. 1. 18. 
For non-positive (or mi'J:ca) braids, there exists an extension of Theorem 1. 1. 18 
due to Bennequin [171, who derived a lower bound for genera of closed braids 
given the same data ttS in Theorem 1. 1. 18:(1 

a'l'he upper bound follo-vs from direct construction. 
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Theorem 1.1.22 (Bennequin [17]) Let L be a nonseparable link of I' eompo­
nents, presented us a closed braid on 1v strands, 'With c+ (c~) crossings in the 
positive (negative) sense. Then .1(L), the gen'us of L, is bO'unded as follows: 

I' 1 +. (L5) 

There arc numerous other cltkSSical numerical invariants for knots and links: 
we mention one ithst example for future rcfcnmcc. 

Definition 1.1.23 Given a link L, the braid inde", of L, Iri(L), is defined as the 
minimum number of strands over all closed braid representatioIls of L. 

Again; this is an invariant by definition. Unfortunately, there docs Ilot C"Aist an 
analogue of Equation (1.3) for calculating braid index. Nevertheless; we will usc 
this invariant in Chapter 4. 

This brief treatment of knot and link theory docs Ilot even begin to recount 
the major developments, especially in the an1(;4') of higher invariants (maps from 
link isotopy cltk'SSes to algebraic objects with more structure than Z). Great 
strides have been made in discovering computable multi-variable polynomial 
invariants which have excellent resolution [59] .Equally tkS exciting are the insights 
gained through the [continuing] devciopment of finite-type, or Vasiliev invariants 
[21, 22, 183]. Our (modest) goal in this section htts been merciy to acquaint 
the unfamiliar reader with this beautiful subject. For a deeper understanding, 
the "cla,ssicai" theory of knots and links is well-covered in [154, 33]. Newer 
perspectives can be found in [21] and the refenmces therein. Braid theory is 
covered in [191, with more recent progress reported in [20]. 

1.2 The theory of dynamical systems 

Topology is the study of continuous maps between topological spaces: f : X ~ 
}'. In the cttse where f : X ~ X, one is ettsily persuaded to consider iterated 
points or orbits of f. Dynamics seeks to understand ttsymptotic properties of 
orbits, be they orbits of maps (Z-actions) or of flows (IR-actions). In the cttse of 
flows on 3-manifolds, we will consider the topological properties of closed orbits 
ttS knots and links. But in order to proceed, we will need a certain amount of 
terminology and theory for both maps and flows. 

1.2.1 Basic definitions 

Discrete dynamics 

Although dynamical systems originated in questions about continuous-time dy­
namics (in celestial mechanics; see, for example, the historical account in [43]), 
much of the theory wttS devcioped first for maps, tiS it is somewhat simpler in 
this cttse. Thus, in this section, we ttssume f : AI ~ AI is a diffeomorphism of 
ann-manifold AI. The orbit, o(J;), of a point J; E AI is defined tiS the set of 
iterates {fk(J:) : k E Z}. 
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Remark 1.2.1 Although we state the results for diffeomorphisms, much of the 
theory goes through for smooth Iloninvcrtiblc maps, for which one works with 
the orbits {!k(;r;) : kEN}. The CtkSC of one-dimeIlsional Iloninvmtiblc maps 
will be of particular concern in Section 1.2.3, and subsequently in the study of 
scmiftows OIl templates. 

There arc two primary problems a"ssociatcd to the dynamics of maps. The first 
is the equivalence problem (ef. Problem 1.1.4): 

Definition 1.2.2 Two diffeomorphisms f : AI ~ AI and j : 1v --t 1v arc 
confugate if there exists a homeomorphism II : AI ~ 1v such that the following 
diagram COIIlIIlutcS: 

AI 1, AI 
Id .J.h (1.6) 

1v L 1v 

Problem 1.2.3 When arc two dijJeomorphi.wfl.s conJugate? 

The second principal problem of dynamics concerns stability: when are all 
"nearby" maps equivalent? 

Definition 1.2.4 A diffeomorphisms 1 : AI ...., AI is struet·urally stable if all 
diffeomorphisms in a sufficiently small neighborhood of f in C 1 (AI) are conjugate 
to 1. 

Problem 1.2.5 When is a map 8truet·urally stable? 

Problems 1.2.3 and 1.2.5 are rcievant, not only to the study of maps and flows 
(to be discussed bciow) , but also to the physical processes that are frequently 
modeled by such systems. They are large problems, whose study hth'S spawned a 
number of important results and perspectives. 

vVe begin by breaking the problem down. An invariant set of f is a subset 
A C AI such that 1(A) = A. An eq·uilibri·um, or fiJ:ed point for 1 is a one-point 
invariant set. Understanding of the behavior on an invariant set A is greatly 
facilitated if the action of f on A can be decomposed into uniformly mqnmding 
and contracting pieces. This is the kernci of the notion of hyperbolicity. 

Definition 1.2.6 An invariant set A C AI for a map f : AI --t AI is hyperbolic 
if there m .. ists a continuous f -invariant splitting of the tangent bundle TAlA into 
stable and 'unstable b'undles EX EX' with 

IIDf"(v)ll-:: c,\~nllvll 
IID1~n(v)ll-:: c,\~nllvll 

for some fixed C > 0.'\ > 1. 

v v E EX, V n > 0, 
VvEER, Vn>O. 

(17) 

If f is h:)1)erbolic on all of AI, we say that f is Arwsov. Given a h:)1)erbolic 
structure on an invariant set, the dynamics and stability of orbits on that piece 
are well-understood, tiS we now describe. 
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Example 1.2.7 (the toral Anosov map) Consider the linear map f: 11<' -t 
11«.2 given by 

(18) 

The point (0,0) is an equilibrium point which is hyperbolic since D f acts OIl 

the tangent plane with the same lincar map, and this map hth'S eigeIlvalues and 
eigeIlvectors 

V'I.,S = 1 1 .. . ( 1) 
, ± "v'5 

(19) 

Thus, the map f hth'S c}.lnmding (uIlstable) and contracting (stable) bundles, E'I. 
and Eli) along the span of each eigeIlvector. Notice that the map f preserves the 
integer lattice; hcnce, we may cOIlsider f tk'S a map OIl n«.2 Iff}) i.e.) the torus T'2. 
Since f hth'S determinant 1, the induced map OIl T'2 is invertible. "Vhile the action 
of f OIl 11«.2 is rather bland, its action OIl T'2 is quite interesting: the stable and 
uIlstable directioIls (Eli and E,j,) have irrational slopes; 80 these project down to 
invariant manifolds on T'2 which wind about the torus densely: see Figure 1. 12. 
Furthermore, the periodic points of f on T'2 are dense, since any pair of rational 
numbers with the same denominator gives the coordinates of a periodic point. 

: 

~f 
~~~~--~-------~-... 

Figure 1. 12: The action of the map f on T'2. 

Remark 1.2.8 The map of Example 1.2.7 is h:)1)erbolic on all of T'2, hence it 
is Anosov. vVe will return to this toral Arw8o'U map in §2.3.4. 

Notice in Example 1.2.7 that the stable and unstable bundles in the tangent 
space are mimicked in the bthse space by invariant manifolds (the projection of 
ES and EV,) on which the map is uniformly contractive or expansive. For a map 
on AI with a hyperbolic structure on some invariant set A, the splitting of the 
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tangent bundle TAlA into invariant stable and uIlstable bundles project s down 
to give invariant stable and uIlstable manifolds in AI. This is the content of one 
of the key results of this field: the Stable Manifold Theorem4 

Theorem 1.2.9 (The Stable Manifold Theorem: Hirsch, Pugh , and 51mb 
[84]) GivCTI a diffeomorphism f : AI ...., AI with a hyperbolic invariant set A, for 
each J: E A, the set" 

W'(,,) 
W"(,,) 

{11 E AI : limn~oc 111"(11) - 1"(,,)11 = O}, 
{11 E AI : limn~_oc 111"(11) - 1"(,,)11 = O}, 

(1.10) 

are smooth, injective immersions of the b'undlcs E; and E~ respectively. In 
addition, W'(,,) and W"(,,) arc tangent to the b·undles at ,,: T(l'V'(,,)), = E; 
and T(W"(,,)), = E;. The sets W'(,,) and W"(,,) arc known as the stable and 
uIlstable manifolds of J:. 

Remark 1.2.10 The notion of local stable and uIlstable manifolds is also usefuL 
Given f th'S in Theorem 1.2.9, the local stable and uIlstable manifolds arc defined 
t4'): 

{11 E AI : limn~oc 111"(11) 1"(") II = 0 
and 111"(11) 1"(,,)11 < f lin::> O}, 

{11 E AI : limn~_oc 111"(11) 1"(,,)11 = 0 
(1.11) 

and 111"(11) - 1"(,,)11 < f lin -::: O}, 

for f of "appropriately" small sizc. 5 Theorem 1.2.9 then states that lVl~iC(J;) and 
lVl~;c(;d arc tangent to E; and E~'. 

Theorem 1.2.9 is a very strong result, which we will rely upon frequently 
to describe the dynamics on a h:)1)erbolic invariant set. The real issue then 
is tkscertaining the smallest invariant subset of AI which contains "all" of the 
essential d:ynamics of the flow, and then considering systems in which this piece 
is hyperbolic. Through work of Smale, Shub, and others [165, 1621, we know 
this essential piece to be the chain-rcc'urrcnt set. 

Definition 1.2.11 Given a map f: AI ~ AI, a point J: E AI is chain-rec'urrent 
for fii, for any f > 0, there exists a sequence of points {J: = J:1,J>2,··· ,J:n~ I ,J:n = 
,,} such that Ilf("i) - "i+111 < f for all 1 -::: .j -::: n 1. The ehain-rce·urrcnt set, 
1?(f), is the set of all chain-recurrent points on AI. 

Remark 1.2.12 The chain-recurrent set 1?(f) is closed and invariant. 

"V hen one htt.8 a hyperbolic chain-recurrent set, there is a sort of prime decom­
position theorem for the (lssociated d:ynamics: 

4'I'he St able !vlanifold theorem\vas proved in stages; by several authors; starting vd t h the 
CMes of A a fixed point or periodic orbit. 'I'heorem 1.2.9 is a rat her general st atement. 

0'I'h€I'€ is some ambiguity about the size of f an appropriate size is usually clear from the 
context . 
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Theorem 1.2.13 (Smale [165]) Given a diffeomorphism f : AI -t AI having 
a hyperbolic chain-rec'urrent set, 1?(f) is the 'union of disjoint bthSic scts, B i , 

'i = 1, 2, ... ,1v. Each Bi is closed, invariant, and contains a dense orbit. The 
periodic orbit set of each Bi is dense 'Within R i -

In later chapters, we will often deal with systems which have h:)1)crbolic 
chain-recurrent scts of various types. One more condition is often required: a 
map is said to satisfy the strong trans'Ucrsulity condition if, for all J:,:tJ E 1?(f) , the 
stable and uIlstable manifolds, VVii(;:r;) and VV't(U), arc transverse. This condition 
is important in the definition of !v! orse-Smale and Smale diffeomorphisms. A 
Smale diffeomorphism is one which hth'S a zero-dimeIlsional h:)1)erbolic chain­
recurrent set satisfying the strong transversality condition, while a !v! orse-Smale 
diffeomorphism is a Smale diffeomorphism for which the chain-recurrent set is 
finite. 

vVorking with hyperbolic chain-recurrent sets and transversality hth'S permit­
ted a partial solution of the stability problem (Problem 1.2.5): 

Theorem 1.2.14 (Robbin [150), Robinson [151]) Any diffeomorphism f : AI -t 
AI having a hyperbolic chain-rec'urrent set and satisfljing the transversality con­
dition, is structurally stable. 

Continuous dynamics 

A map can be considered tiS a Z-action on AI. A continuous analogue to a map 
is an 1I«.-action, or a flow. 

Definition 1.2.15 A flow on a manifold AI is a continuous map CP: 11«. x AI ~ AI 
satisfying the following conditions: 

<1>( t, : AI ~ AI is a homeomorphism of AI for all t; 

2. <Po = id M , that is, <P0(J:) = J: for all J: E AI; 

3. <p,(<p,(J:)) = <PI+,(J:) for all s,t E III.. 

vVhile flows and maps are fundamentally different objects, in certain in­
stances they can be related. Given a map] : AI ~ AI, one can define the 
s'uspension flow of ] to be the quotient space of AI x 11«. with the trivial flow 
<p,(J:,s) = (J:,s+t) via identifying (J:,s) with (1(J:),s+I). Theftow <p, passes 
to a s'uspension flow, acting on the mapping torus, AI = AI x 1I«./(J';,s) ,...., 
(](J';), s + 1). In the cttse where] is isotopic to the identity map, AI is homeo­
morphic to AI x 5 1, hence the name. 

Conversely, given a flow 'lIJ! on a dosed manifold 5, we say that 5 htis a 
local cross section (or Poincare section) if there exists a dosed co dimension-one 
submanifold II C 5 which transversely intersects the flow at every point of II. In 
the case where some subset U C II consists of orbits which return to II in finite 
time, there is a well-defined ret'UITt map (or Poincare map) r : U ~ II which 
(lssigns to a point p E U the image '1IJTlP) (p), where T(p), the ret'UITt time, is the 
smallest t > 0 such that '1IJ! (p) E II. In the cttse where II intersects all flow lines 
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of CPt) we say that II is a global cross section. Clearly, taking the (appropriate) 
Poincare section is the inverse of suspending a map. The study of iterated 
mappings thssumcd its central importance in dynamics after Poincare developed 
the technique of cross-sectioIls and return maps to study periodic orbits in flows 
generated by ordinary differential equatioIls: examples appear throughout the 
nnnaincr of this text, most notably in Chapter 4. 

"Vhell ptkssing to flows, many of the definitioIls of § 1.2.1 carryover with the 
obvious modifications: c. g.) invariant scts, periodic orbits, etc. A few definitioIls 
require additional c}.l)ianation: 

Definition 1.2.16 An invariant sct A for a flow CPt on AI is hyperbolic if there 
e"Aists a continuous ¢rinvariant splitting of the tangent bundle TAlA into EX Ci) 

EX EX with 

II D4>I(u)11 <:: Ce~Mllull VuE EX, 'It> O. 

IID4>~I(u)11 <:: Ce~Mllull VuE EX, 'It> O. (112) 

d<p1 I ( , E" -t· ~ J:) spans '~ 
(t i=O 

V" E A. 

for some fixed C > 0, A > L The one-dimensional "center" direction E~ is 
tangent to the orbit itself at each point. 

Definition 1.2.17 Let X C A be a subset of a hyperbolic invariant set of a 
flow ¢i on AI. Then the stable and 'unstable manifolds of X in AI are given by 

W'(X) 
W"(X) 

{1I E AI : liml..,oc 114>I(X) 
{11 E AI : limH~oc 114>I(X) 

4>1(11)11 = o}, 
4>1(11)11 = O}. 

The local stable and unstable manifolds of a set X are given by: 

{11 E AI : limHoc 114>1(11) - 4>1(X)11 = 0 
and 114>1(11) - 4>1(X)11 < f 'It::> O}, 

{11 E AI : limH~oc 114>1(11) 4>1(X)11 = 0 
and 114>1(11) - 4>t(X)11 < f 'It <:: O}, 

For f an "appropriately" small positive number. 

(113) 

(114) 

Remark 1.2.18 Given ;' a periodic orbit for a flow ¢h the local stable and 
unstable manifolds can carry additional information. Consider the CtkSe where, 
say, lVl~iC (;') htis dimension two: then, the local stable manifold is a ribbon 
containing ;' tiS a core. This ribbon is homeomorphic to either an annulus or a 
:0.-'Iobius band, yielding an 'untwisted or twisted periodic orbit respectivciy. vVe 
use such information in §3.1, §4.1, and §5.3. 

Definition 1.2.19 Given a flow ¢i on AI, a point J: E AI is chain-rec'urrentfor ¢ 
if, for any f > 0, there e"Aists a sequence of points {J: = J:1,J:2, ... ,J:n~l,J:n = J:} 

and real numbers (t1, t" . .. ,tn~d such that ti > 1 and II4>d";) - "i+1 II < f for 
aliI:::; 'i:::;n - L The chain-rec'urrent set, 1?(¢), is the set of all chain-recurrent 
points on AI. 
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The Stable rv'Ianifold Theorem for flows is entirely analogous to Theorem 
1.2.9, and Theorem 1.2.13 holds th'S stated for flows with h:)1)crbolic chain­
recurrent scts. The definitioIls of rv'IoI'sc-Smalc and Smale flows follows with 
one modification: their chain-recurrent sets arc one-dimeIlsional, since these arc 
flows. Hence, a rv'IoI'sc-Smalc flow is a flow which hth'S a finite number of hyper­
bolic fixed points and periodic orbits, all of whose stable and uIlstable manifolds 
intersect transversally: sec Appendix A. 

1.2.2 Symbolic dynamics 

One of the most rmnarkttblc and fortunate properties of complicated hyper­
bolic invariant scts is the description they admit via symbolic dynamics. This 
theory hth'S a long history, beginning with its use by Hadamard in describing 
closed geodesics [80], and continuing in the work of Morse [133, 134]. 

Shifts and suhshifts 

Let 0: = {"1 ,"" ... ," N} be an alphabet of N letteTs. Denote by :E N the space 
of bi-infinite symbol sequences in a: 

(115) 

Points in :EN will be called itineraries. The space :EN is given the product 
topology and can be endowed with a metric thS follows. If a = (ai)~~(X; and 
b = (bi)~~(X; are itineraries, then the distance d(a, b) is 

. ~ J(n) 
d(a,h)= L 21nl' where 

n=~(X; 

'(' {O On) = 1 
: an = bn 
: an f=. bn 

(116) 

Under this metric, points in :EN are close when their symbol sequences agree on 
large blocks forwards and backwards from the "midpoint" ao. 

Define the shift map (J : :E N ...., :E N as follows: 

Under the product topology, the shift map (J is a homeomorphism. The dynam­
ical system (:E N, (J) is called the full N ,shift. 

Given A an1V by 1v matrix of zeros and ones, an itinerary a = ... a~ l '(l,Oa l . 

is admissible with respect to A at'i if, for "i"i+ 1 = "j"k (where j, k E {I, 2, ... , N}), 
AU, k) = L Any itinerary a which is admissible with respect to A at all 'i is 
called admissible. 

Definition 1.2.20 Given A an 1v by 1v matrix in zeros and ones, the s'ubshijt of 
finite type ttssociated with A is the d:ynamical system (:EA, (J), where :EA C :EN is 
the set of admissible itineraries and (J is the shift map. The matrix A is known ttS 
the transition matri:r: for :EA, since it specifies those transitions between s:ymbols 
that are possible within a sequence. 
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Example 1.2.21 COIlsider the subshift of finite type th'SSociatcd with the tran­
sition matrix 

(118) 

TheIl the system (~A) (1) cOIlsists of all bi-infinite sequences in {;(: 1) ;':2) J:a} Ilot 
containing J:1;1:a thS a subword. 

Remark 1.2.22 An alternative to Definition 1.2.20 comes from graph theory. 
Let r be a directed (oriented) finite graph with vertex sct 'U = {'Od and edge 
sct e = {Cj}) such that there m .. ists at most one edge cOIlIlecting any ordered 
vertex pair in 'U x 'U. TheIl the space of bi-infinite) continuous, directed paths in 
r can be put in bijective correspondence with all bi-infinite s:ymbol sequences in 
{vd admissible with respect to a transition matrix A,!) where A,!(( j) = 1 if and 
only if there is a continuous path from 'Ui to 'Uj. Alternatively, directed paths in 
r can also be represented by symbol sequences in the edge labels {Cj}, where 
the transition matrix Ae satisfies Ae (( j) = 1 if and only if there the tip of the 
edge Ci meets the tail of the edge Cj. In general, these matrices, A,! and Ae , 

will differ. Thus, since the space of paths on r is the same, we have shown the 
m .. istence of different subshifts which are nevertheless conjugate: see Figure L 13. 

Figure L 13: The vertex graph (left) and the edge graph (right) thssociated to 
the 2 x 2 matrix A, where A(·i,j) = 1 for all·i,j. 

Symbolic dynamics and subshifts of finite type are very concrete one can 
combinatorially determine all the periodic orbits, fixed points, etc. symbolically. 
On the other hand, given any bi-infinite "random" sequence of ones and twos, 
there is an orbit in the full 2-shift whose dynamics precisely follows this sequence 
of J: 1 's and J::/s; hence, these systems can encode complicated dynamics. 

Our interest in symbolic dynamics lies in the fact that they capture the 
d:ynamics of hyperbolic invariant sets of maps. 

Theorem 1.2.23 (Bowen [26]) Let f : AI ...., AI be a diffeornorphi.wn "With a 
hyperbolic chain-rec'urrent set I? and A C I? a basic set. Then, there e'J:ists a 
semiconjugacy h : ~A ~ A between A and a s'ubshijt of finite type. That is, h 
is a contin'uo'us s'urjection with hG' = f h. If A is zero-dimensional then h is a 
homeomorphism; i.e., h is a confugacy. 
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For details of the proof of Theorem 1.2.23, see Bowen's work [26], or the refor­
mulatioIls in [53, 162]. The essential tools for Theorem 1.2.23 arc rectangles and 
lvlarko'U partitions, both objects which will be of great usc to us in Chapter 2. 

Definition 1.2.24 For f a diffeomorphism and A a hyperbolic btkSic sct, a closed 
(not-necessarily cOIlIlected) sct RcA IS a rectangle provided: 

L lVl~iC (;r;) n lVI~;c (u) E R IS a single point for all ;,:):tJ E R; and 

2. int(R) is dense in R. 

Definition 1.2.25 Let f be a diffeomorphism, A a hyperbolic btkSic sct for f) 
and n a finite collection of rectangles Ri . Let VVS(;r:, Ri ) VV1~iC(J;) n Ri and 
W"(J:, R i ) WI~,,(J:) n R i . Then n is a Markov partition for f if: 

1. A = UiRi; 

2. int(R,) n int(Rj ) = 0; 

3. for J: E int(R,) and f(J:) E int(Rj ), 

4. for J: E int(R,) n f- 1 (int(Rj )), 

int(Rj ) n f [W"(J:, int(R,))] 

int(Ri) n f [int(W' (f(J:) , int(Rj ) ))] 

W"(f(J:), int(Rj )), 

W'(J:, int( Ri))' 

Condition 4 IS excluded in many definitioIls; however) any partition satisfying 
the first three can be refined to have rectangles of arbitrarily small diameter, 
implying Condition 4 [153, Lemma 6.8]. 

Remark 1.2.26 Although rectangles are not necessarily connected, or even lo­
cally connected, they can 'us'ually be thought of tkS disjoint rectangular simplices: 
see Example 1.2.28 below and the proof of Lemma 2.2.5. A :0.-'Iarkov partition 
gives rise to a subshift in the following manner: let {Rill\' be a :0.-'Iarkov partition 
for a bttsic set A of f ttS above. Define the 1v x 1v matrix A by 

A(i,j) = { ~: f(Ri) n R j cp 0 
f(Ri) nRj = 0 (119) 

Then, the content of Theorem 1.2.23 is that the subshift of finite type (I:A, (J) is 
semiconjugate to (A, f), and conjugate in the cttse when A is zero-dimensional. 

Remark 1.2.27 There e"Aists an analogue of Theorem 1.2.23 for non-invertible 
maps. Let:E;t denote the space of semi-infinite s:ymbol sequences admissible 
with respect to A. If we redefine the shift map ttS (J : (ao(/,1(/,2 ... ) H ((/,1(/,2 ... ), 

then the system (:E;t, (J) is a one-sided s'ubshijt of finite type. The analogue 
to Theorem 1.2.23 then holds for hyperbolic noninvertible maps and one-sided 
subshifts. 
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2 Example 1.2.28 (Smale's horseshoe) Consider a map f : I x I ...., II!. on 
the square given thS in Figure L 14. The map acts linearly OIl the horizontal 
strips labeled HI and H'2) stretching by a factor A" > 2 in the vertical direction 
and compressing by AS < & in the horizontal directioIl, while bending the entire 
square into a "ho1's(1shoe." 

G 

f 
l- I-

I 

Figure L 14: The Smale horseshoe map. 

Let A denote the set of points in I x I which remain in I x I under all forwards 
and backwards iterates of f. This sct is invariant and is contained in HI U H'2. 
Because of the lincar action OIl horizontal strips, the local stable manifold of a 
point J: E A is a horizontallinc segment pth'SSing through J:. Similarly, the local 
uIlstable manifold of J: is a vertical liIle segment through J:. It follows that A is 
a closed hyperbolic invariant set for 1. 

It is left thS an exercise for the reader to show that the intersection of A with 
the (literal) rectangles H I and H'2 provides a rvIarkov partition for 11A' Since 
A is the cartesian product of two Cantor sets in the interval, it follows that 
A is zero-dimensional and, via Theorem 1.2.23, htts dynamics conjugate to the 
subshift of finite t:n)e induced by the rvIarkov partition: in this cttse, the full 
2-shift. By writing down bi-infinite sequences of s:ymbols, we can immediately 
conclude that there are, c. g., two fixed points, a countable infinity of periodic 
orbits, an uncountable number of nonperiodic orbits, and an orbit of 1 dense in 
A. 

Example 1.2.28 is fundamental to the study of complicated dynamics, since it is 
perhaps the simplest example of a nontrivial hyperbolic set. rvIoreover, it occurs 
widely in d:ynamical systems modeling physically relevant processes, including 
Poincare maps for periodically forced oscillators (cf. [76] and §2.3.2 below). 
In subsequent chapters, we will consider the suspension of the horseshoe map 
1 and regard the periodic orbits ;:1S knots. Symbolic dynamics will then give 
us a language for describing these knots. To the readers unfamiliar with the 
horseshoe, we suggest that either (1) they consult a good refenmce for more 
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information (e.g.[153, 41, 76]); and/or (2) they complete the following exercises 
to strengthen understanding of this important example: 

Exercise 1.2.29 Draw a picture of the second iterate of f, th'S well th'S its Inverse; 
theIl, prove that A is zero-dimeIlsionaL 

Exercise 1.2.30 Describe the local stable and uIlstable manifolds of an itinerary 
in :E2 under (J. Give an example of a deIlse orbit for (:E2) (J). 

Exercise 1.2.31 Generalize the horseshoe map to a map which corresponds to 
the subshift of finite type given in Example 1.2.21. 

As an indication of the fundamental nature of Example 1.2.28, tk'S well th'S 

to prepare the way for future examples, we recall the Poincarc-Birkhoff-Smalc 
homoclinic Theorem. This theorem concerns the very important concept of 
homoclinic orbits, originally due to Poincare [146, Vol. 3]. 

Definition 1.2.32 Given a map f : Al ~ Al (or, a flow ¢( on AI) having a 
hyperbolic fixed point p, p hth'S a homoclinic orbit if the intersection of the stable 
and unstable manifolds of p is nonmnpty: i.e., W'(p) n W"(p) cP 0. In the 
C<1se of a map, we distinguish between transverse homoclinic orbits, for which 
Ix W"(p) Ix W'(p) = IxAf for all J: E W'(p) n W"(p), and nontransverse 
homoclinic orbits, for which this condition fails. 

Theorem 1.2.33 (The Poincare-Birkhoff-Sma1e Homoclinic Theorem 
[146, 18, 164]) Let j : 11<' -t 11<' be a diffeomorphism with p a fiJ:ed point 
s'upporting a transverse homoclinic orbit. Then, for some 1v > 0, fN contains a 
Smale horseshoe in a neighborhood of the homoclinic orbit. 

Remark 1.2.34 By "containing a horseshoe" we mean that there exists a com­
pact invariant subset near the homoclinic orbit which is conjugate to the map 
of Example 1.2.28. Hence, from very general h:)1JOtheses one can apply s:ymbolic 
d:ynamics to describe and understand complicated dynamics. This perspective 
will be of use in the remainder of this book tiS we seek to describe and understand 
knotted periodic orbits in flows. 

Topological entropy 

The question arises which shifts or subshifts are equivalent up to conjugacy (cf. 
R.emark 1.2.22). While this problem was completely solved by Williams [191]' 
an earlier result gave rise to an ettsily computable invariant known ttS topological 
entropy. The original definition of topological entropy for a map f acting on a 
compact manifold Al considered the growth rates of open covers of Al under the 
action of f. vVe will use an alternate definition due to Bowen [26]. 

Definition 1.2.35 Given f : Al ~ Al a diffeomorphism with compact invariant 
set A, an integern > 0, and a real number f > 0, an (n, f)-separated set SeA is 
a set for which any two distinct points J: and 11 in 5 satisfy d(fk(J:), jk(ll)) > f 
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for some 0 :::; k <no Define sen, f) to be the maximum cardinality of any 
(n, f)-separated subset of A. TheIl, the topological entropy of f OIl A is given th'S 

, .. log sen, f) 
h(j) = hm hm sup . 

(~o n-0>CX;n 
(1.20) 

Definition 1.2.35 is by no means transparent. An (n, f)-separated sct is a col­
lection of points which avoid one another (up to f) within the initial segment of 
the orbit (up ton iterates). On a compact manifold AI, every such sct must be 
finite. The entropy is thus the limit of the growth rate (inn) of the maximal 
number of orbits which separate, th'S we inCnlth'Sc our seIlsitivity to separation 
(f"'" 0). 

Part of the difficulty in understanding Definition 1.2.35 is in thsccrtaining 
what topological entropy mCtk'Surcs. In short, a map with positive entropy hth'S a 
great deal of "activity" the number of orbits which arc separated under the 
action of f grows at an exponential rate. This implies that both stretching (for 
separation) and folding (for compactness) actions arc necessary for complicated 
d:ynamics, cf. Example 1.2.28. Alternatively, a map which htis zero entropy (e.g., 
an isometry) would indicate a relatively small degree of complicated d:ynamics. 
A rough generalization is that positive topological entropy signals "chaotic" 
d:ynamics. 

Remark 1.2.36 Two maps on compact spaces which arc conjugate nlust have 
the same entropy, since the conjugacy is a uniformly continuous homeomorphism 
which preserves sen, f) after a change of scale in f. Hence, topological entropy 
is a dynamical invariant. Topological entropy for flows is less well-defined: if we 
define the entropy of a flow to be the entropy of the time-one map, then we can 
at letist distinguish zero-entropy from positive-entropy flows. 

Calculating entropy is in general a difficult ta,sk: fortunately, the entropy of the 
shifts and subshifts of §1.2.2 arc readily computed. 

Theorem 1.2.37 Let :EA denote the s·ubshift of finite twe associated "With the 
TfwtriJ: A. Then the entropy of the shift map (J is the log of the spectral radi"Us 
ofA. 

Theorem 1.2.37 relics upon the PeITon-Frobenius Theorem for matrices with 
positive entries [143, 60]. A nice proof of Theorem 1.2.37 can be found in [153]. 

Example 1.2.38 The entropy of the full 2-shift is log(2), sincc the full 2-shift 
htiS tiS transition matrix a 2 x 2 matrix with ones in each entry. Thus by Remark 
1.2.36 we know that the Smale horseshoe map htiS entropy equal to log(2). 

In the Appendix, we will usc entropy to characterize knots and links, partitioning 
the set of links into zero-entropy and positive-entropy links. 
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1.2.3 Bifurcations and one-dimensional maps 

vVe have thus far cOIlsidered the CthSC in which the dynamical system (or its 
chain-recurrent set) IS h:)1)crbolic. Now suppose we have a family of systems 
dependent upon a parameter ft E n«.n. By Theorem 1.2.14, th'S long tk'S the system 
IS hyperbolic, varying the parameter hth'S no qualitative effect. However, if we 
specify merely that the system have the appropriate hyperbolic structure for a 
certain fto, then varying the parameter ft may alter it drtk'Stically fixed points, 
periodic orbits, and bthSic scts may appear or vanish in bifurcations. 

vVc review the simplest types of bifurcatioIls in order to provide a language 
with which to describe the creation of knotted orbits in parametrized families of 
three-dimensional flows in Chapter 4. For more complete expositions, sec [39, 
76]. The following three examples represent the simplest t~n)es of bifurcations 
which can be embedded in one-parameter families of one-dimensional maps: 

Example 1.2.39 (saddle-node bifurcation) Let f,. : lI<l -t lI<l be an other­
wise generic map whose derivative satisfies 1(;(0) = 1: e.g., J: H J: + (It - J: 2 ). 

Then the bifurcation at ft = 0 , in which two stable equilibria arc created, is 
called a saddle node bifurcation. For I' < () there are no fixed points for f. As 
ft increthses through zero, a pair of h~)1)erbolic fixed points of opposite stability 
branches out from the origin. 

Example 1.2.40 (pitchfork bifurcation) Although the saddle-node bifurca­
tion is the generic one-parameter bifurcation for 1(;(0) = 1, other bifurcations 
arc possible under specific restrictions on the clttss of maps considered. For in­
stance, ttssume that 1 : 11«.1 --t 11«.1 is generic in the clttss of maps which is invariant 
under the symmetry transformation J: H -J:: e.g., J: H J: + (ftJ: J:(1). Then, 
by symmetry) the origin IIlUSt be a fixed point for all ft. In this cttse, there is a 
pitchfork bifurcation at ft = O. For ft < 0, the origin is an isolated h~)1)erbolic 
fixed point. As ft increttses through zero, the origin changes stability and simul­
taneously sheds two fixed points, each acquiring the stability type the origin had 
for ft negative. 

Example 1.2.41 (period-doubling bifurcation) Let f" : lI<l -t lI<l be a 
generic map whose derivative satisfies 1(;(0) = -1: e.g.) J: H -J: - ftJ: + J: H• 

Then the bifurcation at ft = 0 is called a period-do'ubling bifurcation, since a 
period two orbit is created. For ft < 0 there is an isolated hyperbolic fixed point 
at the origin. As ft increttses through zero, the origin changes stability and a 
period two orbit branches away from the origin. 

Remark 1.2.42 The three examples above may come in different flavors: for 
example, the signs of the nonlinear terms may differ. Also, these examples 
arc not confined to bifurcations of one-dimensional maps. Arbitrary maps can 
exhibit, e.g., a saddle-node bifurcation. This theory involves the construction of 
one-dimensional center manifolds, which capture the bifurcating orbits. Sec, for 
example, the introductory texts [153, 76, 9, 34]. 
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Exercise 1.2.43 Given the three bifurcatioIls of fixed points presented above, 
c}.l)iain via Poincare maps what happeIls to a periodic orbit in a flow which 
undergoes a saddle-node, pitchfork, or period-doubling bifurcation. TheIl, re­
cOIlsider the statement at the beginning of this chapter, that a period-doubled 
orbit in a three-dimeIlsional flow gives rise to a 2-cablc of the knot. 

Examples 1.2.39 and 1.2.41 arc codimension one bifurcatioIls: they occur 
stably for generic one-parameter families of maps. (In the absence of symme­
try, the pitchfork bifurcation of Example 1.2.40 IS of codimcIlsioIl two, since two 
conditioIls, one OIl the eigeIlvalue and one OIl the quadratic term (that it van­
ishes), IIlUSt simultaneously be met.) There is a third important codimension 
one bifurcation: 

Example 1.2.44 (Hopf bifurcation) The Hopf bifurcation for a periodic or­
bit involves a complex conjugate pair of eigenvalues for the linearized Poincare 
map and thus can occur only for maps of dimension two or greater. The trun­
cated normal form, analogous to the one-dimensional versions above, is most 
naturally expressed in polar coordinates: 

( 
r ) (j; ( r( I + I' r')) 
o O+cp+irr" 

the linearized mapping in cartesian form being 

F (I . [ cos 'P 
II, = +tt) sinr.p 

- sin r.p 
cos r.p 

(121) 

1 : (122) 

a matrix with eigenvalues A, A = (1 + tt)e±i'P, which rotates by the angle r.p and 
dilates by the factor I + It. It is easy to check that, for I' < 0, (121) has an 
isolated hyperbolic sink at the origin, from which an attracting invariant circle 
r = Vii bifurcates thS tt increttses through zero. On this circle, points are rigidly 
rotated through the angle r.p + btL "V hen this quantity is rational (mod 27f) 
the invariant circle is filled with periodic points; when irrational, with dense, 
quttsi-periodic orbits. 

As the orbits created in a Hopf bifurcation lie on the boundary of a tubular 
neighborhood of the periodic orbit (that is, a torus), any periodic orbits are 
cables of the original knot: we return to this in Chapter 4. 

"Vhen working with families of one-dimensional maps, the s:ymbolic theory of 
subshifts in §L2.2 can be used effectively to encode sequences of bifurcations ttS 
a parameter is varied. To do so, we IIlUSt specify a coordinate system on s}'1nbol 
sequences induced by the one-dimensional map. These coordinates foreshadow 
a similar construct to be used for smniftows on branched two-manifolds having 
one-dimensional return maps. This kneading theor,1j will be used in locating 
periodic orbits and determining their topological properties in later chapters. 

To introduce the idetts, consider the two hyperbolic (expanding) maps defined 
on I = [0,1] C TI«. of Figure L 15. In both cttses a rvIarkov partition may be bttsed 
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(a) (b) 

Figure 1.15: One dimeIlsional maps: (a) the doubling map, In; (b) the tent 
map, Il'. 

on the intervals I, = [0, ~l and I, = [~, 1], each of which is stretched across the 
entire interval I by the map. Labeling the intervals ;1:1 and ;(:2 and appealing to 
Theorem 1.2.23, we have a sCIniconjugac:/i between if) (rcsp. I1') and a full shift 
OIl two s:ymbols, although here it is the one-sided shift working OIl semi-infinite 
sequences, since one can only iterate the maps forwards (cf. Remark 1.2.27). 

Under these scmiconjugacics, a point pEl belonging to a periodic orbit 
of either map corresponds to a sequence formed of repeats of a finite word 
a p = (aoa1 ... aK~d) of length K equal to the (lcthst) period, in which the 
symbol rlj takes the value "1 (resp. "') if fi(p) E I, (resp. I,). The itinerary 
formed by repeating a word w will be denoted wCX::. 

To locate points within an orbit, or points of distinct orbits, we introduce 
the natural "left to right" lexicographical ordering J:1 <J J>2. Here the two maps 
reveal a crucial diffenmce. Since if) is orientation-preserving (both branches 
have positive slope), simple lm .. icographical ordering of the itineraries a~ and a~ 
will cornlctly determine the relative positions of the points p, q E I. Essentially 
here we are comparing binary expansions of p and q, with J: 1 and J>2 playing the 
roles of 0 and 1. 

Example 1.2.45 Consider the points p = & and q = ¥, whose orbits under if) 
are {&' t, &' t, ... } and {t, ¥, %, ¥, ¥, %, ... } respectively. The tkssociated words 
are: a~ = {J:1J:2J:1J>2 ... } and a~ = {J: 1J:2J:2J:1J:2J:2 .. . }. a~ and a~ first differ 
at the third symbol, and since J: 1 <J J:2, we see that a~ <J a~, tkS required. 

Turning to the map If', we note that orientation is reversed for points in h. 
To cope with this, we compare not simple itineraries, but invariant coordinates, 
defined tiS O(a) = 0102 ... On . .. , where Oi = ai if the J:2-parity of a 1 a2 ... ai~ 1 

(iHel'€; t he map is a semiconjug<'l<:Y because points on the boundary Ij II h ~ admit t\vo 
distinct symbol sequences X2 (xJ)oo and Xl (X2)OO (r:-f. the ambigui ty in decimal representation 
of reals). 'l'he maps from In or IT to the fu ll shift are conjuga<:ies\vhen restricted to the 
periodic orbi t set. One can also get semiconjugacies if the slope of the map is of absolute value 
less than one: multiple orbits may share the Mme symbol sequence. 
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is eveIl, else fJi = ai) where 5>2 = J:1 and vice versa. Thus f) keeps track of how 
many visits to the orientation-reversing subinterval the orbit hth,) made. 

Example 1.2.46 Again take two points, but now belonging to periodic orbits 
of I1': p = * and q = ¥_ The thssociatcd words arc again: a~ = (;:r:lJ:2)(X; and 
a;;C = (J;lJ;~r:x;) but the invariant coordinates arc: 

We now correctly have O(a'/;') <lO(a:;"). 

Thus, extending the definition of f) appropriately for general multi-branch 
maps to count the number of visits to orientation-reversing subintervals, we 
have: 

Proposition 1.2.47 (Milnor and Thurston [125]) Let p and q be point.> on I 
corresponding to 'Words a~ and a7: respectively_ Then p < q ¢:} 8(a~) <J 8(a;;:). 

vVc have described the theory for the special CthSCS of piecewise linear maps, 
but it applies equally well to nonlinear maps; in fact one does not even need the 
slope to exceed 1 everywhere. If the slope does exceed one on each branch (the 
map is hyperbolic or e}.lnmsive), and the subintervals rj are pairwise disjoint, 
then the semiconjugacy referred to above becomes a conjugacy. 

vVe call a word a minimal if the invariant coordinate of w is minimal with 
respect to <J in the invariant coordinates of the shift equivalence clthSS, i.e., 
8(a) ~8((Ti(a)), 'th. In the kneading theory of one dimensional maps, the minimal 
word is also called the itinerar,1.J of the orbit. vVe now briefly review some ideth,) 
from this area; for details see [39]. 

That portion of one-dimensional kneading theory with which we will be con­
cerned seeks to order points on the interval with respect to symbol sequences 
(;:1S in Proposition 1.2.47) and also to e}.l)licitly determine bifurcation sequences 
for 'unimodal maps of the type illustrated in Figure 1. 16, the canonical example 
of which is the quadratic family: 

(L23) 

Upon incrmtsing ft, the nonwandering set of ill' changes from being empty for 
ft < ~,to having a one-dimensional analogue of a hyperbolic horseshoe for ft > 
2. This sequence of bifurcations involves numerous period-doubling and saddle­
node bifurcations in an order which displays self-similarity: see [41, 198, 199]. 
Note that, for ft = 2) a homeomorphism on the interval [-2) 2] takes ill' into If 
[181]' ef. [76, §5.6]. 

The range of the map i,l. is determined by the orbit of the critical point c) 

which essentially determines the dynamics of the map. vVe assign to each peri­
odic orbit of i,l. a word which allows us to order bifurcations, much as itineraries 
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(a) (b) (c) (d) ((1) 

Figure 1.16: rv'IcmbcI's of the quadratic family i,I,: (a) ft < -±; (b) ft = ±; (c) 
I' E ~,2); (d) I' = 2; ((1) I' > 2. 

and invariant coordinates permit the ordering of points OIl the interval I. In­
tuitively, this word, the kneading invariant v(a), is the itinerary of the critical 
point c for the ft-value at which a point OIl the orbit a crosses over c. There 
arc some technicalities regarding which orbits actually contain points that cross 
c and whether they can be given an tkssociatcd invariant. These det ails arc 
uIlwieldy and largely UIlIlecessary for our purposes: the diligent reader should 
consult [39,41, 90]. 

Given a word a = 0, 1 0,2 ... an (withn ~ 3) one can th'Ssociatc such a sequence 
given by 

(L24) 

where c = ;(>2 if the ;r:2-parity of 0,1 0,2 . .. an~2 is even and c = J: 1 if it is odd. 
The two period one orbits have kneading invariant v(J:d = V(J:2) = J:f and the 
single period two orbit hth'S V(J: I J:2) = (J:IJ:2rx:. 

The important fact concerning kneading invariants and bifurcations of ill' is: 

Proposition 1.2.48 (Milnor and Thurston [125]) Let a:;" and a';/ be the mini­
mal words for periodic orbits of f". and let 1'1" I', be the I,-val'ues at which these 
periodic orbits are created. Then, with <I as before, v(ap ) <I v(a,) '* 1'1' < I',. 
Thus, for the quadratic map ill" we may completely characterise "which comes 
first" in the orbit genealogy. As above, the theory works for a more general clttss 
of unimodal maps than ill" the main requirement being that the maps have neg­
ative Schwarzian derivative [163, 39, 761, implying that, for each It, there is at 
most one stable periodic orbit. 

vVe have now sketched the requisite background material. In the chapters 
that follow, we will demonstrate how idetts from knots and links and d:ynamical 
systems theory can be drawn together. In doing so, we will be able both to 
answer questions in dynamical systems and bifurcation theory, and to discover 
new phenomena in low-dimensional topology. 



Chapter 2: Templates 

vVe now proceed with our program to investigate the link of periodic orbits in 
a three-dimeIlsional flow. In this chapter) we blend the two themes of Chapter 
I, the study of knots, and the study of h:)1)crbolic d:ynamics, to create a tool 
for analyzing knotted orbits of h:)1)crbolic flows: the template. This important 
tool, whose origins lie within the work of R. F. Williams [192, 193], will be our 
primary instrument for examining periodic orbit links. 

In §2.1 we review the natural role of branched one-manifolds thS attractoI's, 
foreshadowing the concept of a template. In §2.2, we give a thorough treatment 
of the Template Theorem of Birman and vVilliams [24] and then apply this the­
orem in §2.3 to a variety of important three-dimeIlsional flows. Finally: in §2.4, 
we construct a set of symbolic tools for describing and manipulating templates 
and the orbits that they carry. 

First, we consider the example which motivated much of this work (cf. [193, 
p. 111]): 

Example 2.0.1 Given a three dimensional flow, our main goal is to determine 
relationships between the link of periodic orbits (tkS a topological object) and 
the dynamics and bifurcations of the system. To proceed, we must be able to 
ttscertain which t:)1)es of knots and links a given flow supports. For a sufficiently 
complicated flow (e.g., on a bttsic set of dimension two), there exist a countable 
infinity of periodic orbits which fill up an attractor densely. In this cttse, even 
visualizing the flow may be a challenge. 

The following set of ordinary differential equations (ODEs) is known tiS the 
Lorenz system [114]: 

28J: - 11 - J:Z 

8 
3z +J:11, 

(2.1) 

A numerical integration of the system suggests an attractor: all orbits appear 
to collapse quickly onto a particular subsetC C ~a, called the Lorenz attractor. 
The structure of this attractor is unusual: it appears to be two-dimensional , yet 
is not a manifold. Rather, the attractorC (illustrated in Figure 2.1) resCInbles 
a branched two-manifold. Nevertheless, ttS Lorenz realized at the outset [1141, it 
htts infinitely many sheets. 

If we wish to understand the periodic orbits of this system, we need only 
consider those orbits which live onC, since all other orbits appear to converge 
toC, and hence none of them can be periodic. Thus, heuristically, we can reduce 
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Figure 2.1: The Lorenz attractor (computed via DsTool). 

the dimeIlsion of our problem by one: we need only COIl sider knotted orbits OIl a 
branched two-manifold. A template is just such a branched two-manifold which 
"supports" the periodic orbits of a flow. The theory of templates, which we treat 
in this chapter) is a rigorous method for applying this idea to general h:)1)crboiic 
flows OIl three-manifolds. 

2.1 Branched manifolds and attractors 

In order to motivate the Template Theorem of Section §2.2, we briefly describe 
the role of branched manifolds thS attractoI'S for hyperbolic systems. vVc begin 
with a discussion of branched one-manifolds in the dynamics of two-dimeIlsional 
maps before cOIlsidering the role of branched two-manifolds, or templates, in the 
d:ynamics of three-dimensional flows. 

Definition 2.1.1 A branched one-manifold is a topological space built locally 
from a finite number of branch point charts, th'S illustrated in Figure 2.2(a). Each 
chart htis a finite number (~ 1) of arcs emanating from a branch point along 
both sides of a common tangent. 

Example 2.1.2 The branched one-manifold of Figure 2.2(b) is known tiS the 
Plykin branched manifold, r p. 

Branched one-manifolds arc a key tool for understanding e'J:panding attractors 
for 2-dimensional maps. 
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(a) (b) 

Figure 2.2: (a) a branch point chart for a branched one-manifold; (b) the Plykin 
branched manifold, fp. 

Definition 2.1.3 For f : AI ~ AI a diffeomorphism, a sct A C AI is an attractor 
if there exists a compact set 1v C AI such that A = n~ofk (1V) and A is 
contained in the chain-recurrent set 1?(f). If 11A ha",", a h:)1)crbolic structure, 
then A is a hyperbolic attrnctor. Finally, A is an c'J:panding attractor if it 
is hyperbolic and hth'S topological dimeIlsion equal to the dimeIlsion of E'\ the 
uIlstable bundle. 

vVilliams [192] cOIlsidered the relatioIlship between expanding attractoI'S and 
branched manifolds (in any dimeIlsion). For two-dimeIlsional maps, the theory 
boils down to the following: 

Theorem 2.1.4 (Williams [192]) Let f : AI ...., AI be a diffeomorphism on a 
two-manifold AI 'With A c AI an c'J:panding attract or. Then, there c'J:i"ts an 
embedded branched one-manifold r C AI and a non invertible map .1 : r ...., r 
s·ueh that fl" is conJugate to the shift map on the inverse limit of (r,g). 

D fi ·t· 2 1 5 G· X X I· I·· lim (X '. . e III Ion .. lVeIl a map g : ~ ) t 1(1 'tTwer"c 'tTn'lt, +- ) g)) 18 gIVen 
th'S the space of all bi-infinite sequences ( ... ) J: ~ 1) J:o, J: 1 ) ... )) with g(J: k) = J: k+ 1 . 

TI I ·f . I lim (X 'k I ' '1(1811 t map th'SSOClatC( to +- ,g) ta C8 cae 1 J.:k to J:k+ 1 . 

The structure of the expanding attractor A in Theorem 2.1.4 is complicated 
it is locally the product of II{ 1 with a Cantor sct [192]. However) the map 

g : r ~ r is more tractable: c.g.) the edges of r form a rvIarkov partition for g. 
To understand the idea behind Theorem 2.1.4, and to provide an analogue for 
the Template Theorem of §2.2, cOIlsider the following: 

Example 2.1.6 COIlstruct a map fp : n«.2 ~ 11«.2 which hth'S the action illustrated 
in Figure 2.3(a). There is a compact region 1v C n«.2 with three holes, each 
containing a source, and an additional source at "infinity.)) 1v is foliated by line 
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segments and the action of fp takes 1v into itself, respecting the foliation and 
contracting each segment by a uniform amount. Hence, the segments arc stable 
manifolds of jp. 

1v 

) 
c d .~ 

<:} -1l4(7~~-----_c:-a 
fp 

Figure 2.3: (a) The map fp acting OIl 1v C JFl2 yields the Plykin attractor; (b) 
The induced map OIl fp. 

The attractoI', Ap , is given thS n",ff:(1V) and is locally the product of a Can­
tor sct with a one-dimeIlsional local uIlstable manifold; since Ap hth,) topological 
dimeIlsion one (it hth'S empty interior in n«.2 yet contains VV1~c(J;)), it is an expand­
ing attractor. This attractor is called the Plykin attractor after [144]. To realize 
the th'SSociatcd branched one-manifold, collapse each component of VV"'(;r;) niV to 
a point. Since fp respects the foliation by stable manifolds, the induced map on 
the branched one-manifold, gp, is well-defined. It is obvious from Figure 2.3(a) 
that the branched one-manifold is precisely the Plykin branched one-manifold 
fp of Example 2.1.2. The dynamics of fp is captured by the induced map gp 
which acts on fp tkS indicated in Figure 2.3(b). 

Exercise 2.1.7 Construct the subshift of finite t:n)e ttssociated with the Plykin 
attractor. 

Example 2.1.6 is central to the theme of this chapter: under certain hyperbolicity 
conditions, Theorem 2.1.4 guarantees that an invariant set for a diffeomorphism 
on a two-manifold can be "replaced" by a non-invertible map on a branched 
one-manifold, preserving the essential dynamics. Furthermore, note that, in 
particular, periodic orbits of the diffeomorphism are treated with respect 
they are isotoped along the stable foliation. If we suspend the Plykin map fp 
and embed the flow in TI«a, periodic orbits become knots and links. The action of 
collapsing a stable foliation necessarily preserves individual knot and link types. 

vVe will repeat this theme in the next section, substituting a three-dimensional 
flow for a two-dimensional diffeomorphism, and branched two-manifolds with 
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scmiftows for branched one-manifolds with non-invertible maps. vVc will take 
the cOIlstruction a step further in that we do Ilot merely cOIlsider "attractoI's" 
in three dimeIlsioIls. 

Remark 2.1.8 There is a great deal more to the story of branched manifolds 
and expanding attractoI's. In [1921, it is shown that an expanding attractor 
for a diffeomorphism OIl ann + I-manifold is cojugatc to the inverse limit of a 
diffeomorphism OIl a branchedn-manifold, the higher-dimeIlsional analogue of 
the branched one-manifolds. Several authors have extended or related results 
in dimeIlsioIls one (sec the literature OIl train tracks) and two (sec the work of 
Christy [37]). 

2.2 Templates and the Template Theorem 

vVc now cOIlsider an appropriate generalization of the branched one-manifolds 
of §2.1 for three-dimensional flows, such tkS that (lssociated with the Lorenz 
attractor of Example 2.0.1. 

Definition 2.2.1 A template is a compact branched two-manifold with bound­
ary and smooth expansive smniflow built locally from two types of charts: joining 
and splitting. Each chart, tiS illustrated in Figure 2.4, carries a semiflow, endow­
ing the template with an e}.1)(1Ilding smniflow, and the gluing maps between 
charts IIlUSt respect the smniflow and act linearly on the edges. 

(al (bl 

Figure 2.4: (a) a joining chart; (b) a splitting chart. 
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Definition 2.2.2 COIlsider a ftowbox I x I having scmiftow given by translation 
in the second coordinate. \Vc define a joining chart th'S the quotient space ((Ix 
I)U(I x Il)/ {(J:,11) = (J:,11) :11<::~} with the associated smniflow. Similarly, 
a splitting chart is defined as I x I minus the set {(J:, 11) : J: E (ft, *),11 E [0, ~)}. 

The joining chart of Figure 2.4(a) contains two incoming strips and one o'ut­
going strip, all of which meet tangentially at the branch line. The splitting 
chart of Figure 2.4(b) turns one incoming strip into two outgoing strips tk'S pic­
tured. One builds a template by cOIlIlecting the free ends of the outgoing strips 
to the free ends of the incoming strips between charts in a maIlIler to be speci­
fied. SiIlce the template must be compact, there may be no "free" ends, and the 
total number of charts and strips in a template Illust be finite. 

Each chart hth'S an inherited semiflow, by which we mean an irreversible flow 
(an action of 11«.+) a true flow is impossible since reversing the flow just below 
the branch line would violate uniqueness. The smniflow is overflowing in the 
sense that on the splitting charts, there is a gap in the strip through which 
the smniflow "spills over." Since we arc concerned with periodic orbits of the 
semiflow (i.e., knots), we ignore orbits exiting the template. 

vVe also require that each gluing map connecting the free edge of an outgoing 
strip to that of an incoming strip be linear. The smniflow tiS constructed is thus 
e}.lnUlsive in the sense that the noninvertible one-dimensional return maps for 
the smniflow induced by the branch lines arc expansive maps (these return maps 
arc also piecewise linear and hence uniformly h:)1)erbolic). This being the cttse, 
the d:ynamics (up to conjugacy) arc determined uniquely by the combinatorial 
description of the template in terms of charts and strips: there is no ambiguity 
in the semiflow. 

Remark 2.2.3 Given a template decomposed into joining and splitting charts, 
we will often place it in a type of "normal form." For every splitting chart, there 
is a gap through which the smniflow overflows. Propagate this gap backwards in 
the semiflow until it reaches a branch line in a joining chart: sec Figure 2.5. In 
this representation, each branch line htts two incoming strips and k ~ 1 outgoing 
strips. vVe will often represent templates in this form, with the understanding 
that (after a small perturbation at the branch lines) they arc actually built from 
joining and splitting charts. 

The relationship between templates and links of periodic orbits in three di­
mensional flows is expressed in the Template Theorem of Birman and vVilliams. 
This important result is the primary tool for the rmnainer of this book. 

Theorem 2.2.4 (The Template Theorem: Birman and Williams [24]) Given 
a flow CPt on a three-manifold AI hav'ing a hyperbolic chain-rec'U1Tent set, the link 
of periodic orbits L¢ is in bijective correspondence with the link of periodic orbits 
LT on a partie·ular embedded template T C AI (with LT containing at most two 
e'J:traneo'us orbits). On any finite s'ublink, this correspondence is via ambient 
isotopy. 
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/' /' 

Figure 2.5: By propagating gaps backwards, one obtains a normal form for a 
tmnplatc. 

Although a proof of Theorem 2.2.4 appears in [241, we include a proof for 
completeness, thS the methods will be of usc later. 

Proof: Let I? denote the chain-recurrent set of the flow ¢f OIl AI. By Theorem 
1.2.13, I? decomposes into a finite number of bthSic scts Bi< The proof depends 
upon the dimeIlsion of each bthSic sct B. Of course) if dim (B) = 0, there arc no 
periodic orbits and the result is trivially true. vVc treat the Ctk'SCS dim (B) = 1 
and dim (B) > 1 in the following subsectioIls: 

2.2.1 Case 1: a Markov fiowbox neighborhood 

Assume that dim (B) = L If we could COIlstruct a Poincare section to the flow 
OIl B, then Bowen's theorem OIl subshifts of finite type (Theorem 1.2.23) would 
imply that B is conjugate to a suspended subshift of finite type. Bowen [25] and 
Bowen and "Valters [28] have considered this situation, and have shown that 
such a cross-section does FAist, and can be taken to be a finite union of disjoint 
discs, {Lli}i;: , . 

Our strategy (first used in [24]) is to use the properties of rectangles (Def­
inition 1.2.24) and n-'Iarkov partitions (Definition 1.2.25) to construct a special 
neighborhood of B in AI. 
Step 1: rectangular rectangles 

Let Ll ::::: UiLli be a collection of embedded discs in AI which forms the afore­
mentioned cross-section to B. By Theorem 1.2.23, Ll n B is a Cantor set wit h 
a n-'Iarkov partition. Let n ::::: Uj R j be the rectangles of the n-'Iarkov partition 
(see Definition 1.2.24), and let 7 : n ~ n be the Poincare return map (a home­
omorphism). Note: since Ll n B is a Cantor set, one may effectively ignore the 
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role of "jIlt" in Definition 1.2.25. vVc wish to show that these rectangles may be 
cOIlsidered thS the intersection of B with two-dimeIlsional (literal) rectangles in 
the coordinates defined by local stable and uIlstable manifolds. 

Following [24, p. 14], for J: E R j choose the segment P(J:) C W,:,,(J:) such 
that its boundary lics in R j and such that it is the IIltt} .. imal such segment under 
inclusion. Choose IV'(:,;} C lVl~c(J;) likewise and cOIlsider the set 

OJ = U P(J:) U I" (J:). (2.2) 
xE/1. j 

From Definition 1.2.24, one can show that R j eLlis the cartesian product 
VVii(;r:) R j ) x VV't(;r:) R j ). Hence, Gj is a rectangular "grid" bounding a two­
dimeIlsional disc H j which must be homeomorphic to I x I: a two-dimeIlsional 
"rectangle.)) vVc will refer to the discs H j thS handles [53]) and denote their union 
H. 

Lemma 2.2.5 The handles H j are pairwise disjoint. 

Proof: Since we may refine the ftIarkov partition n to have rectangles of ar­
bitrarily small diameter (sec Definition 1.2.25), it remains to show that the 
rectangles Ri arc separated (t4') sets) by a nonzero distance. However, since the 
zero-dimensional sets Ri have no boundary in n, every J: E Ri is in its interior, 
and must be bounded away from any other R j by Condition 2 of Definition 
1.2.25 and the fact that rectangles arc closed. 0 

Step 2: the action of , on the handles 
Extend the return map, to the handles H. Although not well-defined ev­

er:ywhere, ' is still a homeomorphism on a neighborhood of n c H. 

Lemma 2.2.6 If T(Hi) n H j cp 0, then T(Hi) stretches completely across H j m 
the ·unstable direction, and T~l (H j ) stretches completely across Hi in the stable 
direction. Furthermore, ,(Hi) n H j has at most one connected component. 

Proof: By Condition 3 of Definition 1.2.25, T(W"(J:, Ri )) :J W"( T(J:) , R j ) for 
J: E R i . Reverse the flow direction to show the analogous result for stable man­
ifolds. Finally, ttssume that ,(Hi) n H j htts two components. Then, for J: E Hi, 
T(I"(J:)) <t I"(T(J:)), in violation of Condition 4 of Definition 1.2.25. 0 

Let A be the square matrix with each entry A(( j) equal to the geometric 
intersection number of ,(Hi) with H j . By Lemma 2.2.6, this number is either 
zero or one, and A is the transition matrix for the ftIarkov partition n. 
Step 3: a ftIarkov flow box neighborhood 

By flowing the handles Hi forwards and backwards in time, we construct a 
flowbox neighborhood 1V(B) for the handle set which appears tiS in Figure 2.6(a): 
there arc a finite number of incoming and o'utgoing flowboxes ncar each Hi. 

Consider the transition matrix A: the 'ith row of A records which handles 
Hi flows to. Thus, there arc Lj A(,i,j) components of ,~ l (H) n Hi. By Lemma 
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Figure 2.6: A rvIarkov ftowbox neighborhood of the zero-dimeIlsional btkSic set. 

2.2.6, each of these components stretches completely across Hi in the stable 
direction. Hence, there arc Lj ..4('i, j) outgoing ftowboxcs cOIlIlected to Hi- By 
reversing the time direction and applying the same argument, one shows that 
there arc Lj A(j, 'i) incoming ftowboxcs cOIlIlected to Hi and stretching in the 
uIlstable direction. Since T is a homeomorphism OIl nand n intersects the 
boundary of each handle Hi: the flow boxes must "linc-up" along the edges thS 

in Figure 2.6(a). 
Finally: we enlarge the ftowbox neighborhood 1v (B) slightly to have the form 

of Figure 2.6(b): a small perturbation is all that is required. This is done to fit 
the joining and splitting chart requirements in Definition 2.2.1. 

Lemma 2.2.7 The periodic orbits of ¢ are in bijective isotopic correspondence 
"With those in an embedded template T C AI. 

Proof: Given the rv'Iarkov flowbox neighborhood of 1v (B) constructed above, 
one "crushes" a stable foliation thS in Example 2.1.6 to obtain a branched man­
ifold. Specifically, form the quotient space given by identifying all points on 
W'(J:) n N(B), for J: E B. The effect of the collapse on the ftowbox neighbor­
hood is to take it to a collection of joining and splitting charts ttS per Definition 
2.2.1 and Figure 2.4. The collapsing procedure may be done smoothly, yielding 
an ambient isotopy on finite links of periodic orbits. 0 

This completes the proof of Theorem 2.2.4 in the cttse of a one-dimensional 
bttsic set. In this cttse, there are no "exceptional" orbits, ttS in the statement of 
Theorem 2.2.4 the knots and (finite) links are in bijective isotopic COITespon­
dence. 

Remark 2.2.8 Let us reformulate what we have done in terms of the s:ymbolic 
d:ynamics. The flow restricted to the one-dimensional bttsic set B is conjugate 
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to a suspended subshift of finite type. That is, any orbit can be put in 1: 1 cor­
respondence with a bi-infinite s:ymbol sequence in ~A) where A is the transition 
matrix for the subshift. In collapsing out the st rong st able foliatioIl, we arc 
identifying orbits which tk'S}'1nptotically converge in forwards time. This hth'S the 
effect of ignoring the pthst; hcnce, the template cOIlstruction "chops ofF the left 
half of every symbol sequence (the pth'St)) leaving a one-sided symbol sequence 
(the future). In particular, periodic orbits, whose pthsts and futures coincide , arc 
unaffected by this procedure. Orbits OIl a template can thus be put in bijective 
correspondence with a one-sided subshift of finite type (cf. R.emark 1.2.27). We 
will return to this idea and consider it carefully in Section 2.4. 

Exercise 2.2.9 Describe what happens, topologically and s:ymbolically, when 
one collapses out an 'unstable foliation instead of a stable one. Does this al­
ways/necessarily yield the "same" template? 

2.2.2 Case 2: the DA 

Assume dim (B) > 1. vVe reduce this scenario to that of CthSe 1 by a procedure 
known tiS the DA, or, derived from Arwsov. This modification to a flow is orig­
inally due to Smale [165], and has been mq)licitly described by R.obinson [153], 
Franks and Robinson [57, Appendix], and vVilliams [190]. Synonymous terms for 
this construction include Smale s'uryJer",lj and orbit splitting. Our ultimate goal 
is, ttS in Cttse I, to collapse AI by identifying orbits in a strong stable foliation. 
But we cannot always do so directly: 

Example 2.2.10 Let f : T' --t T' be the hyperbolic toml map of Example 
1.2.7 and let ¢t be the suspension flow ttssociated with f. This is a flow on 
the compact three-manifold T' x I/(J:,O) ~ (1(J:) , I), which is not T" since f 
is not isotopic to the identity map. This flow htts a hyperbolic chain-recurrent 
set; however, the dimension of the [unique] bttsic set is three (recall that t:)1)ical 
orbits of f cover T'2 densely). If one nevertheless collapses each stable manifold 
to a point, the resulting space is not a template. Recall from Example 1.2.7 
that stable manifolds of point s under f wind about on T'2 densely. This implies 
that for the flow ¢f, the stable manifold of any point is arbitrarily close to 
that of any other point; hence, collapsing stable manifolds for this flow yields a 
non-Hausdorff space .----- certainly not the desired object. 

The DA construction resolves this problem by first opening up a "hole" in 
AI and separating the invariant manifolds. 

Assume dim (B) = 3, and consider a closed orbit ;' along with a small tubular 
neighborhood lV( lV«(;') of diameter f. vVe will modify the flow ¢t on lV( tiS 
follows. For each J; E T let [eli, e'\ eC](J;) be the coordinate frame bttsed at the 
point J; spanning the stable, unstable, and center directions (this is uniquely 
defined by t he definition of hyperbolicity and by the Stable Manifold Theorem). 
For sufficiently small f, the local planes spanned by eli and e't foliate lV( wit h 
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meridional discs. COIlsider the vector field X) given by: 

J: = (J':s,J:v.,J: c) E lV( 
J: ct lV, 

The DA flow, ¢{)A) is defined to be the flow generated by the vector fidd 
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(2.3) 

(24) 

for some K > O. The effect of adding KX is to "push out" the flow along the 
local stable manifold of ;'. For very small K, there is no qualitative change in 
the flow. But for K larger than the contraction rate for the stable manifold of ;') 
the flow is altered. 

Lemma 2.2.11 For appropriate choice of increasing K, ;' bifurcates from a 
saddle-twe orbit to a so·uree along with one or two additional saddle-twe or­
bits in a small t·ub"Ular neighborhood of ,. 

Proof: COIl sider a local cross section II for the flow) transverse to ;'. TheIl, 
for K = 0, ;' is a fixed point under the induced return map. Consider further 
the cross section given by I = lVl~iC (;') n II for I sufficiently long: this induces 
a hyperbolic return map r on the one-dimensional segment I. For K = 0, the 
return map on I is a contraction by some factor ° < A < 1 (cf. Theorem 
1.2.9). Also, r may be orientation preserving or reversing, depending upon the 
orientation of the stable bundle E6 of ;'. 

Regard I thS the interval [-1, 1] with the fixed point corresponding to ;' at the 
origin. Then, for K = 0, the return map is conjugate to J: --t ±AJ:, depending on 
whether the map is orientation preserving (+) or reversing (-). Incre(J,sing K htts 
the effect of changing the map on a small neighborhood of the origin, incretising 
the slope (in absolute value). At a certain K* > 0, there is a bifurcation when 
the slope at ° is ±1 (cf. §1.2.3). "V hen r is orientation preserving, a pitchfork 
bifurcation occurs, since there is a symmetry J: H -J: imposed. In this CtiSe, two 
new periodic orbits,;,1 and ;,11, arc created, each isotopic to;' (though perhaps 
linked). In the nonorientable cttse, a period-doubling bifurcation occurs, creating 
a single orbit ;,1, isotopic to the twisted do'uble of T sec Figure 2.7. Each of the 
new orbits ;,1 and ;,11 arc of saddle-t:)1)e, and ;' htis become a source (;:1S pCI' the 
description of §1.2.3). 0 

Versions of the following proposition appear in [165, 153, 190, 57].1 

Proposition 2.2.12 Let A denote the complement of W"(;) for the DA flow 
¢{)A on B. Then A is a hyperbolic e'J:panding attractor. 

Proof: By definition. 
W"('1') = U dPA (W" ,('I')'). , ,f toe" (2.5) 

f>O 

j'I'he results are proved only for the CMe of the toral Anooov diffeomorphism of Example 
1.2.7. 
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Figure 2.7: Orbit splitting creates one or two new 8addlc-t~ypc orbits. 

hcnce, ¢{)A (lV-I~;c Cy)) :J lVl~;c (;') for t > 0 and the complement B \ lVl~;c (;') is a 
positively invariant region for the flow. This implies that 

A = n ¢i''' (AI \ Wi~,b)), (2.6) 
t>O 

is an attractor. To show that A is hyperbolic, note first that from Equation (2.3), 
stable manifolds arc preserved by the cOIlstruction (except that of ;', of course): 
hcnce, the stable bundle ES OIl A under ¢{)A is precisely that of the original 
flow <Pl' Although the DA perturbation to <PI disrupts the uIlstable bundle, E'\ 
it docs 80 gently. To produce an uIlstable bundle OIl A, it suffices to COIlstruct 

concs in T AIJ:) for J: E A, whose sides arc estimated from the effect of the DA 
perturbation on the unstable bundle of the original flow ¢t. Upon iteration, these 
cones converge to the new unstable bundle E't. This is a procedure familiar to 
d:ynamicists: accounts and examples appear in [135, 76]. 

To show that A is expanding (recalling Definition 2.1.3), we first show that 
the complmmmt, W"(;), is dense in B. Pick ~ E B. We claim that W'(O, 
the strong stable manifold of ~ under ¢h is dense in B. Since B is a bthsic set, 
Theorem 1.2.23 states that there is a :0.-'Iarkov partition for a cross-section of B 
with a continuous surjection from the subshift of finite t:n)e to the cross section 
of B. Hence, using the same trick ttS in Exercise 1.2.30, we can construct a 
symbolic stable manifold of ~ whose backwards orbit is dense in symbol-space. 
Then, since the map to B is a surjection, the stable manifold is dense. 

However, the DA perturbation leaves the stable bundle invariant, so the 
stable manifold of ~ under ¢{)A is also dense in B. Choose J: E A and iV-x: a 
small neighborhood in B. Any:tJ E iVx: n VVij(~) flows by ¢pA arbitrarily close to 
any point in B in backwards time; However, this implies that ¢~[1(:tJ) intersects 
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lVV'h') in the DA flow for t sufficiently large, since lV'\;') contains a tubular 
neighborhood of ;'. Since VVv. (;') is invariant under the flow) :tJ E VVv. (;')) which 
is thus arbitrarily close to J: E A. 

As such, VV'\;') is deIlse in the three-dimeIlsional bthSic sct B, 80 dim(A) :::; 2. 
COIlsider the periodic orbit ;'/. Since it is Ilot in Vvv.( ;'), it IIlust be a subset of 
A. Since A is an attractoI', a small compact neighborhood iVA can be chosen 
which is forward invariant. Since;,1 C A, it follows that VV1~;c (;,1) C iVA. By 
definitioIl, A is the intersection of the forward flow of 1V>I; thus; thS the forward 
flow of VVI~;c(;,1) is the invariant manifold lVV{-,,/)) it follows that VVV{-,,/) C A. 
Since VVI~;c(;,1) is of topological dimension two, so is A. 0 

Lemma 2.2.13 With the e",eeption of the additional orbits,' and ,", the peri­
odic orbits of CPt and those of cp{)A are in bijective isotopic correspondence. 

Proof: Let CPt denote the DA flow for a fixed tubular neighborhood iv, of ;' with 
diameter f > O. Shrink f continuously and consider the I-parameter family of 
flows CPt tk'S f --t O. For each sufficiently small f > 0, the invariant set A, is hyper­
bolic. Hence, all the DA flows on A, for (small) f > 0 are topologically conjugate, 
and the I-parameter family of homeomorphisms gives an isotopy between their 
periodic orbit sets. Since the DA flow is a modification of the original CPt on the 
tubular neighborhood iV" those periodic orbits which do not intersect iV, are 
identical, and hence isotopic. As f --t 0, every periodic orbit of CPf eventually falls 
out of iV, except T which is replaced in the DA by T;,1, and (if necessary) ;,11. 0 

Remark 2.2.14 By performing a DA splitting along T we have created one or 
two new orbits and reduced the topological dimension of our bttsic set to two. 
It is rmnarkttble that a small perturbation to an Anosov flow can reduce the 
dimension of the bttsic set. One can picture this tiS follows: consider VV,j'h') for 
the Anosov flow CPt. This invariant manifold runs through AI densely. After 
the DA perturbation, the creation of a source and two orbits ;,1 and ;,11 may 
be thought of tiS "splitting" what wttS lV-v, b') into a "thick" unstable manifold 
bounded by lVV'b,l) and VVV'h,II). Thus, like thickening the rational points of 
an interval to obtain a Cantor set in the complement, the complement of VVV'b') 
in the DA flow is an attractor which is locally the product of D'2 x C, where C 
is a Cantor set. 

Remark 2.2.15 From the work of vVilliams on expanding attractors [1921, it 
follows that the attractor A is transitive: a b;:lsic set. 

vVe may attain our goal of reducing the dimension of the bttsic set to one 
by performing another splitting on another dosed orbit. Suppose A is a basic 
set of dimension two. Since A is two dimensional and hyperbolic and AI three­
dimensional, the stable, unstable, and center bundles must each be of dimension 
one. Since A IIlUSt contain the center bundle, it IIIUSt also contain either the 
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stable or uIlstable bundle, leaving only the remaining direction. Hence, A is 
either an attractor or a rcpdlor. 

Assume A is a rcpcllor (this is the opposite of what one obtains from a DA 
OIl a three-dimeIlsional bth'Sic set, but one may reverse time and 80 obtain a 
rcpcllor). TheIl, th'S before, choose a closed orbit i' (if applicable, one of the 
"new" orbits obtained from the DA would do nicely) and modify the flow OIl a 
small neighborhood tk'S in EquatioIls (2.3) and (2.4). As before, this creates one 
or two new saddle-type orbits in the new bthSic sct, :.:/ and i,ll, while changing i' 
to a source. 

Let A denote the complement of VV,j·en in i\ The arguments of Proposition 
2.2.12 carryover almost verbatim to show that A IS a bthSic set of dimension one. 
The steps proceed thS follows, with details tiS in Proposition 2.2.12: 

L A is hyperbolic: orbit splitting leaves stable bundles invariant 
unstable bundles via cones. 

2. VV"( i') is dense in A: arguing ttS in Proposition 2.2.12. 

estimate 

3. dim A = 1: since VV,j'(i') is dense in the two-dimensional A, dim A :::; L 
but A contains one-dimensional flowlines. 

Also, tiS in Lemma 2.2.13, the periodic orbit set is unchanged except for the 
additional orbits i.l and i.l' since we modify the flow on an arbitrarily small 
neighborhood of an orbit. 

Proof of Theorem 2.2.4: After at most two orbit splittings, one may reduce 
the bttsic set B to the one-dimensional Cttse (1); then, by collapsing out a strong 
stable foliation, the desired template is obtained. 0 

Remark 2.2.16 In the cttse of the orbit splitting involved in the DA construc­
tion, one begins with a knot ;' and replaces it with either two isotopic copies 
of itself (perhaps linked), or with a "doubled" knot (perhaps twisted). Since 
there are at most two orbit splittings, there are at most two extraneous knots 
in the template which do not correspond to closed orbits in the original flow. 
Note, however, that any closed orbit is suitable for splitting; different choices 
may yield ostensibly diffenmt tmnplates. 

Remark 2.2.17 A version of Theorem 2.2.4 in higher dimensions would be 
desirable. There are impttssable obstructions to this, not the lettst of which is 
the fact that knotting and linking of orbits in dimensions higher than three is 
nonexistant. In addition, the orbit-splitting procedure is more dramatic in higher 
dimensions, where, instead of creating one or two additional orbits (an S1 bundle 
over SO)) an entire S1 bundle over Sk is created in dimension k + 3. Of course, 
under unusual circumstances, a high-dimensional flow contains global strongly 
contracting directions which allow one to first reduce to a three-dimensional flow 
and then proceed ttS usual; however, the original flow is not then essentially high 
dimensional. 
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Remark 2.2.18 Several authors have used branched two-manifolds of a slightly 
different form than the templates of this chapter these arc closed (boundarylc88) 
branched two-manifolds. The definition in terms of charts is slightly different 
(sec [192, 37]), but a dosed branched two-manifold can usually be transformed 
into a template via splitting along a finite number of orbits. These branched 
manifolds have been used to characterize h:)1)crbolic attractoI'S in flows [192, 37] 
tk'S well as to capture incompressible surfaces in three-manifolds [82, 48, 61]. 

2.3 Examples and applications 

In this sectioIl, we present a collection of examples of templates, along with 
typical situatioIls in which one may usc templates to capture the periodic orbits 
in a flow or a portion of a flow. The following subsections include a variety of 
topics, from ODEs to fibred 3-manifolds to time series. Though we will refer 
back to several of these examples in subsequent chapters, t he reader may skip 
or skim the following without serious loss of continuity. 

2.3.1 The Lorenz-like templates 

Example 2.3.1 (Lorenz-like templates) The simplest examples of templates 
are those formed from a single branch line chart with two strips: the Lorenz-like 
templates. For rH,n E Z, denote byC(rH,n) the template pictured in Fig­
un: 2.8(a). The two unknotted, unlinked strips have rH andn signed half-twists 
respectively. 

(b) (c) 

Figure 2.8: (a) The Lorenz-like template C(m,n); (b) the Lorenz template 
C(O,O); (c) the horscshoe template C(O, 1) = 1-1.. 

Example 2.3.2 The Lorenz template, C(O, 0), is pictured in Figure 2.8(b). This 
template is an idealization of the attractor for Equation (2.1) in Example 2.0. L 
The link of periodic orbits supported onC(O, 0) hth'S a number of interesting prop­
erties, tiS shown by Birman and vVilliams [23]. vVe list some of these properties 
here and refer the reader to [23] and [195] for proofs. 
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Theorem 2.3.3 (Birman and Williams [23], Williams, [195]) Let L be a link of 
I' ::> 1 components on [(0,0). Then L is a positive braid and also a fibrcd link 
(see Definition 2./1.10). Evcr,1J component of L is prime. Evcr,1J torus knot lives 
on [(0,0). 

Example 2.3.4 (the horseshoe template) The horseshoe template, H, is 
isotopic to the Lorenz-like template [(0,1) of Example 2.3.1. However, the 
method of obtaining this template from Smale's horseshoe map (Example 1.2.28) 
IS crucial. 

Recall from Example 1.2.28 that the standard horseshoe map f acts OIl a 
square ['2 C 11«.2) depicted in Figure 2.9. Suspending f yields a flow OIl a mapping 
torus ['2 x 51. Embedding this flow into II«a in the "standard" way (no additional 
twists) yields a well-defined suspeIlsion flow thS depicted in Figure 2.9. SiIlce f 
IS hyperbolic, the conditioIls of Theorem 2.2.4 arc satisfied and we may obtain 
a template, ti. 

t . ........ ~ 
i 

identify 

i i l i ~t_-_-_-__ 

Figure 2.9: The embedded suspension of the Smale horseshoe map may be col­
lapsed to form the horseshoe template H. 

The map f ht4" stable (contracting) and unstable (expanding) foliations 
whose leaves are horizontal and vertical lines respectively. To obtain a tem­
plate, we need merely collapse each leaf of the stable (or unstable, if we reverse 
time) foliation to a point. This appears in Figure 2.9 also, where the resulting 
template H is seen to be isotopic to the Lorenz-like template [(0,1). 

Holmes and Williams [93] and Holmes [88, 90] have made e}.1:ensive studies of 
which types of knots live on the template H: see [70] for a review. We will use the 
horseshoe template in Chapter 4 to derive more general results for bifurcations 
in ODEs. In contrttst to Theorem 2.3.3, the following proposition will be proved 
in §4.2 concerning knots on H: 

Proposition 2.3.5 (Holmes and Williams [93]) The horseshoe template H con­
tains no (p, q) torus knots for which p < 3q/2 (or, eq·uivalcntly, q < 3p/2). 
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In general, little is known about which knots live OIl the Lorenz-like templates 
for arbitrary rH,n even for such a simple family th'S torus knots. But perhaps 
knowing something about which knots live OIl somcC(rn,n) gives information 
about the m .. istcIlcC of this knot OIl other Lorenz-like templates. 

Problem 2.3.6 For which pair.> of integer.> (m, n) and (m', n') i.> it true that 
any knot 'Which lives onC(rn,n) Tfrust also live onC(rnl ,nl)? 

Sullivan [168] hth,) given a partial answer to this question. \Vc will return to 
Problem 2.3.6 and fill in some of the gaps later in §3.2 and §3.3. 

2.3.2 Nonlinear oscillators, horseshoes, and Henon maps 

In this and the following subsectioIl, we indicate how hyperbolic scts and tem­
plates such tk'S those introduced above arise in some specific cltkSSes of flows and 
maps. 

Versions of the Smale horseshoe (Example 1.2.28) can appear naturally in 
periodically forced oscillators of the form 

f(J:,:i:,t) = f(J:,:i:,t+T), (2.7) 

for fixed T > O. Letting j; = U, t = f), and regarding f) tkS an element of 
5 1 = 1I«1 /TZ, we may rewrite (2.7) tiS a vector field on a two-manifold cross 51: 

j; 11 

1i f(J:,ll,lJ) (2.8) 

iJ 1. 

Example 2.3.7 \Ve give two examples of forced oscillators tiS per Equation 
(2.8): the Huffing equation, 

j; U 

(2.9) 

iJ 1; 

and the forced, damped pendulum, 

- sin ¢ - liv + ;'0 + ;'1 COS wf) (</J,v,lJ) E S1 X lI<1 X S1 (2.10) 

iJ 1. 

Here, Ii, T w, etc. are parameters which may be varied e"A'iernally to induce bifur­
cations in the flows. These and other examples arise in physics and engineering 
tiS models of mechanical and electrical devices (e.g., [137, 4]). In the C,1se of 
Equation (2.9), uniformly bounded solutions such tiS periodic orbits live within 
a compact region D'2 x 51 of the phttse space; in the C<1se of Equation (2.10), 
the appropriate region is 51 x II X 51 = A X 51, where A denotes the annulus. 
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In general, a global cross section II = {(;r:,:t/,8): f) = O} exists OIl which the flow 
of (2.8) induces a Poincare map, P. For both equations (2.9) and (2.10), with 
positive damping b > 0, 

( 
T ) det DP = mq) !, trace[Jacobian(P)] dt = (2.11) 

80 P uniformly contracts an:(;4", and there is a compact trapping region (D'2 or 
A, in these CthSCS) into which all orbits eventually enter and thereafter nnnaiIl, 
and which contains the attractor. Sec, for example, [76, 85]. For specific ODEs, 
such thS those above, for small damping (b) and forcing (;')) certain perturbation 
methods, pioneered by rv'Iclnikov [1201, may be used to prove the existence of 
transverse homoclinic orbits to a hyperbolic periodic orbit : sec Figure 2.10(a) 
and [76]. TheIl, by Theorem 1.2.33, there c"Aists a Smale h01's(1shoe within the 
return map. rv'Iore precisely, some iterate pN of P contains a full shift on two 
symbols. In the simplest Ctk'Se, 1v = I, and, tiS indicated in Figure 2.10(b), for 
the Duffing equation, we have precisely the suspension of the horseshoe given in 
Figure 2.9. rv'Iore complicated embed dings of the horseshoe template within a 
forced oscillator are, of course, abundant in cttses where 1v > L 

(a) (b) 

Figure 2.10: A Poincare map for the forced Huffing equation; (a) invariant 
manifolds; (b) the "simplest" horseshoe. 

vVhile properties of such Poincare maps, including the e"Aistence of homoclinic 
orbits, can be proven, explicit expressions for these maps cannot be obtained. 
Consequently, much in the spirit of Guckenheimer's and vVilliams's construc­
tion of a geometrical Lorenz attractor [771, Henon, in 1976 [831, proposed a 
polynomial mapping that models the behavior of the Smale horseshoe? This 

2He actually did t his in connection with the Lorenz equation in a d ifferen1 parameter regime 
from (2.1). 
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two-parameter family may be written 

(2.12) 

(A diffeTCnt, albeit equivalent form appears in [83].) ObsCTve that detDF = f 
is cOIlstant, 80 that, for 0 < f < 1 the map preserves orientation and contracts 
area uniformly, thS do the Poincare maps discussed above. For f = I, it preserves 
area, and for f = 0, all orbits collapse in one iterate to the parabola:tJ = ft J;2, 

after which their behavior is governed by the one-dimeIlsional map 

(2.13) 

mentioned in § 1.2.3. 

For large I' [I' > (5+~v5) (1 + lei') sufficcs [42]], (2.12) contains a full shift 

OIl two symbols, while for ft < ~(1 + f)2, the chain-recurrent sct is empty. For 
fixed f and inCnltkSing It, an infinite sequence of bifurcatioIls occurs in which 
the h01's(1sho(1, with its countable sct of periodic orbits, is created. The Henon 
map provides a useful model for horseshoe creation, to which we shall return 
in §4.2. In fact, it ht4'S recently been shown that the Renon map with small 
f is present in an ttsymptotic limit for high iterates of all Poincare maps near 
the (global) bifurcations in which homocIinic orbits are created in quadratic 
tangencics [140, 131]. 

Due to the first component of the vector field (2.8), the maps considered 
above preserve orientation and derive from, or lead naturally to, flows with 
orbit crossings all of one sign, hence yielding positive templates. In the ne"A-t 
subsection, we introduce a cIttss of flows which yield more general templates. 

2.3.3 Shil'nikov connections 

Recall the Poincare-Birkhoff-Smale Theorem (Theorem 1.2.33), which we used 
in Section 1.2.2 to embed horseshoe-like templates within a three-dimensional 
flow containing a transverse homocIinic orbit to a periodic orbit. The ne"A-t 
family of examples we consider is derived from a similar theorem, due to L. 
P. ShiFnikov, which proves the existence of suspended horseshoes near certain 
types of homoclinic connections to a fixed point: 

Definition 2.3.8 A Shil'niko'U connection for a flow CPt on ~n (n > 3) is an 
orbit r which satisfies the following two conditions: 

1. r is homoclinic to a hyperbolic fixed point p, and r IIlUSt be bounded away 
from all other fixed points. 

2. The linearization 
w'i, AV

'}, with 
Dol of the flow at p htls leading eigenvalues {_AS ± . p 

A">A'>O w ¥ o. (2.14) 

By "leading" is meant that any other eigenvalues have real parts outside 
of the interval [-A',A"]. 
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(a) (b) 

Figure 2.11: (a) A ShiPnikov cOIlIlection in II«Y; (b) the n-'Iarkov partition for a 
suspended h01's(1shoe. 

Shil 'nikov cOIlIlectioIls occur frequently in systems modeling physical phe­
nomena, such thS flow through pipes [361, coupled oscillators [1871, magnctocoIl­
vcctiOIl [1551, and electric circuits [38, 105]. The following theorem wtkS first 
proved by Shil'nikov [160, 161]' with extensions and repetitions later in [179] 
and elsewhere. A number of tm .. -tr)Ooks also contain these results along with 
proofs [76, 188, 189]. 

Theorem 2.3.9 (L. P. Shil'nikov [161]) Let <PI be a flow .,·upporting a Shil'niko"U 
connection r to a ji'J:ed point p. Then, there c'J:ists a co'untuble infinity of 8'U8-

pended Smale hor.,e.,hoe., in the flow in an arbitrarily .,mall t·ub·ular neighborhood 
of the homoclinie orbit r. Under a .,mall C 1 pert·urbation, finitely many of the.,e 
horseshoes remain. 

vVc give an outline of the proof of Theorem 2.3.9 in §4.4.2. 
The entire flow IlCaI' r docs Ilot satisfy the hyperbolicity requirements of 

Theorem 2.2.4: moreover, there arc numerous features of the dynamics and 
(especially) bifur(~ations of flows ncar such orbits that arc still poorly understood. 
However, the individual horseshoes implied by Theorem 2.3.9 arc hyperbolic, and 
if, tk'S in the previous subsection, we restrict our attention to any such subset of 
the flow, we may employ Theorem 2.2.4 to obtain a template which captures a 
portion of the flow, concluding that orbits on the embedded horseshoe templates 
arc in one-to-one isotopic correspondence with a proper subset of orbits in the 
flow ncar r. This is our strategy for finding templates within this class of flows. 
The ta,sk, then, is to carefully track how the suspended horseshoes arc embedded 
within the flow. 

The proof of Theorem 2.3.9 involves constructing Poincare sections transverse 
to r ncar the fixed point p and linearizing the flow ncar p and along r to obtain 
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approximate return maps. The horseshoes arc cOIlstructed by flowing pairs of 
rectangles IlCaI' p and then along f: sec Figure 2.11. 

Since these h01's(1sho(1s arc hyperbolic, we can keep track of their stable and 
uIlstable foliatioIls. By collapsing one set of these foliatioIls and carefully follow­
ing the embedding, we COIlstruct an embedded template. First, we collapse the 
flow IlCaI' the fixed point p, yielding two strips which, due to the spiraling nature 
of the flow , wind about Vvv'(p) in 1v full twists before fusing at a branch line: sec 
Figure 2.12(a). Secondly, we follow the template along the uIlstable manifold 
Vvv'(p), twisting an uIlspecified number of times along with the stable/uIlstable 
bundles ofVV,j·(p) before reconnecting: see Figure 2.12(b). (The number depends 
upon the size of the neighborhood of p on which the local, almost-linear, map 
is constructed: the neighborhood Inust be taken sufficiently small for various 
cone estimates, necessary for hyperbolicity, to hold.) Assuming that Vvv'(p) is 
unknotted, this construction yields an embedding of the template obtained by 
inserting a finite number of half-twists in the horseshoe tCInplateC(O, 1) after 
the branch line. 

L.~ ____ --=::====+.~~?., 

(It) (b) 

Figure 2.12: (a) The template near the fixed point p; (b) global twisting along 
the unstable manifold. 

The fact that there are an indeterminate number of twists in the above 
template is a difficulty: given a system containing a ShiFnikov connection, it is 
known only that these templates FAist in the flow for sufficiently large amounts 
of twisting. vVe will address this later in §4.4, after developing more tools. 

Despite the apparent indeterminacy of these templates, they exhibit several 
interesting features. For example, all of the suspended horseshoes near the 
homoclinic orbit are disjoint and link one another in various ways. In addition, a 
number of extensions to Theorem 2.3.9 exist [179]: besides suspended horseshoes, 
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there arc also suspended full iV-shifts for any 1v > O. Hence, a variety of 
complicated templates arc embedded in these flows, which capturc (portioIls 
of) the periodic orbit set. Finally, when the vector field is symmetric or when 
two-parameter families arc cOIlsidered, there is the possibility of a fixed point p 
supporting a pair of Shil 'nikov cOIlIlectioIls. Such a structure might appear thS in 
Figure 2.13(a). The appendix of [71] catalogues the possible templates in these 
situatioIls. 

J---r-r---I identify 

(a) (b) 

Figure 2.13: (a) A pair of ShiPnikov cOIlIlectioIls at p; (b) two templates cornl­
sponding to coupled horseshoes IlCaI' a pair of cOIlIlectioIls. 

2.3.4 Fibred knots and links 

COIl sider a thin knotted wire suspended in space through which pthSSes an electric 
current. On the complement of the knot, the current induces a magnetic field 
which may have closed field lines. The way in which these closed curves entwine 
the wire is intimately related to the knotting of the wire. This concept of an 
induced field on the compliment of a knot is made mathematically precise by 
the notion of a fibred knot. 

A knot or link K in Sa is fibred if the complmmmt Sa \ K fibres over S 1 with 
fibre a Seifert spanning surface AI [154, 33]. rv'Iore specifically, 

Definition 2.3.10 A knot or link K is fibrcd if there exists an orient able surface 
AI with boundary (JAI = K and a homeomorphism cP : AI --t AI such that the 
complement Sa \K is homeomorphic to the quotient space (AI x [0, 1])1 ~ where 
(",0) ~ (<1>(,,),1). The surface AI is the Seifert .,panning ,,·uriaee and the map 
cP is the morwdromy. 
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The simplest example of a fibrcd knot is the un knot, which hth'S th'S fibre the 
disc D'2 and mOllodromy the identity map id : D'2 ~ D'2. Figure 2.14 illustrates 
the fibration of the complement in Sa) where it is seen that a fibration is akin to 
"blowing a bubble" AI with bubble-ring K 80 tk'S to fill out all of the complement, 
through the point at infinity, returning to the initial configuration. In Figure 
2.14, each disc hth'S the un knot th'S its boundary we have cut open some of the 
discs for visualization. 

Figure 2.14: The fibration of the un knot complement by discs. 

In fibring the complement in this IIH1IlIlcr, a flow is induced OIl Sa \ K by 
following a point OIl AI tk'S it is pushed through the complement. This is precisely 
the suspeIlsion flow of the monodromy cp embedded in Sa \ K. The monodromy 
cP is thus a global return map for the flow, defined on the Seifert surface AI, 
which completely captures the d:ynamics. Alternatively, there m .. ists a map IT : 

Sa \ K ...., 51, called the fibration, which has as its fibre 1i"~1 (0) for 0 E 51 
an embedded copy of AI. Then the flow on the complement is precisely the 
integration along the gradient of the fibration IT : Sa \ K --t Sl. 

Any periodic points of the monodromy cP become periodic orbits of the sus­
pension flow which coil about the btkse knot K in a manner determined by the 
fibration. The resulting collection of knots wttS dubbed, by Birman and vVilliams 
[24], the planetary link for K with monodromy <1>: LK .... 

Since AI is a surface and cP a diffeomorphism, one may invoke the Niclsen­
Thurston cla,ssification of surface diffeomorphisms [178, 46]: 

Theorem 2.3.11 (Nielsen [138], Thurston [177]) A s"Urfaee diffeornorphi.5Tn <1>: 
AI --t AI is isotopic to a 'unique homeomorphism ~ s'uch that one of the following 
holds: 
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1. ~ is periodic, i.e., ~k = id for some k; 

2. <1> is pseudo-Anosov (sec below); or 

/J. ~ is reducible, i.e., there c'J:i"ts an invariant family C of disjoint simple 
closed c'urucs on AI ,,'ueh that the restriction of cp to the complement of C 
decomposes into a finite Tmmber of disjoint maps 'Which arc either periodic 
or psc'udo-Arw8o'U. 

We refer the reader to [46, 178] for precise definitions of pseudo-Anosov maps. 
Such maps come with a pair of transverse mctk'SuI'cd stable and uIlstable fo­

liatioIls, F IJ and F,j·) which uniformly contract and expand respectively under 
iteration of the map. As such, these maps have a natural hyperbolic structure 
th'Ssociatcd to them and have "complicated" d:ynamics with a deIlse sct of pe­
riodic orbits. The uniqueness portion of Theorem 2.3.11 allows one to specify 
"the" fibration of K, and, hence, "the" planetary link of K, denoted LK. In 
addition, a theorem of Asimov and Franks [13] implies that a pseudo-Anosov 
map minimizes the dynamics within its homotopy cltk'S8: the following fact is a 
corollary. 

Theorem 2.3.12 (Asimov and Franks [13]) If <I> is any rnonodrorny associated 
to a fibred knot (or link) K with ·uniq·ue psC"udo-Anosov representative <1>, then 
the link of planetary orbits LK LK . .j, is a proper s·ublink of LK.q,. 

Thus, we consider the unique link of planetary orbits LK tkS being the minimal 
sublink which all monodromies of K share. Birman and vVilliams [24] noted that 
the link LK is an invariant for K which might provide interesting information. 
In their study of planetary links, they carefully considered the figure-eight knot 
(see Figure 1.1(c)), which is fibred with fibre a punctured torus and monodromy 
isotopic to the Anosov map of Example 1.2.7, 

<1>=[21] 
1 1 ' 

(2.15) 

:2 :2 acting on the universal cover TI«. \ Z [33, p. 73]. 
Because the pseudo-Anosov map cP satisfies the hyperbolicity requirements 

of Theorem 2.2.4, it is possible to collapse the complement of the figure-eight 
knot down to a template. Birman and vVilliams, in [241, derive two templates 
for the fibration of the complement of the figure-eight knot (corresponding to ~) 

one via direct visualization, and the other indirectly by means of branched 
coverings of Sa: we recall their templates in Figure 2.15. 

Of course, since the map ~ of Equation (2.15) is Anosov, the DA process 
of §2.2.2 Illust be performed; hence, there may be two eA-traneous orbits on the 
template not present in the original flow. 

Simple fibred knots and links in Sa often (if not always) give rise to very 
complicated templates supporting their planetary links. The lVhitehead link, 
Lw, displayed in Figure 2.16, is a fibred link with pseudo-Anosov monodromy. 
Using the techniques in [241, we have shown that the planetary link for Lw is 
supported on the template illustrated in Figure 2.17. 
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Figure 2.15: The :idircct" and :'indircct" versioIls of the figure-eight template. 

2.3.5 Templates from time series 

Finally, we cOIlsider a clth'SS of examples about which little is known rigorously, 
but which may have important applicatioIls, particularly for experimentalists 
seeking geometrical models of d:ynamical processes. Consider an experimental 
mCthsurcmcnt of a continuous scalar variable whose dynamical behavior is com­
plicated: c.g.) a temperature reading, a chemical concentratioIl, or a speed. The 
data is received in the form of a time scries: a fUIlction p : [0, T] ~ II{, where T 
is the length of the data segment (in units of time). 

Given a complicated time series, one would wish (among other things) to 
eA-tract the essentials of the underlying d:ynamics. For example, consider a t:n)ical 
orbit of the LoTCnz system (Equation (2.1)), and let p(t) denote the projection 
of this orbit onto one of the coordinates (see Figure 2.18). Over long periods, 
this might appear to be without coherent form; yet, given its origins, there is 
certainly structure within the data. One is more suspicious of, say, the Dow 
Jones average, hiding some covert pattern. 

Typically, one employs a variety of means for accessing "hidden" d:ynamical 
information within a time series: Fourier spectral content, statistical m(1(hSUr(lS, 
fractal dimensions, and other tools provide certain types of information, while 
ignoring other, more geometric data. Fortunately, a theorem of Takens [175] 
suggests that one can often embed an attractor into a low-dimensional manifold 
via a "time delay" function, capturing the geometric and topological properties: 

Theorem 2.3.13 (Takens [175]) Lct AI bc a compact 'II-manifold "With a C'­
flow 9t and a C'2 -function 7 : AI ~ 11«1 . Then, generically, the time-delay 
mapping cp : AI ~ II«.'2n+ l defined by 

(2.16) 
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Figure 2.16: The Whitehead link Lw. 

is an embedding. 

A topological perspective hth'S been proposed by rv'IindliIl, Solari, Gilmore, 
Tnfillaro, et al. [128] (ef. [180]), in which knot and link types of periodic orbits 
in the embedded flow arc computed and related to a template. vVc outline the 
procedure detailed in [128]. 

L Given a "chaotic" time series p(t), extract a finite collection of low-period 
uIlstable periodic orbits, {I'd;\'. This is done by examining "close returns" 
within the data, which arc thssumcd to wander back and forth among many 
uIlstable periodic orbits. The low-period orbits arc c;:;ksicst to spot. 

2. rv'Iap the time series into n«H via the (TakeIls) time-delay fUIlctioIl, and 
tk%umc that it is an embedding. There arc several ways to realize this via 
different "filters" of the data. Clearly: this may not be possible in general: 
for s-uccess, orbits must appear to lie on a topologically two-dimensional 
attractor. 

3. Consider the (small) collection {;d of low-period unstable periodic orbits 
computed in step (1). Embed these in TI«a thS per the embedding of step 
(2). Calculate their knot types, linking numbers, and self-linking numbers 
(i.e., twisting of the stable/unstable bundles). These form a busis for the 
ind·ueed template. 

4. Let Tp denote the "simplest" template in 11«.(1 which contains the bttsis {I'd. 
For example, if a global cross section to the flow exists, Tp is a template 
consisting of one branch line such that each I'i lives on Tp and crosses the 
branch line the same number of times ttS the period of I'i in the return map 
of the flow. The knot types, linking numbers, and self-linking numbers tell 
one how the strips of Tp, each of which contains at lettst one I'i, are knotted, 
linked, and twisted, respectively. 
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Figure 2.17: The vVhitchcad template. 

After producing the induced template Tp for the data sct p, one may now 
proceed to verify that the template Tp provides an accurate model of the dy­
namics. This can be done in a number of ways: c.g.) find higher-period orbits in 
the data sct and confirm that these live in Tp with the appropriate embedding, 
or take another data set, pi) and compute an induced template for this set. 

"Vhell the induced template cOIlstruction IS successful, there arc a number 
of benefits both to the C"Al)crimcntalist and to the theorist hoping to model the 
C"Al)crimcnt from which it derives. First, an induced template offers a certain 
degree of prediction one may identify a periodic orbit in the template, then 
go "hunting" for it in the data set. A successful example of this is documented 
in [128]. Secondly, one may verify models of the system. Should one model the 
mq)erimental system with a set of ODEs, one takes a time series of the ODE 
solution and constructs the induced template for this data set. If the induced 
template for the model differs from the induced template for the experiment, 
this may indicate a shortcoming in the model. 

There are, however, serious questions concerning this approach. E}.l)erimen­
tal systems are rarely three-dimensional and hyperbolic; hence, the use of tem­
plates to model them is, at the very lethst, suspect. In addition, the only guiding 
principal behind the choice of the induced template is Occam's Razor. As such, 
it is not surprising that many of the induced templates computed in practice 
are isotopic to the horseshoe template,C(O, I), or its mirror image [128, 180] 
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Figure 2.18: A time series derived from the Lorenz equatioIls. 

(though see [106] for an exception). 
These doubts notwithstanding, there arc numerous open questioIls about the 

usc of induced templates for time series, whose answers could be of great value 
to C"Al)crimcntalists and modelers of complicated d:ynamics. 

2.4 A symbolic language 

rvluch of this book is concerned with templates and the links they carry. To 
analyze these, it is often useful to extract 8'ubtemplutcs, or subsets which arc 
themselves templates (sec Definition 2.4.6). In the late eighties, onc of us [rvIS] 
noticed that the template V, illustrated in Figure 2.21 below, contains a sub­
template which is isotopic to itself: sec Figure 2.22 (this wthS used to show the 
m .. istence of highly-composite knots on V [169]). In this section, we introduce 
conventions for symbolic descriptions of orbits and templates, which enables us 
to significantly generalize this kind of procedure to CthSes in which direct visual­
ization is not possible. 

2.4.1 Markov structures and symbolic coordinates 

Recall from the proof of the Template Theorem in §2.2 that there is a natural 
cOITespondence between orbits which remain on a template and one-sided s}'1nbol 
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sequences in a subshift of finite t~)1)c: in part icular, following upon Remark 2.2.8, 
we have 

Lemma 2.4.1 Given a template 7, label the .,trip., {J:i :.j = l..N}. Let AT be 
an 1v x 1v matri'J: 'With entr,1} ..47(( j) = 1 if the incoming portion of J.:i meets the 
o'utgoing portion of J:j at a branch line, zero otherwise. Then:ET, the set of all 
forward orbits 'Which remain on I, is precisely the set of admissible scq'ucnccs in 
the .,·ub.,hift of finite type rrivCT! by AT· 

Proof: Sec the proof of Theorem 2.2.4, or simply collapse T along the transverse 
direction of the scmiflow) reducing T to an oriented graph. TheIl the orbits OIl 

T arc one-sided directed paths OIl this graph: cf. Remark 1.2.22. 0 

The way in which orbits fit together OIl a template T is described by placing 
a coordinate system OIl the branch lines {ej : j = L.AI}, following the kneading 
theory of §L2.3, and specifying the induced coordinates on ~T' This ordering 
of orbits on a template is a key ingredient in discerning the relative placement 
of orbits on a template which might be too complicated to visualize. 

Definition 2.4.2 Let 7 be a template with strips labded {J:,}:v Denote by 
{ej } i'l the branch lines of T (one for each branch line chart). Then ~T is 
partitioned into 1v branch segments, denoted {,Bi(T)}jV, where 

.8i (7) {a = "0"1'" ... E:ET : (l{] = J:,}. (2.17) 

Denote by ~lj C ~T the union of ,Bi(T) over all 'i such that the strip ;':i emanates 
from the branch line ej. vVe will sometimes refer to the union of the ,Bi(T) thS 
the branch .,et, denoted .8(7). 

Proposition 2.4.3 There e'J:ists a total ordering <J on each ~lj 'Which respects 
the topology of ~lj: that is, if a<Jb and {an} is a seq'uence converging to a then, 
for s'ufficiently largen, an<Jb. 

Proof: This follows from the kneading theory [125] , as outlined in §1.2.3. We 
construct <J mq)licitly in what follows, and it will be seen to have the following 
property: <J is the total ordering induced by the one-dimensionality of ej. That 
is, any point of an ej is an orbit which "begins" on ej. Orienting ej yields a total 
order on ~lj which respects the topology. 0 

For the moment, ttssume T is an orient able template. Each branch line ej is 
one-dimensional. Hence, the set of branch segments in each ej are ordered (up 
to orientation of ej). If, for example, the branch segments ;':1 , ;'>2, ... ,;':p lie in e 1 

in this order, then choose <J ttS either 

(2.18) 

Having chosen an orientation for each ej, one then orders each ~lj lexicograph­
ically with respect to the ordering on the generators {;,:d. That is, given a and 
b E ~lj' let J equal the index of the first s:ymbol in which a and b disagree: 

J = min {j : "j cp bj } . (2.19) 
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TheIl a<Jb if aJ <JbJ) else b<Ja. Of course, one canIlot compare points in different 
:El

j
: there is no notion of orientation for points OIl disjoint branch lines. SiIlce 

T is oricntablc, the lexicographical ordering of itineraries corresponds to the 
ordering OIl the branch lincs and it yields a natural coordinate system. 

For Ilolloricntabic templates; the issue is no more difficult, but it docs demand 
more bookkeeping. If a particular strip, say J;j) contains an odd number of half­
twists (i.e.) the return map is orientation reversing OIl that intcrvaI), then one 
must keep track of the parity of that symbol in using <J thS in the invariant 
coordinate cOIlstruction for the one-dimeIlsional map If' of §L2.3. 

Specifically: given a nonorientable template 7, construct a provisional order­
ing <J th'S for an orient able template induced by the ordering on the individual 
branch lines (tiS above). This ordering <J does not, however give an ordering 
on 7 which respects the topology of the branch lines. Now, given some pla­
nar presentation of 7 (a pictorial representation in which all the branch lines 
lie within the plane), each strip J:i will have T(J:i) half-twists for some signed 
integer T(J:i). Partition the strips {J:d according to those which are orientation 
preserving (T(J:i) even) and those which are orientation reversing (T(J:i) odd). 
Note that this partition depends on the choice of planar representation, and, in 
practice, one wants to choose tiS simple a presentation tiS possible. Given points 
a and b in :E;j) define J as in Equation (2.19), and consider the parity:=: E {O, I} 
which keeps track of orientation 

(2.20) 

Then define the ordering <J on :E;j in terms of the provisional ordering <J by 

2=0 

2=1 
a <I b """ a<Jb 

b <I a """ a<Jb. 

This ordering <J reflects the "physical" ordering of orbits on the nonorientable 
template 7. It is clear that this procedure can be e,1sily implemented on a 
computer. 

Equipped with the ordering <J, we can treat :ET tiS being embedded in a 
finite disjoint union of one-dimensional segments (although :ET is really a Cantor 
set). As such, we will introduce some notation for branch segments. Recall from 
Definition 2.4.2 that :ET partitions into 1v branch segments, where ,8i (7) denotes 
all itineraries beginning with J:i. Since this geometrically represents all orbits 
which begin at the J:i-strip, we will consider ,8i (T) tiS a closed interval, reflecting 
the total ordering <J: 

Definition 2.4.4 Given 7 a template with strips {J:d;v and branch set ,8(7), 
let the ·ith-lcft-bo·undary, !Jf(T), be the point of .Bi(TJ which is <I-minimal. Sim­
ilarly, let the ·ith-right-bo·undary, !J[(TJ , be the point of .Bi(TJ which is <1-
maximaL The bo'undar;1J set, a(TL is given tiS the union of {a1(7), a[(T)} over 
'l. 
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It is clear that a(T) cOIlsists of the 21v eventually periodic orbits which together 
comprise the boundary of the template. 

Remark 2.4.5 In flows whose templates have a single branch line, correspond­
ing to a global cross sectioIl, it is natural to identify the period of a closed orbit 
with the number of intersectioIls with the branch linc. Often, this coincides 
with the number of strands in a closed braid representation. In the more general 
context of the present work, we identify the period of an orbit with the number 
of intersectioIls of the orbit with all branch lines (hcnce, the period of the orbit 
for the return map induced by the branch lincs). In all Cth'SCS it coincides with 
the length of the periodically repeating block in the corresponding orbit word. 
vVe will thus sometimes refer to this block length tk'S the symbolic period. 

For a given template T, the s:ymbolic data; L.T,AT ,,8(TL(J(TL and <J, 

encode the d:ynamics and the combinatorial structure of the template. They do 
not, however, specify the topology of the enclosed orbits, nor do they provide 
invariants of the underlying link LT, since one may change the embedding of 
T without altering the symbolic data. Conversely, we may refine the rvIarkov 
partition (i.e., increttse the number of branch segments) without discanling any 
orbits from the template: see Figure 2.19 for an example. Even so, these s:ymbolic 
tools do become useful in describing proper infinite sublinks and in describing 
the relative placement of complicated orbits. 

Figure 2.19: Two templates which carry the same dynamics and topology on 
the periodic orbits, but which have different s:ymbolic structures. 

2.4.2 Subtemplates and template inflations 

In the study of templates and their properties, there are varying "scales" at which 
one may choose to work. Often, the knowledge of which types of individual knots 
or links appear on a given template is useful: this is a "small scale" question. 
For example, in §4.2, we will see how careful bounds on the genus of individual 
horseshoe knots can be used to derive uniqueness and bifurcation results in a 
family of Henon maps. On the other hand, one might ttsk "large scale" questions 
about whether two entire templates (including all their orbits) are equivalent. 
This perspective will come into play in Chapter 5. Here, however, we focus on 
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a "medium" scale question: we examine subsets of orbits which arc proper yet 
non-finite. These arc described via the notion of 8'ubtemplutcs. 

Definitions and examples 

Definition 2.4.6 A .,·ubtcrnplutc S of a template T, written SeT, is a topo­
logical subset of T which, equipped with the restriction of the smniftow of T to 
S, satisfies the definition of a template (Definition 2.2.1). 

A subtmnplatc IS thus a compact branched submanifold with boundary, for which 
the original smniftow restricts to an expanding smniftow. 

Example 2.4.7 An example of a subtmnplatc of the Lorenz tmnplatc IS given 
in Figure 2.20. "V hell we "cut" along the boundaries of the subtmnplatc S c 
£(0,0), we can remove S and isotope it into the nice presentation of Fig­
un: 2.20(c). The move from part (b) to part (c) is one that we will encounter 
often in the remainder of this work: it is the so-called belt trick, in which a curl 
is exchanged for a full twist. 

(c) 

Figure 2.20: (a) a subtmnplate S within qo, 0), (b) when removed from qo,O), 
(c) is isotopic to qO,2). 

Note that S is a very special subtmnplate ofC(O, 0) in that S is diffeomorphic 
to qo,O) (it is in fact isotopic to qO,2) recall Figure 2.8(a)). Although this 
is not always the CtkSe, a diffeomorphic relationship between a template and a 
subtmnplate opens up a new set of objects. 

Definition 2.4.8 A template rerwrrnalization of a template T is a smooth em­
bedding fIt : T 4 T which respects orbits (i. e., it comIIlutes with the semiftow). 
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It follows from Definition 2.4.6 that the image of a template nmormalizatioll 
fJt(T) is a subtcmplatc of T which is diffeomorphic to T. Returning to Example 
2.4.7, the subtmnplatc S CC(O, 0) is the image of a template nmormalizatioll 
9t: qo,O) Y qo,O). 

The terminology for Definition 2.4.8 aris(1s from the one-dimeIlsional return 
maps for a template induced by the branch lincs [47]. The image of a template 
nmormalizatioll is merely a nmormalizatioll of the return maps, suspended in 
accordance with the template structure. vVc prefer) however) to think in terms of 
nmormalizing the branched two-manifold itself, since template nmormalizatiolls 
carry with them the topology of the periodic orbits tk'S welL 

SiIlce a template nmormalization fIt acts on orbits of T diffeomorphically, fIt 
maps periodic orbits to periodic orbits: hence, there is a topological action on the 
underlying link LT. "V hen this action is trivial, we say that the nmormalization 
is isotopic. 

Definition 2.4.9 Let fIt : T 4 T be a nmormalization on an embedded tem­
plate T C Sa and let 'iT denote the inclusion of T into Sa. If 'iT and 'iT 0 fIt arc 
isotopic mnbeddings of T in Sa, then fIt is an isotopic rcrwrmalization. 

The e"Aistence of a template nmormalization immediately allows one to iterate 
fIt on the nmormalized subtmnplate. This procedure enables one to extract very 
"deep" subtmnplates, which may contain significant information about the peri­
odic orbit link. "V hen the nmormalization hth'S trivial action on the topology of 
the underlying periodic orbit link, we may iterate to obtain complicated subtem­
plates whose orbits have extremely long s:ymbolic period, while still controlling 
the individual knot and link types. 

Figure 2.21: The template V. 

Example 2.4.10 The first example of an isotopic template nmormalization 
(without that terminology) wttS given by IvI. Sullivan [169]. Let V denote the 
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embedded template of Figure 2.21, having two branch lincs with a total of four 
strips, {J':1,J>2,J:a,J:4}. The template V IS embedded such that none of its strips 
arc knotted or twisted, but note that it contains crossings of both positive and 
negative types. The nmormalizatioll taking V into itself IS illustrated in Fig­
ure 2.22, from which it IS clear that the image IS isotopic to the domain; for the 
positive and negative twists produced by the belt trick exactly canceL 

Figure 2.22: An isotopic template nmormalizatioll OIl V. 

Thus far) a template nmormalizatioll embeds a template within itself, and 
any subtcmplatc which is diffeomorphic to its domain can be described by a 
nmormalization. However, agivcIl template may contain numerous subtmnplates 
which are dynamically thS well ttS topologically distinct from the original, just ttS 
one-dimensional maps may contain different maps embedded deep within. This 
phenomenon in I-d maps leads to the study of nmormalizations between clttsses 
of maps [73]. vVe wish to generalize template nmormalizations in a similar 
manner. 

Definition 2.4.11 A template inflation is a smooth embedding fIt: S 4 T of a 
template S into a template T which respects orbits (i.e., it commutes with the 
semiflow). 

It follows from Definition 2.4.6 that the image of a template inflation fIt(S) is 
a subtmnplate of T. A template nmormalization is a special form of a template 
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inflatioIl, and we will often usc the more general term. The analogous notion of 
an isotopic template inflation follows: 

Definition 2.4.12 Let fIt : S 4 T be an inflation of a template S C Sa into a 
template T c Sa. Let 'is and 'iT denote inclusion of Sand T respectively into 
Sa. If 'is and 'iT 0 fIt arc isotopic mnbcddings of S in Sa) then fIt is an isotopic 
inflation. 

There arc many bthSic questioIls about subtmnplatcs and template inflatioIls, 
c.g.: 

Problem 2.4.13 Given a template I, which templates embed [abstractly] in 
T (i.e.) which arc images of inflatioIls)? Given an embedded template I, what 
arc all the subtmnplatcs of T (i.e.) which arc images of isotopic inflatioIls)? 

vVc will obtain in §3.3 the surprising answer that all orient able templates em­
bed in any I (after a slight perturbation at the branch lines). Furthermore, 
we will show that certain templates contain isotopic copies of all templates thS 
subtmnplates. 

The goal of working with template inflations is to understand properties of 
deep, complicated subtmnplates within a given template. To that end, isotopic 
inflations arc useful, in that we can keep track of the knots and links which 
live "deep within" a template by pulling back the isotopy. To keep track of 
where exactly these complicated subtmnplates lie, we usc the induced action 
of an inflation on the itinerary space in order to derive "coordinates" for a 
subtmnplate ttssociated to a given inflation. 

Symbolic actions of inflations 

Lemma 2.4.14 A template inflation 9\ : 8 Y T ind·uee", an embedding 9\ : 
:Es y :ET whose action is to inflate each symbol {J:i : ·i = 1..M} of:Es to a 
finite admissible word {wi = "W1 ... "Wn(i) :·i = 1..N} in the symbols of:ET. 

Proof: by Definition 2.4.11, fIt maps the branch lines of S into branch lines of 
I. Hence, each strip of S (corresponding to a generator J:i of :Es) is mapped to 
a finite sequence of strips in I, corresponding to a finite admissible itinerary for 
T 0 

The image under fIt of any orbit on S is thus obtained by "inflating" each 
symbol J:i in the itinerary by the word wi (which in some cttses may consist of 
a single letter). This immediately implies the following useful result: 

Corollary 2.4.15 GivCTI 9\ : 8 y T a template inflation, the branch set and 
the bo·undary of the s·ubtemplate 9\(8) arc givCTI by 

Bi(9\(8) ) 
iJ(9\(8)) 

9\(8,(8)) 
9\(iJ(8)) 

{9\(a);a E .8,(8)} 
{9\(a); a E iJ(8l}. (2.21) 
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vVc wish to cOIlsider the branch set ,8(fJt(S)) (l"S a set of "coordinates" cOIlsisting 
of 1v "subintervals" of the branch set of T which indicate where S resides within 
T. vVc note that the image of a branch segment under an inflation is not an 
interval in the sense that all orbits between its endpoints arc Ilot necessarily 
part of the subtmnplatc (recall there arc "gaps" in the branch lincs). Yet, if we 
cOIlsider the 1v subintervals given by ,8(fJt(S)) , we have a relative mC;:h'Surc of the 
depth of an inflation. For example, if a template T contains a nested sequence 
of subtmnplatcs Ir, C ... c T2 c Tl C I, then the same inclusion exists OIl the 
branch scts ,8(7;) within ,8(T). Or, given two subtcmplatcs of I, the information 
encoded in their symbolic branch sets can be used to determine whether these 
subtmnplates are disjoint, or which subtmnplate is "closer" (under <J) to a given 
periodic orbit. 

Example 2.4.16 For an example which will demonstrate the s}'1nbolic actions 
of an isotopic inflation, we return to the isotopic nmormalization of V from 
Example 2.4.10. From Figure 2.22, one traces the image of the four strips 
{J:1 ,J>2, J:g, J:4} to obtain the s}'1nbolic action: 

1 
J:1 H J:1 
J>2· H J: 1 J>2 

J:g H J:g 

J:4 H J:aJ:4 

(2.22) 

The branch segments of the subtemplate are given by 

.81 (:D(V)) 

.82(:D(V)) 

.Ba(:D(V)) 

.84 (:D(V)) 

:D ([(J:1)OC ,J:1 (J:2J:4) OCll = [(J:1)OC ,J:1 (J:1J:2J:aJ:4)OCj 

:D ([J:2 (J:a)OC, (J:2J:4) OCll = [J:1J:2 (J:a)OC, (J:1J:2J:aJ:4)OCj 

:D([(J:a)OC ,J:a (J:4J:2) OCll = [(J:a)OC ,J:a (J:aJ:4J:1J:2)OCj (2.23) 

:D ([J:4 (J:1)OC, (J:4J:2) OCll = [J:aJ:4 (J:1)OC, (J:aJ:4J:1J:2)OCj . 

The boundary components of the subtemplate, a(;:D(V)), are given by the end­
points of the intervals above. 

vVe encourage the reader to work through this example carefully, correlating 
the geometric description of Figure 2.22 with the symbolic description of Equa­
tion (2.22). This procedure is used extensively in Chapter 3. 

Unfortunately, one cannot endow the symbolic structure with very much 
information about the topology of the infinite link. However, the hyperbolicity 
of the underlying flow does give a nice structure to the space I:T which we hope 
to utilize tkS much ttS possible. By looking at the ordering <J and by considering 
the relationship between iterated subtmnplates and their "coordinates" in terms 
of branch sets, we have a set of tools for describing and manipulating "deep" 
sublinks of the link of periodic orbits. vVe will use these in the neA-t chapter to 
prove some bttsic, ttS well ttS some surprising, results. 



Chapter 3: Template Theory 

In this chapter) we usc the tools of Chapter 2 to build a collection of general 
results OIl templates and template links, noting applicatioIls to the dynamics 
of three-dimeIlsional flows along the way. vVc begin in §3.1 with a treatment 
of properties of the individual knots and links which arc supported on a given 
embedded template. TheIl, in §3.2, we usc the methods developed in §3.1 and the 
previous chapter to prove the C"}.istCIlCC (and abundance) of 'universal templates: 
templates which contain all knots and links among their dosed orbits. In 
§3.3, we continue this line of inquiry to examine the 8'ubternplute problem: the 
enumeration of all subtmnplatcs of a given embedded template. 

These results, which arc fairly general in nature, will lead to numerous specific 
conclusions in this and in subsequent chapters when applied to the examples 
introduced in §2.3. 

3.1 Knotted orbits on templates 

Question 1 Given an embedded template T, does it contain a nontrivial knot? 
How many s'uch knots are present? How are these distrib'uted? 

In this section, we will answer Question I, giving applications to the dynamics 
of flows. 

3.1.1 Alexander's Theorem for templates 

In many of the results to follow, we will need to represent template knots and 
links thS closed braids. vVe begin with an analogue of braiding for templates: 

Definition 3.1.1 A template T is said to be braided if T is embedded in D' x S1 
in such a way that every closed orbit on T is a closed braid: that is, each 
meridional disc D'2 x {f)} intersects the curve transversely in a fixed number of 
points. A template is said to be positive if it can be braided in such a way that 
every closed orbit is a closed positive braid. 

Recall Alexander's Theorem (Theorem 1.1.13), which states that any link is 
isotopic to a closed braid. The corresponding statement for templates is also 
true, as shown by Franks and vVilliams [58]. 

Theorem 3.1.2 (The Alexander Template Theorem: Franks and vVilliams 
[58]) Any template T may be i"otoped ,,0 that it i" a clo"ed braided template. 
Furthermore, if T is orientable, it may be arranged s'uch that in a planar pro­
Jection, all the "trip" of T arc flat (untwi"ted). 

69 
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The proof closely follows that of Alexander's Theorem for links [3]: a nice account 
of the latter can be found in [33, Prop. 2.14]. In the proof of Alexander's 
Theorem, one chooses a tcnativc braid axis, and then iteratively "flips" strands 
of the link about the braid axis until they arc all aligned. Here, instead of 
wrapping strands about a braid axis, one manipulates strips. To obtain a flat 
presentatioIl, one uscs the belt trick of Example 2.4.7 to exchange a full twist for 
an additional trip about the braid axis. Half twists, which arise in Iloll-oricntabic 
tmnplatcs, of course canIlot be straightened. 

3.1.2 Concatenation of template knots 

Given two periodic points of ~lj the sct of all orbits starting OIl the branch 
line ej we wish to define an "addition" operation which ht4" both symbolic and 
topological interpretations. 

Definition 3.1.3 Let a OC and b oc be distinct periodic points of ~() Then the 
concatenation of a OC and b oc , denoted a OC CD b oc , is the point (ab)OC E ~{j' 

Remark 3.1.4 The concatenation operation is well-defined: since a OC and b oc 

are both points on a particular branch line [j, the orbit (ab)OC IIlUSt be admis­
sible. Note, however, that ab may equal uk for k > 1 and some u, tiS in J:IJ:2J:1 

concatenated with J:1J:2. In this C,1se, we would say (J:IJ:2J:I)oc (J:1J:2)OC = 
( ,.2,., ) cc 
«, 1«,2 . 

Given the concatenation operation, we wish to understand the topological action 
on periodic orbits. vVe begin with a cltiSS of concatenations which behave nicely. 

Definition 3.1.5 Choose two distinct points u and v E ~{j and ttssume that 
u <J v. Define (u, v) to be the set of all point x E ~{j such that u <J x <J v. Then 
u and v are said to be adjacent if, 

Thus, u and v are adjacent if no other points on their orbits appear between u 
and v. 

In order to simplify the next few results, we circumvent the exceptional C,1ses 
of R.emark 3.1.4: 

Lemma 3.1.6 If a and b arc distinct nontrivial "Words and ab = uk for k > 1 
and some u, then a OC and b oc are not adjacent. 

Proof: Decompose a = u ia l and b = b l u j , where 'i + j = k - 1 and albl = u. 
Assuming (arbitrarily) that a<Jb and that 'i > 0, consider the point (ui~1alu)OC, 
which is a shift of a OC . Then, since a oc <J U OC <J b oc , it follows that 

whence it follows that a OC and b oc are not adjacent. 

(3.2) 

o 

The concatenation of adjacent orbits is similar in spirit to taking a connected 
sum: only one crossing is added. 
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Lemma 3.1. 7 Let T be an embedded template, and let a OC and hoc be adjacent 
periodic points in ~{j' The planar presentation of the knot corresponding to 
a OC hoc differs from that of the link eOITCsponding to a oc 'union hoc by the 
addition of a single eTOssing (as illustrated in Firrure ,1,1)' 

Proof: Place T in a planar presentation and consider the branch line i j which 
contains the points al)(; <J hI)(;. By isotoping T if necessary, a neighborhood of i j 

will appear locally thS in Figure 3.1(a) there are two cttses depending on which 
strip is "on top.)) By properties of the ordering <J, it follows that 

(3,3) 

so that the concatenated orbit appears tiS in Figure 3.1 (b): there is a new crossing 
whose sign is dependent upon the stacking order of strips. The orbit (ah) I)(; 
follows a then h: the ordering of points on other branch lines does not change. 
p,/lon: specifically, if, on any branch line, ((ria) I)(; <J ((rj a) 1)(;, then it follows that 
(ui(ah))OC <I (uj(ah))OC for any 'i,j < lal, Hence, a OC hoc may be isotoped 
to the link al)(; union hI)(; with a single crossing inserted at the branch line ttS 
specified, 0 

: 

( 
........ 

: 
;' 

(ah), , 

(a) (b) 

Figure 3.1: Concatenation of adjacent periodic points effects a local change ttS 
above. 

Lemma 3.1.7 immediately yields: 
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Corollary 3.1.8 Let T be an embedded template, and let a OC and hoc be ad­
jacent periodic points in ~lj 'With self-crossing Trumbers Ca and Cb respectively. 
Then, the self-crossing Trumber of the concatenation a(X; hex; is given by 

(34) 

'Where f = ±1, depending 'upon a(X;, b(X;, and I, is the sign of the crossing of 
Lemma /i. 1. 7. 

Definition 3.1.9 The twist of a ribbon (annulus or rv'Iobiu8 strip) in Sa with 
c crossings and t signed half-twists (in a given planar presentation) is given thS 

c + &t and is an isotopy invariant (sec Lemma 5.3.4 for a proof). Given K a 
closed orbit OIl a template I, the twist of K) TK) is defined to be the twist of the 
normal bundle of T restricted to K. That is, the bundle of normal directioIls to 
T along K is an embedded ribbon in Sa with twist TK. Equivalently, this ribbon 
is the local stable manifold to the orbit. 

Corollary 3.1.10 Let T be an embedded template, and let a OC and hoc be adJa­
cent periodic points in :E;j' Then the twist of the concatenated knot corresponding 
to the point a oc hoc is given by 

(3.5) 

where f = ±1, depending 'upon a, h, and T. 

Proof: Apply Lemma 3.1.7 to Definition 3.1.9. o 

Corollary 3.1.11 Let T be an embedded pO.5iti"Ue template, and let a OC and hoc 
be adjacent periodic points in :El

j 
for some j. Then the germs of the concatenated 

knot corresponding to the point a OC hoc is bo'unded below as 

(3.6) 

Proof: Arrange T tkS a braided template with all crossings positive. Via Equation 
(1.3), the genera of the knots corresponding to a OC and hoc are, respectively, 

(
hOC' _ CO -]Vb + 1 

g ) - 2 ' (3.7) 

where c denotes number of crossings and 1v denotes number of strands. The 
concatenated knot a OC G) hoc htiS iVa + 1Vb strands in its braid presentation, and 
it htis crossing number given by Equation (3.4). Thus, 

(3.8) 



3.1. KNOTTED ORBITS ON TEMPLATES 73 

Since all crossings arc positive prior to and after concatenation, ek (aex::, hex::) ~ O. 
If f = -I, then in concatenation we have removed a (positive) crossing; thus, 
for f = -I, ek(aex::,bex::) > 0 prior to concatenation, and the result follows. For 
f = + 1, it is obviously true. 0 

Corollary 3.1. 11 gives a partial answer to a generalization of a conjecture of 
vVilliams's: 

Conjecture 3.1.12 Let Tbe a positive embedded template. Let aex:: and hex:: be 
periodic itineraries in :El

j 
(not necessarily adjacent). Then, genus is monotonic 

under the operation: 1 

(3.9) 

vVe will usc the operation in the ne"A-t subsection, when we describe where on 
a template knots live. 

3.1.3 The existence of knots on a template 

Theorem 3.1.13 Given an embedded template T, there e'J:ists a nontrivial knot 
as an orbit on T. 

Proof: Our proof is in the spirit of Proposition 4.4 of [58], in that we rely upon 
the Bennequin inequality.:2 Arrange T tkS a braided template ttS pCI' Theorem 
3.1.2. Choose aex:: and hex:: in some branch set component :El

j 
with aex:: and hex:: 

adjacent. Assume that the twist of aex:: or hex:: is nonzero. If not, then replace 
aex:: with aex:: G) hex::. By Corollary 3.1.10, the twist of the concatenated knot is 
nonzero and this orbit is still adjacent to hex::. 

Given aex:: and hex:: with r(aex::) ::F 0, concatenate repeatedly to form the orbit 

(3.10) 

vVe will usc the Bennequin inequality, Equation (1.5), to bound the genus of this 
knot. By Corollary 3.1.8, the self-crossing number of (anh)ex:: is 

(3.11) 

where Ca (resp. co) is the self-crossing number of aex:: (resp. hex::), ta is the signed 
number of half-twists in the presentation of the embedded normal bundle of aex::, 
and f = ±1. Sec Figure 3.2 for the count of the terms quadratic inn. By 
Equation (1.5), 

2g((anb)OC)::> ICan' + &tan(n - 1) + Cb + (2€k(aOC , bOC) + c) nl 
-(nNa + Nb) + 1 

(3.12) 

1 An exception occurs as in Remark :LIA)\vhich \ve could circumvent by defining the genus 
of (uk) 00 to be k times t he genus of U OO • 

2It is an open (and challenging) problem to prove t his theorem without resorting to Ben­
nequin's inequali ty. 
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SiIlce the twist Ta ¥ 0, Ca + &ta ¥ 0; hcnce, Ca"b IS quadratic inn thS pCI' (3.11). 
Thus, for somen, the genus of (anb)(X; is nonzero. 0 

k k J 
~ ~ 

!! j ! ,/ 
/ / 

m~ 
, , 

/ / 

/ H/ 
(a) (b) 

Figure 3.2: (a) each half-twist OIl k-strands yields &k(k - 1) crossings; (b) each 
crossing of k-strands over j-strands yields kj crossings. 

Corollary 3.1.14 Given an embedded template I, there c'J:ist" an infinite Tt'Um­

ber of distinct knot twes as orbits on T 

Proof: Lctn ~ (Xl above. o 

From this, we may recover the Franks-vVilliams Theorem for flows OIl Sa: 

Theorem 3.1.15 (Franks and Williams [58]) Any C'-flow on Sa which has 
positive topological entropy Tfl/Ust display an infinite Tt'Umber of distinct knot types 
as closed orbits. 

Proof: By a [deep] theorem of Katok [97], a C' flow with positive topological 
entropy Illust contain a hyperbolic periodic orbit which ht4') a transverse homo­
clinic connection. The Poincarc-Birkhoff-Smale Theorem, Theorem 1.2.33, then 
thsserts the e"Aistence of an embedded Smale horseshoe in the flow. By the Tem­
plate Theorem, this bth'Sic set collapses to an embedded template in Sa which 
captures knot and link types. This template, and hence the flow, supports an 
infinite number of knot types by Corollary 3. L 14. 0 

Remark 3.1.16 Theorem 3. L 15 is a beautiful result, yielding a great deal of 
topological information from purely dynamical data. The connection is thus 
established: dynamically complicated hyperbolic flows on Sa force topologically 
complicated knots tiS orbits. Several converses exist: for an example, see the 
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rv'Iorgan-vVada Theorem in Appendix A. Another well-known converse is the 
Seifert Conjecture, recently resolved in the smooth CthSe by K. Kuperberg [107]. 
This result states that there exist smooth nonsingular flows on Sa containing no 
periodic orbits whatsoever. 

From Theorem 3.1.13 we may also derive information about how knots are 
distributed on :ET. vVe show that the nontrivial knots do not confine themselves 
to any proper subregion. 

Corollary 3.1.17 Let T be an irreducible template ...... that i8, the 8'ub8hijt of 
finite type defined on :ET has a dense orbit. Then, given any point x in :ET, there 
e'J:ists an infinite Tmmber of distinct knot types represented in an arbitrarily small 
neighborhood of x, 

Proof: Choose a small f-neighborhood lV( of x in :ET and pick two distinct 
periodic points a(X; and h(X; E lV( (this is always possible since the periodic 
points are dense in :ET for T irreducible). If necessary, shift h(X; to be adjacent 
to a(X; this does not remove it from lV(. Consider the template inflation 

{ 
;(:1 H a 

'" H b ' 
(3,13) 

where Ta (To resp.) is the twist of a(X; (h(X; resp.) andC(rTI,n) is the Lorenz-like 
template of type (rTI,n) (see §2.3.1). This inflation is well-defined since a(X; and 
h(X; are adjacent. The image of fIt htis branch set 

: Ta , To even 
: Ta even, To odd 
: Ta , To odd 

(3,14) 

which is contained within a 2f-neighborhood of a(X;. By Corollary 3.1.14, this 
subtmnplate contains an infinite set of distinct knot t:)1)es. 0 

Remark 3.1.18 Any template obtained from a btisic set of a flow is irreducible, 
since btisic sets have dense orbits. A non-irreducible template is, from our per­
spective, an anomaly. 

3.1.4 Accumulations of knots 

Knowing that knot types are "densely packed" on any given template says noth­
ing about their precise distribution. vVhat are the chances of a figure-eight knot 
living arbitrarily close to a trefoil? To an unknot? To answer this (in part), we 
will explore the special role played by unknots with zero twist. 

Proposition 3.1.19 Let T be an embedded template, Supp08e that 80me point 
u(X; E :El

j 
represents an 'unkrwtted periodic orbit with zero twist. Then, for 

ever,1J periodic point a(X; in :El
j 

s'uch that a(X; and u(X; are separable, there e'J:ist 
infinitely many periodic points in :El j which have the same knot type as a(X;, and 
these acc'uTn'ulate onto u(X;. 
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Proof: Assume (after shifting perhaps) that a(X; and uCX:: arc adjacent. vVc claim 
that the concatenation uCX: aCX:; = (ua)(X; is the cOIlIlected sum of the two 
original knots. 

Since a(X; and u(X; represent separable knots, there is a 2-8ph(11'(1 52 which 
bounds the knots OIl opposite sides. By placing the sphere in general positioIl, 
we may tk%umc that 52 intersects the template T transversally. Denote by I 
the subset of the branch line ej which is bounded by the points u(X; and a(X;. 

Let 1v C Sa denote a tubular neighborhood of uCX:: U I U a(X; in Sa. vVc 
claim that 1v nTis isotopic to the configuration of Figure 3.3. To show this, 
note that the space Sa \ 1v is isotopic to a solid torus (the complement of the 
unknot uCX::) with an interior solid torus removed (a neighborhood of the knot 
a(X;) and a (perhaps knotted) hole connecting the boundaries of these solid tori, 
corresponding to the arc I. Since a(X; and u(X; are separable, the solid torus hole 
in inessential (it is contained within a ball in the solid torus). As such, one may 
use the "light bulb trick" if a light bulb hangs from a knotted cord, the cord 
can be isotoped to one without a knot while fb..ing the light bulb to show that 
1v can be isotoped to the configuration of Figure 3.3 (see [154, p. 257]). 

Figure 3.3: The intersection of 1v and T. 

Given1vnT thS in Figure 3.3(a), the orbit (ua)(X; is isotopic within T (hence, 
within Sa) to a curve within 1v. This isotopy involves pushing the orbit "out­
wards" so that it completes a circuit in a neighborhood of a(X;, crosses to h(X; 
through I, continues around h(X;, then goes back across I. 

After the isotopy, it is clear that (ua)(X; is the connected sum of u(X; and a(X;. 
Since u(X; is an unknot, (ua)(X; htt.8 the knot type of a(X;. Since u(X; is unknotted 
and untwisted, (ua)(X; is also separable with respect to u(X; and the process may 
be iterated, creating the sequence (uka) (X;, which accumulates on u(X;. 0 

A converse to Proposition 3. L 19 holds for positive templates and provides a 
clue to the distribution of knots on templates. 

Theorem 3.1.20 Let T be a pO.5itive embedded template. S·upp0.5e that a .5e­
q'uence of distinct periodic points a~ in ~T all correspond to the same knot 
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type. Then any acc'urn'ulation point of this seq'uence of the form uCX:: represents 
an 'untwisted 'unkrwtted periodic orbit. 

Proof: Arrange I tkS a positively braided template ttS per Theorem 3.1.2. Given 
uCX:: an accumulation point for the sequence a~, reindex this latter sequence to 
denote the subsequence which converges to uCX::. Forn sufficiently large, a~ nlust 
be of the form (ukbn) cx:: for k any fixed number: this is pictured in Figure 3.4. 

If uCX:: is nontrivially knotted, then by Equation (1.3), C,t > 1'\[V.' where C,t is 
the self-crossing number and 1v,l. is the number of strands in the braid represen­
tation of uCX::. From the form of a~ = (ukbn)CX::, it follows that the genus of 
a~ is greater than or equal to k times the [nonzero] genus of uCX::. As k can be 
chosen arbitrarily large, the sequence {a~}n will not have bounded genus. 

Figure 3.4: A portion of the orbit a~ forn large. 

If uCX:: is an unknot of twist 7,1. > 0, then there are at lettst &7v.k(k - 1) cross­
ings of a~ = (ukb)CX:: with uCX:: (cf. Figure 3.2). Since, forn large, k is large, 
Equation (3.8) implies that the genus of the sequence {a~} is unbounded. vVe 
conclude that uCX:: is an untwisted unknot. 0 

Theorem 3.1.20 implies that, on a positive template I, the collection of knot 
types supported on I "accumulates" at untwisted unknots and nowhere else. 

Remark 3.1.21 Let {;'df be a sequence of distinct closed orbits in a flow. vVe 
say that ;'i acc'urn'ulates on a closed orbit ;' if t here exists a sequence of points 
{J:i E ;'df which have J: E ;' ttS an accumulation point for some J: E T If 
we consider the clttss of flows that have one-dimensional bttsic sets (e. g., Smale 
flows) with "positive" twisting, we can lift Theorem 3.1.20 to the original flow 
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to imply that any infinite sequence of distinct periodic orbits of bounded genus 
must accumulate OIl untwisted unknots. 

Remark 3.1.22 Theorem 3.1.20 fails spectacularly for non-positive templates. 
U sing results from the remainder of this chapter) it hth'S recently been shown that 
in such CthSCS, practically anything can occur: sec Remark 3.3.12. 

3.2 Universal templates 

vVc have in Theorem 3. L 13 one extreme: every embedded template must contain 
a nontrivial knot, and in fact, by Corollary 3. L 14, infinitely many distinct knots. 
The other extreme, however, is unclear, tkS to whether an embedded template can 
contain all knots. Certainly, the figure-eight knot canIlot live OIl the embedded 
Lorenz tcmplatcC(O, 0), tkS this template is positive and the figure-eight knot 
cannot be represented by a positive braid (recall Exercise 1.1.21). Hence, there 
FAist clttsses of templates which do not contain all knots. 

Question 2 Does there eJ:ist an embedded template T c Sa containing all knots 
a., periodic orbit.,? All link.,? 

The answer to Question 2 wttS conjectured to be no [24]: we will prove other­
wise, outlining the arguments of [691, while providing a more general perspective. 

Question 2 is to some degree not the most general approach to understanding 
"what lives" in a given template. Focusing instead on the cIttss of embedded 
templates leads to the following question: 

Question 3 GivCTI an embedded template T c Sa, what arc all the .,·ubtemplate., 
ofT? 

In this section, we tackle Question 2 by using methods suited for answering 
Question 3. 

3.2.1 Examples of subtemplate structures 

Lorenz-like templates 

As a ba,sic example of a subtmnplate question, recall Problem 2.3.6 concerning 
the relationships between the Lorenz-like templates of §2.3.L vVe derive a partial 
answer in this subsection, following [1681, but using the s:ymbolic methods of this 
monograph. 

In Figure 2.20 of §2.4.2, we proved that [(0,2) C [(0,0) via an isotopic 
inflation. In the following, we use the s:ymbolic descriptions of §2.4 to list a 
slightly more complete collection of isotopic inflations relating these templates. 
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Proposition 3.2.1 The following template inflations act isotopically: 

[(O,n + 2) Y [(O,n) { J:1 H J:1 (3.15) 
;(>2 H J: 1 ;1:2 

[(0, - 2) Y [(0, -1) { J: 1 H J: 1 
(3.16) 

;(>2 H J;~ 

Proof: For the first inflatioIl, a simple generalization of Figure 2.20 is left to the 
reader. Figure 3.5 illustrates the isotopy for the second inflation. In both CthSCS, 

one needs to usc the belt trick when "pulling out" the subtmnplatc. 0 

Figure 3.5: The template [(0, -2) is a subtmnplate of [(0, -1). 

The chain of inclusioIls among Lorenz-like templates implied by Proposition 
3.2.1 is 

... c [(0,4) C [(0,2) C [(0,0) c [(0, - 2) C [(0, -4) e-
n 

... c [(0,5) C [(0,3) C [(0,1) C [(0, 1) C [(0, -3) e-
(3.17) 

The templates U and V 

As a more intricate example of subtmnplatc structures, we turn to two decep­
tively simple templates first studied in [169] and later in [69]. 

Let V denote the embedded template of Figure 3.6(a), also introduced in 
Example 2.4.10. Let U denote the embedded template of Figure 3.6(b). Each 
template hth" two branch lincs, (1 and ('2) and four strips, labeled J: 1,··· ,;1:4· 

These templates arc related in a ftk'Scinating way: 

Proposition 3.2.2 The following are isotopic template inflations: 

1 
" 1 H "1 
;(>2· H ;(:1 ;(:2;(:a 

;(:a H ;(:4;(:2 

;(:4 H ;(:4 

(3.18) 
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(a) (b) 

Figure 3.6: (a) The template V; (b) the template U. 

1 
" 1 H "1 
;(:2 HJ:j 

J:a H J>2;[:4 

J:4 H J:2;1:a;1:4 

Proof: Sec the isotopics in Figures 3.7 and 3.8. 

Figure 3.7: The template inflation J' acts isotopically. 

(3.19) 

o 

Proposition 3.2.2 presents a puzzling situation: U C V and V C U, and the 
inclusioIls occur in many different ways. By incorporating the s:ymbolic approach 
to subtcmplatcs of §2.4, we can track these various inclusioIls. For example, U 
and V display a s}'1nmctry which may be exploited to generalize the template 
inflatioIls J' and (I): 
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Figure 3.8: The template inflation (l) acts isotopically. 

Lemma 3.2.3 The template inflation 

1 
J: 1 H J:g 

U-tU ;(:2 H J:4 
y-o • V-t V ;r:a HJ: j 

J:4 H ;(>2 

(3.20) 

takes each orbit to its mirror image. 

Proof: The action of ,\:" is to exchange the branch lincs. As the only crossings 
in the templates of Figure 3.6 arc at the branch lines, and these arc of opposite 
sign, the inflation ,\:" reverses the crossings of each template. 0 

Lemma 3.2.4 Given any isotopic template inflation fIt having either U or V us 
domain and either U or V as range, the conjugate inflation, fR* = ,yfR,Y, is also 
isotopic. 

Proof: "Vhile the s:ymbolic actioIls of X and fIt do Ilot commute, the topological 
actioIls do. To sec this, note that taking the mirror image COIIlIIlutcs with the 
Rcidcmcistcr moves of Figure 1.3. Hence, topologically, fIt* acts thS ~y2fIt. But, 
by Lemma 3.2.3, X· 2 is the identity, and fIt* acts tiS fIt: isotopically. 0 

Example 3.2.5 Conjugate inflations allow us to increttse our "vocabulary" of 
inflations on the templates U and V; e.g., 

1 
"1 H "'''4 
J:2 H J:2 

J:a H J:a 
J:4 H J:aJ:4J:1 

(3.21) 
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Composing the simple inflatioIls J' and (l) with their conjugates ~yicld8 a va­
riety of interesting subtcmplatc structures: c.g.) 

Proposition 3.2.6 Let 9\ : S y T be an isotopic inflation of some template 
S into some template T. If fIt factors as fR2 (!)fR1 for some isotopic inflations 
9\1 : S y V and 9\2 : U y T, then the image of the isotopic inflation 9\1113'9\2 
is disjoint and separable from that of 9\. 

Proof: First, we isolate the action of the inflation (l) : V 4 U. COIlsider the 
subtmnplatcs given by the images of (l) and (1)*. The branch scts of these sub­
templates arc, due to Corollary 2.4.15, 

8(I13(V)) 

.8(113' (V)) 

[J: 1 (J:2J:4)OC, (J:1J:2J:aJ:4)OC] 

[J:2J:aJ:4J:j"', (J:2J:aJ:4J: 1 ) OC] 

[J:4 J:1 J:2J::i", (J:4 J:1 J:2J:,,) OC ] 

[J:a (J:4 J:2 ) oc , (J:aJ:4J: 1 J:2 ) OC] 

vVc claim that the images of these two inflatioIls arc disjoint subtmnplatcs of 
U, except for their common boundary orbit (J':lJ:2J:a;:r:4)(X;. This may be shown 
by checking that certain shifts of ,8( (l)) (coIlsidered tkS "intervals" under <J) do 
Ilot intersect shifts of ,8((1)*) except at their common boundary and at branch 
lines. Though this is perhaps computationally tedious, it is a finite process which 
works when pictures fail. 

However, the simplest proof is to carefully check that Figure 3.9(a) accurately 
represents the subtmnplates in question, and that these arc disjoint. In Figure 
3.9(b), we crush out the transverse direction of the semiftow in each subtmnplate, 
yielding a link of two graphs. From this, it is clear that these graphs, and hence 
the subtemplates, arc separable. 

It follows, then, that the images of fItl (l)fIt2 and fItl (I)*fIt2 IIlUSt also be dis-
joint and separable copies of S in T. 0 

Corollary 3.2.7 Each template U and V contain., a eo·untable infinity of s·ub­
templates isotopic to U and V which arc completely disjoint and separable. 

Proof: Define the inflation '<In to be (;)'113) (;),I13,)n, for n = 0, 1,. The image 
of each Qtn is a subtemplate of V isotopic to V thanks to Proposition 3.2.2. vVe 
claim that the image of Qtn is disjoint and separable from the image of each Qtn+k 

for k > O. To prove this, note that Qtn+k factors thS 

(3.22) 

so that the image of Qtn+k is contained in the image of (J'(I)*)n+ l . By Proposi­
tion 3.2.6, the images of Qtn and (J'(I)*)n+l arc disjoint and separable, since they 
differ by changing one (I) to (1)*. Therefore each template, V and U, contains 
infinitely many separable copies of itself (and of the other template). 0 
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Figure 3.9: The subtmnplatcs G(V) and G*(V) (left) arc disjoint and separable, 
tk'S seen by reducing the subtcmplatcs to embedded graphs (right). 

3.2.2 A template containing all links 

The embedded templates U and V of Corollary 3.2.7 entwine within one other 
in surprisingly complicated ways. vVc will mq)loit these subtmnplatc webs to 
answer btkSic questioIls about subtcmplatc structures. vVc begin with a solution 
to the existence problem for templates which arc "universal" in the cltkSS of links. 

Theorem 3.2.8 (Ghrist [69]) The embedded template V contain.> repre.>enta­
tives of c'Ucr,1J finite link as periodic orbits. 

The proof of Theorem 3.2.8 is the focal point of this chapter, and will be 
performed in steps. 

vVc begin by examining a new family of templates, {l'Vq ; q E Z+}, illustrated 
in Figure 3.10. Each l'Vq is an embedded q-fold cover of V; that is, there are 2q 
"ears", or copies of the J:1 and J:a strips. It is important to note that these ears 
alternate in crossing type we denote them positive- and negative-type ears 
accordingly. 

It is clear that there is a natural sequence of subtemplate inclusions V = 
l'V1 C l'V2 C l'Va C This increthsing sequence is "large enough" to eventually 
contain any given link: 

Proposition 3.2.9 Given L an arbitrar;1J link in Sa, an isotopic copy of L ap­
pear.> a.> a .>et of periodic orbit.> on the template Wq for q .,·uffieicntly large. 

Proof: Recall the braid group on 1v strands, BN, from §L1, generated by the 
clements ai, 'i = L .. 1V L vVe construct "local" representatives of each generator 
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2q 

Figure 3.10: The template l'Vq hth'S 2q "cars." 

(plus inverses) which live OIl l'Vq OIl a finite sequence of alternating cars. The 
arrangement of cars OIl l'Vq mimics the concatenation operation for the braid 
group. 

In Figure 3.11, we show how to place the braid word (T1(T2 ... (Jk for any k 
OIl an car with a positive crossing: the leftmost strand travels around the car 
and is reinserted at an appropriate point. Similarly, we may place the word 
~1 ~1 ~1 . I . '.' . I fi . 

(T 1 (J '2 ••• a k . OIl an car WIt 1 a negatIVe cro8s1I1g. h88uIIlmg t Hit some mtc 
sequence of cars concatenated together yields the generators O"j and a:; 1 for all 
j < k, form the generator (Jk via concatenation: 

(3.23) 

Hence, by inductioIl, every (Jk and (J;; 1 fit OIl a finite sequence of alternating 
cars. 

For b E BN a braid on 1v strands, we may place the closed braid b on l'Vq for 
some (perhaps very large) q by piecing together the 1v -strand generators above 
on a finite sequence of alternating cars, then "connecting" the top and bottom. 
rvIore specifically, since each component of the link can be given a sequence in 
some rvIarkov structure for l'Vq (though this would be messy to do in practice), 
that orbit IIlUSt exist on the template. vVe must be careful, however, that no two 
components of the closed braid have the same symbol sequence; else, they will 
not be distinct orbits on VVq . To avoid this, note that since only one strand of the 
braid goes around an car in the generators we usc, it is sufficient to ensure that 
every strand of b goes around at leth'St one car. This may be done by appending 
the word (TN~l(TN~l to b: this docs not change the braid element and hence the 
isotopy class of the resulting iV-braid on l'Vq. 0 

Since l'Vq C l'Vq+ 1 C eventually contains any given link, our strategy is 
to show that reverse subtmnplate inclusions also hold: l'Vq C l'Vq~ 1 C C V. 
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W q . 

To find a copy of lVq within V, we develop a type of surgery for subtmnplatcs of 
V. vVc denote the following procedure appending an ear. 

Lemma 3.2.10 Let 8 C V be a .5"Ubtemplate of V and let I = [iJ'(I),iY(I)] be 
the component of S n ( 1 (V) 'Which is minimal among all 8'uch intersections 'With 
re.,peet to the <I ordering on the ·upper branch line. If iJ'(I) cp "\"', then 8 i., 
contained in a .,·ubternplate 8+ C V and thi., template 8+ i., i.,otopie to 8 e",eept 
for the addition of an ·unknotted car along I. Moreover, the .,·ubternplate 8+ 
contain., the orbit iJi(V). 

Proof: The subtcmplatc S is completely determined by its branch sct ,8(S), sec 
Definition 2.4.2. That is, given ,8(S), the subtmnplatc S is uniquely defined by 
flowing each branch segment forwards until it completely covers a collection of 
two or more branch segments. vVc specify the new subtmnplatc S+ by modifying 
8(8). 

Construct .8(8+) as follows: begin with .8(8) U ["\"', "1 iY(Il] U I. This has 
the effect of adding a new strip which goes once around the J: 1 strip and attaches 
at the new branch line [J:f, ;Y(I)]. Then, to form a well-defined subtmnplate, 
whenever an endpoint of some interval of ,8(S+) ends in af(I), replace this string 
with the string J:f. This hth'S the effect of "thickening" the portion of S+ which 
comes in along the J:4 strip of V: see Figure 3.12. 



86 

_--..c./ 
/ 

I 
I I 
I 

/ 

1/ 
I 

s 

CHAPTER 3. TEMPl.ATE THEORY 

iJi(v)~ 
/ 

/ 

s+ 

Figure 3.12: Appending an car to S C V yields S+ . 

To prove that ,8(S+) tkS defined yields a subtcmplatc, we note that the the 
addition of the branch segment [;:r;r:) J: 1 ;Y(I)] flows forward to the new branch 
line [;r;f);Y (I)] without interfering with other st rips, since I wthS minimaL "Vhat 
wthS the incoming st rip of S at I hth,) been thickened to cover J;f at the left 
endpoint; hcnce, there IS a local branch liIle chart for S+ along [;r;f) ;Y(I)]. 

Finally, we note that the appended car IS un knotted and "separable" from 
the rest of the subtmnplatc since the core orbit J;f IS a separable unknot. Also, 
in thickeIling up the incoming strip along J:4) we include the orbit aJ (V) in S+ 
(this fact will be used later in Theorem 3.2.14). 0 

The appended car along I IS a positive car) since the crossing of the car over 
the rest of the subtmnplatc IS in the positive seIlse; similarly, negat ive cars may 
be added at the lower branch line: 

Lemma 3.2.11 Let S C V be a .,·ubternplate of V and let I = [iJ' (I),iY(I)] be 
the component of S n ('2 (V) 'Which is minimal among all 8'uch intersections 'With 
re.,peet to the <I ordering. If iJ'(I) ¥ "\"'. then S i., contained in a .,·ubtemplate 
S~ C V and thi., template S~ i., i.,otopie to S e",eept for the addition of an 
·unknotted car along I. Moreover. the .,·ubtemplate S~ contain., the orbit iJ;(V). 

Proof: Apply the s}'1nmctry map X to V) taking the subtmnplatc S to its mir­
ror image S* thS pCI' Lemma 3.2.3. The segment ,y(I) C (1 then satisfies the 
hypotheses of Lemma 3.2.10, and one may append an car to ,y(S) to obtain a 
subtmnplatc (S*)+ having an appended positive car. Again applying ,\:" to V 
takes this subtmnplatc to its mirror image: a subtmnplatc isotopic to S with a 
negative (the mirror image of a positive) ear appended along X'2(I) I C ('2' 

This template contains the orbit (J~(V) = ,\:" [(Jj(V)] tiS an orbit. 0 

To build copies of lVq thS subtemplates of V, we IIlust find a way to map V 
inside of itself isotopically so tiS to avoid the ;r;r: and ;r;ff boundaries (e.g., the 
isotopic nmormalizationl) of Example 2.4.16 will not do). Then, we may append 
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positive and negative cars in such a way that the resulting template is, say, iso­
topic to l-V2 , and an iterative procedure may be used to build successively larger 
subtmnplatcs isotopic to l'Vq . vVc begin with the appropriate nmormalizatioll OIl 
V which keeps track of certain orbits for the iterative proccdun: later: 

Proposition 3.2.12 The inflation S) ;j"l13;j'l13' takes V Y V isotopically. 
Among all points of S)(V) n £1 (V), the <l-minimal point is contained in the orbit 
S)(iJ;(V)). 

Proof: The symbolic action of S) is 

1 
J: 1 H J;2J;~J;4J; 1 (;1:2;1:4)2 ;1:2;1:a;1:4;1:1 

;(>2· H J>2J:flJ:4J: l (;':2J:4)(1 ;1:2;1:a;1:4;1:1 

J>l H J;2J;~J;4J; l J;2J;4 
J;: H J:2Jl:r:4J: j J:2;.[:4 

(3.24) 

That this inflation is isotopic follows from Proposition 3.2.2. To show which 
point in the image of V is <J-minimal in the upper branch liIle e 1) it is sufficient 
to check the image of the boundary of V. This boundary, a(V), is given implicitly 
in Equation (2.23) we first recall this information: 

iJ(V) = (3.25) 

Next, compute the image of the endpoints (~/r (V) under the inflation S): 

S) VyV (3.26) 

iJ;(V) H (;1:2;1:~;1:4;1:1 (;1:2;1:4)2 ;1:2;1:a;1:4;1: 1 ) (X; 

iJ[(V) H ;1:2;1:~;1:4;1: 1 (;1:2;1:4)2 ;1:2;1:a;1:4;1:1 (;1:2;1:~;1:4;1:1 (;1:2;1:4)a ;1:2;1:a;1:4;1:1 ;1:2;1:~;1:4;1:1 ;1:2;1:4 ) (X; 

iJ;(V) H 

iJHV) H 

iJ~(V) H 

iJ3(V) H 

iJ.; (V) H 

iJS(V) H 

;1:2;1:~;1:4;1:1 (;1:2;1:4)a ;1:2;1:a;1:4;1:1 (;1:2;1:~;1:4;1: 1 ;1:2;1:4 ) (X; 

(;1:2;1:~;1:4;1: 1 (;1:2;1:4)a ;1:2;1:a;1:4;1:1 ;1:2;1:~;1:4;1:1 ;1:2;1:4) (X; 

(;1:2;1:~;1:4;1:1;1:2;1:4) (X; 

2 (2 2 '.J l'" ;1:2;1:a;1:4;1: 1 ;1:2;1:4 ;1:2;1:a;1:4;1: 1 ;1:2;1:4;1:2;1:a;1:4;1:1 (;1:2;1:4 r ;1:2;1:a;1:4;1: 1 

2 (2 '2 l'" ;1:2;1:a;1:4;1:1 ;1:2;1:4 ;1:2;1:a;1:4;1: 1 (;1:2;1:4) ;1:2;1:a;1:4;1: 1 

(;1:2;1:~;1:4;1:1 ;1:2;1:4;1:2;1:~;1:4;1: 1 (;1:2;1:4)a ;1:2;1:a;1:4;1: 1 ) (X; • 

From (3.24), the image of the first ;1:2 in a~(V) contains two ;1:1 symbols. \Ve 
claim that a shift of the image of a~ (V) to one of these two ;1:1 symbols is <J­

minimal in i 1 (V) among all shifts of the image of every other endpoint of ,8(V) 



88 CHAPTER 3. TEMPLATE THEORY 

which begin wit h J:1. That this is 80 is a simple matter of choosing the shift of 
the image of (J~(V) which is <J-minimal in ,81 (V) and t hen comparing this to all 

such shifts of the other endpoints SJ(ai1r (V)). Using the <J-ordcring, t his can be 
done by hand or (more cOIlveniently) by computer. In this IIHUlIlCI', we calculate 
that 

(J 14"( ,,,(V')') -,. (""""""'" l'" ~J /'2 - "', 1 ""'2""(1"',4"',1""'2"',4 (3.27) 

is <J-minimal among all other orbits in the image of S) in [ 1 (V), where (J denotes 
t he shift operator. 0 

Note t hat t he <J-minimal point in S)(V) OIl [ 1 is not ;r:f thus, we may 
usc this nmormalizatioll to append positive cars. The conjugate inflation will be 
used to append negative cars: 

Proposition 3.2.13 The inflation Sj' '" ;j'l13';j"l13 take" V Y V i"otopically. 
Among all point" of Sj'(V)nt,(v), the <l-minimal point i" contained in the orbit 
Sj ' (!Ji(V)). 

Proof: Since S) is isotopic, so is t he conjugate S) * via Lemma 3.2.4. Apply ,y to 
Equation (3.27) to show that 

is ,y(<J)-minimal in ,y(e1 (V)); after an application of Lemma 3.2.3 and the fact 
that ~y commutes wit h the shift operator (J, 

(3.29) 

is <J-minimal in e2 (V). Now insert X·2 in the domain. Since ,y is involutive, we 
have shown that 

(3.30) 

is <J-minimal in e2 (V). o 

vVe may now complete the major step in t he proof of Theorem 3.2.8. 

Theorem 3.2.14 The template Wq appear" a" a "'ubtemplate of V for all q > O. 

Proof: As we will be working with a series of distinct copies of t he template V, 
we introduce some notation. Let {Vi} denote a sequence of distinct copics of the 
embedded template Veach is embedded in a different copy of Sa. Const ruct 
an alternating sequence of templates and isotopic inflations: 

(3.31) 

By Proposition 3.2.12, we may append a posit ive ear to S)(V l ) in V 2 along the 
image of a~(Vd, creat ing the template denoted lVt c V2 . This subtmnplate 
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contains the orbit a~(V2). By mapping V2 into Va via 5)\ we push lVt to 
a deeper isotopic copy within Va. A negative car may then be appended to 
Sj'(Wn c Va along Sj'(Dj(V')) according to Proposition 3.2.13. Sincc the 
negative car is appended along an interval having endpoint OIl 5)* «JJ (V2))) the 
appended negative car "precedes" the formerly appended positive car (in the 
sense of the flow-direction), yielding a subtcmplatc of Va isotopic to l'V2 : sec 
Figure 3.13. 

(-) car 
(+) car 

Sj [iJ1(VI)] 
Sj [Dj(V')]--'*' 

Sj'Sj [iJ1(VI) ]----3'7' 

(a) WI (b) Wi (c) W, 

Figure 3.13: The steps in building l'Vq . 

vVc now have the template Va containing a subtmnplatc isotopic to l'V2 which 
contains the orbit a~(Va). SiIlce Va IS again an isotopic copy of VI with a~(Va) 
corresponding to a~(Vl)) we may now iterate the procedure. [vIap Va into V4 

via S), append a positive ear to the image of l'V2 to obtain l'Vi, then apply S)* 

and append a negative ear to the image of l'Vi to produce l'Va. Since all the 
inflations involved are isotopic, we continue to carry the completed l'Vi along 
isotopically thS we append additional ears. Thus, we can embed l'Vq in V for 
arbitrary q. 0 

Proof of Theorem /1.2.8: According to Theorem 1.1.13, any link may be repre­
sented ttS some closed braid. By Proposition 3.2.9, this closed braid Illust appear 
on l'Vq for q sufficiently large; hence, by Theorem 3.2.14, this link lives on V. 0 

3.2.3 Universal templates 

Definition 3.2.15 A 'universal template is a template T c Sa among whose 
periodic orbits are representatives of every link type. 
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From Theorem 3.2.8, we may show the abundance of universal templates. 

Proposition 3.2.16 The Lorenz-like templates [(O,n) are ·universal for n < ° 
Proof: In Figure 3.14, we show the image of the inflation 

JC: U y [(0, -2) 1 
"1 H " 1 
;(>2 H ;,:\1 ;(>2 

J:g H J:2;1: 1 

J:4 H ;(:2;(:1;(>2 

(3.32) 

It is a (challenging!) exercise for the reader to show that this image is isotopic 
to U. By PropositioIls 3.2.2 and 3.2.1, there is a subtcmplatc chain 

v U [(0 -2 C [(0, -4) c [(0, -6) c 
c c , ) C [(0,-1) C [(0,-3) c 

The result now follows from Theorem 3.2.8. 

Figure 3.14: The template U is a subtemplate of [(0, -2). 

(3.33) 

o 

Given some embedded template, it is often relatively CthSY to recognize a 
Lorenz-like subtmnplatc; hcnce, we have a useful test for identifying universal 
tmnplatcs. 

Corollary 3.2.17 S·uffieient condition., for a template T c Sa to be ·universal 
are 
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1. There is a two-component 'unlink on T; that is, there c'J:ist two separable 
'unknots. 

2. One component of the ·unlink is ·untwisted; the other is twisted with T ¥ 0 
twists. 

/J. The two 'unkrwts intersect some branch line of T in two adjacent points 
(recall Definition .1.1./5) The sign of the branch line crossing between these 
two points m:ust be opposite that of the twist To 

Proof: Let a(X; and b()(; denote the adjacent point s in ~lj) with hex; denoting the 
orbit with twist T. For T < 0, the template inflation 

[(0, T) Y T { 
;(:1 H a 

'" H b 
(3.34) 

is isotopic , since a(X; and hex; arc an unlink and there is agreement between 
twisting and branch line orient ation. For T > 0, the same symbolic map sends 
the mirror image ofC(O, -7) into T isotopically. However, the mirror image of 
a universal template is also universal. 0 

vVc may usc Corollary 3.2.17 to show that certain hyperbolic flows OIl Sa 
contain all links thS periodic orbits: e. g., 

Proposition 3.2.18 The s'uspension of the Plykin map, given in E'J:ample 2.1.6, 
when embedded in Sa in the '"standard" way, yields a flow hav·ing all link-types 
as periodic orbits. 

Proof: Recall the Plykin attractor Ap described in Example 2.1.6. The inverse 
limit construction of vVilliams implies that we can collapse the attractor for the 
map to a branched one-manifold which suspends to a semiflow on a branched 
two-manifolda. In Figure 3.15, we show two periodic orbits in the suspension of 
the Plykin graph. The first orbit, ;'a, htis period one, is untwisted, and is clearly 
separable from all other orbits. The second orbit, ;'0' is an unknot. 

It is not hard to see that ;'0 must be a twisted orbit; however, even if it were 
not, we could use Proposition 3.1.19 and Corollary 3.1.10 to show the existence 
of another orbit which is a twisted unknot separable from ;'a. Finally, we do 
not need to know the sign of the twist, since on the "branch line" (the graph 
fp), the orbit ;'a is adjacent to a point of ;'0 on either side, so it htis branch line 
crossings of both types; hence, by Corollary 3.2.17, the periodic orbits of this 
flow contain all link t~)1)es. 0 

Corollary 3.2.17 is genuinely useful in this instance, since it is very difficult 
to draw an accurate picture of the entire template for the suspended Plykin 
attractor. The Plykin attractor is the simplest hyperbolic planar attractor. vVe 
have examined a few other examples and have managed to show that t hese also 
give rise to universal templates: we do not know of an example which does not. 

a'I'hough t he suspension of t he P lykin graph does not satis(y t he definition of a template) 
it may be t hought of as a t emplate ,,;;rith t he boundaries s€\vn toget her. 
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Figure 3.15: The suspeIlsion of the Plykin attractor top arc bottom arc 
identified. Two orbits, /''/a and ;'0' form a "spine" for a universal subtcmplatc. 

Corollary 3.2.19 There eJ:ists a struet·urally stable vector field on Sa s·ueh that 
the ind·ueed flow on Sa contains closed orbit representatives of all knot and link 
twes . 

Proof: The Plykin map suspends to a flow OIl D'2 X S1 which is inwardly trans­
verse OIl the boundary and hth'S chain recurrent sct cOIlsisting of three attracting 
periodic orbits and the suspended Plykin attractor. Complete the flow OIl Sa by 
taking another D'2 x 51 having a single repelling periodic orbit tk'S {O} X 51 and 
outwardly transverse at the boundary and gluing these two solid tori together 
to get Sa (a more detailed treatment of this cOIlstruction appears in §A.l). The 
resulting flow hth'S a hyperbolic chain recurrent set and hence, by Theorem 1.2.14, 
is structurally stable to C 1 perturbations. 0 

Remark 3.2.20 There are numerous examples of flows on Sa having all link 
types th'S periodic orbits. In §4.4, we will show that flows arising from certain 
"simple" ordinary differential equations can be modeled with a universal tem­
plate. In [691, it wttS shown that certain fibred knots, namely the figure-eight 
knot and the Borromean rings, have complement fibred by a fibration whose in­
duced flow contains all links tiS orbits (recall §2.3.4). As an exercise, the reader 
may wish to find two orbits on the template for the vVhitehead link complement, 
Figure 2.17, which satisfy the conditions of Corollary 3.2.17, showing that this 
also is a universal template. 

The Lorenz-like templates are the simplest clttss of tmnplates: they have two 
unknotted unlinked strips with one branch line. A complete clttssification of 
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these templates into universal and non-universal would be useful, cf. Corollary 
3.2.17. At this time, we can offer only the following: 

Proposition 3.2.21 FurrHn ~ 0, the Lorenz-like templateC(rn,n) is 'universal 
if and only if rH orn is 0 and the other indc'J: is negative. 

Proof: Proposition 3.2.16 covers the CtkSC where one number is zero and the other 
is negative: we will show that all other c(;t"scs with 'tnn ~ 0 arc Ilot universaL In 
the CthSC where rH andn arc both nOIlIlegative, the tcmplatcC(rn,n) contains 
only positive crossings and therefore carrics no knots with mixed crossings (such 
th'S the figure-eight knot). Nm ... -t, cOIlsider the CtkSC where rH andn arc both 
negative. Let Ka and Kb be two distinct knots onC(rH,n) which form a link. 
IfC(rn,n) were universal, there would be an infinite number of distinct choices 
for Ka and Kb which would span all possible linking numbers. vVe compute the 
linking number th'S one half the algebraic sum of the total number of crossings, 
C, tiS pCI' Equation (1.2). The crossing number, C, can be decomposed into the 
sum 

(3.35) 

where Cm equals the contribution due to the rH half-twists along the J: l strip, 
Cn equals the contribution due to then half-twists along the J:'2 strip, and Co 
equals the number of crossings due to the overlap of the J: l strip over the J:'2 

strip at the branch line. Denote by aij (resp. iJij ) t he number of J:iJ:j blocks in 
the periodic itinerary of Ka (resp. Kb)' E'J:arnple: if Ka = (J: I J:~J: I J:'2)CX:;' then 
all = 0,0,1'2 = 0,'21 = 2, and 0,'2'2 = 1. vVe note that in all c,1ses, 

(3.36) 

vVe can calculate the crossing numbers Cm and Cn : 

vVe will maximize the crossing numbers in order to obtain upper bounds; 
hence, we ,1ssume that there is a minimal amount of negative twisting in the 
strips, thereby setting rH =n = -1 in Equation (3.37). To maximize the 
overcrossing number Co, we again ttssume that all potential crossings can in 
fact occur. This situation is displayed schematically in Figure 3.16, where the 
different strands do not represent the knots themselves, rather those portions 
of the knots which correspond to the numbers a ll , etc. From Figure 3.16, the 
crossing number is bounded above by 

Co:::; a l '2iJ'2 1 + a'2 1 iJl '2 + a ll iJ'21 + a'21iJll + a'2'2lJl'2 + a l '2iJ'2'2. 

Combining this with Equations (3.35) and (3.36) yields 

C < 2al '2iJl '2 + a ll iJl '2 + a l '2iJll + a'2'2iJl '2 + al'2iJ'2'2 - alliJl1 - a ll iJl '2 

< 
< 

-al'2iJ11 

-(a ]] Ii ]] 
() 

a l '2iJl '2 - a l '2iJl '2 

+ a"Ii,,) 

(3.38) 

(3.39) 
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Figure 3.16: A schematic diagram of crossings OIl the templateC( -I, -1): each 
strand labeled (J,ij (rcsp. bij ) represents a collection of (J,ij (rcsp. bij ) strands of 
the knot Ka (Kb) which begin OIl the strip J:i and end OIl the strip J:j' 

Hence, the linking number ek(Ka) Kb) is at most zero ttndC(rn,n) canIlot sup­
port all links. 0 

vVc have clthSSificd the universal Lorenz-like templates in every CthSC except 
HI < O,n > 0 (and 'I)'ice versa). The linking number estimates in the proof do 
Ilot yield the necessary results in the CthSC when 'In andn arc of mixed sign. vVc 
settle for the following: 

Conjecture 3.2.22 A Lorenz-like template [(m,n) .,·upport., all link., if and 
only if either rH orn is zero and the other indc'J: is negative. 

The most pressing problem concerning universal templates is to determine a 
simple set of necessary and sufficient conditions for universality. vVe conclude 
with two related conjectures. 

Conjecture 3.2.23 An embedded template T c Sa is universal if and only if 
it cont ains V tk'S a subtmnplate. 
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Conjecture 3.2.24 An embedded template T c Sa is universal if and only if it 
contains a countable untwisted unlink: each component of which is an untwisted 
unknot, separable from all other components. 

Conjecture 3.2.24 would give an obstruction to hyperbolic dynamics in flows. For 
example, the suspeIlsion of the identity map OIl D'2 hth,) a countable untwisted 
unlink, yet, it docs Ilot support closed orbits of all knot types; hence it is Ilot a 
hyperbolic system. 

3.2.4 Where do all the knots live? 

The topological richness of closed orbits OIl templates that we have examined in 
this section is at first mysterious. Given an inIlocuous looking template such thS 
V) it is hard to imagine what a very complicated knot (c.g.) the connected sum 
of a thousand trefoils) must look like on this template. As an addendum to this 
section, we give a quick computation illustrating how even a "simple" knot may 
require a rather complex presentation on a universal template. 

The proof of Theorem 3.2.8 is constructive. So, in theory, we should be able 
to compute a representative of any given closed braid on V. Consider the figure­
eight knot, denoted K 8 . This link in closed braid form hth'S a presentation (in 
the standard generators) with three strands tiS ((72(711)2. To place this knot on 
lVq for some q, we write the generators (7i in the form of Proposition 3.2.9: 

(3.40) 

where the empty parentheses 0 denote positive ears that are not traversed in 
arranging K 8 on lV4 . 

0000 

Figure 3.17: The spine of VVq , with fundamental loops labeled. 

From the proof of Theorem 3.2.14, we know that lV4 , and hence K 8 , live 
on V. Although the proof does not supply a precise inflation from lVq to V, 
the s:ymbolic action of the construction is traceable in part. In Figure 3.17, we 
present the spine of the template lVq, formed by crushing out the transverse 
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direction to the smniftow. The generators of the fundamental group of l'Vq arc 
labeled ;'0) ;'1 ) ... ) /''/'2q in the order in which they arc cOIlstructed within V. By 
carefully following the proof of Theorem 3.2.14, one can track the images of these 
loops /''/i in V for the "simplest" copy of l'Vq in V: 

., Ii E 1[1 (Wq) 

0 (Sj'Sj)q~ 1 (J:'J:4) = r;)'l13'(;)"l13)';)'l13'lq (J:,J:4 ) 

1 (Sj'Sj)H (J: 1) = r;),l13'(;),'l13)';),l13'lq l (J: 1) 

.j = 2k > 0 (Sj'Sj)q~k(J:a) = [;)'l13'(;)"l13)';)'l13'lq~k (J:a) 

.j = 2k + 1> 1 (Sj'Sj)q~H Sj'(J:d = [;)'l13'(;)"l13)';)'l13'lq~" 1 ;)'l13';)"l13(J:d 
(3.41) 

From this table, we could compute the symbol sequence of this representative 
of Kp, in V; however, printing it out might take more room than our publisher 
wishes to spare. vVc merely compute the symbolic period, i.e.) the length of the 
repeating block of the periodic word. 

The knot Kp, OIl l'V4 determines a word in 1T1 (l'V4 ) in the /''/i generators let 
ni) 'i = O ... 8 denote the number of /''/i terms in this word. In other words, the 
link K 8 goes around the loop i'i exactly ,(Ii times. To compute h'i I, the s:ymbolic 
length of t he image of the loop i'i in V, we define a symbolic growth matri'J: for 
a template nmormalization. 

Definition 3.2.25 Given a rerwrrnalization fIt : T 4 T, where T has lvlarkov 
partition {J:1,J>2, ... ,J:N}, define the growth matrix oj fIt, GfIt E AIN(Z+), as 
follow.,; 

G:n(J:i,J:j) = {# ofJ:i symbols in :n(J:j)}} 

Lemma 3.2.26 For any :n and :it : T -t T, 

GfIt~ = GfItG~. 

(3.42) 

(3.43) 

Proof: This follows from Definition 3.2.25 and the fact that the number of J:i 

symbols in fIt~(J:j) equals 

G:n:it(J:i:J:j) = LG:n(J:i:J:k!G:it(J:k:J:j) = [G:nG:itJ (J:i:J:j). 
k 

(3.44) 

o 

vVe compute the growth matrices for the nmormalizations S) and S) * from 
Equations (3.24) and (3.20) to be 

[ , 2 1 

n Gn 0 [l 
2 3 

1] 4 5 2 2 4 
(3.45) GSj = 3 3 2 1 2 

4 5 2 2 4 D 

Hence, by using Lemma 3.2.26 and the information from (3.41), we can compute 
the growth matrix for the nmormalization which takes each i'i into V. This 
information yields the length of the orbit i'i in V: 
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Example 3.2.27 To find liol for }% C V, we look up io from (3.41) and note 
that it is the image of (J':2J:4)(X; under (5)5)*)(1. To count 1;'01, the length, sct 

-V = [0, 1,0, I]I and take the product (G SjG S'( r' -V. Then sum all the entries of 
this column matrix from Definition 3.2.25, this counts the number of ;(>2 and 
J:4 clements, giving the length 1;'0 I· 

Iii I Ili I l'ii I Iii I Ili I hi II 
0 3 3387648 5 0 839 
I 0 1990365 6 I 77 
2 I 1086485 7 I 7 

(3.46) 

3 I 99679 8 I I 
4 I 9145 

Finally, to obtain the length of the representative of the figure-eight knot K 8 

in V, a simple computation from (3.46) gives: 

s 
IKsl = :L niliil = 11,358,338, (3.47) 

i=O 

or, over cleven million. There arc surely simpler representatives of Kp, OIl V: 
however, the simplest may still be outside of the range in which onc can draw 
it.4 

This example illustrates that methods used in the proof of Theorem 3.2.8 
CA-tract relatively "deep" information from templates. 

Remark 3.2.28 To compute upper bounds for the minimal length of a given 
knot type represented on V, one need merely compute the Perron-Frobenius 
(i. e., maximal) eigenvalue of the growth matrix G fJ it is about 10.332. Then, 
given any knot K, write it in braid format which is compatible with the template 
,}Vq , tkS done in Equation (3.40). Note that the length IKI of the resulting braid 
word may be quickly estimated from any braid version of L via the procedure of 
Proposition 3.2.9. A (poor) lower bound for the length of an orbit representing 
K is then given by (10.332)IKI~ l, since then inflation fJ (or fJ*) must be applied 
IKI I times to fit Wq with the braid form of K on it within V. Applied to 
the figure eight example with braid length 8 (from Equation (3.40)), one gets 
an upper bound for the minimal length tiS 12,567,447 off from our computed 
example by about ten percent. 

3.3 Subtemplate structures 

Although the results of Theorem 3.2.8 are exciting, we have, to some degree, 
drawn our conclusions too soon. The proof succeeds because it examines s'ub­
template struct'uITS, which carry the desired links, rather than examining the 

4'I'wo of us (tvtS) RG) tried VF;ry hard to find a copy of /(s on V or U befoI'€ 'I'heorem :l.2.8 
\Vi'\S discovered. 
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individual knots and links per sc: the crucial step lies in showing l'Vq C V. vVc 
begin this section by resuming our study of the subtmnplatcs of V. The results of 
this line of inquiry will lead to generalizatioIls of Theorem 3.2.8 and will suggest 
directioIls for further investigation along the lincs of subtmnplatc structures. vVc 
do Ilot present all the results in full detail: the interested reader should be able 
to fill in such thS necessary. 

vVc must distinguish between oricntablc and Ilolloricntabic CtkSCS, since an 
oricntablc template canIlot contain any nOlloricntablc subtmnplatcs. In §3.3.1 
and §3.3.2, we prove the existence of templates which arc "universal" in the 
cltkSSCS of oricntablc and Ilolloricntable templates in that they contain isotopic 
copies of all [orient able] templates tk'S subtemplates. 

3.3.1 Orientable subtemplates 

vVe begin with a generalization of the braid group structure of Definition 1.1.11 
to a semigroup structure on braided templates. The generators of the sCInigroup 
are of three types: 

1. at, is a "flat ribbon" version of the generators for the braid group: the 
'ith strip crosses over the ('i + l)st in the positive sense. These clements 
are invertible: 

2. 7;, is the trivial clement (a collection of straight flat strips) with the 'ith 
strip given a half twist, either in the positive (7i) or negative (7i~ 1 ) sense. 
These clements are invertible. 

3. ,S;, is a branch line chart with the 'ith and {'i + 1 )st strips incoming, k 
outgoing strips5, and either a positive (Si) or a negative (Si 1) crossing at 
the branch line. These generators are not inverses, tiS branch lines cannot 
be cancelled under composition. 

Figure 3.18 illustrates the generators. 
The following result is obvious, and implicit in the proof of Theorem 3.1.2 

[58]: 

Lemma 3.3.1 The set {Ur.SrTt} generates the class of braided templates. 

vVith the braided template sCInigroup playing the role of B j\} in Theorem 
3.2.8, we may generalize this result to: 

Theorem 3.3.2 The template V contains every embedded orientable template 
S as a s'ubternplate. Furtherrnore, these may be chosen so as to be disjoint and 
separable. 

Proof: Recall Theorem 3.2.14 V contains l'Vq for all q. The strategy of the 
proof of Theorem 3.2.8 wttS to show that any given closed braid can be fitted 

° For simplici ty, we suppress reference to t he number of strips involved, which varies through­
out t he braid presentation, in our notation. 
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Figure 3.18: The generators for the braided template smnigroup: (a) (Ii; (b) Ti; 

(c) .Bi. 

onto some l'Vq . vVc usc the scmigroup for braided templates in analogous fth'ShioIl 
to show that all oricntablc templates also live OIl l'Vq) and hence OIl V. 

COIlsider S a template in Sa) presented th'S a flat braided template th'S pCI' 

Theorem 3.1.2. To show that such a given template livcs th'S a subtcmplatc of 
l'Vq for some q, we will express each generator tk'S a subtcmplatc of a portion of 
l'Vq; that is, OIl a finite sequence of alternating cars. 

In Figure 3.19, we exhibit a portion of a subtcmplatc OIl a pair of positive and 
negative cars which corresponds to the generator (T1 (T2 ... (Jk for any desired k. 
Note that the belt trick is used in concert with two cars of opposite sign to cancel 
the full twist induced by going around an car. One constructs the generator 
(J 11 (J:;1 ... (J k 1 in analogous fthshion. To show that some finite product of these 
yields (Jj and (J.t for any j, we follow the same argument tiS in Proposition 3.2.9. 

To show that ,8i and ,8i1 appear likewise, we turn to Figure 3.20, which 
contains a local picture of the generator ,8i . The first 'i strips travel around a 
negative car and then a positive car (or vice versa for ,8i~ 1) in order to cancel 
the twisting and allow for a positive (negative resp.) crossing at the branch line. 

Since an orient able braided template may always be made fiat, we do not 
need to fit powers of Ti on l'Vq; hence, the entire generating set for braided 
orient able templates appears locally on a finite set of alternating positive and 
negative cars. Pieceing together local submanifolds on l'Vq is always possible ttS 
long ttS the number of strips matches- . after including all the crossings, branch 
lines, etc., one simply connects the top to the bottom strips in the standard 
way. Hence, given any template presented in these standard generators, one 
may construct for some q (perhaps very large) a subtemplate of l'Vq which is 
isotopic to the intended template. 

The result then follows from Theorem 3.2.14. 0 
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\. 

Figure 3.19: The braided-template word (T1 (1'2 ... (Jk livcs OIl a pair of alternating 
cars. 

Remark 3.3.3 Theorem 3.3.2 indicates that, among the clthSS of oricntablc tem­
plates, V is Ilot merely an example of an exceptional template: it (and all other 
such templates) truly deserves the title of 'universal template, since a template 
contains all oricntablc templates if and only if it contains V. 

Corollary 3.3.4 The template V contains all evenly twisted links: that is, it 
contains all links indeJ:ed by the (even) twist of the local stable manifolds (.,ee 
Definition .V . .9). 

Proof: Given an indexed link L, where the components of L arc indexed by the 
twist, build an oricntablc template Tl~ which contains the link L tkS its "spine." 
rv'Iorc specifically, form a cOIlIlected graph from L by (arbitrarily) identifying 
points OIl components pairwise. Then, thicken the graph up to a template, 
adding branch lines at vertices and twisted strips along the edges thS appropri­
ate: cf. Figure 3.9(b). This template, which contains L ttS a set of periodic 
orbits, lives on V by Theorem 3.3.2. 0 

Our next result shows that any orientable template may be embedded in Sa 
tiS a universal template (and then some): 

Theorem 3.3.5 Any orientable template T may be embedded in Sa 80 08 to 
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! 

/ 

Figure 3.20: The generator /3i. lives on a pair of altcI1latillg ears. 

contain an isotopic copy of all orientable t emplates as disJoint separable ,,,"vtem­
plates. 

Proof: Assume for the moment t hat , for sOme branch line fj) there exist two 
periodic points of 'El j : a OO and b oo, such t hat each symbol J: i in t he rvlul'kov 
partition of T appears at most once in the word ab; thus, each strip of r 
contains at most one strand of t he link {aO{;: hOC }. 

Re-embed T by changing t he ovcrcrossings of strips in the given planar pre­
sentation in the manTlcr to be described: by t he above condition , whenever t he 
knots corresponding to aoc and boc cross One another: they must do so on sep­
arate strips. Re-embed T so as to force t he snip containing the orbi t aoo to 
always be on top. In this embedding, t hen , t he two knots are clearly separable. 

Now restrict attention to those instances where the knot corresponding to 
a oc crosses itself: if a and b are chosen as above, this crossing must be due to a 
st rip crossing over itself Or another strip. B!::lginning at an arbitrary point on t his 
orbit , follow along the direction of t he flow ······ whmwver there is a self-crossing , 
Ill-mnbed the strips so that t h!::l desigat(ld point is on top. "Vhen finished , one 
lUh'S a knot which can be perturbed so (h'S to have a unique local maximum: an 
unknot. Repeat this procedure for t he knot b oc , noting that one is not tampering 
with any previously re-mnbedded strips. 

Finally, huild a Lorenz- like subtemplate of T given by the image of t he infla­
tion ,:, H a, x, H b , as in Equation (3. 13) in Corollary 3.1.17. Since the orbits 
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corresponding to a(X; and hex; arc unknottcd and separable, the subtmnplatc in 
the particular embedding of T we have chosen is isotopic (up to taking the mir­
ror image) to the Lorenz-like tcmplatcC{TQ ) To) for some even numbers l a) To, 
depending OIl twist. Change the embedding of T by adding full twists to selected 
strips 80 that the subtcmplatc is isotopic toC(O, -n) (or its mirror image), for 
positiven, which contains all oricntablc templates th'S separable subtcmplatcs. 

To conclude, we Illust verify our tkssumptioll that a(X; and b()(; exist. First, 
we eliminate cert ain troublesome strips. If a particular branch line ej hth'S only 
one outgoing st rip, we may have to choose a and b to both travel down this 
strip. To avoid any problems thssociated wit h this, we perform an isotopy on 
T within a tubular neighborhood of T in Sa. This isotopy hth'S the effect of 
pushing the branch line i j forwards (in the sense of the semiftow) along the 
one outgoing strip until it is almost identified with the ne"A-t branch line: see 
Figure 3.21. Under such an isotopy, any crossings that this unique outgoing 
strip wttS formerly involved with are now subsumed by crossing of other strips 
(including twisting in the original strip). Thus, we can ignore orbits which travel 
down this strip in the above arguments, and, in identifying the shrunken strip 
to the next branch line, we ttssume that every branch line chart contains at lettst 
two outgoing strips. 

Figure 3.21: One can "eliminate" a single-outgoing strip by propagating the 
branch line forwards. 

Next, choose a finite admissible orbit a(X;. vVe claim that a may be chosen 
such that the knot pttsses through each branch line at most once. Assume that 
a = a l a2 aa, where a2 and aa are words whose orbits begin from the same branch 
line. Then, replace a with a l aa: this is an admissible word since incoming strips 
stretch over branch lines completely. Iterating this reduction on a word of finite 
length is a terminal process. 

Finally, we claim that b may be chosen similarly to have no s:ymbols in com­
mon with a. Recall, we have modified T to have [in effect] at lettst two outgoing 
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strips pCI' branch line chart, and a intersects each branch line at most once. 
Beginning at some branch line of I, choose an outgoing strip whose s:ymbol is 
Ilot part of a this is always possible since there arc more than two outgoing 
strips. This outgoing strip leads to another branch line. Repeat the process 
of choosing outgoing strips avoiding a until the branch line is repeated: this 
defines a periodic orbit a l

. If a l and a have a branch line in commOIl, this is 
the desired h. If not, repeat the process of choosing another periodic orbit all 

this algorithm may be repeated since there arc again at Ictk'St one incoming 
and outgoing strips pCI' branch line OIl T minus the strips of a and a l

. Since the 
rvIarkov partition is finite, this is a finite process; hence, a and b may be chosen 
th'S above. 0 

Corollary 3.3.6 Any embedded oricntable template T contains a (nonisotopi­
cally) embedded copy of every orientable template. 

3.3.2 Nonorientable subtemplates 

The nonorientable C<1se is quite a bit more subtle, but is solved in similar fa,shion. 
vVe leave the [numerous] details of the following theorem to the reader. 

Theorem 3.3.7 There e'J:ists a template 'Which contains e'Uer,1J embedded tem­
plate S as a s·ubtemplate. 

Idea of Proof: vVe begin with the templateC(O, -2), which contains V via the 
inflation .c113, where.c: U y [(0, -2) is the inflation of Equation (3.32). Then, 
we append an extra car to this template which is twisted and separable from the 
remainder of the template: sec the template Y in Figure 3.22. Given any tem­
plate, we then show that it may be obtained by first placing a similar orientable 
template onC(O, -2), then diverting some of the strips around the twisted ap­
pended car of Y to produce the requisite nonorientable subtemplate. 

Let S be an arbitrary embedded template in Sa. vVe briefly indicate how to 
place S in the appropriate form for being a subtemplate of y. 

Step 1: Place S in braided form tiS pCI' Theorem 3.1.2, and represent this 
template in the braid sCInigroup of Lemma 3.3.1. 

Step 2: Factor this braid word so that there is a positive half-twist Ll on 
the first k strips, where Ll is the word 

(3.48) 

followed by a braid word having no 7; terms. 
Step 3: For S braided into the word above, let S denote the flat orientable 

template given by removing the initial word Ll from the braid word. rv'Iap S 
into [(0, - 2) c Y isotopically via the inflation .cl13J, where J : S Y V is the 
inflation from the proof of Theorem 3.2.8 and .c : U Y [(0, -2) is the inflation 
from Equation (3.34). 
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Figure 3.22: The template Y contains all templates tk'S subtmnplatcs. 

Step 4: Now, by carefully tracking the placement of the first k strips in 
S C Y) modify the inflation in the appropriate maIlIler to "divert" the leftmost 
k strips of SOIl Y to instead make a loop around the appended twisted J: 1-(1a1'. 

This hth'S the effect of inserting Ll into the braid word for S at the beginning. 
This new template is the original S by Step 3. 0 

Corollary 3.3.8 The template Y contains isotopic copies of links with arbitrary 
twist type. 

Proof: See the proof of Corollary 3.3.4. o 

Remark 3.3.9 Note that although Y contains all embedded templates th'S dis­
joint subtmnplatcs, these may Ilot be chosen 80 thS to be mutually unlinked in 
the present cOIlstructioIl, since there is a linking induced by the trip about the 
twisted ear. vVe believe that this is unavoidable: i.e., no embedded template 
contains disjoint unlinked copies of all embedded templates thS subtmnplates. 

vVe do not believe that the results of Theorem 3.3.5 hold for nonorientable 
templates: that is, we do not believe it is possible to re-mnbed, say, the horse­
shoe templateC(O, 1) in such a way that it contains copies of ever,,/} embedded 
template, or even the orient able ones. A related, though weaker statement is 
however true: 

Proposition 3.3.10 Any embedded rwn-orientable template T contains a (non­
isotopically) embedded copy of all templates. 

Proof: If T is nonorientable, we IIlust construct an inflation from the template 
Y of Figure 3.22 into T. Take aex: twisted and b ex: untwisted with the pair 
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adjacent. TheIl cOIlsider c = a2b: c(X; is an untwisted orbit with a(X; and c(X; 
adjacent and (ba2

) (X; and b adjacent. Hence, there is a well-defined template 
inflation, 

1 
~::::::' 
"a H b 
"4 H b 

(3.49) 

As this inflation is Ilonisotopic, we have a different embedding of all the subtcm­
plates of Y into T. 0 

OsteIlsibly, it seems surprising that the template for the vVhitchcad link 
complement (Figure 2.17) embeds in the horseshoe tcmplatcC(O, 1). 

Remark 3.3.11 Although the results of this section arc exciting, they may also 
be cause for concern in certain applicatioIls: recall from §2.3.5 the cOIlstruction 
of induced templates from time series data. Kotjarcv ct al. derive an induced 
template in [106] which, by appealing to Theorem 3.3.7, we can show contains 
all embedded templates tkS subtmnplates. In the literature on induced templates, 
it is implicit that the "physical" system may be expected to contain merely a 
subset of the knots and links on the induced template. Hence, the use of this 
induced template would appear to be of limited applicability it contains far 
too much. 

Remark 3.3.12 The theorems of this section can be applied to the problem of 
accumulations of knots on a template from §3.1. In contrttst to Theorem 3.1.20, 
universal templates have no restrictions on the t:)1)es of accumulations of knots. 

Theorem 3.3.13 (Ghrist [68]) Let {K,} be an arbitrary seq·uenee of knot twes, 
and let K be any chosen knot type. Then, on the 'universal template V, there 
eJ:ists a se'!"uenee of distinct closed orbits {,,} of knot twe K i , which aee·um."ulates 
onto a closed orbit, of knot type K. 

This theorem sheds light on the clttss of infinite links contained in universal 
templates: of course, not every infinite link may live on a template, but there is 
no obstruction tiS far ttS accumulations of knot t:)1)es goes. 

Remark 3.3.14 A template contains both topological and d:ynamical informa­
tion. By "forgetting" the topology, one reduces a template to a purely d:ynamical 
object. For example, if one takes the set of branch lines ttS a cross-section to the 
semiflow, on obtains a set of coupled, expanding, one-dimensional maps. Or, 
if one collapses a template along the direction transverse to the smniflow, one 
obtains a directed graph, which defines a subshift of finite type (cf. Remark 
1.2.22). Theorems 3.3.2 and 3.3.7 then yield tiS a scholium a dynamical result: 

Corollary 3.3.15 Let (:EA,U) be an irred·ueible s·ubshift of finite type. Given 
any 1v x 1v matri'J: of zeros and ones, B, there e'J:ists a local cross section :EI C :EA 
s'uch that the ret'U17t map r acting on this cross section is confugate to the :mbshift 
defined by :E fl. 
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A similar result holds with nmormalizatiolls of coupled, expanding OIlC­
dimeIlsional maps. These d:ynamical results arc, if Ilot well-knowIl) then at lcthst 
provable through much simpler methods than those of this chapter. Yet, we note 
that the methods used in this chapter arc by-and-large topological: Alexander's 
Theorem, braid groups, etc.) arc key tools. Thus, we arc plcthscd that knot­
theoretic tools can be brought to bear OIl a dynamical problem. In the IlCA-t 

chapter) too, such tools will be shown to be useful in studying bifurcatioIls of 
parametrized families of flows. 



Chapter 4: Bifurcations 

In Chapter 3 we derived general results OIl template knots and links. The theme 
wa",", one of richness and inclusion: c'Ucr,1J template contains infinitely many dis­
tinct knot types; templates carrying unlinked, unknottcd, untwisted orbits sup­
port infinite sequences of isotopic knots, and, most strikingly, "many" templates 
with mixed crossings carryall knots and links (and even all templates). 

vVc now turn to issues of uniqueness and exclusioIl, thsking how knowledge of 
knotting and linking data implies restrictions OIl families of periodic orbits and 
the bifurcatioIls in which they arc created. rv'Iorc specifically, in a paramctiscd 
family of flows, periodic orbits appear and disappear in [often complicated] se­
quences of bifurcations. But for three-dimensional flows, it is the link of periodic 
orbits which undergoes bifurcations. Thus, if (1) we "dress" the periodic orbit 
set with knotting and linking information; and (2) we compute the topological 
action of bifurcations on orbits, we produce a set of bifurcation invariants derived 
from knot theory. This chapter will be a brief tour through several applications 
of this principle. 

vVe begin with introductory remarks on local bifurcation and continuation of 
orbit branches and some elementary observations regarding the link structures 
arising in saddle node and period-multiplying (doubling and Hop£) bifurcations 
from closed orbits. In § 4.2 we describe a number of results on the horseshoe 
template 11. of Figure 2.9, the major ones being existence, non-existence and 
uniqueness theonnns for families of torus knots of specified dynamical periods. 
These provide invariants which distinguish orbits, permitting us to follow them 
from a chaotic hyperbolic set, back to their birthplaces in parameter space, 
thereby determining genealogies and orders of precedence in a family of Henon 
maps. Section 4.3 contains knot theoretic analogues of the self-similarity results 
on bifurcation sequences of the quadratic family (1.23) introduced in §1.2.3. 
vVe show how a factorisation of kneading sequences corresponds to subtmnplates 
which are embedded copies of 11., and indicate how this may be used to determine 
the orbits implicated in iterated torus knots and more general cabled structures 
involving horseshoe knots and links. Perhaps the major interest in this work 
is the way in which knot invariants afford a link (pun intended) between local 
bifurcations and global questions. 

In the final section we address global bifurcations more explicitly, describing 
some periodic orbit structures that appear near homoclinic orbits to saddle-type 
equilibria. vVe call attention to two types of topologically significant global bifur­
cations the gl'uing bifurcations, and the bifurcations surrounding a Shil 'niko'U 
connection. In the CthSe of gluing bifurcations, the issue at hand is not richness 
of orbits (primarily only "simple" knots appear), but of countable bifurcation 
sequences. In stark contrttst, in the ShiFnikov scenario, we find a general cttse 
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in which the universal template V of §3.2 is contained within the flow, thereby 
giving a sct of (primarily dynamical) sufficient conditioIls under which a given 
ODE contains all knots and links among its periodic orbits. vVc close with an 
example of a piecewise linear ODE which satisfies the necessary hypotheses: an 
C"Al)iicit seed from which all knots and links can be groWIl. 

This chapter provides merely a sample of numerous results which have been 
obtained for specific systems. For further examples, see [87, 93, 88, 70, 118, 119, 
180]. It is our hope that knotting and linking data will become incn:(;ksingly useful 
tools in the subtle business of tracking global phenomena in the bifurcatioIls of 
periodic orbits. 

4.1 Local bifurcations and links 

In §1.2.3 we described the three co dimension-one bifuI'(~ations of maps: the 
saddle-node, period-doubling, and Hopf bifurcations (we also noted the symmet­
ric pitchfork bifurcation). In the tkssociated three-dimensional flows obtained by 
suspending these families, there arc natural and simple implications for knotting 
and linking of the periodic orbits involved. Specifically, we have: 

Proposition 4.1.1 The periodic orbit.> implicated in a .>addle-node or pitchfork 
bii'urcation of a thrce dimensional flo'W arc isotopic knots and have the same 
linking Trumber 'With any other orbit 'Which persists thro'ugh the bifurcation point. 

Proof: vVe discuss the saddle-node Ctk'Se, tiS that of the pitchfork is analogous. 
Consider the parametrised Poincare map on a small cross section to the flow 
transverse to the orbit at the bifurcation. Upon pttssing the parameter through 
the bifurcation, the fixed point becomes a pair of fixed points, one of which (say 
pIJ is a saddle, the other of which (say P'2) is either a source or sink. 

In the C<1se of P'2 a source and for parameter sufficiently close to the bi­
furcation, one branch of lVS(PI) is a small segment contained in VVV,(p'2) with 
endpoints PI and P'2. Hence, in the suspension of the return map, the two pe­
riodic orbits form the boundary components of an embedded annulus, and arc 
thus isotopic. 0 

Proposition 4.1.2 The periodic orbit.> created in period-do·ubling and Hopf bi­
furcation.> arc cable.> of the original (bifurcating) orbit. 

Proof: Following the proof of Proposition 4.1.1, one notes that the orbit of 
period 2T created in period-doubling bifurcation is the boundary of a :0.-'Iobius 
band formed of the two-dimensional stable (or unstable) manifold ,1ssociated 
with the eigenvalue of the Poincare map passing through -I, whose core is the 
original period T orbit. As such, it is clearly a 2-cable. Similarly, since the 
q-periodic orbits created in a Hopf bifurcation approach those of the linearised 
mapping (1.21) at the bifurcation point, and this map is a rigid rotation by plq, 
they arc q-cables of the core period T orbit. As in Proposition 4.1.1, varying 
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the parameter sufficiently close to the bifurcation point creates an isotopy of the 
orbits in phthSC space, which preserves cabling and linking. 0 

Remark 4.1.3 Hopf bifurcatioIls of maps resulting in periodic orbits arc some­
times called period Tfrultiplying bifurcations, although, thS noted in § 1.2.3, this 
Ilame more properly refers to the special CthSC of (two-dimeIlsional) area-preserving 
maps. Here the determinant of the lincariscd mapping (equal to the product of 
the eigeIlvalues) is 1 and 80) thS one varies a parameter) the eigeIlvalues of an 
elliptic fixed point must traverse the uIlit circle; which they can only leave at 
+ 1 (a saddle-node) or -1 (period-doubling). In this CthSC the parameter ft and 
cubic term (ra) in (1.21) are identically zero, and the parameter of interest is 
the rotation angle r.p. As r.p pthSSes each value 27fp/q, a pair of q-periodic orbits 
of rotation number p / q gmwrically bifurcates from the elliptic core orbit, again 
leading to q-cablings of the original orbit. See [122, 1231, or the summary in [93] 
for details. 

These results may be used to exclude certain global orbit branches and bi­
furcations in generic three dimensional flows. Following Alexander and Yorke 
[2] and Kent and Elgin [1041, we briefly describe an example: the "noose" bifur­
cation. 

vVe will need some definitions encoding twisting information for orbits in 
three-dimensional flows, following [2]. 

Definition 4.1.4 Let ;' be a periodic orbit in a three-dimensional flow having 
thssociated Poincare map with eigenvalues Al and A2. Then;' is said to be elliptic 
if both eigenvalues have moduli satisfying one of the following conditions: either 
(1) the moduli are both greater than one; (2) the moduli are both less than one; 
or (3) the moduli arc both equal to one with Ai cP ±1. When IA11 < 1 < IA21, 
;' is an unstable saddle orbit here there are two sub-types, depending upon 
the twist of the local unstable manifold lVl~;c (;'), which is a two-dimensional 
ribbon. (See Remark 1.2.18.) If the twist is even, so lVl~;ch') is an annulus, we 
call ;' hyperbolic; if the twist is odd so that lVI~;c (;') is a J\'Iobius band, we call 
I Mobi·"",. 

Hyperbolic orbits have positive real eigenvalues, J\'Iobius orbits, negative ones. 
All generic (non-bifurcating) periodic orbits belong to one of these three clthsses. 
Note that this terminology differs from the standard usage in d:ynamical systems 
theory. 

The local bifurcation results of Propositions 4.1.1 and 4.1.2 can now be aug­
mented. vVe first note that, for flows on orientable three-manifolds, the Poincare 
maps are necessarily orientation preserving, implying that AIA2 = det(DP) > O. 
In a codimension one saddle-node, one eigenvalue Al = + I, the other being 
bounded away from the unit circle. It follows that, of the two orbit branches 
created, one is elliptic and the other h:)1)erbolic. Similar observations apply to 
the pitchfork bifurcation, in which either an elliptic orbit becomes h:)1)erbolic 
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and gives birth to two new elliptic orbits, or a h~)1)crbolic orbit becomes elliptic 
and two hyperbolic orbits arc born: sec Figure 4. L 

In contrthst, in the period-doubling bifurcatioIl, since the critical eigeIlvalue 
is Al = 1 and the tk'SSociatcd local invariant (center) manifold hth'S odd twist, 
the bifurcating (period q) orbit is rv'Iobiu8 OIl one side of the bifurcation point 
and elliptic OIl the other. The period 2q orbit which bifurcates off can be seen thS 

bounding a :0.-'Iobiu8 band which is the local (weak) stable or uIlstable manifold 
of the period q core orbit. Since it goes around twice before closing, its twist 
is necessarily eveIl. Thus it is either hyperbolic (if of saddle t:)1)c) or elliptic (if 
stable, neutral or unstable): see Figure 4.1. 

......... .. 
•• 

SN~ 
elliptic 

hyperbolic 

••• rv'Iobius 

PF ••••••••• .. •• •• : ........ .;... ---
•• •• •• .......... 

•• •• .... 
. ..... 

• •• 

•••• ~i-----

PD ~ 

-f. ..... . 

Figure 4.1: Local bifurcations of orbits, labeled th'S elliptic, hyperbolic, and 
Mobius. 

Definition 4.1.5 Let, be a h}1)crbolic or Mobius periodic orbit. The self­
linking Tt'Umber of ;' is defined ttS 

s£k(;) = £k (;', ,) , 

where ;,1 is a boundary component of the local unstable manifold lVl~;c (;'). 

Lemma 4.1.6 Self-linking Tt'umber i8 invariant along a contin'uo'u8 branch of 
orbits in parameter space so long as it is well-defined and the orbit path docs 
not change type. In addition, s£k(;) is always odd for a Mobi·us orbit, and, in 
ehan.'ring from a Mobi·us to a hyperbolic orbit, the self linking n·umber do·ubles. 

Proof: Invariance follows ttS before from the fact that a path of orbits in param­
eter space avoiding bifurcations gives an isotopy of the local unstable manifold. 
The remaining facts are ettsily shown with a picture or two, and are left tiS in­
structive exercises for the reader. 0 

Note that sek may be either odd or even for h:)1)erbolic orbits. In addition, 
when an orbit changes type from rv'Iobius or hyperbolic to elliptic, self-linking is 
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.................. 
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Figure 4.2: A bifurcation diagram containing a noose. 

lost. 

Following work of Alexander-Yorke [2] and Kent-Elgin [104], we consider the 
bifurcation diagram pictured in Figure 4.2: a branch of orbits loops back through 
a saddle node bifurcation to join itself in a period-doubling. Topologically, this 
requires onc of the orbits born in the saddle-node to wrap around its partner thS 

the boundary of a rv'Iobiu8 bancL "Vhile this sort of bifurcation can generically 
occur in flows of dimeIlsion four and higher) there arc nontrivial restrictioIls in 
dimeIlsion three: 

Proposition 4.1. 7 (Kent and Elgin [104]) For a flow on lI<" pararnctri.5cd by 
It, the "noose!' pict'U1t:d in Fig'uTe 4.2 is impossible. 

Proof: This is an exercise with linking, self-linking, and twist. The noose 
joins at a period-doubling point; hence the smaller period orbit ;'1 implicated in 
it starts either th'S a rv'Iobius or an elliptic orbit, while the longer period one ;'2 
is elliptic or hyperbolic. In either cttse, while both orbits coe"Aist, tk (;'1, ;'2) is 
odd, and, if ;'2 is hyperbolic, stk h'2) is even. 

vVe further augment Proposition 4. L 1 by noting that the twist of the two­
dimensional local invariant (center) manifold ttssociated with the bifurcating 
eigenvalue (+1) at a saddle-node is inherited by both the elliptic h'e) and hy­
perbolic h'lt) orbits produced. Since directly after bifurcating ;'h and ;'e are 
"parallel" on this band, the self-linking number of the hyperbolic orbit satisfies 
,,£k(;h) = £k(;" Ih)· The fact that £k(;l, I') is odd ncar the period doubling 
implies that £k(;" Ih) must likewise be odd, so that ,,£k(;h) is odd. But we 
showed that for the h:)1)erbolic orbit, self-linking is even. 0 

Remark 4.1.8 Alexander and Yorke [2] have developed an index theory for 
dealing with general bifurcation diagrams. They, tiS well ttS Kent and Elgin 
[1041, have found certain types of nooses which can live in three-dimensional 
flows; however, these allowable nooses involve nongeneric behaviour, such tiS 
pitchfork bifurcations, or intricate heteroclinic connections. Statements more 
general than that of Proposition 4. L 7 can be made which exclude these unusual 
cttses. 
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Having indicated how knotting and linking may be used to exclude certain 
global phenomena in bifurcation behavior) we proceed to a more complicated 
instance thssociatcd with a particular template. 

4.2 Torus knots and bifurcation sequences 

The horseshoe template may be derived from a flow embedded in a solid torus, thS 

indicated in §2.3. The underlying vector field often models a periodically forced 
oscillator. As such, the template's (single) branch line corresponds naturally to 
a global cross section in the original flow) and the number of intersectioIls of 
a periodic orbit with the branch line is the dynamical thS well as the s:ymbolic 
period of the knot (cf. Remark 2.4.5). This observation prompts the following: 

Definition 4.2.1 Given a (p, q) torus knot, we say it is a resonant torus knot if 
it has period q. 

Recall, we may take p < q without a loss of generality. 

Example 4.2.2 Consider the word wCX: = (J:1J:~J:1J:2)CX:' of period five. To 
determine whether it is a torus knot, we draw it on the horseshoe template ti. 
The five points in the intersection of the knot with the branch line of ti have 
addresses {uk(woc) : k = O,l,2,3,4}. To determine the order in which these 
points arc traversed thS one follows the knot, we usc the prescription of § 1.2.3, 
and compute the invariant coordinates of wCX: and its shifts: 

Word Invariant coordinate Ordering 
w - (J:1 J:2J:2J:1 J:2)CX: B (w) - J:1J:2J:1J:1J:2· 0 

u (w) (J:2 J :2 J :1 J :2 J :1 )CX: B(u (w)) = J:2J:1J:1J:2J:2· 2 
u2(w) (J:2J:1 J:2J:1 J:2)CX: B(u2 (w)) = J:2J:2J:1J: 1J:2· 3 
u"(w) (J: 1 J:2J:1 J:2J:2)CX: B(u"(w)) = J:1J:2J:2J:1J:2· 1 
u4(w) (J:2 J :1 J :2 J :2 J :1 )CX: B(u4 (w)) = J:2J:2J:1J:2J:2· 4 

Drawing a simple closed curve on ti which pttsses through the branch line points 
in the prescribed order above yields the knot corresponding to wCX:, tiS shown 
in Figure 4.3(a). The reader can perform Reidemeister moves to obtain Fig­
un:4.3(b), revealing that (J:1J:~J:1J:2)CX: is a (2,5) resonant torus knot. Similarly, 
it can be verified that (J:IJ:2J: 1J:2)CX:, also of period five, corresponds to a (2,3) 
torus knot, and hence is not resonant. 

Numerous statements can be made regarding existence and uniqueness for 
torus knots and resonant torus knots on the horseshoe template. Before giving 
the first of these, which requires a lengthy proof, we state a simpler result on 
pairs of orbits arising in saddle node bifurcations. The key idea throughout this 
and the following section involves mapping sets of words to knot types, and we 
usc extensively the ordering of points on the branch line via s:ymbolic dynamics 
and kneading theory of §1.2.3. In doing so, we refer to the return map 11i. 
induced on the branch line by the sCIniftow. 
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Figure 4.3: (a) The orbit (J;lJ;~J;lJ;2Yx; is (b) a resonant (2,5) torus knot. 

Given two words corresponding to template knots, it is generally difficult 
to determine if the knots arc isotopic. As noted earlier) this is relevant to the 
thssociatcd bifurcation behavior; c. g.) upon varying parameters in a flow) IlOIl­

isotopic orbits canIlot collapse onto one another in saddle-node bifurcatioIls. 
However) in some Ctk'SCS we can perform isotopics OIl the template to obtain such 
results. 

Lemma 4.2.3 Let wCX:: be a periodic point on ~1i 'Which is minimal 'With respect 
to <J among all its shift". Then, if the 'Words w;r: l J>2 and WJ;~ arc both acyclic, 
then the knots on 11. c01TCsponding to (w;r:lJ>2)(X; and (WJ;~r:x; arc isotopic. 

Proof: Let {p;}g and {q;}g be the points at which the orbits (WJ:IJ:2)'X: and 
(WJ:n (X; respectively intersect the branch line. These correspond s:ymbolically 
to all shifts of the words WJ:IJ:2 and WJ:~. By Proposition 1.2.47, the minimality 
of these words implies that Po < Pk, 'Vk ::P 0 and Pn > Pk, 'Vk ::pn, and similarly 
for qo and qrv Since the sCIniftow takes Pn~ 1 to Pn and Pn is maximal among the 
Pi points, then among all the Pi points on the left half of the branch line (that is, 
the strip J:d, Pn~1 is IIH1"Aimai. Similarly, since the template semiftow reverses 
orientation on the right side (the strip J:2), then among all the qi points on the 
J:2 strip, qn~ 1 is minimal. Thus, Pn~ 1 and qn~ 1 lie on opposite sides of the gap 
in the branch line, with no other strands between them. From Figure 4.4 it is 
clear that one may lift the strand ptk'SSing through Pn~ l over the gap to qn~ I , 

obtaining the desired isotopy. 0 
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,I 

Figure 4.4: (W;r: l ;(:2) (X; is isotopic to (WJ;~) (X; • 

Example 4.2.4 For example, the pair J; l J;~J; l J;2 and J;lJ;~J;2J::2( = J; l J;~) form 
such a minimal acyclic pair. As noted above, (J; l J;~J; l J;'2)()(; is a (2,5) torus knot; 
thus, 80 is (J: 1 J;~) (x;. 

Definition 4.2.5 Two minimal acyclic words of the form w;r:lJ:2 and WJ;~ arc 
called a bii'urcation pair. These two words have differing J>2-paritics: we denote 
that with even ;r:'2-parity male and t hat wit h odd ;r:'2-parity female. 

Remark 4.2.6 The nlthSOIl for t he terminology of Definition 4.2.5 is th'S follows: 
recall that the return map for 1i induced by the branch line can be cOIlsidered tk'S 

a member of t he quadratic family of maps (§L2.3). If we t hen regard horseshoe 
knots th'S periodic orbits created thS one pttsses through a sequence of quadratic 
maps, Proposition 1.2.48 implies that the male-female pair from Definition 4.2.5 
is created simultaneously in a saddle-node bifurcation. In this and t he following 
section, we will freely pttSS from t hinking of finite words in {J: 1, J:2} ttS horseshoe 
knots or ttS periodic points in the quadratic family. These "genders" reflect the 
role played by the knots in orbit gmwalogies, to be det ailed in §4.3. 

Lemma 4.2.3 does not imply that all knot s come in isotopic pairs. Take , 
for example, the period four orbit (J: I J:~)(X;, whose bifurcation partner would be 
(J: I J:2J: I J:2)(X;: a cyclic e"A-tension of the period two word J:1J:2. Evidently J: I J:~ 
htts no part ner. Such a "pseudo-pair" is related to a period-doubling bifurcation 
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within the quadratic family, in analogy to the saddle-node pairs of Remark 4.2.6: 
ef. §4.3. 

Other results similar to Lemma 4.2.3 arc possible. The following is a corollary 
to Proposition 3.1.19, cth'Sily proved in this special CtkSC by removing an "J:l-loop" 
via the first Rcidcmcistcr move: 

Corollary 4.2.7 Ifw is minimal, then the knots c01TCsponding to (;r:}'w)CX:: arc 
isotopic for all k ::> o. 

Before stating the main theorem of this sectioIl, we need a further result which 
enables us to cthsily determine the braid index for a clthSS of positive braids (recall 
Definition 1.1.23). 

Theorem 4.2.8 (Franks and Williams [58]) For a positive braid on p strands 
containing a full twist on p strands, the braid indc'J: is p. 

The proof of Theorem 4.2.8 uscs Jones pol:ynomials and is beyond the scope 
of this book. 

4.2.1 Horseshoe torus knots 

Theorem 4.2.9 (Holmes and Williams [93]) Among the (p,q) torus knots on 
1i, there are: 

1. e'J:actly two resonant torus knots for each q > 2p, and infinitely many 
nonresonant torus knots of arbitrarily large period; 

2. no resonant torus knots for q < 2p; 

.Y. no torus knots at all for q < 3p/2. 

In addition to supplying a specific instance of an infinite collection of distinct 
knot types on 1i (which we e"Al)ect from Theorem 3.1.15), this theorem reveals 
that the resonant torus knots arc surprisingly sparse. It also suggests that the 
additional positive half-twist on 1i makes it more "rigid" than the Lorenz tem­
plate [(0,0), which contains all torus knots by Theorem 2.3.3. 

Outline of proof: To prove the e"Aistence of the resonant torus pair for q > 2p, 
we e"A-tract a subset S from the horseshoe template (S is not a subtmnplate thS 
there arc no branches). In Figure 4.5 we show 1i without its ends identified. vVe 
remove portions on the edges of the ;:r:l-branch and the center of the ;:r>2-branch 
(a neighborhood of the orbit ;:r>2), yielding three strips which can be laid on a 
cylinder. Identifying the ends of the cylinder, we have a torus T'2 on which S 
lies. 

A (p, q) resonant torus knot htt.8 q strands traveling p times meridionally 
about T'2. vVe construct one by placing p strands on each of the two ;:r:'2-strips 
and q 2p strands on the ;:r:l-strip of S (sec Figure 4.5). The partner is obtained 
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Figure 4.5: The resonant torus knots OIl ti. 

by reversing the isotopy in the proof of Lemma 4.2.3, lifting the leftmost ;(:'2-

strand over to form the rightmost ;r: l -strand. 
To specify t he words for this pair, write a string of J: 1 '8 of lengt h q 2p 

followed by two st rings of ;(:2 each of length p. The first word is produced 
by counting forward in multiples of p mod q: beginning at the first J: 1 and 
recording the appropriate letter) each time advancing p letters and "wrapping 
around" where necessary, regarding t he sequence tkS periodically extended. The 
partner derives from Lemma 4.2.3, OIl changing the penultimate letter from ;(>2 

to J: 1 . The first ;(>2 in the first group of p J::/8 is the ambivalent term for the 
pair, denoted below by;(:*. Note t hat these words have ;(:1'S and ;(::/s distributed 
in the most uniform manner possible, subject to t he required relative number 
2p/q or (2p l)/q of ",'s. Hence they arc sometimes called evenly di.5trib·uted 
words [91]. 

Example 4.2.10 To determine the (3)1) resonant torus pair, write out the 
prescribed string of ;(:1'S and ;(::/s: 

(4.1) 

then, counting terms mod II, one gets ;(:1 ;(:1 ;(>2 ;(>2 ;(:1 ;(:1 ;(:2 ;(:2 ;(: 1 ;(:2 ;(:2· Hence, 
t he resonant torus knot pair is given by (;(:i;(:~)2;(: 1 ;(:*;(:2 

Given any pair of resonant torus knot s, Corollary 4.2.7 immediately yields 
infinitely many more isotopic but nonresonant ones, of periods q + I, q + 2, . 



4.2. TORUS KNOTS AND BIFURCATION SEQUENCES 117 

The uniqueness proof is more complicated. The idea, due to vVilliams, is to 
rearrange orbits OIl the template 1i in minimal or "well-disposed" braid form 
and usc braid index and genus invariants together with dynamical period. The 
details appear in [93]; here we sketch only principal idetk". 

To apply Theorems L L 18 and 4.2.8 in computing genera and braid indices, 
we must transform orbits OIl 1i into the appropriate form: 

Proposition 4.2.11 lVith the cJxeption of the orbits J;f and J::.F, ever'll orbit 
on 1i may be arranged us a positive braid having a full twist. 

Proof: vVc first perform a DA-splitting OIl the J;:f orbit, creating an isolated 
source (what wtk'S J:f) linking the DA-modificd template, which hth'S a new bound­
ary component corresponding to (J:~) ex;. This DA modification affects only the 
J:':f orbit (which is to become the braid axis) and the new boundary component: 
all other orbits are unchanged. 

After removing the braid axis and propagating the branch line gaps back, 
loops are transformed into full twists, via the belt trick, tkS illustrated in Figures 
4.6-4.8. The template is thereby transformed to a positive braid with the ex­
ception of a loop at the top, corresponding to the J:1-strip of ti. For any given 
link with total number of consecutive J:1 's bounded, we may split the J:1 branch 
line repeatedly tiS before and pull each curl out via the belt trick, producing 
a subtmnplate of ti containing the link tiS a positive braid with (at letist) one 
and one-half full twists: more than sufficient for application of Theorem 4.2.8. 0 

Equipped with this "normal form" for ti and given a knot with periodic word 
W = J:t1 J:~l J:t-;: J:~-;:. J:t k J:~k , we define syllablcs to be of the form J:itJ:2, J:itJ:~, 
or J:~, for arbitraryn > O. Figure 4.6 reveals that, apart from the trivial words 
J:1 and J:2, each word htis a unique syllabic decomposition and each syllable 
corresponds to a single strand on the minimal template. Thus, via Theorem 
4.2.8 we have: 

Proposition 4.2.12 The braid inde", of a hor.>e.>hoe knot eq·ual.> the T!"Umber of 
.>yllable.> in it.> "Word w. 

Example 4.2.13 The knot J:iJ:2J:1J:2J:\lJ:~ htis braid index four via the decom­
position ("j '" )('" '" )("\' '" )(,,~). 

To prove uniqueness of resonant torus knots, one shows that, among all braids 
on p-strands which cross the branch line q times, including multicomponent links, 
the members of the (p, q) torus knot pair alone IIH1Aimize the geIIUS. This is done 
via Theorem L L 18 by maximizing the crossing IIumber c of q-period p-braids 
on the positive braid template, in a manner similar to the proof of Corollary 
3.1.11. The calculations are presented in full in [93]. This completes the proof of 
part (1) in Theorem 4.2.9. The proof of (2) follows from the same calculations 
performed for part (1). 
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Figure 4.6: rv'Iovcs to obtain the minimal templat e (1). 

The proof of part (3) is simpler, and provides a nice example of the usc of 
knot invariants. As one can verify, the braid word for a full twist onn-st rands 
is 

(4.2) 

and thus, a full twist contains (n l)(n) crossings. The minimal braid template 
includes three half-twists and 80 any braid ,8 with braid index lJ(,8) = p IIlust 

have crossing number etB) ~ fr(p l)(p). Thus, applying Theorem 2.2.4 to a 
(one component) knot, we have: 

2g(.B) ::> ~(p - l)(p) - p + 1, 

or 

(BJ> (p-l)(1p 1) 
g. - 2 

But, recalling from §1.1.4 that the genus of a (p,q) torus knot is ~(p-l)(q-l), 
we conclude that, in order to satisfy 

(p - l)(q - 1) > ",(p_--,I)-,( -,,"~p_-----,-I) 
2 2 

we must have q> 3p/2. o 
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Figure 4.7: rv'Iovcs to obtain the minimal template (2). 

4.2.2 Bifurcation reversal in the Henon map 

Theorem 4.2.9 implies that for each pair of relatively prime positive integers (p, q) 
with q > 2p, the flow in the suspeIlsion of the horseshoe map hth'S a unique pair 
of resonant (p, q) torus knots. vVc will now relate this information to bifurcation 
sequences involving such orbit pairs in the HelloIl map (2.12). As noted in §2.3.2, 
for ft > ~(5 + 2V5)(1 + f2), the map F,I.,( hth'S a horseshoe and 80, suspending 
this family tk'S in Figure 2.9, we have the resonant torus knots described above. 

For the Cth'SC f = I, the map F,t,( becomes 

{ 

'UH'U 

'U H -'lJ, + ft - '0'2 
(4.3) 

an area-preserving family. Elementary calculatioIls show that, at ft = -I, Fp.,1 

undergoes a saddle-node bifurcation, creating an elliptic fixed point which per­
sists in the interval ft E (-1,3). Increthsing ft from -1 to 3, each member of 
the eigenvalue pair travels around the unit circle monotonically, taking on all 
values (e2r;i.p,e~:'17ri.p) beginning at (+1,+1) for ft = -1 and ending at (-I, 1) 
for ft = 3. Using normal forms, Holmes and vVilliams [93] show that ttS the 
eigenvalues of D F,1.,1 pttSS through each pair (e2r;i p!q, e~2r;ip!q) for p, q relatively 
prime, q > 2p, and q 2: 5, the map Fp.,l undergoes a generic resonant area­
preserving Hopf bifurcation, creating a pair of isotopic orbits. In the natural 
suspension of the map, one uses Proposition 4.1.2 to show that this pair is a 
(p, q) resonant torus knot pair. The order in which the eigenvalues pttSS through 
the points (e2r;i p!q, e~2r;ip!q) determines the bifurcation sequence. By a com-
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Figure 4.8: rv'Iovcs to obtain the minimal template (3). 

~\ 

) 
/ 

plicatcd argument involving S}'lIlIIlctry properties of the map F,/., l and linking 
data OIl the q-cablcs themselves, one shows that the resonant bifurcation pair lie 
OIl a continuous branch of resonant torus knots which can be followed from the 
bifurcation point to ft arbitrarily large, thus identifying them with the unique 
resonant pair and enabling one to employ the uniqueness part of Theorem 4.2.9 
to arrive at the following: 

Proposition 4.2.14 Given the sequence of pairs of relatively prime positive 
integer.> {(pi, qil}:':~ with q > 2p and q ::> 5 ordered ·(fta .j < j if and only if 
p'; qi < Pj / qj, let I'i be the I,-val·ue at which the nat·ural .>·u.>pen.>ion of the map 
Fp., 1 creates the 'unique pair of (pi) qi) resonant torus knots. Then'i < j if and 
only if I'i < I'; . 

For the CthSe f = 0, the map Fp.,( becomes 

{
'UH'U. 

'UHf! 
(4.4) 

the dynamics of which immediately collapse to those of the one-dimensional 
quadratic map ill' : J; H It - J;i described in § 1.2.3. Kneading theory provides 
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a complete ordering of the bifurcations of i p. via the kneading invariants v( w). 
Here the continuation with incn:thsing ft of orbits once created is ttssured by 
the monotonicity of the kneading invariant. One uses the algorithm given ttS 
Example 4.2.10 of §4.2.1 to construct the words corresponding to such (p, q) res­
onant torus partners. Computing the ttssociated kneading invariants (via (1.24)), 
Proposition 1.2.48 allows us to order these resonant torus pair bifurcations. This 
yields: 

Proposition 4.2.15 Given the sequence of pairs of relatively prime positive 
integers {(pi, qi)}:+::;;; with q ::> 2p ordered 'lYfa 'j < j if and only if P'; qi < Pj 1%, 
let ftj) be the ft-val'ue at which the nat'ural s'uspension of the map Fp.,o creates the 
'uniq'ue pair of (pi, qi) resonant torus knots. Then·j < j if and only if I'? > I'~' 

vVe note that the kneading theory behind Proposition 4.2.15 applies to any 
unimodal function of'U in place of ft - 'v'2 in Fp.,o. Thus, the conclusion holds for 
a far wider cIttss of mappings than the Henon family. 

These propositions together imply the following n:markttble result [93, 87]: 

Theorem 4.2.16 (Holmes and Williams [93]) In the bifurcation diagram of the 
map F,t,U infinitely many saddle-node bifureation c'urves cross one another on 
the (ft, t) parameter plane between f = 0 and f = 1. In partic'ular, each resonant 
torus bifurcation seq'uence for the area-preserving case (f = 1) is eJ:actly reversed 
in the one-dimensional case (f = 0). 

Thus, fixing f E [0,11, and increttsing ft, we obtain infinitely many different 
bifurcation sequences leading to a horseshoe: loosely speaking infinitely many 
routes to chaos. However, this behavior does not imply similar reversals for 
other orbits. For example, the (2,3) non-resonant torus knots of periods 4,5,6. 
do not reverse their order in this way; instead, tiS an accumulating family of the 
type described in Theorem 3.1.20, their bifurcation curves are all "parallel:" cf. 
Holmes and Whitley [92]. 

4.3 Self-similarity and horseshoe cables 

Given the cOITespondence between knotted orbits on the horseshoe template and 
bifurcations of the one-dimensional quadratic family touched on in §4.2, we now 
e}.l)lore this latter family of maps in greater detaiL 

Denote by i p. the map which takes J: to ft :d, where i,l. acts on the inter-

val I (ft) = [- & V ft + ~, & + V ft + ~] (this interval grows ttS ft ranges over 

[- ~, 2]). The bifurcation set of this map htts a n:markttble self-similar struc­
tun:: given any positive integer AI, there exists at lettst one subset .1, of the 
phttse-parameter space for which 

f MI ~ f II. J "" p., (4.5) 



122 CHAPTER 4. BIFURCATIONS 

where;:.:.;: denotes conjugacy. Figure 4.9 illustrates the CthSC AI = 3: f,~ restricted 
to a subinterval [ct"B] hth'S the same bifurcation sequence OIl some It-subinterval 
thS docs ill' OIl [- ~) 2]). This is the bthSis for a nmormalizatioll group theory (sec 
[95, 96]) which shows that bifurcation sequences arc nested within themselves. 
The simplest such nesting leads to the well-known period-doubling cthscadcs 
studied metrically by Feigenbaum and others (sec [41, 199]). 

Figure 4.9: f,~ and a magnification. 

Orbits in the quadratic map arc created in a very specific order) governed 
by the kneading invariants (Proposition 1.2.48). As we have seen in §4.2.2, a 
horseshoe may be :ibuilt" through a variety of distinct paths; nevertheless, by 
taking the branch line of ti tkS a Poincare section for the smniflow, we recover the 
"full" quadratic map ttS a return map. Thus, tiS per Remark 4.2.6, we may speak 
of two horseshoe knots being a saddle-node pair, bttsed on the corresponding 
theory for the one-dimensional return map. 

In this section, we e"Al)lore the implications of the bifurcation structures 
within ill' on knot and link t:)1)es and on subtmnplate structures within the 
template ti. vVe first outline an extension to the simple kneading theory intro­
duced in §1.2.3, and use it to show how certain clttsses of words correspond to 
knots inhabiting subtmnplates of ti. This material is drawn from [881, in which 
the idea of subtmnplates first appeared, but the proof of the main result (The­
onnn 4.3.8) is reformulated and simplified in terms of the template inflations 
introduced in Chapter 2. 

4.3.1 Kneading factorization and subtemplates 

The kneading invariant introduced in §1.2.3 provides a convenient s:ymbolic tool 
for analyzing iterated structures on the template. For the horseshoe template, 
the kneading invariant v(aex:) of a periodic orbit aex: is a sequence given by (1.24) 
which, via Proposition 1.2.48, allows one to order the ft-values at which the orbits 
appear in bifurcations of the one-dimensional map ill-' In cttses where v(a) is 
periodic, we refer to it by the periodically repeated unit, with the superscript ex: 
dropped. 
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vVe now describe a factorization of such kneading sequences. 

Definition 4.3.1 For w an acyclic minimal word w = 'W 1'W2 ... 'Wk and v any 
word v = 'V 1'V2 . (not necessarily finite), define w * v to be the sequence of 
concatenated words 

where 

and 

Recall from § 1.2.3 that £1 = ;(:2 and vice versa. 

Example 4.3.2 

;(:1;(:2 ;(:1;(:2 ;(:2;(:1 
;(:1 ;(:2;(:1 ;(:~;(: 1 
;(:1;(:2 ;(:2;(:1 ;(:2;(:1 
;(:1 ;(:~;(: 1 ;(:2;(:1 
;(:1;(:1;(:2 ;(:2;(:2;(:1 ;(:1;(:1;(:2 ;(:1;(:1;(:2 ;(:2;(:2;(:1 

(4.6) 

Any kneading invariant v which can be expressed tkS a *-product of two or 
more nonempty words is said to be *-factorizable, otherwise it is *-prime. The *­
factorization is particularly useful in describing period multiplying bifurcations. 
For example, in the period-doubling bifurcation of a period-k orbit with periodic 
kneading invariant w, the new orbit of period 2k htts kneading invariant W*;(:I;(:2. 
The *-products can be iterated to form longer, more complicated factorizations. 

The self-similarity for the quadratic map fit in (4.5) is naturally e}.l)ressed 
in terms of kneading sequences and *-factorization (sec [88]): 

Lemma 4.3.3 Let u, v and w be kneading invariants, 'Where w is finite. Then 
w * u <J w * v if and only if u <J v. 

Proof: By Equation (4.6), 

Let K denote the index of the first letter at which u and v differ: hence, 
'UK = ;(:1, 'UK = ;(:2· Since w is a kneading invariant, it follows from (1.24) 
that 'W I = ;(:1. Thus, w,j'f{ <J w'!f{ and w * u <J w * v. Reversing the argument 
yields the lemma. 0 

Remark 4.3.4 In conjunction with Proposition 1.2.48 and Equation (1.24), 
Lemma 4.3.3 implies the self-similarity in the bifurcation structure stated in 
Equation (4.5). InCI'ettsing ft creates periodic orbits in the order of inCI'ettsing v 
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from J;f to (J': 1;1:2)(X;) to (J':1;1:2) * (;1: 1 J>2 ), etc.) ad injinit'um. For any finite *-primc 
kneading words u <J v, all kneading sequences of the form u * w, for all w, IIlust 
prccccd v; hcnce, the entire bifurcation sequence of i,l. is "embedded" within 
itself, 80 that 1,;1 restricted to some subinterval in ft undergoes the "same" 
sequence thS ill' itself. 

Recall from Definition 4.2.5 that male knots have even ;r:2-parity and female 
knots, odd J>2-parity. The kneading theory for unimodal maps implies that 
males arc created in saddle-node bifurcatioIls and females in either saddle-nodes 
(along with males) or, partncric88, in period-doubling bifurcatioIls. Directly 
after either such bifurcatioIl, both orbits implicated in it share the same s}'1nbol 
sequence. After the saddle node, that destined to become female changes gender 
via one point on it crossing the critical point c; the male's sequence remains tk'S 
it began, consistent with a positive eigenvalue. After a q --t 2q period doubling, 
the doubled orbit, whose sequence, regarded tiS 2q-periodic, starts out male, 
similarly changes gender by losing or gaining an ;(>2 tiS a point of it ptiSSes c. 
(Recall that the eigenvalue of the (iterated) maps are respectively 1 and -1 in 
these bifurcations.) These observations imply the following (for details see [88]): 

Lemma 4.3.5 Let w be a q-periodic kneading invariant. Corresponding to w 
and w * ;(:1 ;(>1, there e'J:ist two horseshoe periodic orbits, (al)(X; and (a)(X; E ~1i, 
.,·ueh that: 

1. w = v((a)OC) = v((a')OC); 

2. if w ¥- u * ;(:1;(>1 for any kneading invariant u, then (al)(X; and (a)(X; are a 
male-female pair of i.,otopie period-q orbit., created in a .,addle-node bifur­
cation; 

/1. if w = u * ;(: 1;(:2 for some kneading invariant u, then (al)(X; and (a)(X; are 
both female knot., implicated in a period-do·ubling bifurcation and having 
respective periods q and 2q. 

Definition 4.3.6 Let {wdi' denote a collection of qi-periodic kneading invari­
ants for somen > I, and ,}V = W I * W2 * ... * Wn be the Cd = [1;~ 1 qi-periodic 
kneading invariant formed by iterated *-multiplication. A periodic horseshoe or­
bit (a) (X; having kneading invariant v( (a) (X;) = ,}V is called an iterated horseshoe 
knot with defining .,e'!"uenee W. 

The factorization of kneading invariants becomes the d}'11tunical backbone for 
an elegant interpretation of self-similarity in the bifurcations of the horseshoe. 
The topological analogue of the *-factorization is a generalization of the satellite­
companion construction for knots (Definition L L 10): 

Definition 4.3.7 Let T be a template braided within a standardly embedded 
solid torus 1/ = n2 x S1, and let K be a knot (in a different copy of Sa) with 
tubular neighborhood 1v (K) homeomorphic to 1/ via h : 1/ --t 1v (K). Then the 
template given by h(T) is a satellite of T with companion K. 
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Theorem 4.3.8 (ef. Holmes [88]) Let W = Wj * W, * ... * Wn be a periodic 
kneading invariant 'Which does not factor as u * (;1:1;1:2) for any kneading irwari­
ant u. A180, denote by (a'lOC and (al OC E 2;1/ the male-female pair of knot8 
a880eiated to W via Lemma 4.,1. ,5. Then, all the iterated hor8e8hoe knot8 of the 
form W * v coincide with the cl08ed orbit8 on a partie'ular 8'ubtemplate 1i W C 1i 
which i8 the 8atellite of either the 8tandard hor8e8hoe template 1i or the '"twi8ted" 
hor8e8hoe template il (piet'urcd in Fig'urc 4.10), with the knot eorre8ponding to 
(a;cx: as companion. 

Figure 4.10: The "twisted" horseshoe template ft.. 

Proof: Let (al;cx: be the (Q-periodic) itinerary of the male horseshoe knot having 
kneading invariant v((a1r'{;) = l-V and let (a)CX:; correspond to the female knot 
having kneading invariant v((a)CX:;) = l-V * ;1:1;1:2 tkS pCI' Lemma 4.3.5. Denote by 
b be the subword 0,10,2 ... o,Q~2 of a (or, equivalently, al). 

Assume first that b htt.8 odd ;1:2-parity; then, consider the inflation 

<Cw: 1i Y 1i (4.7l 

The image of this map is a template since iC preserves the twist orientation of 
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J;f and J.;':f) and since the image of the branch segments, 

.B1 (I!'w(H)) = I!'w([J:j"', J:1 J:2J:j"'ll 
= [((J: 2bJ:1 ))OC ,J:2b J: 1J:2 b J:2 (J: 2bJ:1 )OC]; 

(4.8) 
.B2 (I!'w(H)) = I!'W([(J:2)2J:j"', J:2J:j"'ll 
= [(J: 2bJ:2)2 (J:2bJ:1)OC ,J:2b J:2 (J: 2bJ:1 )OC]. 

is a sct of IloIlovcriapping intervals OIl the branch line (this may be verified using 
the <J-ordcring and the fact that b is of odd J>2-parity). 

By Lemma 4.3.5, the knots corresponding to (a)(X; and (al)CX:: OIl 1i arc iso­
topic: the isotopy is merely that of Lemma 4.2.3 the rightmost strand of the 
knot for (al;cX/ OIl the J:1 strip of 1i is lifted over the branch line gap to the 
leftmost strand of the knot for (a)O<: OIl the ;(>2 strip. Since the periodic orbits 
(a;cx: and (al

)()(; form a "spine" for the subtmnplatc ~(1i)) the isotopy may be 
m ... --tcndcd to the strip containing (al)(X;. Hence, the subtcmplatc ~(1i) may be 
isotopcd in Sa to lie within a tubular neighborhood of the knot corresponding 
to (a)oc. This yields a presentation of ti}.( = ~(ti) tk'S a satellite template with 
companion (a)oc. 

To show that ti}.( contains precisely the iterated horseshoe knots, observe 
that ,}V and ,}V * J:1 J::y: are respectively the smallest and largest kneading invari­
ants of the form ,}V * v for any v. Hence, all orbits with kneading invariants 
of this form IIlust lie between the horseshoe words having kneading invariants 
,}V and ,}V *J:1J::Y:. But these correspond precisely to the boundary components 
I!'(J:j"') and I!'(J:2J:j"') of the subtmnplate. 

In the cttse where the J:2-parity of b is even, we IIlust modify the inflation ~ 
to one which respects even and odd twisting of orbits. An analogous proof to 
that above, applied to the inflation 

(4.9) 

shows that the subtmnplate containing the iterated horseshoe knots is a satellite 
of the "twisted" horseshoe template it.. 0 

Example 4.3.9 Let ,}V = J: 1 J:~J: 1 ' so that a l = J:1 (J:1J:2)2 and a = J:IJ:~. The 
inflation is: 

{ 
J:1 H J:2(J:IJ:2)J: j 

~;rl;r~;rl : ti 4 ti J:2 H J:2(J:IJ:2)J:2 

Figure 4.11 shows that, after an isotopy, ti,/I.( is a satellite of ti with companion 
a trefoil, having an additional four full twists. 

Similarly, the net twisting for ti.\( with ,}V = J:IJ:~J: 1 J:2 is odd. Recalling 
Example 4.2.2, the reader may like to check that this subtmnplate is a satellite 
of the twisted horseshoe it. with companion a (2,5) torus knot, having four and 
one-half full twists. 
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Figure 4.11: the subtemplate for lV 
dth'Shed. 
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In this sense, the male-fmnale pair (al) (X; , (a) (X; give rise to a family of iterated 
horseshoe knots which remain close to them in that they lie on the subtmnplate 
ti}.(. vVe refer to (al)(X; and (a)(X; tiS the father and mother knots respectively; 
the iterated knots are their children. From Theorem 4.3.8, we observe that (a)(X; 
can be viewed tiS the core of an embedded torus, with (al)(X; on its boundary and 
all subsequent children following (a)(X; without doubling back. Hence, iterated 
horseshoe knots are examples of the generalized cablings discussed in §LL2. 

4.3.2 Nested periodic orbits and iterated torus knots 

The self-similarity in the bifurcation structure of the quadratic family is not the 
only example of d:ynamical self-similarity. A very important and well-known 
cIttss of examples is given in the KAlvl theor;1J for elliptic fixed points of an 
area-preserving diffeomorphism [122, 123]. Let F : R'2 ~ R'2 and DF(~) have 
eigenvalues A,:\ = e±'2T;iQ with ¢ E (0, &). Gmwrically F is a perturbed twist 
map with rings of alternating elliptic and h:)1)erbolic points arranged in a self­
similar fttshion. These families of periodic points are separated by invariant 
"KAft'I curves," which form a set of positive Lebesgue me,1sure; see [8]. 

There is much to be said concerning the knotting and linking of orbits in 
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the suspeIlsion of such a map, or) more generally, for any Hamiltonian flow OIl a 
cOIlstant-energy three-manifold (sec, e.g.[116, 15]). In particular, since the arca­
preserving HelloIl map provides a specific example of such a map, we should 
mq)cct to sec some vestige of this behaviour in the h01's(1shoe. 

vVc showed in §4.2.2 that, around the "primary" elliptic point, corresponding 
to the (female) orbit ;(>2, the natural suspeIlsion of the area-preserving Hellon 
map hth'S a (p, q) torus knot pair for each p < q/2. In fact, much more IS true: 
the self-similar structure suggested in the KApiI Theorem corresponds, in the 
suspended flow; to iterated torus knots of infinitciy many (but Ilot all) types. 
The simplest of these are the 2-cables created in period doubling sequences, t4') 
e}.l)ressed in the following simple corollary to Lemma 4.3.5: 

Corollary 4.3.10 All female horseshoe knots are 2-cabled by some other horse­
shoe knot. 

Proof: Let (a)(X; denote the itinerary of the female horseshoe knot. Then, the 
periodic orbit corresponding to the kneading invariant v(a) * J: 1J:2 is a 2-cable 
of (a)(X; by Lemma 4.3.5 and Proposition 4.1.2. 0 

Remark 4.3.11 Since any periodic orbit with kneading invariant of the form 
w * J:1J:2 is female, and those orbits created in the period doubling sequence 
bttsed on the (female) orbit (a)(X; with kneading invariant w have invariants w * 
J:1J:2, W*J:1J:2 *J:1J:2, ... , any finite part of every period doubling sequence forms 
an iterated 2-cable of (a) (X; . Formulae describing crossing and linking numbers 
of such structures may be derived. For example, see [88] for a presentation of 
the period-doubling cttscade results of Yorke and Alligood [198, 199] in knot­
theoretic terms. 

vVe now move to more general iterated torus knots. To proceed, recall the no­
tion of t~n)e numbers following Definition 1. 1. 10. vVe call an iterated (horseshoe) 
torus knot of type {(p1, qi)} (with Pi < qi; It-;) resonant if its type numbers qi 
coincide with the periods qi of the kneading invariants Wi in its defining sequence 
w. 

Theorem 4.3.12 (Holmes [88]) Among the iterated horseshoe knots, each finite 
seq'uence {(pi, qi)}i' of positive integers 'With Pi, qi relatively prime and pil qi < & 
determines a ·uniq·ue pair of resonant iterated torus knots of twe {(Iii, qi) H' where 
li1 = P1 and 

(4.10) 

This result is essentially an iterated version of Theorem 4.2.9. It is proved by 
identifying the appropriate iterated horseshoe knots via their words and factored 
kneading invariants, and placing them correctly on the subtemplates of Theorem 
4.3.8. The words are *-multiplied analogues of those for the simple torus knots 
of Theorem 4.2.9, and uniqueness follows by alternately nU1}.imizing and mini­
mizing crossing numbers and appealing to Theorems 2.2.4 and 4.2.8. (Here, the 



4.4. HOMOCLlNIC BIFURCATIONS 129 

embedded subtmnplatcs arc sufficiently twisted for one to apply Theorem 4.2.8 
directly; no elaborate surgery thS in Figure 4.6 is required.) The argument is 
lengthy and Ilot particularly illuminating; for details and data OIl the thssociatcd 
kneading invariants and linking numbers sec [88]. 

vVc close with a summary of orbit gmwalogics for the natural suspeIlsion of 
the horseshoe map. Generically: orbits appear tkS male-female pairs in saddlc­
node bifurcatioIls, or thS single female knots in period-doubling bifurcatioIls. The 
fmnalc knots arc "mothers," each of which forms the core of a subtmnplatc hav­
ing the tk'SSociatcd "father" knot thS a boundary component. The mother is 
a companion (in the sense of Definition 1.1.10) to her infinitely many "chil­
dnm:" generalized cables which live on her subtemplate. ApprO"}.imately half 
of these knots arc female, and tkS such, proceed to form sub-subtmnplates sup­
porting infinitely many grandchildren, etc. Since each subtemplate is a twisted 
and (perhaps) knotted copy of the original, the bifurcation sequences on each 
subtmnplate arc miniature copies of the original but yield knots increttsing in 
complexity. Not only arc the individual orbits knotted and linked, but the sub­
templates containing certain lineages of orbits arc also twisted and linked about 
one another. 

4.4 Homoclinic bifurcations 

vVe now turn to some knot and link structures ttssociated with global bifurcations 
involving homoclinic orbits to hyperbolic saddle points in three dimensional 
flows: 

(4.11) 

Suppose the saddle point lies at " = 0 (1(,,) = 0) and let Ai denote the eigen­
values of the linearization Df(O). There arc many possible cttses to consider, 
for real and/or complex eigenvalues, and expanding or contracting flows, and we 
shall only give a brief sample of results. vVe start with the real, contracting cttse, 
summarising some results from [911, which the reader should consult for further 
detail. 

4.4.1 Gluing and torus knots 

Suppose that Df(O) htts three real eigenvalues with the single expanding eigen­
value A,t > 0 weaker in magnitude than the two contracting eigenvalues: - A I! I! > 
-AI! > ,\'1. > O. vVe ttssume that both branches of the one-dimensional unstable 
manifold VV'I·(O) lie in the two-dimensional stable manifold VVI!(O) and denote by 
T the set Vvv'(O) U {O}. This is a codmension two bifurcation, generically occur­
ring at isolated points in parameter space for a two-parameter family of vector 
fidds 1(";11, ,1'2) (i.e., no symmetries are present). Letting (11, ,1'2) = (0,0) be 
such a point and varying (ttl, ft'2), the degenerate cttse unfolds to the gl'uing bifur­
cation, in which up to two periodic orbits bifurcate from the double homoclinic 
loop Y [63, 72]. 
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Before stating the principal result, we IIlust develop a little machinery. De­
note the two loops of T: J: 1 and ;(>2. The bifurcating periodic orbits may follow 
J:1 and/or ;(>2 many times before closing, giving a natural description thS a word, 
much tkS in the s:ymbolic description of templates. Those words which actually 
occur determine the unfolding. [63, 72] prove that any periodic orbit bifurcating 
from T IIlust have a rotation compatible word. 

Definition 4.4.1 An infinite (finite) word in two symbols is rotation compatible 
if it can be represented as the (finite periodic) itinerary of an orbit of a rigid 
rotation map PO : Z H (z + 8), z E 51) with the rvIarkov partition I(;': 1) = 
(0,1 - OJ, I(J:2) = (1 - 0, 1] for some 0 E [0,1). The unique 0 for such a word is 
its rotation Tmmber. 

Remark 4.4.2 To compute the rotation number of a given finite rotation com­
patible word, take the number of J::/8 and divide by the total length of the 
word: e.g.) J:IJ>2J:IJ>2 ::.::} f) = *. The rotation compatible words arc precisely the 
"evenly distributed" words of Theorem 4.2.9. Finally, we recall that two rational 
numbers ~ and f, arc Farcy neighbors if I pql qpl 1= L 

Theorem 4.4.3 (Coullet et al. [63, 72]) For every s·uffieicntly C 1 -small pert·ur­
bation of f(J:; 0, 0) there arc at most two periodic orbits in a small neighborhood 
1v of T. Any ,,'uch periodic orbits are attracting and have rotation compatible 
'Words, and, if there are two, their rotation Tmmbers are Farcy neighbors. 

The proof uscs the eigeIlvalue conditioIl, which implies that a small neighbor­
hood of T is positively invariant and 80 contains an attractor, even after (small) 
perturbation. Defining cross sections near 0, one shows that the resulting return 
map is a (discontinuous) contraction. This, together with the fact that the at­
tractor lies within the closure of the one-dimensional unstable manifold lVv,(O), 
of which there are two branches, implies that there are at most two stable pe­
riodic orbits for any given parameter pair (tt l, tt'2)' The admissible words are 
constructed via a reduced (one-dimensional) return map, which is effectively a 
discontinuous mapping of the circle. Note that there may be two, one, or no 
periodic orbits: both branches of the unstable manifold may limit on an "irra­
tional" curve which winds repeatedly about, never closing. 

Thus, unlike the expanding Lorenz flow, which is also related to a double 
homoclinic connection, gluing bifurcations create isolated periodic orbits char­
acteristic of rv'Iorse-Smale flows (cf. Appendix A). The interest here is in de­
scribing how the rotation compatible periodic orbits succeed one another th'S the 
parameters (tt l , tt'2) vary, and which knots and links they form. To determine 
the latter we will construct "templates" for the flows, relaxing the e}.lnmsiveness 
demanded by the definitions of §2.2 to include contracting flows. 

There are two distinct topological configurations, depending upon which sides 
of W'(O) the homoclinic orbits reenter: these are the fir!ure-of-eight and the 
b'utterfiu, shown in Figure 4.12. For both systems, we ttssume the existence 
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of a strong stable foliation (reported in [72] to be a generic condition in these 
CthSCS) and collapse out thS in the proof of Lemma 2.2.7, leaving a (contracting) 
template. Alternatively, these branched manifolds may be viewed thS embedded 
suspeIlsioIls of one-dimeIlsional Iloninvcrtiablc return maps. 

(a) (b) 

Figure 4.12: (a) The figure-of-eight and butterfly configuratioIls, and (b) t4%0-
dated templates. 

Embedding these templates in ~a) we IIlust incorporate the "twist" of the 
flow around the homo clinic cOIlIlectioIls, which leads to twisting of the template 
strips. Temporarily ignoring full (even) twisting of each strip and excluding 
non-trivially knotted mnbcddings, there arc three intrinsic CtkSes to consider: 
·untwisted: 71 = 72 = 0; singly-twisted: 71 = 0, 72 = 1; and do·ubly-twisted: 
1 1 = 1'2 = I, also illustrated in Figure 4.12. Below we give results only for the 
butterfly C,1se: the figure-of-eight, whose template is unbranched, is somewhat 
simpler. For details see [91]. 

Case (1) untwisted: T] = 0, 72 = 0 

U sing the theory of circle maps (one views the Poincare map tiS a monotone 
injective map of the circle with a single discontinuity), in [72, 65], it is proved 
that this system htis at most one periodic orbit. As an addendum to this, we 
have: 
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Proposition 4.4.4 Any periodic orbit appearing in the 'unfolding of an 'un­
twisted b·utterfly i., a toru., knot. If the rotation n"Umber of the word is (J = ;;t;, 
then the eOITCsponding knot twe is (p, q). 

Proof: Note that, although the dynamics of the contract ing butterfly system 
differ greatly from that of the expanding Lorenz flow) the th'SSociatcd templates 
arc isotopic, and their labeling by J: 1) J:2 cOIlsistent. vVc shall extract a subset 
containing the given rot ation compatible word from the Lorenz tcmplatcC(O, 0) 
and show t hat it embeds in a torus. This, t oget her with Theorem 4.4.3, proves 
the claim, and also proves the ithst statement in Theorem 2.3.3. 

Pick a word wit h p J: 1'8 and q ;(>2'8 and th%umc t hat p > q (If q > p, flip 
£(0,0) about the vertical ti"Ais and proceed by SYlIlIIlctry). Then, since the word 
is evenly distributed, there are no consecutive ;:r::/s and each trip about the ;:r:2-
st rip is immediately followed by a t rip about the ;:r: l -strip. The orbit in question 
therefore lies on an unbranched subset S CC(O, 0) that may be isotoped thS in­
(licated in Figure 4.13, from which it is clear that it winds p times longitudinally 
and q times meridionally around a torus T2. (For this C,1se 7 1 = 0, but note for 
later use that one can make t he same isotopy moves, simply carrying the 71 half 
twists along, since the split does not e}.-tend that far.) 0 

p 

Figure 4.13: The subset S C [(0,0) fits on a torus T'. The labels refer t o the 
number of strands on each strip. 

Example 4.4.5 The words ;:r:I;:r:2;:r:l;:r:2 and ;:r: l ;:r:~;:r: l ;:r:~ correspond to (2,3) and 
(5,7) torus knots respectively. Note that t he mapping from words to torus 
knot s differs from that on the horseshoe template 1-1. = [(0,1), described in the 
proof of Theorem 4.2.9. 
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Observe that this result merely proves that if an orbit with the given word 
m .. ists, then it IS a torus knot of the type specified. To find such orbits, one hth'S 

to tunc the parameters (ft1)ft'2) appropriately, thS specified in the bifurcation di­
agrams of [72, 65] and summarised in [91]. Between each pair of (disjoint) open 
scts (ft ]: ft'2) giving ris(1 to torus knots of Farcy neighbor types (p,q)) (pl)ql) ) 
there IS a sct having knots of type (p+pl) q+ ql): the Farcy mediant. In this way, 
ptk'SSing across the parameter plane, one exhausts all torus knots. Intuitively, we 
arc moving the thin incoming strips along the branch line of the contracting 
template to match up, one by one) the "ends" of the torus knots which all co­
FAist on the expanding Lorenz templateC(O, 0). 

vVe briefly consider the impact of introducing 71 (even) positive half-twists 
along the J:1 branch. The proof of Proposition 4.4.4 may be modified to cope 
with this Ctk'Se, tiS already indicated. Even if 71 is non-zero we may perform the 
same moves without interference from the additional half-twists. Then, since 71 

is even and there arc &71 full twists, we obtain a (p, q + &p71) torus knot (to 
check this, refer to the positive braid genus formula of Equation (1.4)). A similar 
argument for 71 = 0 and 7'2 even yields a (p + &q7'2, q) torus knot. 

If both 71 and 7'2 arc simultaneously non-zero and even, the resulting subset 
S can still be presented tiS a positive braid on p strands, but it is no longer 
a torus knot, for there is additional twisting on the strip carrying q strands. 
Indeed, it docs not appear to belong to any well-known knot family. A picture 
and genus formulae for this cttse appear in [91]. 

Case (2) singly- and doubly-twisted: 71 = 0, 1; 72 = 1 

In these cttses one can usc contraction and orientation-reversal properties of 
the one-dimensional return map induced by the sCIniflow, along with template 
surgery analogous to that of Figure 4.13, to prove the following rather restrictive 
result: 

Proposition 4.4.6 ([91]) If the "2 -branch of the butterfly template has a half­
twist (cose (2)) then all periodic orbits appearing on it m:ust have words " 1 or 
"f "2 (k ::> 0). The same holds reversing " 1 and "2· If both branches have half 
twists (cose (.1)), then only "1, "2, and "1"2 may appear. Any periodic orbit 
appearing in the 'unfolding of either case is an 'unkrwt. 

Remark 4.4.7 The significance in the knotting and linking of orbits implicated 
in gluing bifurcations lies not so much in e"A-tracting bifurcation invariants (for 
these bifurcations arc fairly well-understood), but in displaying the general prin­
ciple that simple dynamics arc coupled with the existence of simple knots and 
links. The fact that only torus knots can occur in a butterfly-gluing bifurcation 
(in which the flows arc all zero-entropy) is in stark contrttst to the analogous 
positive entropy Lorenz flow, in which an infinite array of knot types coexist: cf. 
Theorems 3.1.15 and .'1..1.13. 

The next example of global bifurcations exhibits an opposite e"A-trCIne of topo­
logical complexity. 
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4.4.2 Silnikov connections and universal templates 

vVe now return to the example presented in §2.3.3: a radically different type of 
global bifurcation, originally studied by Shil'nikov [160, 161] (cf. [179] and the 
textbooks [76, 188, 189], which also contain these and rclated TCsults). The ma­
terial below is adapted from [71]. Recall the definition of a Shil'niko'U connection, 
Definition 2.3.8, and the th..,sociatcd Theorem 2.3.9: that a countable collection of 
suspended h01's(1sho(1s livcs in a tubular neighborhood of a ShiFnikov COIlIlection. 

Sketch of proof of Theorem 2./1 . .9: vVc COIlstruct Poincare sectioIls transver­
sal to r IlCaI' the fixed point p and linearize the flow IlCaI' p and along r to 
obtain appro"Aimatc return maps. The h01's(1sho(1s arc cOIlstructed by flowing 
pairs of boxes IlCaI' p and then along r. The fixed point hth'S a one-dimeIlsional 
unstable manifold lVv,(p) and a two-dimensional stable manifold VVS(p), along 
which r = VVS(p) n Vvv'(p) spirals into p. (Although we consider only the CtkSe in 
which Vvv'(p) is one-dimensional, our results apply equally well to Vvv'(p) two­
dimensional and VVS(p) one-dimensional, since this amounts to a reversal of time 
which leaves periodic orbits invariant.) 

II, 

W'(p) 

------",,,,.,-. ............. 
// " 

/ 71 , 
I \ 

I \ 
\ 
I 
I 

I 
I I 
k~ 

Figure 4.14: Cross sections and maps near the fixed point p. 

vVe construct Poincare sections IIo and III transverse to r and sufficiently 
close to p that linear analysis provides a good estimate of the return map. The 
surface IIo is bisected by W'(p) into upper (~il and lower (II,,) halves. We usc 
a cylindrical coordinate system having origin at p and with IIo at constant rand 
III at constant z = f « 1 (this is the convention of [76] one may just ttS well 
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choose ITo at cOIlstant f) [74, 189]): sec Figure 4.14. The return map factors into 
the "local" map TO : ITt ~ Il l ) which IS concentrat ed IlCaI' p, and the "global" 
map 71 : III ~ IIo) which follows orbits along IlCaI' f. Hypotheses (1) and (2) 
permit us to COIlstruct appro"AimatioIls to these maps. 

Taking ITo and III close enough to p, the flow lincariscd at p, 

r(t) roe~).. '( 

O(t) 00 + wt (4.12) 

z(t) zoe ).."f 

provides a good approximation of TO. Solving z(T) 
transit time for orbits leaving IIo to reach III : 

f for T, we obt ain t he 

( . 1 I r T z) = \ og-. 
/\v. 'z 

(4.13) 

This yields an expression for the local return map TO: 

TO: (ro, 0, z) H (co (~(I'\" ,0 + ~, log m, r) . (4.14) 

Restricting to a sufficiently small neighborhood of r n II I , one can th%umc 
t hat the global ret urn map 71 IS affine. This yields an analytical appro}.imation 
to the Poincare map given by composition of (4.14) with an affine map. Such 
composed maps have been analyzed repeatedly [160, 161, 74, 66]. 

The action of 10 on a segment of constant f) is to stretch it and wrap it around 
r n II1 in a logarit hmic spiraL Since z = 0 is on VVi!(p), the image of lo(r, z) thS 
z ~ 0 approaches r n Ill . This image is then mapped affinely back to IIo, with 
T 1 (r n II1 ) = r n IIo: see Figure 4.14. 

One now examines the action of 1110 on rectangular strips: 

Bi = {(O, z) c ~i : ai";: z .,;: Iii}, (4.15) 

where the sequences {ad and {bd satisfy ai < bi < ai~ 1 and limi~(X; ai = O. For 
appropriate choice of numbers {ai , Iii}, it can be shown [76, 188, 189] that the 
image of each adjacent pair {Bi U Bi+ I } under 1 110 intersects B i U Bi+ 1 t o form 
a hyperbolic horscshoe (see e.g. Theorem 4.8.4 of [189]): see Figure 2.11(b). 
These pairs are the horseshoes of Theorem 2.3.9. 0 

vVe now develop a geometric treatment bttsed on t he analysis sketched above 
(cf. [5]) , which will allow us to extract the desired templates and prove that the 
flow in a neighborhood of a double ShiFnikov connect ion contains representatives 
of all knots and links. 

Single Shil'nikov templates 

The horseshoes of Theorem 2.3.9 are hyperbolic, so we may collapse along the 
stable foliations and, carefully following t he embedding, construct t he embedded 
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template. vVc proceed in two steps, according to the two components of the 
return map 7 1 TO· 

First, the action of the global map 71 is affine and takes the image under 
TO of the "horizontal" Bi C ITt to a "vertical" strip in IIo. Collapsing in the 
contracting direction of the map 7071 ) each box Bi C ITt becomes a vertical 
interval {(/,i :::; Z :::; bd at a fixed r. Thus, the collapsed Bi and Bi+ 1 boxes arc 
disjoint within ~r. Their images, however, arc vertical lines which cover IIo; 
hcnce, the two strips arc joined at a branch line. 

Since 7 1 is affine, there is no additional folding. Therefore, instead of col­
lapsing the stable direction out to obtain a branch line in ITt, we can propagate 
the branch line back via Tl~ 1 to depict the joining of these strips within III, th'S 
in Figure 2.12(b). The impact of 71 on the topology of the suspension is en­
coded in the twist of r between III and ~; (cf. R.emark 1.2.18). For N a small 
tubular neighborhood of r excluding a small neighborhood of p, VV""(p) n 1v is 
a two-dimensional strip which may twist any number of times about r. Since 
7JTo(BiJ transversally intersects VV""(p), the template inherits this same twist: 
sec again Figure 2.12(b). 

The action of the local map, 70, is to stretch Bi out along what wttS the 
z-direction in ~r and compress Bi along what W,1S the 8-direction. The image 
of 70(IIi) is a thin spiral (imagine thickening that in Figure 4.14). The image of 
any consecutive pair B i , Bi+ I lies within a folded strip: a horseshoe. As the box 
Bi C IIi flows through a neighborhood of p to reach III , it is wrapped around 
r an integer number of half-turns, Bi+ I being wrapped with one more half-turn 
than B i . Indeed, the winding which occurs ncar p is revealed by Eqn. (4.14). 
As detailed in [188, 189], the boxes Bi can be chosen such that 

(4.16) 

Hence, 

(4.17) 

- log -- - log -W (f f) 
AV

' o,i+ I o,i 
= IT, 

and the action of the flow of Bi+ I from lIt to III is to wind about r in the 8 
direction by an additional IT , compared to B i . This is shown in Figure 4.15. 

Remark 4.4.8 The strips drawn in Fig. 4.15 arc shown with minimal tWIsting; 
however, there is no guarantee that the "topmost" B i , which suffer the lettst 
twist, satisfy the hyperbolicity conditions necessary for Theorem 2.3.9. vVe only 
know that for 'i (and hence, twist) sufficiently large, pairs of boxes Bi U Bi+ J can 
be chosen so that their images form h:)1)erbolic horseshoes. 

vVe may now classify the t:)1)es of horseshoe templates which appear ncar 
r. For 'i some fixed integer, consider the template formed by collapsing the 
contracting directions of the flow of the boxes Bi and Bi+ J . In a neighborhood 
of p, the strip corresponding to Bi (resp. Bi+d winds about r with 'i (resp. 
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Figure 4.15: A "simple" ShiPnikov h01's(1shoe. 
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'i + 1) half-twists. The strips join at III in a single strip which follows r back to 
IIo) undergoing a further AI half-twists, for some fixed (but unknown) AI. 

If we th'SSumc that the homo clinic cOIlIlection is unknottcd, the template thus 
obtained depends only OIl the depth of the h01's(1shoe, ( and the fixed global 
twisting, AI. Up to homeomorphism, there arc two types, depending upon the 
parity of (): 'i + AI. The template Hu is shown in Figure 4.16: for Ci: eveIl, this 
is homeomorphic (though Ilot isotopic!) to the standard horseshoe template 1i 
(cf. Figure 2.9), and for Ci: odd, this is homeomorphic to the "twisted" horseshoe 
template il of Figure 4.10. For any Clo, liu is isotopic to 11. with Ct additional 
half-twists inserted after the branch line. 

For a given flow, the global twisting Al and the minimum depth 'i of its 
horseshoes are effectively uncomputable; hence, one cannot rigorously conclude 
the existence of any partic'ular liu for a fixed system, only for Ct greater than 
some (unknown) lower bound. vVe will now b:n)(;k'SS this problem by considering 
a double connection which induces equal positive and negative twisting and 
cancelling the two unknown twists. 

Double Shil'nikov templates 

Definition 4.4.9 A function f : ~n ~ ~n is eq'uivariant with respect to a 
function Ij): lI!.n...., lI!.n if Ij)f(x) = f(lj)(x)) for all x E lI!.n. 

vVe shall consider ShiPnikov connections in which the vector field of the 
differential equation :i = f(x) is equivariant under a symmetry of one of the 
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Figure 4.16: The single loop ShiPnikov horseshoe template Hu< 

following forms: 

Ij): (J:,ll,Z) H 

Ij): (J: , ll,Z) H 

-ll,-Z) 
-ll,Z) 

(4.18) 

Such symmetrics arc quite common: the Lorenz system exhibits the second type 
[114, 76]. If the system additionally hth'S a fixed point, p, satisfying the cOllcli­
tiOIlS of Theorem 2.3.9, the flow will appear thS one of the three CthSCS shown in 
Figure 4.17) displaying either a pair of homoclinic spirals at p = l1!(p)) or a spiral 
heteroclinic cycle cOIlIlecting p and l]! (p) ¥ p. Naturally, an analogue to Theo­
rem 2.3.9 holds in this Ctk'SC, with the added ingredient of "coupled horseshoes" 
[75, 86, 16]. 

vVc now m .. --tcnd the arguments given above for the single loop CthSC to the 
double loop homo clinic orbit of Figure 4.17 [left L having the first symmetry 
of equation (4.18), so that the loop r has a partner r' = Ij)(r). (The other 
heterodinic CtkSes can be dealt wit h similarly: see [71] for details.) As in the 
single loop cttse of Figure 4.14, we define Poincare sections IIo and III, but now 
along with their images under W: IIf) and II;. Note that III is above the saddle 
and II; below, and IIo and ~) on opposite sides. Using the same linear and 
affine appro"Aimations ttS before, we derive two local and two global ret urn maps 
10 and If; and 11 and I{, but in this cttse we define strips Bi C IIo and B~ C IIf), 
so that To(Bil C IIo, T(\(B;J C IIi" T, (II,j C IIi, and T{(II;J C IIo· Thus we 
restrict our attention to orbits which make double traverses of a neighborhood 
of r u f', tracking the two loops in regular succession. 

Following the construction for the single loop cttse, we produce the template 
of Figure 4.18, in which the strip leaving the upper branch line in II1 connects to 
IIf), and t hat leaving the lower branch line in II; connects to IIo. The resulting 
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Figure 4.17: Three s}'1nmctric homoclinic configuratioIls. 

template ha",", two branch lines and contains a copy of the single loop template 
Ha of Figure 4.16 followed by its image under l]!. Since l]! reverses orientation 
(dct(Dl1! = -1)), the sense of twist in these two components is opposite; indeed, 
whatever the depth 'i) we may collect all the "m .. --tra" twisting of the upper com­
ponent tk'S a group of Ci: = 'i + AI positive half twists and that of the lower th'S 

Ci: negative half twists. These twists may clearly be cancelled exactly, leaving a 
pair of "simple" horseshoe templates, one positive and one negative, th'S shown 
in Figure 4.18. vVc call the resulting template Z. 

Remark 4.4.10 \Vc tkssumc that the homoclinic/heteroclinic connections in­
volved in the double ShiFnikov connection are unknotted. Otherwise, the tem­
plate Z might be nontrivially knotted, obstructing our final step below. 

ODEs which generate all knots and links 

The template Z, which appears near the double Shil'nikov loop, shares the 
richenss of the templates of §3.2: 

Lemma 4.4.11 The template Z is 'universal: it contains an isotopic copy of 
cvcry knot and link. 

Proof: The symbolic inflation J given by 

J:VyZ 1 
"1 H "'''4 
J:2 HJ:j 

J:a H J:4J:2 

J:4 H J:a 

(4.19) 

defines a map from V into Z. The thstute reader will note that the images of 
the periodic orbits (J:1;ex: and (J:a ;ex; E V map to (J:2J:4;ex: = (J:4J:2 ;ex; in Z: the 



140 CHAPTER 4. BIFURCATIONS 

-(): 

Figure 4.18: The double loop Shil'nikov horseshoe template Z, before (left) and 
after (right) cancelling the opposite twists. 

same orbit. "Vhile this precludes Equation (4.19) from satisfying the definition 
of an inflation (the image is Ilot a proper subtmnplatc), we may nevertheless 
disregard this anomaly by performing a DA-splitting of Z along (J':2J:4)(X; and 
proceeding thS usuaL The orbit (J':2;1:4)()(; is an unknot and there arc many more 
unknots in the template. Figure 4.19 shows that the subtcmplatc defined by J 
is isotopic to V. 0 

As a corollary, we obtain the following n:markttblc: 

Theorem 4.4.12 Sufficient conditions for a third-order ODE to contain peri­
odic orbits representing all knot and link twes are that the "Vector field is s·uffi­
eiently C1 -close to a "Vector field satisfying the following fo·ur conditions: 

1. There e];ists a fi];ed point p for the "Vector field, and the linearization D f Iv 
atp has eigerwul'ues {-AS ±:;.J'i,A,j,}, 'With 

),">),'>0 w ¥ o. 

2. The flow ¢t is eq'uivariant 'under one of the following symmetries: 

Ij) : (J:, 11, z) H 

Ij) : (J:, 11, z) H 
-11, 
-11, z) 

(4.20) 

(4.21) 

,1. There e];ist.> an orbit r(t) with lim(~_oc r(t) = p and limHoc r(t) = Ij)(p). 
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Figure 4.19: V is a subtemplate of Z. 

4· The horrwclirtic/heteroclirtic loop (s) is (are) ""rtknotted. 

The const ructions preceeding t he proof of Theorem 4.4.12 above actually 
show that~ as one appI'oaches the degenerate double loop~ one call pick succes­
sively smaller tubular neighborhoods of the double loop which contain infinitely 
many copics of representatives of every knot and link equivalence class. 

Thanks to the work of Chua et al. [381, we can even display an CJq)lieit 
f::]Xampkl of a three-dimensional system which contains a universal templat(;1: 

Corollary 4.4.13 There c"ists un open set of parameters .8 E [6.5, 1().;;] for 
which the set of periodic soi-utions to the differential erruation 

J: = 7[11 - ¢(J:)], 

iJ = :l: - Y + z , 
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i -.Bll, (4.22) 

~, ~: [I, + 11 Ill, 

contains representatives from c'Ucr,1J knot and link eq'ui'Uulence class. 

Proof: In [381, it is shown that equation (4.22) satisfies the requirements of 
Theorem 2.3.9 for the parameter ,8 in the range indicated. ("Vhile this system 
is piecewise linear) the cOIlstruction of the hyperbolic sct avoids points at which 
the derivatives arc Ilot defined, much th'S the dth'SSical cOIlstruction of Smale's 
horseshoe in Example 1.2.28 excludes orbits which enter the prcimagc of the 
bend, where the map is strongly nonlinear.) rv'Iorcovcr, the homoclinic COIlIlec­

tioIls arc both unknottcd. A symmetry l]! of the first type (4.18) clearly holds for 
Equation (4.22), 80 that the template Z is embedded in the flow. Lemma 4.4.11 
then yields the conclusion. 0 

Remark 4.4.14 For parameter values of ,8 sufficiently small, the flow given by 
Equation (4.22) hth'S periodic orbit set consisting of two (symmetric) unknotted 
separable attractors. Hence, increa,sing the parameter ,8 gives a bifurcation se­
quence which builds all knots and links from these two "seeds." In contrttst to 
the Henon maps of §4.2.2, very little is known about the ordering of bifurcations 
and knot types in this sequence. 

Having given examples in this chapter of knot and link structures which arise 
in specific flows and the templates (lssociated with them, we now return to more 
general questions regarding templates themselves, viewed in isolation from their 
connections to diffenmtial equations. 



Chapter 5: Invariants 

Recall the fundamental problem in knot theory: when arc two knots (links) 
equivalent? An analogous problem presents itself: when arc two templates equiv­
alent? \Vc IIlust first, however, carefully state what equivalence we want, since 
we arc chiefly interested in the knots and links that inhabit a template, thS op­
posed to the branched manifold itself. "Vith this is mind, we proceed with a 
suitable definition of equivalence. 

Recall that many orbits in a template's scmiftow m .. it the template. Periodic 
orbits of course remain OIl the template forever) but 80 do tksymptotically periodic 
and certain other orbits. Those points whose forward trajectories never exit the 
tmnplatc comprise the chain-recurrent set of the tmnplate (cf. Definition 1.2.11 
and the orbits which never leave the Smale horseshoe map.) 

Definition 5.0.1 Two embedded templates in Sa arc eq'ui'Ualent if they arc 
connected by a finite sequence of the following template "moves:" 

1. Ambient isotopy on the template; 

2. The split move; and 

3. The slide move. 

The split and slide moves arc illustrated in Figure 5.1. 

Remark 5.0.2 The reader might feel the slide move is just an isotopy. But, 
when the branch lines momentarily coincide, the object obtained is not techni­
cally a template according to Definition 2.2.1. 

Remark 5.0.3 All three of the above moves induce an isotopy on the chain­
recurrent set of a template. 

The standard invariants of topology (e.g., the fundamental group) arc altered 
by the split move. Hence, we IIlust search for other means to construct invari­
ants of templates. vVe give two brief examples of template invariants which arc 
topological in nature. 

Perhaps the simplest invariant is orientability. By orientation we mean a 
coordinate system that can be translated about by the flow. The horseshoe 
template 11. contains a smooth rv'Iobius strip of flow lines, and hence is rwrwri­
entable as a template. The Lorenz template is orient able in this sense. No finite 
sequence of template moves can take an orient able template to a nonorientable 
tmnplate. 

143 
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\ b c 
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~J 1:1 
~ 

d d 

Figure 5.1: Template moves: slide (above) and split (below) 

The link of closed orbits in the boundary of a template (perhaps empty) 
is Ilot changed by either template move and is thus an invariant. Even the 
framing of the bo'undar,1J link is invariant: the twisting of the unit tangent bundle 
restricted to the boundary link is unchanged by template moves. Other loops in 
the boundary of a template can be used to produce invariants. COIl sider loops 
with one cusp (sec Figure 5.2). The split move can only create or destroy loops 
with two cusps. However) we need to be careful in how we count loops with 
one cusp; we can usc the cusp only once. Otherwise the split could affect the 
counting of one cusp loops. In fact for everyn ::F 2 the number of boundary 
loops withn cusps is an invariant. Of course, all this requires that the charts 
be attached smoothly and that the exit sets of the split charts be smooth. This 
can always be done. vVe record these observations below. 

Lemma 5.0.4 Given T C Sa an embedded template, the set of closed orbits 
'Which lie 'Within the bo'undar;1J of T, considered as a framed link, is an invariant 
of T. Furthermore, if 'We consider aT as a smooth graph, then loops 'Which do 
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not have e'J:actly two c'usp points are invariant. 

j split move 

C?JfD) 
Figure 5.2: Counting boundary loops 

Example 5.0.5 The Lorenz template hth'S two unknotted unlinked orbits in its 
boundary. The horseshoe template htis one closed orbit and one loop with a 
single cusp; these loops arc also unknotted and unlinked. 

Corollary 5.0.6 A complete template invariant yields a complete knot irwari­
ant. 

Proof: Given any knot K, let IK denote the embedded template obtained from 
the horseshoe template by re-embedding the J:1 strip so that the orbit J:f htis 
knot type K with zero twist. Then, since the boundary link of I is precisely the 
knot K, the ability to distinguish any two such templates implies the ability to 
distinguish the boundary knots. 0 

In the next section, we begin with an invariant derived solely from d}'1HlInical 
data (i.e., the embedding of the template is not considered). In §5.2, we e"A-tend 
this invariant to one which accounts for orientations of the strips in a template. 
Then, in §5.3, we turn to the (-function of a flow tiS a means of counting twists 
of embedded orbits, thereby constructing a dynamical invariant sensitive to em­
bedding. In §5.4 we discuss another t}l)e of (-function that encodes linking 
information in Lorenz templates. 

5.1 Classifying suspended subshifts 

The underlying dynamics on a template arc the suspended subshifts of finite 
type, tiS discussed in §2.2. Two suspensions of subshifts of finite t}l)e arc topo­
logically equivalent if there is a homeomorphism between them that takes orbits 
to orbits and preserves the flow direction. Our goal in this section is to describe 



146 CHAPTER 5. INVARIANTS 

a cltk'SSificatioIl theorem for suspeIlsioIls of subshifts of finite t~n)C with respect to 
flow equivalence. Any invariant of suspeIlsioIls of subshifts of finite t:)1)C is au­
tomatically an invariant for templates. Such invariants arc abstract in the sense 
that they arc inseIlsitive to the embedding of the template in 3-spacc. Of course 
the knot t:n)CS of the orbits change under different mnbcddings. Invariants which 
arc seIlsitive to the embedding will be described in §5.3 and §5.4. 

In Definition 1.2.20 we tkssociatcd to every subshift of finite t:n)C a transition 
matrix A with entries all zeros and ones. This restriction is UIlIlecessary and 
in this chapter we will merely require transition matrices to be nOIlnegative 
integral square matrices. In the vertex graph description of Remark 1.2.22, this 
is equivalent to allowing multiple edges between vertices (cf. [53, Chapter 3]). 

Definition 5.1.1 A nonnegativen Xn matrix A is irred'ucible if for each integer 
pair (( j) with 1 :::; (j :::;n, there is a integer p ~ 1 such that the (( j) entry in 
AP is nonzero. For subshifts of finite type this means that we can get from any 
given rvIarkov partition clmnent to any other (or the same) partition element by 
iterating the shift map (J. 

Irreducible transition matrices correspond to subshifts of finite t~ype with a dense 
orbit (cf. Corollary 3.1.17); that is, there is a single bthsic set. 

Definition 5.1.2 Two nonnegative square integer matrices, A and B are strong 
shift equivalent A ~ B, if there exist nonnegative square integer matrices A = 
A I , .. . , A"'+1 = B and nonnegative integer (not necessarily square) matrices 
R1,S1," . , Rk, Sk such that Ai = RiSi and Ai+1 = SiRi for .j = 1, ... , k. 

This "move" corresponds to making certain changes in the choice of the 
rvIarkov partition. Roughly speaking we can relabel partition elements, refine 
them (i.e., choose smaller disks) or combine them (i.e.) choose bigger disks). 
The next theorem ,1sserts that this suffices to generate conjugacy. 

Theorem 5.1.3 (Williams [191]) S'uppo"e A and B arc nonnegative "q'uare 
integer matrices and (JA and (JB are the corresponding s'ubshifts of finite type. 
Then (T A i" topologically conJugate to (T II if and only if A i" "trong "hift eq-uivalent 
to B. 

A concise proof of Theorem 5.1.3 can be found in [53, Appendix A]. 

Remark 5.1.4 Any nonnegative square integer matrix is strong shift equivalent 
to a square mat rix whose entries are just zeros and ones. 

Example 5.1.5 Let A = 

Then using R = [ ~ 

[ i 
1 
() 

B = SR. In this example the 
just one such luck is rare. 

~ l' and B = 

~ l' and 5 = 

[

1 1 
() () 

1 1 
() J 1 . 
() 

[~ ~ J ' we get A = RS and 

sequence length, sometimes called the lag, W,1S 
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Exercise 5.1.6 Show that [2] /!., [i i]· 
Exercise 5.1.7 Prove that any relabeling of the elements of a rvIarkov partition 
can be realized by strong shift equivalence. 

Two irreducible nonnegative square integral matrices are flow eq'uivalent if 
the suspensions of the corresponding subshifts of finite type are topologically 
equivalent. The suspension of a subshift of finite t~)1)e corresponding to a per­
mutation matrix is a finite collection of closed orbits. Irreducible permutation 
matrices are thus said to form the trivial flow eq'uivalence class. In order to char­
acterize the flow equivalence clth'SSes of irreducible nonnegative square matrices 
we need an additional "move" know thS e'J:pansion eq'uivalence. The idea is that 
we can change a rvIarkov partition by adding a new partition element "parallel" 
to an current one. That is the new partition element is a forward (or backwards) 
translation via the flow of a curnmt partition element. 

Definition 5.1.8 Two square matrices A and Bare e'J:pansion eq'uivalent, A /!:., 
B, if 

.4
" [ "]] "1 n j 

. = and B = 
a n 1 ann 

or vice versa. 

o "]] 
1 0 

o "" 

Here A /!:., B represents mqnUlsion along the first partition element. But, since 
renumbering the partition elements can be realized by strong shift equivalence, 
this is the only expansion we need consider. 

Parry and D. Sullivan showed that these two moves strong shift equiva-
lence and e}.lnmsion equivalence generate flow equivalence [141]. 

Theorem 5.1.9 (Parry and Sullivan [141]) Two nonnegative sq'uare integer ma­
trices A and B arc flow eg'uivalent if and only if there eJ:ist a finite seg'uenee 
of square nonnegative matrices A = Ao,A1 , ... ,Ar = B with Ai ~ Ai+1 or 

Ai '" Ai+] for·j = 0, .... or 1. 

As a corollary, we obtain our first dynamical invariant. 

Corollary 5.1.10 If A and B are flow eg'uivalcnt then dct(I - A) = dct(I - B). 

Proof: The proof is an exercise, though beware of sign errors. o 

Bowen and Franks [27] developed another invariant of suspensions of subshifts 
of finite t~)1)e, working at least initially from a different point of view. Using an 
n x n transition matrix A they consider the group 
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Theorem 5.1.11 (Bowen and Franks [27]) If A and B arc flow eq'uivalent then 
GI~A ::::: GI~B. 

Outline of proof: Let A be ann Xn integer matrix. COIlsider t he action of 
A OIl then-torus Tn. The fixed points of A form a subgroup of Tn under vector 
addition (mod 1). The fixed point subgroup is also given by the kernel of the 
map (I .4): Tn --t Tn. By a standard duality theorem the kernel IS isomorphic 
to the co-kernel of the map (I - .4) : Zn ~ Zn) which IS just GI~A. 

Under strong shift equivalence the fixed point set of A IS uIlchanged. For the 
c}.lnUlsioIl move one shows that it is equivalent to taking a direct sum with a 
trivial group and 80 docs Ilot effect the isomorphism clthSS. 0 

vVc can now state the cltk'SSificatioIl theorem: 

Theorem 5.1.12 (Franks [55]) Suppose that A and B arc nonnegative irrc­
d'ucible integer matrices, neither of 'Which is in the trivial flo'W eq'uivalence class. 
The matrices A and B arc flow eq'uivalent if and only if 

det(In A) = det(Im B) 

and 

'Where nand rH are the sizes of A and B respectively, In and Im are identity 
matrices, and S:: denotes grv'up isomorphism. 

Remark 5.1.13 Theorem 5.1.12 does not hold if the trivial flow equivalence 
clthSS is not excluded. 

Theorem 5.1.12 does not have a very good resolution for distinguishing tem­
plates, Consider the Lorenz and Horseshoe templates ([(0,0) and 'Ii from §2,3), 
These each have the matrix 

[i i 1 
th'S a transition matrix, yet surely they are not equivalent, since 11. is not orientable 
while C(O, 0) is: no finite sequence of template moves transforms an orientable 
template into a non orient able template. 

5.1.1 Finitely generated Abelian groups 

It is worth noting that although strong shift equivalence is not generally com­
putable, the invariants of suspensions of subshifts of finite type are readily com­
puted. To see this we digress briefly into the theory of Abelian groups. Any 
square integer matrix A yields an Abelian group 
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whcrcn is the size of A. However) different matrices can give rise to isomorphic 
groups. If matrix B can be obtained form matrix A by a finite sequence of 
operatioIls (to be listed shortly) then GAS::' GB. The matrices A and B do 
Ilot need to be the same size. Furthermore, each isomorphism clth% of matrices 
hth'S a canonical representative which can be computed from any other matrix 
in its clth'SS by a finite algorithm; thus, the converse holds thS well. The allowed 
operatioIls arc: 

• switching two rows, 

• multiplying a row by -1, 

• adding an integer multiple of one row to another) 

• the analogous column operatioIls, and 

• deleting a row and column whose only nonzero entries arc a shared 1 OIl 

the diagonal (or the reverse of this move). 

The canonical form is a diagonal matrix with diagonal entries d1 , ... ,dk with 
di ldi +1 for·j = 1, .... k 1 and di i' 1 for .j = 1, .... k. It then follows that 

where 20 = 2. 
These facts are collectively know thS the Fundamental Theorem of Finitely 

Generated Abelian Gro'ups. vVe do not present the formal algorithm for produc­
ing the canonical form, but the reader should be able to get the hang of it by 
working a few examples. 

Finally, we note that the order of GA is given by I det AI if det A¥-O and is 
infinite if det A = O. Thus, Theorem 5.1.12 could be restated using the group 
GI~A and just the sign of det(I A). 

Exercise 5.1.14 Let .4 = [; i 1 Show that GA '" Z". 

5.2 Orientation data and stronger invariants 

Our strategy for developing more sensitive abstract template invariants is to 
modify the transition matrix to include orientation information. Given a rvIarkov 
partition {J:1, J>2, . .. ,J:N} of a template we ttssign an orientation to each partition 
clement. Then the first return map restricted to each partition clement is either 
orientation preserving or orientation reversing. 

Definition 5.2.1 A parity matri'J: for a template is constructed from a transition 
matrix by multiplying aij by the variable t if the first return map is orientation 
reversing from the 'i-th partition clement to the j-th partition clement. 
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Example 5.2.2 The matnx [i i 1 is a parity matrix for the Lorenz tem­

platc,C(O, 0), or, indeed, for ttnyC(rn,n) withnl,n even. In contrthst, the parity 

matnx for the horseshoe template 1-1 IS [! ! 1 

In [170] the following theorem is proved: 

Theorem 5.2.3 Let I I and I, be two abstract templates with parity matrices 
Al (t) and A,(t), respeetive/y. If II and I, are related to each other by a finite 
seq'ucnce of template moves then 

det(I A l (t)) = det(I - A,(t)) mod t' = 1. 

Definition 5.2.4 Given a parity matrix A(t), the linear function det(I A(t)) 
mod t'2 = 1 is the full Parr,IJ-Sulli'Uan invariant. 

The full Parry-Sullivan invariants distinguish the Lorenz template (-1) from 
the horseshoe template (-t). 

The group GI~A(1) is invariant thS before, and it is Ilot hard to show that 
GI~Al~ l) is also invariant. It is quite tempting to conjecture that the full Parry­
Sullivan invariant, along with these two Abelian groups, would give a complete 
set of invariants for abstract templates. But the template in Figure 5.3 gives a 
counterexample. Its full Parry-Sullivan invariant is -1 and both GI~All) and 
GI~Al~ l) are trivial, th'S they are for the Lorenz template. Yet, this template is 
not orient able and thus clearly inequivalent to the Lorenz template. 

Definition 5.2.5 The unit normal bundle of the orbit set of a template is the 
ribbon set of the template. For an embedded template, this set is realized tiS the 
bundle of local stable manifolds. 

vVe can reformulate Theorem 5.2.3 in terms of ribbon sets. Let Tl and T2 be 
templates with ribbon sets R I and R'2 respectively. Then if there is a homeo­
morphism between RI and R'2 taking ribbons to ribbons (in particular annuli go 
to annuli, rv'Iobius bands go to to rv'Iobius bands and infinite strips go to infinite 
strips) and presClving the flow direction, then det(I A l (t)) = det(I A.,(t)) 
mod t'2 = 1 and GI~All±l) S:: GI~.A:;:l±l), where Adt) and A'2(t) are parity ma­
trices for Tl and T2 respectively. Furthermore, the definition of a ribbon set can 
be extended to ba,sic sets of flows on higher dimensional manifolds and the ana­
logue of these results remain valid [170]. It also follows from [170] that templates 
with homeomorphic ribbon sets (in the manner just described) can be related, 
up to embedding, by a finite sequence of template moves. 

Definition 5.2.6 Two twist matrices are flow eq'ui'Uulent if they are ttssociated 
with equivalent ribbon sets. The generators of flow equivalence for parity ma­
trices are the analogs of ~ and::" for parity matrices, and a new move, the twist 
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Figure 5.3: A Ilolloricntabic template whose full Parry-Sullivan invariant is the 
same thS that of the (oricntablc) Lorenz template. 

move: A(t) /v B(t) if 

where A(t) = [aioil. 

tal '2 
0,:22 to-In 1 a2n 

ann . 

In applying !..., we multiply the first row and column of A(t) by t and take t'2 = L 
On the level of templates, the twist move corresponds to rotating the bands that 
pth'SS through the first rvIarkov partition clement by a half twist. Thus, among 
these bands, those which formerly had an odd number of half-twists now have 
an even number and vice versa. Since this can be realized by isotopy there is no 
need to define a new corresponding template move. 

[ 
() 

Example 5.2.7 Let A(t) = ! () 

1 
t 

1 J [ () () ,and B(t) = 1 
t () 

1 
() 

1 
~ J . We claim 

A(t) and B(t) are flow equivalent. Set R = [ ~ 1 
() ~ ] , and S = 

[
() 1 J 1 () 
t t 

Now A(t) = SR and RS = [! !]. Applying the twist move followed by an 

c}.lnUlsioIl yields B(t). 
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Exercise 5.2.8 COIlstruct a sequence of templates and template moves that 
realize EAlnaplc 5.2.7. 

Remark 5.2.9 The orbit splitting procedure used in cOIlstructing templates for 
high dimeIlsional bthSic scts alters the intersection of an orbit with clements of 
a rvIarkov partition. Thus, the Parry-Sullivan invariants would suffer changes. 
However) there is in the theory of rvIarkov partitioIls a mechanism that corrects 
for multiply-counted orbits that occur if the partition clements overlap. This 
involves cOIlstructing a "correction matrix" which is just a transition matix for 
the overlap set. It is typically a permutation matrix. For flows, a similar matrix 
could be introduced to correct for the orbits changed by orbit splitting. It 
seems likely that such a device could be used to construct invariants under orbit 
splitting, but this hth'S not yet been carried out. 

Remark 5.2.10 The full Parry-Sullivan invariant is an invariant of one-dimensional 
bttsic sets in manifolds of any dimension. 

5.2.1 Additional Examples 

Example 5.2.11 Figure 5.4 shows two templates each of which htts full Parry­
Sullivan invariant -t. The one on the left htts two closed orbits in its boundary 
while the one on the right has just one such loop; hence, they arc distinct. 
Figure 5.5 shows that the rightmost template is equivalent to the horseshoe 
template (recall that we arc disregarding the embedding). 

Figure 5.4: Two templates with invariant -t. 

Example 5.2.12 Consider a template withn strips coming down from a single 
branch line, each looping back to the branch line and stretching completely 
across it (while this is not technically a template it is ettsily turned into one by 
n 2 small pushes ncar the branch line: cf. the slide move). Suppose that k 
of the strips arc untwisted (orientation preserving) and I =n - k arc twisted 
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split ') 

,J10UlPomorphjsm 

Figure 5.5: A template homeomorphic to the horseshoe template after a split 
move. 

(orientation reversing). TheIl the full Parry-Sullivan invariant is 1 - k - It, and 
80 templates with differing k arc distinguished. 

Exercise 5.2.13 Show that the Bowen-Franks groups of Theorem 5. L 11 do Ilot 
further refine the distinctioIls between the templates in Example 5.2.12 

Example 5.2.14 Figure 5.6 shows two templates with three strips, only onc of 
which is twisted in each. They arc distinguished by the fact that the number 
of closed orbits in their respective boundaries differ. In Figure 5.7 we show 
two templates with five strips, only onc of which is twisted in each. A study 
of the boundary loops, including those with cusps, fails to distinguish them. 
vVe conjecture however, that they arc distinct and speculate that some t~n)e of 
"non-abelian" invariant is needed to distinguish them. 
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/ 
,,' ...... . 

,~~ ..... 
',' ,: 
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Figure 5.6: Two templates with three strips (identify top and bottom). 

Figure 5.7: Two templates with five strips (identify top and bottom). 

5.3 Zeta functions and flows 

vVc now turn to invariants that arc seIlsitive to the embedding of the template. 
At this stage, knot theory reenters the picture. The idea is again to modify the 
transition matrix, but this time to produce a twist matri'J:. \Vc shall then usc a 
zeta function to count orbits according to the amount of twist in their unit normal 
bundles. That is, we regard twist th'S a canonical (though IlondynamicaI) period 
for a closed orbit in a flow. The weakness of this approach is that invariancc 
holds only over positive templates. 

5.3.1 Review of Zeta Functions 

For general references on zeta functions see [53, Chapter 5] or [162, Chapter 10]. 

Definition 5.3.1 The zeta function of a map 1 : AI ~ AI is the exponential 
of a formal power series in t, 

where l'Vm is the cardinality of the fixed point set of 1m , the rn-th iterate of 1. 
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If f hth'S a hyperbolic chain-recurrent set then the l'Vm are all finite and ( f (t) 
is a rational function: hence, a finite set of numbers determine all the l'Vm . In 
particular, if 01 denotes the number of periodic orbits of length I then 

N m = L IOI' 

11m 

vVe can recover 0, by the rvIobius inversion formula [165, page 765]: 

01 = ~ L li(m)N1jm, 

mil 

where ft is the function defined by 

li(m) = { ~ 
(-w 

if m = 1, 
if ::3 a prime P with p'2 lrH, 
if rH = PI , ... ,Pr, for r distinct primes. 

vVhen a map f htts a zero-dimensional hyperbolic chain-recurrent set, ttS 
is the cttse for subshifts of finite type, then there exists a square matrix A of 
nonnegative integers such that l'Vm = tr (Am). Then (f(t) = 1/ det(I - tA). 
The matrix A is of course the transition matrix for a rvIarkov partition. 

The difficulty in applying zeta function theory to topological flows is that 
there is no clear notion of the period of a periodic orbit. T(:Inporallengths, which 
are not generally integral, change under reparametrization. On a template, we 
can use the first return map of a rvIarkov partition to give a (s:ymbolic) period 
to closed orbits. The zeta function is invariant under the three template moves. 
However, it is not clear that such an approach would give useful information 
about the original flow. Instead we use the twist in the local stable manifolds of 
closed orbits ttS a canonical period. 

Remark 5.3.2 Heuristically, one may view the Parry-Sullivan invariants ttS the 
evaluation of a zeta function at ±L However, zeta functions t:n)ically fail to con­
verge at these values, and the zeta function is not invariant under the expansion 
move. 

5.3.2 Positive Ribbons 

A closed ribbon, or ribbon for short, is an embedded annulus or rvIobius band in 
Sa In this section we define three notions of twist for ribbons. These are, the 
'us'ual twist Tv [98, §Vl the modified twist Tm , and the eomp'uted twist T,. 

Like knots and templates, ribbons can be braided. A ribbon which htts a 
braid presentation such that each crossing of one strand over another is positive 
and each twist in each strand is positive, will be called a positive ribbon. The 
core and boundary of a positive ribbon are positive braids. 

vVe will use the following notation. If R is a ribbon and b(R) is a braid 
presentation of R, let c be the sum of the crossing numbers of the core of R, 
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using + 1 for positive crossings and 1 for negative crossings, th'S pCI' Figure 1.2. 
Let t be the sum of the half twists in the strands of b(R) and letn be the number 
of strands of the core. 

Definition 5.3.3 Let Tv = C + t/2, Tm = n 1 + t/2 and T, = 2n + t. 

Lemma 5.3.4 Tv. is an isotopy invariant of ribbons over all braid presentations. 
1m and 7e arc isotopu invariant" of positive ribbons over positive braid presen­
tations. 

Proof: For an embedded anIlulus the linking number of the two boundary 
components is c + t/2. The same formula gives one half the linking number of 
an embedded rv'Iobiu8 band's boundary with its core. In both Ctk'SCS we find that 
Tv. is an invariant. 

The invariancc of 1m for positive ribboIls follows from checking that 

1m = Tv. - 2g, 

where g = & (c -n + 1) is the genus of the core of R. Here we have appealed 
Theorem 1.1.18 for the formula for g. Finally we see that 7c = 2(7m + 1). 0 

For the trefoil orbit in Figure 5.8 the reader can check that g = 1 and that 
its unit normal bundle hth'S Tn = 6, 7 m = 4 and 7c = 10. 

Figure 5.8: Lorenz template with trefoil orbit. 

Visually, the conversion of a positive full twist to a loop or writhe decrettses 
t by 2 but creates an extra strand. Since doing this to a negative full twist 
would increttse t by 2 while creating an extra strand, it is e;:lsy to show that the 
invariance of 7 m and 7c fail for ribbons with mixed crossings. vVe also note that 
7 v. = 7 m is equivalent to g 0, which in turn is true if and only if the core of 
the ribbon is unknotted. 

Lemma 5.3.5 For positive templates the Tmmber of closed orbits with a gwen 
cornp'uted twist is finite. 

Proof: Given a positive template we put it into a positive braid form and 
construct a rvIarkov partition with K partition clements. Given 7c choosen so 
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that Tc < 2n. Because the template is braided, a closed orbit that meets any 
one partition elementn times IIlUSt have wrapped around the braid axis at lethst 
n times. Since there are no negative half twists, such an orbit's computed twist 
is bigger than or equal to 2n. If 'W ~ Kn, then any closed orbit with s:ymbolic 
period 'W must have traveled around the template's braid axis at lettstn times. 
Thus, any closed orbit with computed twist Tc htls word length less than Kn. 
There can only be finitely many such orbits. 0 

The computations in the proof of Lemma 5.3.4 show that Lemma 5.3.5 holds 
for Tm and Tv. tts well tiS T('. This is clear for Tm. For Tv., use the fact g ~ 0 
implies Tv. ~ Tm· 

5.3.3 Counting Twisted Ribbons 

Definition 5.3.6 For a given positive template let Tq! be the number of closed 
orbits with computed twist ql. Let Tq = Lq!lq qITq!. Define the zeta function of 
the template to be the exponential of a formal power series: 

Theorem 5.3.7 The zeta function ( i8 an invariant of ambient i80topy of the 
ribbon set for positive templates. It terms of positive templates (' is invariant 
'under isotopy and the two templates moves shown in Fig'ure /5.1. 

Proof: This follows directly from Lemma 5.3.4. o 

vVe now define a twist matri'J:, A(t), whose entries are nonnegative powers of 
t and O's, by considering the contribution to Tc tiS an orbit goes from one element 
of a rvIarkov partition to other. Let Aij = 0 if there is no branch going from 
the 'i-th to the j-th partition element. Let Aij = tqij if there is such a branch, 
where qij is the amount of computed twist an orbit picks up ttS it travels from 
the 'i-th to the j-th partition element. It is ettsy to see that one can, if necessary, 
isotope the template so that qij is always integral. This might be necessary if 
some of the partition elements lie outside of the branch lines. Also note that one 
can always choose the partition so that at most one branch goes from the 'i-th 
element to the j-th element for each 'i and j. However, if one wishes to be more 
general, one can use pol:ynomials in A(t) instead of just powers of t. 

For example, the template and partition in Figure 5.9 give 

() () () t t 
() () () 1 1 

A(t) () t' t' () () 

t' t' t' () () 

tel tel tel () () 
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,;"'''' .--''. 

Figure 5.9: A template with a rvIarkov partition indicated by thick lincs. 

Theorem 5.3.8 For any template and any allo'Wed choice of A(t) 'We have 
((t) = 1/ det(I - A(t)). Tim", the zeta function i" rational. 

The proof of Theorem 5.3.8 is a standard counting argument and can be 
found in [171]. vVc present an example to call attention to the major idetk'S. 

Recall the horseshoe template 1i from Figure 2.9. Using the standard two­
clement rvIarkov partition {J':1,J>2}, we have 

. [t2 t2] 
A(tJ = ta ta , 

and 80, 

1/ det(I A(t)) = 1/(1- t' - tal. 

vVc apply a standard matrix identity (sec Lemma 5.2 of [53] or Proposition 
10.7 of [162]) to get 

1 _ '" (CC tr A(t)n) 
det(I A(t)) - exp Ln' 

n=1 

(5.1) 
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I Tm II 0 I f I 1 I 4 I 2 I ~ I 3 I f I 4 I * I 5 
II 

'2 '.1 

C 2 0 1 0 2 0 3 0 6 0 9 0 
1-1. 1 1 0 1 0 1 1 1 1 1 1 2 

A 3 0 2 0 5 0 10 0 24 0 50 0 

Table 5.1: Number of orbits listed by 1m for different templates. 

Let us analyze the first three terms of 

CC tr A(t)" t' + tel t4 + 2t5 + to to + 3t7 + 3t' + t" L n =-1-+ 2 + 3 +. 
n=1 

There arc five dosed orbits which pth'SS through the rvIarkov set three or fewer 
times: J:1, ;(>2, ;1:1;1:2, J:iJ>2) and J;lJ;~. All arc unknottcd, 801m = /n' The t'2 and 
the (1 of the first term of the sum correspond to the orbits J: 1 and ;(>2 respectively. 
In the second term, J:1 and ;(>2 arc counted again) by t4 and to respectively, since 
they have been traversed twice. The 2t5 corresponds to J:1 J:2) where the 2 is the 
product of number of orbits that pthSS through the rvIarkov sct twice (just 1 in 
this Cth'SC) with 2, the number of pth'SSCS. 

The reader should check that 3t7 corresponds to J:IJ>2 and 3tH to J: 1 J:~. The 
to and the to again count J:1 and J:2 respectively, this time making three trips 
on each. It is worth noting that tr (A(1))n is the number of intersection points 
of the rv'Iarkov set with the link of closed orbits which meet the rv'Iarkov setn! 
times, wheren! dividesn. 

As a final example, Table 5.1 displays the number of closed orbits having 
specified (low) amounts of twist for three diffenmt positive tCInplates: the Lorenz 
template,C, the horseshoe template 1( and a template denoted A, shown in 
Figure 5.10. The template A W,1"S first studied in [1691, where it wttS shown to 
contain only prime knots. 

Exercise 5.3.9 \<\Trite a computer program to generate table entries similar to 
Table 5.1 where the user enters the twist matrix. 

Remark 5.3.10 Using zeta functions to count twists is a strategy which cannot 
be adapted to all templates. Recall the templates U and V from Chapter 3; since 
there exist isotopic template nmormalizations on these templates, each contains 
infinitely many distinct copies of a knot with a given twist. 

5.4 A zeta function for Lorenz attractors 

Branched 2-manifolds with sCIniftows were first introduced to study the strange 
attractors believed to be (lssociated with the Lorenz equation (Equation (2.1)) 
[193], [194]. Since the h}l)erbolicity of the LoTCnz equations in the parameter 
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Figure 5.10: The template A. 

range of interest wtkS and still IS unknowIl, geometrically defined flows were used 
thS a model. The attractoI'S of the model flows could then be studied rigorously 
via templates. Sec [166, Appendix G] for a nice overview. 

However) these "early" templates differ in two respects from the Lorenz tem­
plate [(0,0) defined in Chapter 2, and indeed, from all of the templates discussed 
80 far. First, orbits in the boundary can enter the interior of the template 
that IS, the boundary flow is Ilot invariant. In particular, the closed orbits J;f 
and J;:f arc Ilot realized. Secondly, the template includes a saddle point, O. 
This causes the invariant set of the template to be two dimeIlsionai. Figure 5.11 
shows this object, which we shall call a 8'ublorenz template can be used to model 
a geometric Lorenz attractor. Although this is not a subtmnplate of the Lorenz 
templateC(O,O), all of the closed orbits on it are ambient isotopic to knots in 
the Lorenz template. As before, we may use words in J:1 and J:'2 to describe or­
bits; however, since we will work only with templates having two elements in the 
rvIarkov partition, 'We 'Will relabel J: 1 , J:'2 as J: and u respectively for the remainder 
of this section. Note in addition that the line we use for a cross section of the 
semiflow extends beyond the branch set. vVe shall call it the e'J:tended branch 
line. 

Consider the saddle point within the sublonmz template. On this template 
(and in the full three-dimensional flow which generated it), the saddle point and 
the attractor are inseparable but distinct invariant sets. Thus, the Lorenz at­
tractor is not closed: cf. Theorem 1.2.13. Of special interest are the trajectories 
of the left and right branches of Vvv'(O). Denote these I and r respectively. If 
they each return to 0, thus forming a double saddle connection, we can define a 
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/ ........ . 
. / 

Figure 5.11: A sublonmz template. 

finite rvIarkov partition for the smniftow: scc Figure 5.12. This naturally leads to 
a corresponding transition matrix .4(;r;) U) which m(1(hSUI'CS Ilot only which parti­
tion clement sequences arc admissible, but also along which strip (;r: denoting left 
and u denoting right) the transitioIls occur (sec Example 5.4.4 below). Although 
the double saddle COIlIlection Ctk'SC is Ilot a generic Cth'SC, it is the situation we 
cOIlsider. 

.---...::./ .' .' 
.' 

Figure 5.12: A double saddle COIlIlection. 

Two tools allow us to compactly encode information on the transitioIls in a 
sublonmz template. 

Definition 5.4.1 The kneading sequence k of a sublonmz template is a pair of 
sequences (kl,kr) defined th'S follows: kl is a sequence of J;'S and u's determined 
by the order in which I meets the extended branch line. If I returns to the saddle 
point then a terminal 0 is appended to k,. The sequence kr is defined similarly. 

Definition 5.4.2 Let S denote a sublonmz template with finite kneading se­
quence and transition matirx .4(J;, u). Then the pre-zeta function of S is defined 
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by the formal power series 

, CC tr (An) 
Q(J:,ll) = "'. (5.2) Ln 

i=n 

Note that the multiplication of matrix clements is noncommutative. The 
abclianizatioll of 'fj (what one obtains by declaring J:U = lP:) IS denoted 'fjQ. 

Suppose we arc given two sublonmz templates, Sand SI. Let Sand 81 

denote their respective inverse limits. "V hell arc Sand 81 homeomorphic? Here 
the homeomorphism need Ilot preserve the flow. On the level of the templates 
we only need invariancc under reordering of the partition clements. In [1941, two 
answers arc given via the previous two definitioIls. 

Theorem 5.4.3 (Williams [194]) Let C and C denote s'ublorenz templates with 
finite kneading scq'uenccs. Then the following statements arc eq'ui'Uulent: 

(a)e andC have homeomorphic inverse limits; 

(b) The corresponding kneading seq'uences are eq'ual, k = k'; i.e., kr = ki and 
kl = k~; and 

(eJ The corresponding pre-zeta functions are eq'ual, ',,(J:, 11) 
e'J:chanrring J: and u. 

Example 5.4.4 Consider again the sublonmz template in Figure 5.12, denoted 
S. The kneading sequence is (UUO,J:J:O). The rvIarkov partition hth'S the obvious 
four elements, with incidence matrix given by 

[ " 
J: () 

; 1 A.(J:,'IJ) = () () J: 

. 11 11 () 

() () 11 () 

The overlap between the end points of the rvIarkov partition elements does not 
cause any over counting problems since the end points all flow towards the 
saddle point 0 and so are not periodic. The abelianized pre-zeta function is then 
determined by 

exp(-·,,"(J:,ll)) = det(I A) = 1 J:11 

That is, after abelianization the usual tools of zeta function theory can be ap­
plied. But it is not clear how to define a non-abelian zeta function using a matrix 
formula. One apparently htis to grind out the trace of each power of the matrix 
directly. For the matrix A(J:,U) the first three terms of'fJ are 
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As orbits J.:U and lp: arc the same, abclianizatioll would Ilot cause any los8 of 
invariant information in the second term. Likewise the clements of the third term 
correctly capture the two period three orbits. This is because abclianizatioll and 
cyclic permutation arc the same for these two terms. But, by the fifth term this 
is no longer the CthSC. The reader can check that there arc no orbits with the word 
;;}lU'2 OIl S, but the word J;'2;tp;:tJ is realized by a trefoil orbit. This distinction is 
lost in 'flu but Ilot by 'fl. 

In [196] vVilliams developed a new type of determinant that allows one to 
write a matrix equation analogous to Equation (5.1). \Vc give a heuristic outline 
and an example. 

Given a ftIarkov partition withn clements consider the set of closed orbits 
which do not visit any partition element more than once. These orbits all have 
(symbolic) period less than or equal ton. For the template S they are J:J:U, 

J:J:UU, J:U, J:UU· Each orbit corresponds to a cyclic permutation clthss in the free 
group on two symbols. Following [196] we call these clthsses free knot symbols. 
For S the free knot symbols are just (""11), (""1111), ("11), and ("1111), where the 
parentheses denote the cyclic permutation clthSS. vVe allow, for algebraic rethsons, 
the empty s}'1nbol O. Next, we define a free link symbol tiS a formal product 
of free knot symbols whose corresponding knots have no partition elements in 
common, where the empty symbol 0 is taken to be the unit. vVe will consider 
the ring of free link symbols given by allowing formal addition of symbols with 
integer coefficients. For the template S, each free link s}'1nbol is the product of 
just one free knot symbol. 

Given any square matrix .4 of u's and O's one can write down all the free 
link symbols. To do this we first define an indC':J: cycle. An index cycle is a finite 
sequence, ('i 1, ... , 'h,) of k distinct integers, 0 :::; k :::;n such that the product of 
matrix elements 

Then 

is a free knot symbol for the incidence matrix. The empty symbol is corresponds 
to an empty index cycle: this is the multiplicative identity in the ring. vVe may 
then concatenate free knot symbols so long tiS their corresponding index cycles 
have no common elements. This yields the collection of free link symbols for .4, 
denoted fls(A.). 

vVe make the following observations. The free knot symbols (J:U) and (:/P:) 

are the same by cyclic permutation. But (J:J:UlP:) is different from (J:lP:lP:). This 
is ttS it should be to model knots on a template. However, the ring product is 
comIIlutative. Again this makes sense, since there is no preferred order on the 
link of periodic orbits. Thus in the definition below (w)("U) and ("U )(w) represent 
the same element of the ring. Ring addition is also (of course) comIIlutative. 
The addition operation should thought of ttS "purely algebraic", in that unlike 
the ring product it does not correspond to a geometric operation on knots. 
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Definition 5.4.5 The link-determinant is defined by 

link-det (I A) = L "iWi, 
fl .(A) 

(5.3) 

where Wi = (W1)' .. (Wi) E fls(A) and "i = (_l)l For the template C we 
get 1- (J:J:11) - (J:J:1111) - (J:11) (J:1111) as the link-det of the incidencc matrix. The 
(I .4) in the above definition may look a bit odd at first. It can be regarded 
thS a notational formality for cOIlsistency with the usual zet a fUIlction. However, 
allowIng 1 '8 in the matrix can be used to give a definition of free link s:ymbols 80 

as to have them all be of length n by "filling" in with l's. See [196] and [103]. 

Exercise 5.4.6 Let 

A = [ ~~ 
11 

J: 

~ J 
() 

11 

Show that link-det (I - A) = 1 - (U11) (J:11)· 

Theorem 5.4.7 (Williams [196]) exp(-'Il(J:,ll)) = link-det (I - A). 

The intuitive idea is that most of the non-abelian "badness" is "hidden" inside 
the free knot s:ymbols and 80 one can usc standard matrix theory machinery, 
suitably modified. In particular an analogue of the Cayley-Hamilton theorem 
holds [103]. To sec why we say most and Ilot all of the non-abelian badness 
is hidden, see Example D of [196]. We name (W(J:,ll) = exp(-'Il(J:,ll)), the 
Williams zeta function. 

Theorem 5.4.7 can be interpreted to mean that a small set of words, cornl­
sponding to links "fitted" to a ftIarkov partition, determine all the other possible 
periodic words of the given Lorenz attractor. Since the order of the words hth'S 
not been w,1shed out by abclianization, we can reconstruct the knots. This is not 
too surprising since the kneading sequence can be viewed ttS two special knots 
that determine all the others. In fact, the words corresponding to the two knots 
I U 0 and T U 0, do appear in the link-det. 

Finally, we note that under abclianization link-det (I -.4) becomes det (I -.4) 
and that if P is a permutation matrix link-det (I -.4) = link-det (I - p.4p~ l ). 
These facts are both have ettsy proofs and are done in [196]. 

Example 5.4.8 Figures 5.13 and 5.14 show two sublonmz templates, A and 
B. It is not hard to set up the corresponding matrices .4(;r;,:tJ) and B(;r;,:tJ) and 
compute that 

However, A and B are not equivalent tiS can be seen by checking their kneading 
sequences. vVe leave it ttS an exercise to compute their vVilliams zeta functions. 
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5.5 

Figure 5.13: The sublonmz template A. 

Figure 5.14: The sublonmz templates B. 

Remarks on other invariants and open prob­
lems 

Remark 5.5.1 A new clth'SS of tmnplate invariants hth'S recently been announced 
[100]. They are derived from em quantum groups, a cltiSS of objects which ap­
pears to be of fundamental importance in the study of knot and link invariants 
[158]. These results are beyond the scope of the present tm.i:, but it is worth 
noting that both the original Parry-Sullivan invariant and the full Parry-Sullivan 
invariant have been realized tiS quantum invariants. However, the computations 
involved in developing more sensitive invariants with regard to mnbeddings ap­
pear to be quite hard and still remain to be done. 

Remark 5.5.2 There htiS been a great deal of work in s}'1nbolic d}'1ltunics of 
subshifts of finite type under various restrictions (e. g. irreducibilty) and in 
generalized contexts (e. g. finite identifications). See [321, for example. Our 
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notion of ribbon equivalence fits into this framework, although one would hope to 
sec the COIlIlection made more explicit. It is les8 clear if our boundary invariants 
(the link of closed orbits in the boundary, etc.) can be derived from purely 
symbolic data. If they can, then there is some cause for optimism toward the 
problem of clthSSifying ribbon scts of templates (in contrthst with arbitrary ribbon 
scts, which do Ilot have boundary). 

Remark 5.5.3 The twist-zeta fUIlction for positive templates defined in §5.3 
wtkS found before the full Parry-Sullivan invariant of §5.2. In fact, the latter 
arose from an attempt to overcome the restriction of the twist-zeta fUIlction 
to positive templates. It would be useful to develop an eth'Sier way to compute 
template invariants which intermediate between these two; ideally it should be 
well-defined for all templates but should contain more embedding information 
than does the full Parry-Sullivan invariant. 



Chapter 6: Concluding Remarks 

In this monograph we have described tools, developed largely in the pthst fif­
tecn years, which permit the explicit cOIlstruction and description of those knot 
and link types realised as periodic orbits in certain cltkSSCS of three-dimeIlsional 
flows. The principal tool IS the template, which allows the reduction of a thrcc­
dimeIlsional flow having a hyperbolic invariant sct to a smniftow OIl a branched 
two-manifold. vVc also develop a "template calculus:" a symbolic language for 
the characterization and manipulation of templates. These techniques arc de­
scribed in Chapter 2. They build OIl "clthSSicai" idc;:;kS from knot theory and 
d:ynamical systems theory, which we review in Chapter L 

In Chapter 3 we have used these tools to derive general results on template 
knots, and to prove the existence of a universal template which contains (in­
finitely many) representatives of all tame knots and links. Here the tone is that 
of inclusion. Chapter 4 takes a more exclusive viewpoint; we focus on restricted 
clthSSes of templates, especially that corresponding to the "simplest" suspension 
of Smale's horseshoe map. vVe show that in such CthSes only limited clttsses of 
knots can occur, and that uniqueness results may be used to distinguish branches 
of periodic orbits in bifurcation studies. The chapter ends with a return to inclu­
siveness, ttS we show that the universal template of Chapter 3 occurs within the 
flows of an open set of ODEs near a double Silnikov type homoclinic bifurcation 
point. 

Chapter 5 takes a different direction in that we turn to the characterization of 
templates per se instead of the knots and links they support. Template invariant 
theory is less well-developed than the corresponding theory for knots, and this 
chapter is necessarily more tentative in nature and limited in scope than the rest 
of the book. 

In the course of the text we have noted or hinted at a number of open ques­
tions. In the hope that they may stimulate future work, we collect and e"Alnmd 
on them here. vVe also give refenmces to some relevant (and mostly recent) 
literature of which we learned shortly before the book went to press. 

Problems in template theory and applications 

Problem 6.0.1 The best sort of result one could hope for in template theory 
would be an ettsily-computed, discriminating template invariant. This appears 
to be a very difficult undertaking, ttS mentioned in Chapter 5. However, ttS the 
number of new knot-and-link invariants seems to be growing daily, there is hope 
that some of these recent invariants can be exported to template theory: e.g., 
the quantum template invariants mentioned in §5.5. 

Problem 6.0.2 As an alternate approach to the previous problem, it would be 

167 
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very useful (and indeed, it seems quite fctksiblc) to develop a rough clth'SSifica­
tiOIl theorem for templates. The crudest such result would provide necessary 
and sufficient conditioIls for determining when a template is universal. Natural 
refinements of this clth..,sificatioll would include a compact way to describe how 
a template fails to be universal (c.g.) the template is positive). Since we have 
shown that every tmnplatc is universal up to embedding, this would entail some 
sort of description of how the strips arc embedded (c. g. ) they arc all linked in 
too-complicated a maIlIler) or perhaps each strip is knotted and forccs satellite 
knots, etc.). \Vc recall Conjecture 3.2.24, which states that a template is uni­
versal if it hth'S a sufficiently large unlink within it failure to be universal may 
be encoded in the size of the largest unlink. A related problem is to determine 
whether or not a universal template (one which contains all knots) must be ver,1J 
'universal in the sense that it contains V tiS a subtemplate (and hence, all links, 
infinitely many copies of all links, etc.). However, this appears to be a rather 
messy problem. 

Problem 6.0.3 There are several lesser problems concerning universal tem­
plates. For example, how are the knot types distributed in the space of periodic 
orbits? Are the unknots dense in this space? Answers to such questions would 
give an idea of the probability of finding a particular t:n)e of knot within the 
periodic orbit set. 

Problem 6.0.4 In applying template theory to studying fibred knots (recall 
§2.3.4) it is unclear how much information is encoded in the template ,1ssociated 
to the fibration. In all the examples computed here (related to the figure-eight 
knot and the vVhitehead link), the derived templates are universal. It is retison­
able to guess that every fibred link with pseudo-Anosov monodromy which is not 
a positive braid htis a universal template tissociated to its fibration. However, 
if this is not true, then the templates would serve tiS a tool for distinguishing 
certain fibred links. Or, perhaps, finer information than the planetary link tiS a 
whole could be derived from the template. 

Problem 6.0.5 In applying template theory to templates derived from flows, 
we have restricted ourselves to uniformly h:n)erbolic dynamical systems, for 
which the Template Theorem applies. It would be of great interest to adapt 
the proof to non-uniformly h:n)erbolic CtiSes (covered by Pesin theory), which 
are known to be crucial for describing the full d:ynamics of smooth maps of 
Henon type and their attractors [131, 140]. 

Problem 6.0.6 In a related vein, the material of Section 5.4 also suggests a new 
direction. Indeed, while the study of templates for hyperbolic sets htis matured 
over the ptiSt fifteen years, there have been few application of templates to 
attractors per se. This is perhaps mainly because it is very difficult to prove that 
non-trivial, indecomposable attractors exist for flows defined by specific ODEs, 
while hyperbolic (sub-) sets are relatively e,1sy to find. vVe note that Kennedy 
in his Ph. D. dissertation [102] shows that t he Lorenz-like templates (Section 
2.3.1) are realized tiS models for attractors in certain geometrically defined flows, 
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and there ha",", been some interesting work showing that certain clthSSCS of ODEs 
contain geometric Lorenz attractoI's: sec [441, [1561, and [152]. However, no 
other type of template hth'S been rigorously thssociatcd with the full attractor of 
an ODE. The examples given in Section 2.3.3, and the proof of Section 4.4.2 
that a universal template lies in the flow IlCaI' a double Silnikov homoclinic 
cOIlIlectioIl, all involve hyperbolic scts which may belong to an attracting sct, 
but which certainly do Ilot comprise the whole attracting sct. 

A further complicating factor, mentioned briefly in Section 5.4, is the issue 
of invariant scts or attractoI'S with infinite (countable) rvIarkov partitioIls, which 
may require kneading theory for a full description, t4') does the (geometrical) 
Lorenz attractor. vVilliams [194] gives a method for the construction of infinite 
rvIarkov partitions for the sub-Lorenz templates of Chapter 5. J. vVagoner [1851, 
[1861, htis also studied infinite rvIarkov partitions, but not in the context of 
templates. This area is also open. 

Problem 6.0.7 The largely non-rigorous idetts of Section 2.3.5, in which tem­
plates are derived from embedded (e"Al)erimental) time series, continue to attract 
interest. Papers following up on [128] include [126, 121] and [108, 159, 109, 111, 
110, 113, 112]. The reference [126] is notable in that it shows explicitly how 
different embed dings can give rise to templates carrying topologically distint 
links of periodic orbits (although this is not surprising, in view of the fact that 
all templates are universal, up to embedding (Theorem 3.3.5).) It would thus 
seem important to derive embedding-invariant descriptions of tmnplates, cf. the 
Parry-Sullivan invariants of Chapter 5. 

Problem 6.0.8 Perhaps the greatest shortcoming of the techniques detailed in 
this book (except for portions of Chapter 5) is their inherent three-dimensionality. 
Knotting and linking of periodic orbits is simply impossible in higher dimensions. 
In terms of trying to derive topological information from time series data, [136] 
and [127] are good first steps in deriving higher dimensional topological struc­
tures from time series. 

Other avenues are also open. There is a well-defined notion of higher­
dimensional knot theory in which k-spheres are knotted and linked within (k+2)­
spheres. Several authors have suggested applying such perspectives to dynami­
cal problems [128, 130]; however, there is a glaring lack of d:ynamically relevant 
spheres except for I-spheres (periodic orbits). What can (and should) be ex­
plored is the presence of knotted k-tori in (k + 2)-dimensional flows. Such tori 
may be nontrivially knotted, thought not in the way that one might expect, given 
one's intuition in n«a. Here is an example: consider a nontrivial knot K C 11«.(1. 
Then K x SI C 11«.(1 X SI is a nontrivially knotted torus in a 4-manifold. It is 
clear to see how such knotted tori would arise naturally in several contexts, in­
cluding periodically excitation of three dimensional ODEs possessing h:)1)erbolic 
periodic orbits. 

In this context it remains to develop a good knot theory for embedded tori 
(almost all of the work in higher-dimensional knot theory htis been done with 
spheres), and then to find key examples in which embedding information can 
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be c(;ksily derived. It appears unlikely that a higher-dimeIlsional template theory 
is possible; however, cOIlsidering the embedding data in Hamiltonian systems 
might be a good place to start. 



Appendix A: Morse-Smale / Smale 
Flows 

A.1 Morse-Smale flows 

In rv'IoI'sc-Smalc flows the basic scts arc simply closed orbits and fixed points: 
there is no "chaos" and hence little need for templates. Nevertheless, such 
flows form an interesting and important clthSS. Here we review bthSic facts about 
rv'IoI'sc-Smalc flows, culminating in the result of Ivt "Vada [184] that charac­
terizes which links can be realized tk'S the periodic orbit link of a Ilollsingular 
rv'IoI'sc-Smalc (Nrv'IS) flow OIl the 3-sphcrc. (Recall that a Ilollsingular flow is a 
flow without fixed points.) Surprisingly, a 8ubclthSS of these links is precisely 
the sct of realizable links in a special cltkSS of Hamiltonian systems [35] (sec 
Remark A.1.14). 

vVc recall the definition of rv'IoI'sc-Smalc flows from Chapter 1: 

Definition A.I.1 A flow CPt on a manifold AI is lvloTsc-Smalc if, 

• The chain recurrent set is h~)1)erbolic, 

• The stable and unstable manifolds of btk'Sic sets meet transversely. 

• Each bttsic set consists of a single closed orbit or fixed point. 

For AI a compact manifold, it follows that there are a finite number of periodic 
orbits and fixed points. 

Among structurally stable flows, rv'Iorse-Smale flows have attracted special 
interest. rv'Iorse-Smale flows are dense in the C 1 topology of C 1 flows on compact 
2-manifolds (this follows from Pugh's closing lemma [147]). In the CO;:; cttse the 
density result is known only for orient able compact 2-manifolds [142] and for 
the projective plane, the Klein bottle or the torus with a cross cap [78]. For 
other nonorientable 2-manifolds the question remains open. On any manifold, 
rv'Iorse-Smale flows form a dense subset among the gradient flows, regardless of 
the smoothness clttss. An excellent account of these results can be found in [139] 
and the rcfenmces there. 

Example A.I.2 vVe give a construction for a Nrv'IS flow on Sa with two closed 
orbits: one attractor and one repellor, which form a Hopf link ttS illustrated in 
Figure L9(c). Consider the solid torus 1/1 = D'2 X Sl ttS the subset of 11«.'2 (in 
polar coordinates) crossed with S1 given by 

V1 = {(r,O, q,); 0 -:: r -:: 1,0,q, E S1}. 

171 
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Place a flow OIl 1/1 given by the vector field 

x = (r,O,4o) = (-r,O,j(r)), 

where f (r) IS a smooth nOIlIlegative bump fUIlction with support in a small 
neighborhood of r = O. Let \/2 denote a second copy of 1/1 outfitted with the 
"backwards" vector field -X. As such, we may match the vector fields OIl the 
boundaries of 1/1 and \/2 and glue these solid tori together via cP : ;JV1 --t ;J\l2 
given by (B,<jo) H (<jo,B). 

There arc several ways to show that gluing 1/1 and \/2 together in this maIlIler 
yields Sa, concluding the m .. istcIlcC of the desired Nrv'IS flow: we review one such 
procedure. Observe that gluing two disks together along their boundary in the 
obvious way produces a 2-sphcrc. Likewise gluing two 3-balls together ~yicld8 a 
3-8ph(11'(1. If we cut out a small neighborhood of a diameter in one of the 3-balls, 
the remaining portion of that 3-ball is a topological solid torus. However, the 
union of this neighborhood and the other 3-ball is also a solid torus. Thus, we 
have realized Sa tk'S a union of two solid tori (in this cttse, 1/1 and \/2) glued 
together along their boundaries in a manner which exchanges the meridian and 
longitude tiS per CP. The resulting Nrv'IS flow is pictured in Figure A. L 

Figure A.l: A Nrv'IS flow on Sa which htts one attractor and one repellor arranged 
in a Hopf link. 

Not every manifold supports a nonsingular rv'Iorse-Smale flow, or even a non­
singular flow for that matter. A simple Euler characteristic criterion determines 
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if a manifold supports a nonsingular flow, rv'Iorse-Smale or otherwise. This cri­
terion is a mild extension of clthssical results due to H. Hopf and Poincare [124]: 

Lemma A.1.3 Let Af be a compact manifold whose bo'undary, possibly empty, 
has been partitioned into two collection.., of connected components, a~AI and 
ihAl: 

iJAf = iLAf U iJ+Af, 

0= iLAf n iJ+Af, 

Then there e'J:ists a rwnsinrrular vector field on lvI, pointing inward on a~AI 
and o'utward on ihAf, if and only if x(iLAf) = x(M), 1 

Asimov [12] l1(hs shown that every manifold of dimensionn ¥ 3 which satisfies 
the Euler criterion above supports a nonsingular rv'Iorse-Smale flow. This is false 
for 3-manifolds, but rv'Iorgan [132] h;:hs characterized which 3-manifolds support 
nonsingular rv'Iorse-Smale flows. rv'Iorgan's criteria arc rather technical and we 
will not go into them here. See [132] or [35], The basic idea behind these 
results is that a manifold supports a nonsingular rv'Iorse-Smale flow if and only 
if it admits a TV'und handle decomposition. vVe give details only for the C;:hse of 
3-manifolds. 

A.I.1 Round handles 

In dimension three, a round handle (RH) is a solid torus D'2 x 51 together with 
a specified subset of its boundary called its attaching zone. vVe imagine that 
each round handle comes with a Nrv'IS flow having the core {O} X 51 ;:hS the sole 
closed orbit, ;:hS in Example A.1.2. The exit set of the flow will be the attaching 
zone for the round handle (possibly empty, in the C(hse of attracting orbits). vVe 
will usc round handles to build Nrv'IS flows by gluing them together so that the 
attaching zones arc joined to the in-flowing regions of other round handles. 

• O-RH: The attaching zone is the empty set and the core is an attracting 
orbit. vVe start building a Nrv'IS flow by laying down some O-RHs. 

• l-RH (untwisted): The attaching zone consists of two disjoint annuli, each 
going longitudinally around the torus once, and the core orbit is a saddle 
orbit whose local stable and unstable manifolds arc annuli (perhaps twisted 
with a nonzero but even number of half twists). 

• l-RH (twisted): The attaching zone is an annulus that wraps twice longi­
tudinally about the torus, and the core orbit is a saddle whose local stable 
and unstable manifolds arc rv'Iobius bands. 

• 2-RH: The attaching zone is the entire boundary, and the core orbit is a 
repellor. 

1 Recall x(l~) O. For revie\v of the Euler chara<:teristic; see [I 17]. 
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Remark A.l.4 This definition can c(h'Sily be c"A-tcndcd to define round handlcs 
in higher dimeIlsioIls: sec [12]. 

Definition A.1.5 A RH decomposition of Sa is a sequence of manifolds: 

such that each j\Ij is obtained by attaching a RH to Alj~ l along its attaching 
zone. 

Lemma A.1.6 (Asimov [12] and Morgan [132]) For every RH deeornp08ition 
of sa there i8 a NMS flow on Sa 8'ueh that (1) the cl08ed orbit8 of the flow 
are eq'ui'Uulent to the cores of the TV'und handles, together 'With their indices and 
twi8tedne88; and (2) the flow i8 inwardly tran8ver8e to iJAfj for each j, 

Conversely, for c'Ucr,1J NA:lS flow on sa there is a RH decomposition s'uch that 
(1) and (2) above hold, 

Sketch of Proof: It is clear from the remarks above that if we can find a 
round handle decompositioIl, then we can build a corresponding Nrv'IS. One docs 
have to check that the stable and uIlstable manifolds intersect transversely, but 
this can always be achieved by a small perturbation. 

The other direction is harder and will require the usc of the no-cycle property 
of :0.-'Iorse-Smale flows. Since in a N:0.-'IS flow, all the closed orbits arc attractors, 
repellors, or saddles, their tubular neighborhoods arc round handles. vVe want 
to usc the action of the flow itself to do the attaching. But we need to order the 
orbits sequentially to get a decomposition. In our CthSe, we would like to enumer­
ate all the attracting orbits in arbitrary order, then the saddles, and finally the 
repellors, again in any order; however, the saddles cannot be attached in arbi­
trary fa,shion. Clearly, if the unstable manifold of one orbit flows into the stable 
manifold of another, this latter orbit should appear first in the decomposition. 
But should the unstable manifold of this orbit flow back into the stable manifold 
of the former, a decomposition would not FAist. It is the no-cycle property which 
circumvents this problem. 

Let 1'1"", cn be the closed orbits of a NMS flow, Define Ci <:: Cj if the 
unstable manifold of Cj meets the stable manifold of Ci. The No-Cycle Theorem 
[165] states that:::; is a partial ordering on the closed orbits. By choosing any 
total ordering compatible with :::;, we may usc the action of the flow to attach 
tubular neighborhoods of the closed orbits and obtain a decomposition. 

Suppose we have built up Ali~ 1 , and want to attach the ne"A-t round handle. 
(A10 is ettsy tiS it is just a O-RH.) Let 1Vi denote the neighborhood of Ci and let 
Ei denote the exit set of the flow. The forward image of Ei under the flow in­
tersects (JAli~1' vVe form a bigger round handle by joining 1Vi with U(>o ¢((Ei) 
and deleting any intersection with Ali~ l . Taking the closure of this yields a RlI 
for Ci attached to Ali~ 1. A small adjustment must be applied to the boundary of 
Ali, which is tangent to the flow along the "edges" of U(>o ¢((E). In addition, 
one must also adjust slightly to make sure things arc smooth. 0 
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A.1.2 The 3-sphere 

In this book, we have considered the knotting and linking properties of closed 
orbits for flows on the 3-sphere. In [184], M. Wada characterized the class of links 
that could be realized thS the set of periodic orbits of a nonsingular rv'Iorse-Smale 
flow on Sa. Actually he docs a little more each component of a link of closed 
orbits may be labeled with the index of the orbit: () (for attractors), 1 (saddles) 
or 2 (repellors). vVada characterizes which indc'J:cd links can be realized. 

The interested reader may find vVada's paper tersely written. In particular, 
there arc no illustrations, although the proof requires nontrivial visualization.:2 
A more recent paper [35] (sec Remark A.LI4) is ettsier to follow, but leaves out 
some details, referring to vVada's paper. Thus, the diligent reader might want 
to have both papers on hand to understand the proof. Here we present only a 
statement of the result and a brief outline of the proof. Before stating vVada's 
theorem, we construct two further examples of Nrv'IS flows on Sa. Each example 
shows how to build a new flow from one or more existing flows. 

Example A.1. 7 Consider an attractor A of a Nrv'IS flow on Sa. vVe may remove 
a tubular neighborhood 1v of A and replace it with a solid torus supporting an 
Nrv'IS flow which is inwardly transverse to the boudary, but which contains more 
than a single closed orbit. Consider the return map on a meridional cross-section 
of 1v: this will appear tiS a disc with a sink at the center of the disc, the remainder 
of which is foliated by invariant radial lines along which orbits tend towards the 
sink. 

In Figure A.2, we give three different examples of new flows that can be 
glued in to Sa \ 1v, illustrated by means of the cross-sectional return maps. Note 
that each htts three closed orbits (or fixed points in the map), and that one 
is a saddle (ttS should be via simple index theory). Upon suspension of these 
maps, the two "side" orbits may cable about the core orbit an arbitrary number 
of times. Finally, we may generate all sorts of variations on this example by 
performing ann-fold branched covering of the disc, branched over the center 
point, ttS illustrated in Figure A.3 hence, more general cablings of orbits can 
be produced. Of course, one may reverse the flow direction and create Nrv'IS flows 
on solid tori with the attractors and repellors exchanged and the flow outward 
on the boundary. 

vVe now possess several tools and components for building new Nrv'IS flows on 
Sa from old ones. vVe ne"A-t construct a Nrv'IS flow on Sa with bttsic sets consisting 
of a single saddle orbit and two Hopf links, each a repellor-attractor pair, put 
together via a "split sum:" 

Definition A.1.8 (Split sum) Let L1 and L, be links in two three-spheres 5)' 
and S1 respectively. Delete a small open 3-ball from each of the link comple­
ments, Sjl L i , 'i = 1,2, and form the union of Sl - Bl and S1 - B:2 by gluing 
them along their boundaries. vVe obtain a new 3-sphere (to sec this take one of 

2.'\ preprint of Wada's paper did include many helpful illustrations which did not survive 
in the published version. 
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Figure A.2: Return maps OIl a cross section of an attracting orbit. Tl'ianglcs 
refer to sinks, squares to sources, and crosses to saddles. 

Figure A.3: Cablings more general than (2,n) may be created by modifying one 
of the above examples via a branched covering. 

the balls to be a neighborhood of "oct) with a new link denoted L1 0 L2 and 
called the 8plit 8'urn of L 1 and L" 

Taking the split sum of two links results in a separable link. 

Example A.1.9 vVc will build up our flow in pieces and then glue the pieces 
together to obtain a flow OIl Sa. Let C denote a cylinder I x 51. vVc can put a 
Nrv'IS flow OIl the thick cylinder C x I having a single closed orbit of index one, 
i.e.) a saddle: sec Figure AA. The exit set is Be x iIlt (I). The flow enters 
from int (C) x a I and is transverse along the exit and entrance sets. The saddle 
orbit is the center circle of C cross the midpoint of I. 

Definition A.l.lO A simple closed curve embedded in a surface is inessential 
if it bounds a disk in the surface. Otherwise, the curve is said to be essential. 

Now we continue with Example A.L9. Let Vi, 'i = 1,2 be two O-round 
handles. Attach one component of ac x I to an inessential annulus on ;JV1 , so 
that the annulus' core bounds a disk in ;JV1 , and attach the other component to 
an inessential annulus on ;J\l2. vVe can "round off the corners" of this attaching 
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Figure A.4: Thickened cylinder with a saddle orbit. 

so thS to obtain a smooth flow on the union with the flow entering transversely 
along the entire boundary of the resulting manifold. 

However, if we attach 1/1 , C x J, and \/2 naively ttS in Figure A.5 there would 
be a 2-sphere transverse to the flow in the boundary. Any attempt to use this 
to build a flow on Sa would force a singularity. Thus the attachment to \/2 nlust 
be done in a different way. In Figure A.6, C x J "swallows" \/2, and then turns 
in to attach to it. Note that (JC x {O} bounds a disk in 1/1 minus the attaching 
annulus but not on \/2 minus the attaching annulus. 

Figure A.5: The union of two solid tori and a thick cylinder may have a sphere 
and a double torus tiS boundary. 

To recap 80 far, the manifold V, U (C x I) u V, has a NMS flow with three 
closed orbits: two attractors and a saddle. The flow is transverse inward along 
the entire boundary. "Vhat is that boundary? It is the disjoint union of two tori. 
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The outer one, referring again to Figure A.6, contains "ext. vVc glue in two new 
solid tori V~l and \/4) each endowed with Nrv'IS flows, exit ing transversely along 
their boundaries, and each containing a single closed repelling orbit at its core. 
In the language of round handlcs, we have built a flow with two O-round handlcs, 
two 2-round handlcs, and a single I-round handle. 

This ithst gluing produces the desired Nrv'IS flow OIl Sa. If we denote a pair of 
distinct Hopf links by hi, 'i = 1,2 and the unknottcd saddle by 'U, t hen the chain 
recurrent sct of our new Nrv'IS flow would be hI 0 h'2 0 'U. "Vada generalizes t his 
cOIlstruction for links other than Hopf links: scc TVl in definition A.LI1 below . 
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Figure A.6: The same handles attached differently contain only tori (J.,," boundary 
components. 

A.1.3 Wada's Theorem 

Definition A.I.II Let W be the collection of indexed links determined by the 
following seven axioms: 

WO: The Hopf link indexed by 0 and 2 in is W. 

WI: If L " L, E W then L , oL, o 'If E W, where 'If (here and below) is an unknot 
in Sa indexed by L 

W2: If L " L, E Wand K, is a component of L, indexed by 0 or 2, then 
L , 0 (L, - K,) o 'If E W. 

VV3: If £ 1,£'2 E ,}V and K 1,K'2 arc components of £ 1,£'2 with indices 0 and 2 
(resp.), then (L , - K , ) 0 (L, K,) o 'If E W. 
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W4: If L 1,L, E Wand K 1,K, are components of L 1,L, (resp.) each with 
index 0 or 2, then 

where Kl #K'2 shares the index of either KJ or K'2 and rH is a meridian of 
K1 #K, indexed by 1. 

W5: If LEW and K is a component of L indexed by·j = () or 2, then L' E W, 
where £1 is obtained from £ replacing a tubular neighborhood of K with 
a solid torus with three closed orbits, K 1 , K'2, and Kg. Kl is the core and 
so hth'S the same knot type tiS K. K'2 and Kg are parallel (p,q) cables of 
K 1 . The index of K'2 is I. The indices of Kl and Kg may be either 0 or 2, 
but at letist one of them IIlUSt be equal to the index of K. 

W6: If LEW and K is a component of L indexed by·j = () or 2, then L' E W, 
where £1 is obtained from £ by changing the index of K to 1 and placing 
a (2, q)-cable of K in a tubular neighborhood of K, indexed by 'i. 

VV7: lV is minimaL That is, lV C lVI for any collection, lVI, satisfying VVO-VV6. 

Remark A.1.12 The lttst condition, lV7, means that lV is generated from the 
indexed Hopf link in sg by applying operations lVl-lV6. 

Theorem A.1.13 (Wada [184]) Let F be the set of inde",ed links which can be 
realized as the collection of periodic orbits of a NMS on Sa. respecting in de",. 
Then W=F. 

Outline of proof: The argument for lV C F is straightforward though tedious. 
vVe IIlUSt show that F obeys tt} .. ioms VVO through VV6. Example A.I.2 establishes 
VVO. Example A.I.7 shows axiom VV6 can be realized and Example A.I.9 can be 
generalized to show F obeys VV I. The remaining axioms can be similarly shown 
to hold by e}..l)licit constructions. g 

The proof of F C lV uses an induction strategy. Let Fr be the sub collection 
of F whose elements have at most r components of index I. For r = 0, Fo 
contains just the Hopf link with indices 0 and 2. Thus, Fo C lV. Now suppose 
that for some r ~ 1, Fr~ 1 C lV. Let £ E Fr. The corresponding flow htis a 
round handle decomposition. By careful surgery, one removes a l-RH from this 
flow and shows that two new flows on Sa can be constructed from the remaining 
round handles. These flows have at lettst one fewer index 1 orbit and so are in 
lV. But the surgery is performed so that the process can be reversed via one of 
the moves WI, .. . , W6. Hencc, Fr is in W for all T. 0 

a'fhe only construction which is very difficult is that ofl:V 4 forming the connected sum. 
'['he summary article contains a helpful diagram. 
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A.1.4 Extensions and applications 

Remark A.1.14 Fomcnko [49] hth'S developed a general program for studying 
integrable Hamiltonian flows OIl three-manifolds which htk,) fundamental COIlIlec­

tioIls to Ilollsingular rv'IoI'sc-Smalc flows. COIlsider a symplectic four-manifold 
AI with Hamiltonian H, a Ilondcgmwratc cOIlstant-energy three-manifold Cd = 
H~l(C) C AI, and an additional integral F defined OIl a neighborhood of Cd 
whose critical points in Cd form Ilondcgmwratc submanifolds. TheIl, we say the 
Hamiltonian system defined by H IS Bott-integrable OIl Cd. This IS a more geIl­

eral notion than that of (complete) integrability: in which every cOIlstant-energy 
submanifold IS integrable. 

For a Bott-intcgrable system on Cd, there is a finite collection of critical sub­
manifolds of F on Cd which are periodic orbits: these form a link Lp in Cd. The 
only other critical submanifolds present are singular tori. By the Liouville Theo­
rem [61, the complement of the critical submanifolds of F in Cd is foliated by tori. 
Any component of Lp is indexed with the index inherited from F. Knots of index 
zero or two (local minima/maxima of F) possess tubular neighborhoods foliated 
by tori except at the core. Knots of index one lie on one or two "bifurcation" 
tori, which correspond to inflection points for F. 

Fomenko and Nguyen [501, using topological and dynamical methods, were 
the first to show that each periodic orbit of the Hamiltonian flow on Cd with 
index zero or two IIlust be a generalized iterated torus knot: that is, it is formed 
from the unknot by the operations of cabling and connected sum. CtkSStk'Says, 
Nunes, and rv'Iartlnez Alfaro [35] revisit this work and point out that the Bott­
integrable energy manifold Cd must also support a Nrv'IS flow with cores of the 
RH decomposition related to the link Lp in a natural way. Thus, they conclude 
that the clttss of indexed links realizable tiS the set of stable periodic orbits 
for some Hand F is generated by the tt} .. ioms lVO, lV4, lV,), lV6, and lV7 of 
Definition A.I.II. 

From these two works, it follows that any periodic orbit in the integrable 
Hamiltonian flow on Cd must be a generalized iterated torus knot. See [35, 50] 
for definitions and further details. 

Remark A.1.15 In [1571, Saito extends "Vada's theorem. Given any indexed 
link £ and any 3-manifold AI we cannot in general e}..l)ect there to be a Nrv'IS 
flow on AI, let alone one with nonwandering set £. However, Saito develops a 
canonical procedure for producing a new indexed link £1, derived from any £, 
and a new manifold liP derived from AI, such that there is a Nrv'IS flow on liP 
with nonwandering set £1. There are some minor restrictions on the initial link 
£ and AI must be orient able. 

Remark A.l.16 Generalized iterated torus knots manifest themselves in other 
settings tiS well. Let ~ be a smooth plane field on Sa: that is, in the tangent 
space at each point there is a plane. Consider the clttss of vector fields which 
lie entirely within ~. Such flows have characteristics of both two- and three­
dimensional dynamics and arise in the study of contact geometr,lj. 
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In [451, it is shown that [generic] singularities of a plane-field flow arise not in 
isolated points, but in embedded circles. Hence, the singularities of such a flow 
gives a link. Consider the clthss of flows with the simplest d~'fIHunics: gradient­
like flows, for which the only recurrence is fixed points. Then the only types of 
links which may arise arc the links described in vVada's Theorem. 

A.2 Smale flows, abstract 

In this section we review the work of Franks and others on Smale flows, especially 
nonsingular Smale flows on Sa. These results rely on the homology theory of 
filtrations thssociated to the flow. As this is outside the scope of this work, we 
will merely state results and outline applications. Thus, no usc of homology will 
be made here. The interested reader should consult [53] th'S well tiS the refenmces 
given there. 

The theory outlined culminates in an abstract cltissification of Smale flows 
on Sa using a device called the Lyap'urw'U graph. By abstract, we mean that the 
embedding types of the b;:lsic sets arc not determined, only which combinations 
of btisic sets can be realized. The next section of this appendix addresses the 
question of how they may and may not fit together with respect to embedding. 

Smale flows satisfy the same hyperbolicity and transversality conditions as 
rvIorse-Smale flows, but the ba,sic sets may have infinitely many periodic orbits, 
while still being one-dimensional (or zero-dimensional if we allow for singulari­
ties). Recall from §L2 the definition of a Smale flow: 

Definition A.2.1 A flow ¢! on a manifold Al is called a Smale flow if 

• the chain recurrent set R of ¢! htis a hyperbolic structure, 

• the basic sets of Rare zero- or one-dimensional, and 

• the stable manifold of any orbit in R htis transversal intersection with the 
unstable manifold of any other orbit of R. 

Smale flows on compact manifolds arc structurely stable under C 1 perturba­
tions but arc not dense in the space of C 1 flows. It is easy to sec that for dim 
Al = 3, each attracting and repelling bttsic set is either a closed orbit or fixed 
point. The admissible saddle sets, however, include suspensions of irreducible 
subshifts of finite type and can be nontrivial, i.e. they can have infinitely many 
closed orbits. Thus, while there arc no strange attractors or repellors, compli­
cated saddle sets may exist, which can be modeled by templates. Indeed, as we 
shall sec, a suspension of the horseshoe, together with an attractor-repellor pair 
of periodic orbits, provides an important example of a nonsingular Smale flow. 

Given a suspended subshift of finite type we can construct a rvIarkov partition 
and a corresponding transition matrix A. vVe can encode additional information 
about the embedding of a basic set by modifying the transition matrix: 
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Definition A.2.2 Given a rvIarkov partition for a cross section of a btkSic sct 
with first return map p, thssign an orientation to each partition dement. If the 
partition IS fine enough the fUIlction 

if P IS orientation preserving at J: ) 

if p is orientation reversing at J:) 

IS COIl stant OIl each partition clement. The struct'U1t: matri'J: S IS then defined 
by 5ij = O(;r:)Aij) where J: IS any point in the 'i-th partition clement. (This IS 
slightly different then the structure matrix defined in §5.2.) 

Example A.2.3 For a suspeIlsion of the full shift OIl two symbols modeled in 

a flow by the LoreIlZ template, [i i lIS the stIucture matnx Howevcr. If 
the suspeIlsion of the full two-shift IS modeled by the horseshoe template, then 

[ 1 1 l' I I' , -1 -1 18 t Ie COITcspon( mg structure matnx. 

Later, we will define the linking matrix of a saddle set in a Smale flow that 
encodes how the orbits in the saddle set link the attracting and repelling orbits 
in the flow. 

The suspension of any irreducible subshift of finite type can be realized tk'S 
a btisic set in a Smale flow on any manifold of dimension three [148] or greater 
[191]. The technique of [148] typically introduces many singularities. Franks 
[54] htis observed that the realization result in [148] holds t rue for any structure 
matrix. 

Theorem A.2.4 (Franks [54]) S'uppose 5 is an irrcd'ueible integer TfwtrtJ:, Then 
there e'J:ists a rwnsinrrular Smale flo'W CPt on some /i-manifold 'With basic set A 
'Whose struct'ure matri'J: is S. It is possible to choose CPt so that each basic set of 
CPt, e'J:cept for A, consists of a single closed orbit. 

Theorem A.2.5 (Franks [54]) Suppose ¢f is a nonsing'ular Smale flow on Sa 
with a basic set hav'tng an n x n struet'urc TfwtrtJ: 5, Then if det(I - 5) cp 0, the 
gro'up'iln/(I S)'iln m:ust be cyclic, 

Example A.2.6 The matnx 5 = [; i 1 cannot be realized as the structure 

matrix of a nonsingular Smale flow on Sa, since the quotient group Z2 / (I - S)Z2 
htts presentation (J.:, U : 2J.: = 2U = 0), which is isomorphic to Z2 Z2. 

Suppose there is a single attracting closed orbit ;'a, and a single repelling 
closed orbit ;'r, with all other btisic sets saddles. Then we may compute the 
absolute value of the linking number of ;'a and ;'r ttS follows. Let AI, ... An 
denote the saddle sets and let S1 ... Sn denote the respective structure matrices. 
It is shown in [51] that 

n 

I£k(;a,ir) 1= ITI det (I Si)l, 
i= 1 



WhN(' trw prod\wt is t;)k(>rl to h(' on(' if /I = O. YV(, r(>rn;)Tk th;)t (ktU S;) is 
th(, onkr of th(, group 'K"/U S;):l'" wh('r(' 1ft is th(, siz(' of Si. 

EXaInplc A,2,7 Givdl;). How ;)s ;)lx)w with;). singk s;)ddk S('t h;)ving stnwtur(' 

m;)trix [ ~ ~ J ' ~(" ;)nd ~(, h;)w linking numhN thr(>('. Figur(' A.i (kpkts 

;). r(';)]iz;)tion of this ('X;)mpk. TIw figur(' sho\\";O ;)·n iwl;)ting ndghhorhood for 
(,;)dl of tlw thr(>(' h;)sk S('ts. FOr ~(" ;)nd ~(,' th(~(' ;)T(' tlw wlid tori l~, ;)nd L 
r(~p(>(,tiwly. C;)ll tlw s;)(ldk S('t A ;)nd its iwl;)ting ndghlx)rhood N. Now N is 
iwtopk to tlw unit norm;)] hundk of ;). kmpl;)k T. TIw kmpl;)k T is shown 
in Figur(' A.S, WhN(' W(' S(>(' how to iwtop(' it to look mor(' lik(, tlw kmpl;)t(~ 
pr(~('nkd in (,;)rliN dl;)pkrs. TIl(' ('xit S('t of N is iwtopk to tlw unit nornl;)l 
hundk owr aT ;)nd is ;)tt;)dwd to 81';,. YV(, (';)·n now S(>(' how to ;)tt;)dl 01', to 
a(l~, UN) ;)nd form S;l. 

./', ....,-,' 

. -.-,[ ',~ 

,/el'I'/ "" 
"'~L ',:....->',.~" 

, " -, "',.,' 

If W(' know how th(, s;)(ldk S('ts "link" ;). ('oll<..:'tion E of ;)ttr ;){'ting ;)nd r('pdling 
(']OS(..;] orhit., W(' (';)·n S;)y mor(': W(' (';)·n ('ompuk ;). polynomiJ.1 inv;)TiJ.nt of trw 
link L. This invMbnt is norw otlwr th;)n th(, AkX;)wkr rx)lynombl, ;). st;)nd;)Td 
inv;)TiJ.nt of d;)ssk;)] knot th(>()ry [Fi4, ;l;lj. 

TIw m;)·nnN in whkh ;). s;)(ldk S('t "links" ;). ('oll<..:,tion of dos(..;] orhits is 
d(~(TihN] hy modifying tlw stnwtur(' m;)trix S to form ;). linking matrix K. 
Conskkr ;). (TOSS s<..:'tion of tlw s;)ddk S('t th;)t is honv>(mlOrphk to ;). suhshift of 
finik tyrw f! : LA ~ LA, hy ;). honV>(mlOrphism h. YV(, ddirw C;)ntor S('ts {Ci}?r 
hy Ci = hUa C LAinn = x,}). As in Ikmm;) 2.2.:3, W(' (';)·n ('xv'nd th(, {C,}? ... r 
to two-dinwnsion;)l disks {D,}? ... r whkh ;)T(' tr;).nsV(>rs(' to tlw ;)mhi(>rlt How swh 
th;)t (;)} Ci =DinS, (h) aDi nR =0,;)nd ((,) DinE =O, for; = 1, ... ,/1. 

N('xt W(' pkk ;). h;)s(' point" in S;l r. ;)nd p;)ths Pi from" to D i , ;)]w in 
S;l r.. I,(,t ~(ij h(,;)· s('gnwnt of tlw How going from Ci to Cj without m(>('ting ;)ny 
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Figure A.8: A template for the flow in Figure A. 7. 

of the Ck in between. Now form a loop cOIlsisting of /'o/ij) Pi) Pj and, if needed, a 
short segment in Di and in D j . If the Ck have been chosen small enough, then 
the linking number of any such loop with a specified component of L depends 
only OIl 'i and j. One can find sufficiently fine {Cdi~ l by changing the matrix 
A in its shift equivalence dtkSS. This also determines a structure matrix S. 

Definition A.2.8 The linking matri'J: K th'SSociatcd with such a choice of the 
Ck for a given link L is then defined to be 

where ft is the number of components of the link and ekp is the linking number 
of the loops formed from segments cOIlIlecting Ci to G.j and the pth componcnt 
of L. 

Theorem A.2.9 (Franks [52]) Suppose that <PI is a nonsinY'ular Smale flow 
on Sa, L is a It-COmponent link of closed orbits oriented by the flow, each an 
attraetor or repel/or, and that {K,}i~ , are linkiny matrices of the saddle sets 
with respect to L. Let "lnij denote the linbiny n'umber of the -ith component of L 
with the jth component of the set of attraetors and repel/ors not in L. If I' = 1, 
i.c., L is a knot, then 

is an isotopy invariant of the oriented knot, 'up to Tfrultiples of ±t±l . This 
invariant is precisely the AleJ:ander polynomial of the knot [1,54, S,'lj. If, if I' > 1, 
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is an isotopy invariant of the oriented link, 'up to Tfrultiples of ±t.t 1 . Again, this 
invariant i" the AleJ:ander polynomial of the link L. 

Example A.2.10 Figure A.9 shows a Smale flow with three bthsic sets. The 
attractor i'a is a trefoil knot. The saddle set can clearly be modeled by a Lorenz 
template. Using the obvious two-element rvIarkov partition for the Lorenz tem­
plate, we find that a linking matrix for the saddle set with respect to the one-

component link la is [l~t l~t 1 Thus, the Alexander polynomial of la is 

+ 1 - t. Any isolated closed orbit in a Smale flow which htts polynomial 
different from this, up to multiples of t, cannot be isotopic to the trefoiL 

Finally, in [56] we have an abstract clttssification of nonsingular Smale flows 
on Sa. The major new tool is the Lyap'urwv graph. Given a Smale flow on a 
manifold there exists a smooth function from the manifold to the reals which 
is non-increttsing with respect to the flow (time) parameter [53, pages 1 and 
2]. Thus, each b;:lsic set is mapped to a point. This is called a Lyap'urwv func­
tion. The Lyap'urwv graph is defined by identifying connected components of 
the inverse images of points in the real line. Each vertex of the graph is a point 
whose connected component contains a basic set. Vertices is labeled by the 
corresponding ba,sic sets and edges are oriented by the flow direction. 

Suppose r is an abstract Lyapunov graph whose sinks and sources are each 
labeled with a single attracting or repelling periodic orbit and suppose each 
remaining vertex is labeled with the suspension of a subshift of finite t~ype. Then 
r is associated with a nonsingular Smale flow on Sa if and only if the following 
are satisfied: (1) The graph r is a tree with one edge attached to each source 
and each sink vertex. (2) If 'U is a saddle vertex whose ba,sic set has transition 
matrix .4 and with entering edges and C"}.iting edges then 

< ZA +1 
< ZA +1 

ZA +1 < + 

Here, ZA is a the Zeeman rrumber defined by dim ker((I .4:2): 2~t ~ 2~t), 

where .42 is the mod 2 reduction of .4, 22 is the integers mod 2, andn is the 
size of A. 

An abstract classification theorem for Smale flows in Sa with singularities 
has been obtained by de Rezende [40]. 

A.3 Smale flows, embedded 

The contrast between Smale and rvIorse-Smale flows reveals itself not only in 
the saddle sets, but also in the embedding of the isolated periodic orbits. For a 
nonsingular Smale flow on Sa, any link can be the attractor, in contntst to the 
restricted class described in "Vada's Theorem A. L 13. 
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FiguT<.' A .9: A Smak fh)w ",ith an attTadjng trd()il, 
an \Hlkn()tkd Tql<.'ll()T, iF' 

Theorem A,3,1 (FT!\llks [:)2]) If L i~ arl!! ~mooth link in S·;1 tfwn tfwn". "xi~t~ 
a rwn5inyulw" i)'mal" flow <'t on S·;, ~urh that L i5 tfw 5rt of attrarton and (it 

ha5 a 5inylr unkrwU"d rq",UOL 

Outfirw of P!"oo/: (}>nsid<.'T a disk [)L ",ith n distinguish<,'d IJ()ints pla<,'<.'(1 
aklllg a lill<.' within {)L. TIl<.'H' <.'xists a Smak diff<,'(nn()Tphism fT(lm ()L inh) itsdf 
whkh fix<.'s this H.k ()f n p<.)ints M attTa<.'i()TS, P<'TIlHlks tW() a(lja(".'rrl; IJ()ints, and 
fix<.'s tlw n - 2 T<.'lnaining IJ()ints individ\lally. Of (,()\lTH.', H.'wml Mddk p<.)irrl;s 
nnl!;t alH.) <.'xist, tv H.'Pamk tll<.' (knnains ()f attrMki(>n. 'I'll'.' S\l!;p<.'nsi(lll ()f this 
diif<,'()m()l1)hism ,'an \w <.'m\l<.'d(kd H.) that tlw traj<.Th)Ti<.-s (lll tlw n disting\lislwd 
attTa,king IJ()ints tra,".' ()\It tlw ,'k)fnlH' ()f a standaTd g<.'lwTah)T (J; ()f tlw hmid 
gT(l\lP B" (rJ. ~1.1): Y'<.' FigUH' A.IO. Tlwn, tlw S\l!;p<.'llsi(lll fk)w is a Srnak tk)w, 
in-fk)wing (Hl i){)L x S·'. 

By !;Cl!;p • .'nding tlw ,'()mp<.)siti(lll ()f Y'wTal s\wh Slllak diif<"()lll()l1)hisms, (HW 
may f()nn a n(lllsingulaT Srnak tk)w (Hl a H.)lid h)nl!; hming any hmid M an at­
tmd()T. S(lllW ,'aH' is rw<.'(I<.'(1 h) mak(' S\lH' tll<.' Wd;()T fidd is sm(l(.>th. Sin,".' any 
link ,'an \w hmi(kd (Th<"()T<.'lll 1.1.I:I), adding a singk Tql<.'lk)T in til'.' 
nwntaTy !;()lid h)nl!; :<idds tlw (ksiH'd H's\dt. 

,'()mpk­
o 

R(~lnark A ,3,2 N()ti,".' that, in this ,'(>nstnwti(lll, tll<.' Tqwlk)T links tll<.' attrad:­
ing link n tim<.'s. That is, tll<.' !;Cun ()f tlw linking rnnn\l<.'TS ()f tlw Tql<.'lk)T (JV<.'T 
all tlw ,'()mIJ(lll<.'nts ()f tll<.' attmd;()T is n. Th<"()T<.'m A.:I.1 may \l<.' H'firwd h) sh()w 
that tlw Tql<.'lk)T rw<.'(1 n()t link tlw attmd()T at alL 
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T T T T 

Figure A.I0: The suspension of a disk map in which the saddle points trace out 
a braid. 

As a final variation on this theme we prove the following result, which is a 
bit weaker, but hth'S an interesting proof: 

Theorem A.S.S If L is any smooth link in Sa, then there e'J:ists a Twnsinrrular 
Smale flow with one 8addle 8et 8'ueh that L i8 a 8'ubeol/eetion of the 8et of at­
tractors, and s'uch that there is a 'uniq'ue repellor 'Which, together 'With one other 
attraetor, form8 a Hopf link 8eparable from L, 

Proof: Figure A.II shows a Smale flow whose saddle set can be modeled wit h 
the template V from §3.2. The attracting and repelling orbits form a Hopf link 
which can separated from the saddle set by a 2-sphere. 

Recall the DA move for templatcs, related to the DA procedure of §2,2,2, 
and used on the horseshoe template in §4.2.I: this involves splitting a template 
T along a periodic orbit K to obtain a new template DAK(T) with K ttS an 
attractor. Figure A.12 shows this process for an orbit on V. Now, if T is a model 
of a saddle set in some Smale flow, we may form a new Smale flow, replacing 
T with a saddle set modeled by D AK(T) and a new attracting orbit with knot 
type K, linking each orbit in DAK(T) just ttS K did. By looking at the action on 
branch line charts, it is clear that this splitting on a connected template ~yiclds a 
connected template; all other bttsic set are unchanged. In Figure A.13, we show 
the result of this construction on the Smale flow of Figure A.II using the orbit 
depicted in Figure A.12. 

By Theorem 3.2.8, the link L is in V tiS a collection of closed orbits K 1 , ... ,Kn. 
vVe apply the DA process above to K 1 , ... ,Kn successively to produce the de­
sired flow. 0 

Remark A.S.4 vVe now have a method for creating new Smale flows from old 
ones that at lettst suggests a bifurcation process, much ttS in Examples A. L 7 and 
A,l,9 of §A,l, 
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A.3.1 Lorenz templates 

\V<., n()w ('(>Ilf;id<'T tll<.' pn)bkm ()f T<.'nlizing Smnk tk)Wf; fnnn nn(>ill'.'r vi<""'l)()int. 
SclPIJ(>f;<.' W<" hnw n n(lllf;ingcdnr Smnk thlW ()f S·;, with thT<.'<" bnf;k IX'tf; , n cmiqu<.' 
nttrn(1jng ('k)IX'd ()rbit, n cmiqcw rqwlling d(>f;<.'(l ()rbit, nnd n cmiqcw f;lvldk y,t 
llwd<,'kd h)IJ()k)gknlly by n L()T<.'nz kmplnk. Thnt if;, thn<.' <.'xif;tf; n ndghb()rh(l(.>d 
()f tll'.' f;lvldk IX't f()linkd by kwnl f;tnbk mnnif()ldf;, f;\wh thnt wlwn tll<.' knwf; ()f 
tll<.' f;tnbk mnnif()ldf; nT<.' id<.'rliitiql , W<" g<.'t nn nnlwdding ()f tll'.' L()T<.'nz kmplnk 
£(0,0). ld N", NF nnd N r lw iIX)lnting h llndnr ndghl)()rh()()df; ()f tll<.' nttm(1J)r, 
tll<.' rqwlk)r nnd tll'.' Mddk IX't H'f;p<.'(1;ivdy. W<.' !\f;k: whnt nT<.' nil tll<.' IJ(>AAibk 
('(mtigumti(lllf; ()f f;\wh n f;yf;km -: \V<., wnnt h) dMf;ify tll<.' nnlwddinw; ()f N", NF 
nnd clp h) nmbknt iIX)h)py, miIT()r illlng<.'f; nnd tk)w T<.'wrf;nL T() dnk, it if; 
V)Mibk (>Illy h) )\iv<.' n pnrlinl nnf;W<.T. 

, ()f tll<.' 
1;:')T<.'nz Mddk y,t ghwd h) n :J.-.-bnll nkmg itf; <.'xit IX't. T()IJ()k)gknlly, tll<.' cmi(lll it 
jcbt n :J.-.-bnll itIX'If. Tlnb, W<" lllny lnlild n tk)w ('(mf;if;ting ()f nn nttm(1;ing tix<,'d 
v)int in tll'.' ()riginnl :J.-.-bnll, tll<.' 1;:')T<.'llZ Mddk IX't, nnd n rqwlling tix<.'(lv)irli in 
S·;1 mirnb tll<.' L()T<.'nz cmi(lll :J.-.-bnlL 

FiguT<.' .\.14 nllX) f;h(lWf; tW() wnyf; (nl<.' might nttndl handlr.s h) tll<.' :J.-.-bnll f;() 
M h) hlrTl it inh) n IX)lid h)nb. SclPIJ(>f;<.' W<" nttndl tll'.' hnndk h) h) tll<.' f;lnnll 
dif;kf; lllnrk<.'d (' nnd (" in tll<.' lllnnn<'T f;h()",'ll. Cnll tll<.' T<.'f;\11ting f;()lid h)nb N,:. 
If W<" tnk<.' UN,; tll'.' H'f;\dt if; f;till n IX)lid h)nb, nnd tll<.' ('(nnpk'lnnli in S·;, if; 
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Figure A.12: The DA move on a closed orbit in V. 

just another solid torus, iV;. vVe may now build a Smale flow with an attractor 
in iV~, a repellor in iV; and a Lorenz saddle set in iV c. 

The exit set of iV C contains two annuli which are labeled X and }' in the 
figure. Call the cores of X and }', J: and u respectively. The reader should check 
that J: and u each bound disks in aiV~. 

Upon further inspection the reader should be able to see that J: and u can 
be made paralleL To be more precise, U and J: together form the boundary of 
an annulus in aiV~. 

Now, instead on attaching a handle at C and C1
, attach one to Band BI 

thS shown again in Figure A.14. This time call the solid torus obtained iV~. As 
before iV c U iV~ is a solid torus with solid torus complement in Sa. Thus we 
have a Smale flow. Is it the same ttS the previous example? 

To see that these flows differ, consider again the loops J: and u. They are 
still both inessential, that is they both bound disks in aiV~I. But they are no 
longer concentric. This can be seen from careful study of the figure. 

These two examples are the only Smale flows with the three bttsic sets we 
specified with both the loops J: and u inessential in the boundary of the tubular 
neighborhood of the attracting orbit. vVe shall not prove this fact here, though 
the argument is quite standard. 

In order to complete our tttsk we have to consider two more cttses, J: and u 
both essential and one essential and the other not. An example of the latter 
can be obtained by attaching a handle to the disks on the 3-ball labeled A and 
B in Figure A.14. It can be shown that if u is essential and J: is not, then the 
annulus }' can have any number of full twists if u is unknotted. If U is knotted, 
it nlust be a torus knot, and the amount of twist is fixed by the knot type of u. 
In all cttses X is untwisted and the attractor-repellor pair forms a Hopf link. In 
Figure A.15 we show the U loop is a (2)) curve on A. Detailed proofs of these 
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daims ("!;n fw found in [172]. 
FOT an ("xampk' of both J: and Y ('IiI;('ntial, (·onn('d a handk' to th(, disks A 

and C, so that tI!(' nllllpk'm('Tlt in 8:1 is an Unknott('d solid t(lnIS. This WiN; 
shown ahow in FigUH' A.9. Th(, aHrlwtOT is a twfoil knot. It is shown in [172] 
that, up t(l mirrOT imlJ4!;('S and How H'v('Tsal, this is th(, only (·1$(' fOT J: and y 
both ('Sli'mtial 

It is unlih'ly that th('T(' will ('V('T fw iN; nllllpk,t(, an UlI(\('Tlitanding of Smal(, 
Hows, ('V('TI nonliingulaT on('S in 8:1

, ali \Vada and oth('TS h.!w(' pHlvid(d fOT non· 
liingular IV\(>T!i('"-Smah, Hows in 8:1

. How('V('T, W(' hop(' that tI!(' t(>(lls sk(,td!('d 
h('H' and (clrr('Tltly und('T d('wlopm('Tlt ·will ('nabk' H'S(1;rdl('Ts t(l analyz(' th(>s(, 
Smal(, Hows in 3-manifolds that aT(' of SIW("ial int('H'lit t(l th('TI1. 
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Figure A.14: A neighborhood of the Lorenz saddle set is glued to a 3-ball. 

Figure A.15: The y loop is a (2,1) cable. 
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BCIlIlcquin inequality, 16, 73 
bifurcation 

gluing, 129 
HeBoIl map, 119 
homodinic, 129 
Ropf, 29, 108 
noose, 111 
pair, 114 
period-doubling, 28, 108 
period-multiplying, 109 
pitchfork, 28, 108 
saddle-node, 28, 108, 121 

boundary, 62, 144 
braid, 10 

(;this, 12 
closed, 11 
generators, 11 
group, 10, 83 

template, 98 
positive, 12 
template, 69 

braid index, 16, 117 
branch linc, 38 
branch segment, 61 

205 

branched manifold, 34 

cable, 9 
chain recurrent set 

flow, 21 
map, 19 

companioIl, 9 
composite, 8 
computed twist, 155 
concatenation, 70 
conjugacy, 17 
conjugate 

inflation, 81 
cOIlIlected sum, 8 

WL42 
Huffing equatioIl, 49 

edge graph, 23 
elliptic orbit, 109 
entropy, 26 
equilibrium, 17 
equivalence 

expansion, 147 
flow, 147 
strong shift, 146 
template, 143 

essential, 176 
e}.lnUlding attractor, 35 
e}.lnUlsion equivalence, 147 

faithful, 9 
Farcy mediant, 133 
Farcy neighbors, 130 
female orbit, 114, 124 
fibred, 54 
figure eight template, 56 
figure-eight knot, 5, 95 
fixed point, 17 
flow, 20 

hyperbolic, 21 
Morse-Smale, 22, 171 
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Smale, 22, 181 
stable manifold, 21 
Stable Manifold Theorem, 22 
suspeIlsioIl, 20 
uIlstable manifold, 21 

flow equivalence, 147, 150 

generalized iterated torus knot, 10 
genus, 13 

BCIlIlcquin inequality, 16, 73 
concatenation, 72 
torus knot, 14 

gluing bifurcatioIl, 129 
butterfly, 130 
figure-of-eight, 130 

HellOIl map, 119 
Hamiltonian systems, 180 
homoclinic, 26 
Hopf bifurcat ion, 29, 108 
Hopf link, 12, 171 
horseshoe 

map, 25 
template, 48, 112 
torus knots, 115 

hyperbolic 
attractoI', 35,43 
flow, 21 
map, 17 
orbit, 109 

induced template, 105 
inessential, 176 
inflation, 66 

conjugate, 81 
isotopic, 67 
s:ymbolic action, 67 

invariant, 13 
braid index, 16, 117 
genus, 13 
knot, 145 
linking number) 13 
Parry-Sullivan, 147, 150 
self-linking number, 110 
template, 143 
twist , 156 

invariant coordiantc, 30 
inverse limit, 35 
irreducible, 146 
irreducible t emplate, 75 
isotopic 

ambient, 6 
braid, 10 
inflation, 67 
knot, 6 
nmormalizatioIl, 65 
torus knot, 8 

iterated 
horscshoe knot, 124 
torus knot, 9, 127 

itinerary, 22, 31 
period,63 

INDEX 

rotation compatible, 130 

joining chart, 38 

kneading 
factorization, 122 
invariant, 32, 122 

knot, 5 
cable, 9 
companion, 9 
composite, 8 
fibred, 54 
figure-eight, 5, 95 
invariant, 13 
it erated 

horscshoe, 124 
oriented, 5 
presentation, 7 
prime, 8 
satellite, 9 
torus, 7 

generalized iterated, 10 
horseshoe, 115 
iterated, 9, 127 
resonant, 112 

trefoil, 5 
unknot, 5 

link,5 
Hopf, 12, 171 
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planetary, 55 
separable, 13 
Whitehead, 13, 56 

linking matrix, 184 
linking number) 13 
local stable/uIlstable manifold 

flow, 21 
local stable/uIlstable manifolds 

map, 19 
Lorenz attractor, 33 
Lorenz template, 47 
Lorenz-like template, 47, 78, 90, 93 
Lyapullov graph, 181, 185 

Mobius orbit, 109 
male orbit, 114, 124 
map 

Hcnon, 119 
hyperbolic, 17 
mOllodromy, 54 
rv'IoI'sc-Smalc diffeomorphism, 20 
Poincare, 20 
pscudo-Anosov, 56 
Smale diffeomorphism, 20 
Smale h01'sesho(1, 25 
Stable Manifold Theorem, 19 
toral Anosov, 18 

rvIarkov partitioIl, 24 
minimal, 31 
modified twist, 155 
mOllodromy, 54 
rv'IoI'sc-Smalc 

diffeomorphism, 20 
flow, 22, 171 

NiclsCIl-Thurston Theorem, 55 
no-cycle property, 174 
noose bifurcation, 111 

orbit, 16 
elliptic, 109 
female, 114, 124 
genealogies, 129 
hyperbolic, 109 
Mobius, 109 
male, 114, 124 
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parity matrix, 149 
Parry-Sullivan invariant, 147, 150 
pattern, 9 
period-doubling bifurcatioIl, 28, 108 
periodic, 56 
pitchfork bifurcation, 28, 108 
planetary link, 55 
Plykin attractor, 36, 91 
Poincare map, 20 
Poincare-Birkhoff-Smale Homodinic 

Theorem, 26 
positive 

template, 69 
positive template, 76, 154 
presentation, 7 
prime, 8 
pseudo-Anosov,56 

rectangle, 24 
rectangles, 39 
reducible, 56 
Reidemeister moves, 7, 13 
nmormalization, 64 

isotopic, 65 
resonant torus knot, 112 
RH decomposition, 174 
ribbon set, 150 
rotation compatible, 130 
round handle, 173 

saddle-node bifurcation, 28, 108 
in Henon map, 121 

satellite, 9 
Seifert Conjecture, 75 
Seifert surface, 14, 54 
self-linking number, 110 
semiconjugate, 23 
shift map (J, 22 
ShiFnikov connection, 51, 134 
Smale 

diffeomorphism, 20 
flow, 22, 181 

split sum, 175 
splitting chart, 38 
st able manifold 

flow, 21 
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local, 21 
map, 19 

local, 19 
Stable Manifold Theorem, 19 

flow, 22 
strong shift equivalence, 146 
structural stability, 17 
structure matrix, 182 
subshift of finite t}l)e, 22, 105, 145 

one-sided, 24 
subtmnplate, 64, 97 
suspeIlsioIl, 20 
syllables, 117 
symbolic d:ynamics, 22 
symbolic period, 63 

template, 37 
boundary, 62 
branch line, 38 
branch segment, 61 
companioIl, 124 
equivalence, 143 
figure eight, 56 
gluing 

butterfly, 130 
figure-of-eight, 130 

horscshoe, 48, 112 
induced, 57, 105 
inflation, 66 

isotopic, 67 
irreducible, 75 
joining chart, 38 
Lorenz, 47 
Lorenz-like, 47, 78, 90, 93 
moves, 143 
normal form, 38 
positive, 69, 76, 154 
nmormalizatioIl, 64 

isotopic, 65 
ribbon set, 150 
satellite, 124 
Shil 'nikov 

double, 137 
single, 135 

splitting chart, 38 
subtmnplate, 64, 97 

Template Theorem, 38 
universal, 69, 78, 89 
V, 65, 79 
Whitehead, 56 
zeta fUIlction, 157 

T(:mplatc Theorem, 38 
time series, 57 
topological entropy, 26 
toral Anosov map, 18 
torus knot, 7 

INDEX 

generalized iterated, 10 
genus, 14 
h01's(1sho(1, 115 
iterated, 9, 127 
resonant, 112 

transition matrix, 22 
trefoil, 5 
twist 

computed, 155 
matrix, 157 
modified, 155 
usual, 155 

universal template, 69, 78, 89 
unknot, 5, 55 
unlinked, 13 
unstable manifold 

flow, 21 
local,21 

map, 19 
local, 19 

usual twist, 155 

V, 65,79 
vertex graph, 23 

Wada Theorem, 179 
Whitehead link, 13, 56 

Zeeman number, 185 
zeta function, 154, 157 
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