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Invariants of trace forms over finite fields of
characteristic 2

Robert W. Fitzgerald

Abstract

Let K be a finite extension of F2. We compute the invariants of
the quadratic form Q(x) = trK/F2

(x(x2a
+ x2b

)) and so determine the
number of zeros in K. This is applied to finding the cross-correlation
of certain binary sequences.

Set F = F2 and K = F2k . Let

R(x) =
m∑

i=0

εix
2i

,

with each εi ∈ K. Our trace forms are the quadratic forms QK
R : K → F

given by QK
R (x) = trK/F (xR(x)). These trace forms have appeared in a

variety of contexts. They have been used to compute weight enumerators
of certain binary codes [1, 2], to construct curves with many rational points
and the associated trace codes [9, 4], as part of an authentication scheme [3],
and to construct certain binary sequences in [6, 7, 5].

In each of these applications one wants the number of solutions (in K) to
QK

R (x) = 0, denoted by N(QK
R ). This is easily worked out (see [8], 6.26,6.32)

in terms of the standard classification of quadratic forms:

N(QK
R ) = 1

2
(2k + Λ(QK

R )
√

2k+w), (1)

where w is the dimension of the radical and

Λ(QK
R ) =





0, if QK
R ' z2 +

∑v
i=1 xiyi

1, if QK
R ' ∑v

i=1 xiyi

−1, if QK
R ' x2

1 + y2
1 +

∑v
i=1 xiyi.

1



However, there is no simple way to determine the dimension of the radical
or the invariant Λ. The one general result is due to Klapper [7] which only
covers the case when R consists of a single term. Here we consider the next
simplest case: R(x) = x2a

+ x2b
. The computation depends on a general

reduction result which holds for any R with all εi ∈ {0, 1}. The formula is
applied to finding the cross-correlation of certain binary sequences and to
finding the size of the intersection of two conics.

We were also motivated by the hope that the formula for this simple
case would indicate the formula for general R. However, our expressions for
dim rad(QK

R ) and Λ(QK
R ) are quite complicated and suggest that a general

result would be too complex to be useful. By way of comparison (and because
we will use the result), we give Klapper’s result [7] on R with one term:

Theorem 0.1. Set Qa(x) = trK/F (x · x2a
). Then dim rad(Qa) = (2a, k) and

Λ(Qa) =





−1, if v2(2a) < v2(k)

+1, if v2(2a) = v2(k)

0, if v2(2a) > v2(k).

Here v2(m) denotes the highest power of 2 dividing m (that is, the 2-adic
valuation). To simplify notation, we will drop the K or the R (or both) from
QK

R when the choice is clear. If E = F2e and G = F2g , we will write tre for
trE/F and tre,g for trE/G. Also let F̄ denote the algebraic closure of F .

1 Computing the radical

If E = F2e we will write radEQ for the radical of QE. Set

R∗ = x22b

+ x2b+a

+ x2b−a

+ x.

Lemma 1.1. 1. x ∈ radF̄ Q iff R∗(x) = 0.

2. F2b+a and F2b−a are in radF̄ Q.

Proof: (1) is [5] Lemma 11. For (2), if x ∈ F2b+a then R∗(x) = (x2b+a
+

x)2b−a
+ (x2b+a

+ x) = 0. A similar factorization works for F2b−a .
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Lemma 1.2. Let L = F2n and let v = v2(n) and V = 2v.

1. There exists an irreducible quadratic over L of the form x2 + x + r,
where r ∈ F2V and trn(r) = 1.

2. If α ∈ F22n is a root of irreducible x2 + x + r then

α2m

= α + pm(r),

where pm(r) = r + r2 + r4 + · · ·+ r2m−1
.

Proof: (1) Pick r ∈ F2v with trv(r) = 1. As [L : GF (2v)] is odd,
trn(r) = 1 also. By [8] Theorem 3.79, x2 + x + r is irreducible over L. (2) is
a simple induction.

In general, set Vn = 2v2(n), that is, the highest 2-power dividing n.

Lemma 1.3. Let e = (b− a, b + a).

1. Let α ∈ F22(b−a) be a root of irreducible x2 + x + w, where w ∈ F2Vb−a

and trb−a(w) = 1. Then αF2e ⊂ radF̄ Q.

2. Let β ∈ F22(b+a) be a root of irreducible x2 +x+ z, where z ∈ F2Vb+a and
trb+a(z) = 1. Then βF2e ⊂ radF̄ Q.

Proof: We only prove (1) as the proof of (2) is similar. Let u ∈ F2e .
We compute R∗(uα). Now u ∈ GF (2b−a) so

u2b−a

= u u22b

= (u2b−a

)2b+a

= u2b+a

.

Hence using Lemma 1.2 (2) we get

R∗(uα) = (α + p2b(w))u2b+a

+ (α + pb+a(w))u2b+a

+ (α + pb−a(w))u + αu

= αR∗(u) + (p2b(w) + pa+b(w))u2b+a

+ pb−a(w)u.

Now u ∈ radF̄ Q so R∗(u) = 0 by Lemma 1.1. And

pb−a(w) = w + w2 + w4 + · · ·w2b−a−1

= trb−a(w) = 1

p2b(w) + pb+a(w) = pb−a(w)2b+a

= 1.

Hence R∗(uα) = u2b+a
+ u = 0, as u ∈ F2b+a also.

Lemma 1.4. Keep the notation of Lemma 1.3.
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1. If v2(b + a) ≤ v2(b− a) then radF̄ is spanned by αF2e , F2b−a and F2b+a.

2. If v2(b + a) > v2(b− a) then radF̄ is spanned by βF2e , F2b−a and F2b+a.

Proof: Again we only do (1). Each of the three subspaces are in the
radical by Lemmas 1.1 and 1.3. Let V = 2v2(b−a), the largest 2-power dividing
b− a. Now α is quadratic over F2V , so that α ∈ F2V +1 \ F2V while F2b−a and
F2b+a are contained in F2` , where ` = lcm(b−a, b+a). As v2(b+a) ≤ v2(b−a),
the maximal 2-extension inside F2` is F2V . Hence

αF2e ∩ 〈F2b−a , F2b+a〉 = 0.

Now

dim F2b−a + F2b+a = (b− a) + (b + a)− dim F2b−a ∩ F2b+a = 2b− e.

Thus the span of the three subspaces has dimension 2b. On the other hand,
deg R∗ = 22b hence the radical has dimension 2b. So the two are equal.

Theorem 1.5. Keep the notation of Lemma 1.3.

1. Suppose v2(b + a) ≤ v2(b− a). Then radKQ =
{
〈F2(b−a,k) , F2(b+a,k)〉 if v2(k) ≤ v2(b− a)

〈αF2(e,k) , F2(b−a,k) , F2(b+a,k)〉 if v2(k) > v2(b− a).

2. Suppose v2(b + a) > v2(b− a). Then radKQ =
{
〈F2(b−a,k) , F2(b+a,k)〉 if v2(k) ≤ v2(b + a)

〈βF2(e,k) , F2(b−a,k) , F2(b+a,k)〉 if v2(k) > v2(b + a).

3. Let v = max{v2(b− a), v2(b + a)}.

dim radKQ =

{
(b− a, k) + (b + a, k)− (e, k) if v2(k) ≤ v

(b− a, k) + (b + a, k) if v2(k) > v.

Proof: Both F2b−a ∩ K = F2(b−a,k) and F2b+a ∩ K = F2(b+a,k) are in
radKQ. Suppose v2(b − a) ≥ v2(b + a) (the opposite case is similar). Then
(2(b− a), k) = (b− a, k). Then

αF2e ∩K ⊂ F22(b−a) ∩K

= F2(2(b−a),k) = F2(b−a,k) .
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But α is quadratic over F2b−a so αF2e ∩ F2b−a = 0. Hence αF2e ∩K = 0 and
radKQ is spanned by the two fields described.

Now say v2(k) > v2(b−a). Again set V = 2v2(b−a). Then, as α is quadratic
over F2V ,

α ∈ F2V +1 ⊂ F
22v2(k) ⊂ F2k = K.

Hence
αF2e ∩K = α(F2e ∩K) = αF2(e,k) .

This completes the proof of (1). (3) is a simple dimension count.

2 Q-value of the radical

Theorem 2.1. Λ(Q) = 0 iff v2(b− a) = v2(b + a) = v2(k)− 1.

Proof: Λ(Q) = 0 iff Q(rad(Q)) = 0. Suppose v2(b + a) ≤ v2(b− a); the
opposite case is similar. First suppose γ ∈ F2(b−a,k) , one part of the radical.
Then

γ2b−a

= γ γ2b+1 = γ2a+1.

Thus Q(γ) = 0. Next say γ ∈ F2(b+a,k) , another part of the radical. Then

(γ2b+1 + γ2a+1)2a

= γ2b+a+2a

+ γ22a+2a

= γ2a+1 + (γ2a+1)2a

.

Thus Q(γ) = trk(γ
2a+1 + (γ2a+1)2a

) = 0. Hence, by Theorem 1.5, if v2(k) ≤
v2(b− a) then Q(radQ) = 0.

We thus now assume v2(k) > v2(b − a). The third part of the radical is
αF2(e,k) where α ∈ K is quadratic over F2V , V the largest 2-power dividing
b− a. Pick u ∈ F2(e,k) . Note that u ∈ F2e ⊂ F2b−a . Hence

u2b−a

= u u2b+1 = u2a+1.
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Also

α2b+1 + α2a+1 = α(α + pb(w)) + α(α + pa(w))

= α(pa(w) + pb(w))

= α(w2a

+ w2a+1

+ · · ·+ w22b−1

)

= α(w + w2 + · · ·+ w2b−a−1

)2a

= α(trb−a(w))2a

= α.

Hence Q(uα) = trk(αu2a+1).
Now α and u are in F22(b−a,k) . If v2(k) > v2(b−a)+1 then v2(k) > v2(2(b−

a, k)) and [K : F22(b−a,k) ] is even. Thus trk(αu2a+1) = 0 and Q(radQ) = 0 in
this case also.

We thus suppose that v2(k) = v2(b− a) + 1. Then [K : F22(b−a,k) ] is odd.
Thus Q(uα) = tr2(b−a,k)(αu2a+1). Now w ∈ F2(b−a,k) as 2v2(b−a) divides both
b − a and k. Thus α is a quadratic over F2(b−a,k) satisfying x2 + x + w. So
tr2(b−a,k),(b−a,k)(α) = 1. We get Q(uα) = tr(b−a,k)(u

2a+1), where u ∈ F2(e,k) is
arbitrary.

If v2(b + a) < v2(b − a) then v2(e) = v2(b + a) < v2(k). So v2(e, k) <
v2(b− a, k). Then [F2(b−a,k) : F2(e,k) ] is even and tr(b−a,k)(u

2a+1) = 0. So again
Q(radQ) = 0 in this case.

So lastly assume v2(b + a) = v2(b − a) = v2(k) − 1. Then v2(e, k) =
v2(b− a, k) and we get Q(uα) = tr(e,k)(u

2a+1). Now e divides b− a and b + a
so that e divides 2a. And b− a = 2vm, b + a = 2vn for some odd m and n.
Thus 2a = 2v(n−m). Thus v2(2a) ≥ v + 1 and v2(a) ≥ v2(e). So e|a. Thus

u2a

= u and Q(uα) = tr(e,k)(u
2) = tr(e,k)(u),

which is not zero for all u ∈ F2(e,k) .

3 A general reduction result

In this section we will consider more general R, namely, R(x) =
∑

εix
2i

where each εi ∈ {0, 1}. The key observation is that R(x2) = R(x)2 for such
R. We write r(m) for dim rad(QM

R ), where M = F2m , and Λ(m) for Λ(QM
R ).
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We will use the Jacobi symbol ( a
n
) and the well-known variation on Euler’s

Theorem:

2
pn−1

2 ≡
(

2

pn

)
(mod p),

where p is an odd prime.

Lemma 3.1. Suppose R =
∑

εix
2i

where each εi ∈ {0, 1}. Write k = pnm
where p is an odd prime and (p,m) = 1. Then:

Λ(k)2
r(k)−r(m)

2 ≡
(

2

pn

)m

Λ(m) (mod p).

Proof: Note that Q(x2) = trk(x
2R(x2)) = trk(xR(x))2 = Q(x). Let

M = F2m . If γ ∈ K \M then the cyclotomic class of γ, namely, cyc(γ) =
{γ, γ2, γ4, . . .}, has order deg(γ). Q is constant on cyc(γ). As F (γ) is not a
subset of M , p divides deg(γ). The zeros of Q in K consist of the zeros of Q
in M together with some of the cyc(γ). So

N(QK) ≡ N(QM) (mod p)

2k + Λ(k)2(k+r(k))/2 ≡ 2m + Λ(m)2(m+r(m))/2 (mod p)

Λ(k)2(k−m)/2 · 2(r(k)−r(m))/2 ≡ Λ(m) (mod p),

as 2k = 2pnm ≡ 2m (mod p). Lastly,

2(k−m)/2 = 2m(pn−1)/2 ≡
(

2

pn

)m

(mod p),

which gives the result.

Definition 3.2. Let p be an odd prime.
(1) Suppose -1 is a power of 2 modulo p. Set η(p) = 1 and let ω(p) be

the least positive w such that 2w ≡ −1 (mod p).
(2) Suppose -1 is not a power of 2 modulo p. Set η(p) = 0 and let ω(p)

be the least positive w such that 2w ≡ 1 (mod p).

Theorem 3.3. Suppose R =
∑

εix
2i

where each εi ∈ {0, 1}. Write k =
2npm1

1 pm2
2 · · · pmt

t with each pi an odd prime. Set ` = 2n and k∗ = k/`. Then:

1. r(k) =
∑t

i=1 2siω(pi) + r(`), for some si.
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2.

Λ(k) = (−1)
∑t

i=1 siη(pi)

(
2

k∗

)`

Λ(`).

Proof: We use induction on t. Set m = k/pm1
1 . Then, by Lemma 3.1,

2
r(k)−r(m)

2 ≡ ±1 (mod p).

Then r(k) = 2s1ω(p1) + r((m), for some s1, by the definition of ω. Then

2
r(k)−r(m)

2 ≡
{

(−1)s1 , if η(p1) = 1

1, if η(p1) = 0.
.

Hence

Λ(k) = (−1)s1η(p1)

(
2

pm1
1

)m

Λ(m).

The general result follows by induction.

Corollary 3.4. Suppose k is odd and R(x) has an odd number of terms.
Then Λ(QK

R ) = 0.

Proof: Here ` = 1, N(QF
R) = 1 and so Λ(1) = 0. Apply Theorem

3.3.

Example 3.5. We consider R(x) with an even number of terms.
(a) Say k = 19. Then η(19) = 1, ω(19) = 8 and 2 is not a square modulo

19. Then there are only two possibilities:

(dim rad(QR), Λ(QR)) = (1,−1) or (19, 1).

R(x) = x2 + x4 gives the first possibility and R(x) = x29
+ x210

gives the
second.

Recall that every quadratic form on K arises as trK/F (xR(x)) for some
R(x) with coefficients in K ([4] Theorem 1.2) and so every odd number arises
as a dim rad(QK

R ). So the sharp restrictions on r(k) here are a surprising
consequence of restricting to those R(x) with all εi ∈ {0, 1}.

(b) Say k = 17. Then η(17) = 1, ω(17) = 4 and 2 is a square modulo 17.
There are three possibilities:

(dim rad(QR), Λ(QR)) = (1, +1), (9,−1) or (17, +1).

8



Particular examples are R(x) = x2 + x4, x2 + x4 + x8 + x32, x256 + x512,
respectively.

(c) Say k = 21. Then ω(3) = 1 and ω(7) = 3. Here every odd r, at
most 21, can arise as r = 1 + 2s1 + 6s2. However, a computer search shows
there is no R (with all εi = 0, 1) with dim rad(QK

R ) = 5. Thus there are more
restrictions on r(k) than those given by Theorem 3.3.

We return to our special case of R(x) = x2a
+ x2b

.

Lemma 3.6. Let p be an odd prime and write k = pnm where (p,m) = 1.
Set v− = vp(b− a, p) and v+ = vp(b + a, p). Then

2(r(k)−r(m))/2 ≡
(

2

p

)u

(mod p),

where

u =





min{n, max{v−, v+}}, if k is odd

min{n, v−}+ min{n, v+}, if k is even, b± a is odd

0, if k is even, b± a is even.

Proof: We will assume v− ≤ v+ (the other case is similar). There are
three cases:

(i)n ≤ v− ≤ v+ (ii)v− < n ≤ v+ (iii)v− ≤ v+ < n.

For each of s = a− b, a + b, e we have (s, k) = pt(s,m), for some t depending
on s. The values of t are:

s = b− a b + a e
(i) n n n
(ii) v− n v−

(iii) v− v+ v−

Further,

2((s,k)−(s,m))/2 ≡
(
2(pt−1)/2

)(s,m)

≡
(

2

p

)t(s,m)

(mod p).

9



First suppose k is odd so that each (s, m) is odd and r(k) = (b− a, k) +
(b + a, k) − (e, k) and r(m) = (b − a,m) + (b + a,m) − (e,m) by Theorem
1.5. We obtain

2(r(k)−r(m))/2 ≡





(
2
p

)3n

(mod p), in case (i)
(

2
p

)2v−+n

(mod p), in case (ii)
(

2
p

)2v−+v+

(mod p), in case (iii),

which gives the desired result.
Next suppose k is even and b ± a is odd. Again, each (s,m) is odd but

now r(k) = (b − a, k) + (b + a, k) and r(m) = (b − a,m) + (b + a,m). We
obtain

2(r(k)−r(m))/2 ≡





(
2
p

)2n

(mod p), in case (i)
(

2
p

)v−+n

(mod p), in case (ii)
(

2
p

)v−+v+

(mod p), in case (iii),

which gives the desired result.
Lastly, suppose k is even and b± a is even. Then each (s,m) is even and

2(r(k)−r(m))/2 ≡
(

2

p

)∑
t(s,m)

≡ 1 (mod p).

We summarize:

Theorem 3.7. Write k = 2nm where m is odd.

1. If k is odd then Λ(k) =
∏

(2
p
) over odd prime divisors p of k with

vp(k) + min{vp(k), max{vp(b− a), vp(b + a)}} odd.

2. If k is even and b ± a is odd then Λ(k) =
∏

(2
p
)Λ(2n) over odd prime

divisors p of k with min{vp(k), vp(b− a)}+ min{vp(k), vp(b + a)} odd.

3. If k is even and b± a is even then Λ(k) = Λ(2n).
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4 The invariant for 2-power k

We have reduced the computation of Λ(k) to the case of a 2-power k. So
throughout this section, k = 2n. Set ` = k/2 and L = F2` . Then K
is a quadratic extension of L. Write K = L(δ), where δ2 = δ + y, with
y ∈ L having tr`(y) = 1. Note that trk(L) = 0. We will use the following
observation: v2(a) 6= v2(b) iff v2(b−a) = v2(b+a). And we continue to write
v−2 for v2(b− a) and v+

2 for v2(b + a).

Lemma 4.1. Let M = max{v−2 , v+
2 }. Let α be as in Lemma 1.3.

1. If n ≤ M then Q ≡ 0 and Λ(k) = +1.

2. If n = 1 + M and v−2 6= v+
2 then

rad(Q) = 〈αF
22

v−2
, F

22
v+
2
〉 6⊂ L.

3. If n = 1 + M and v−2 = v+
2 then Λ(k) = 0.

4. If n ≥ 2 + M and v−2 6= v+
2 then

rad(Q) = 〈αF
22

v−2
, F

22
v+
2
〉 ⊂ L.

5. If n ≥ 2 + M and v−2 = v+
2 then rad(Q) = F22M+1 ⊂ L.

Proof: This follows easily from Theorems 1.5 and 2.1.
We thus only need to treat the cases (2), (4) and (5).

Proposition 4.2. In case (2) we have Λ(k) = −1.

Proof: Here we have v2(a) = v2(b) and n = 1+M . We suppose v+
2 < v−2

(the other case is similar). Thus v2(b+a) = v2(a)+1 < v2(b−a), k = 2 · 2v−2

and ` = 2v−2 . Then radQ = 〈F
22

v−2
, δF

22
v−2
〉. Note that L ⊂ rad(Q). Now

for u, v ∈ L we have Q(u + vδ) = Q(u) + B(u, vδ) + Q(vδ) = Q(vδ). Hence
N(Q) = 2`N(Q(vδ) = 0).

We compute:

Q(vδ) = trk(v
2a+1(y + δ + pa(y)) + v2b+1(y + δ + pb(y)))

= trk(δ(v
2a+1 + v2b+1 + v2a+1pa(y) + v2b+1pb(y)))

= tr`(v
2a+1 + v2b+1 + v2a+1pa(y) + v2b+1pb(y))

= tr`(v
2a+1pa(y) + v2b+1pb(y)).

11



Here we used that v, y ∈ L have trk equal to 0 and that QL ≡ 0.
Write b− a = `m for some odd m. We have

v2b

= v2a+(b−a)

= v2a

v2b−a

= v2a

pb(y) = pa(y) + pb−a(y)2a

= pa(y) + 1.

We used that v ∈ L so that v2`
= v and that p`(y) = tr`(y) = 1. Hence

v2b+1pb(y) = v2a+1(1+ pa(y)) and Q(vδ) = tr`(v
2a+1) = QL

a (v). By Klapper’s
result, Theorem 0.1, as v2(`) = v2(b − a) > 1 + v2(a) = v2(2a), we have
Λ(k) = −1.

We now turn to Case (4).

Proposition 4.3. In case (4) Λ(k) = −1.

Proof: Here v2(a) = v2(b), call it v and set V = 2v. Also v2(b + a) =
v + 1, v2(b− a) > v + 1 and v2(k) ≥ v2(b− a) + 2. Now

2sV ≡
{
−1, if s is odd

1, if s is even
(mod 2V + 1).

As a/V and b/V are odd we have that 2V + 1 divides both 2a + 1 and 2b + 1.
For each β ∈ K∗ of order 2V + 1 we have Q(βx) = Q(x). As k/V is even,
2V +1 divides 2k− 1 and so there are 2V +1 such β’s. Thus, counting x = 0,
we have

N(Q) ≡ 1 (mod 2V + 1).

Now k/2V is even, Vb−a/2V is even and Vb+a/2V is odd. Hence

2(k+Vb−a+Vb+a)/2 ≡ −1 (mod 2V + 1),

noting that dim rad(Q) = Vb−a + Vb+a. Hence

N(Q) = 1
2
(2k + Λ(k)

√
2k+Vb−a+Vb+a)

≡ 1
2
(1 + Λ(k)(−1)) (mod 2V + 1).

Hence Λ(k) = −1.
The one remaining case is Case (5). So for the remainder of this section

we assume that v2(b− a) = v2(b + a) and that k ≥ 4Vb−a. Now v2(a) 6= v2(b)
in this case. We will assume v2(a) < v2(b) (the opposite case is similar). So
Vb±a = Va < Vb and k ≥ 4Va. We also have rad(Q) = F22Va ⊂ L by Lemma
4.1.

12



Lemma 4.4. Suppose we are in case (5). Let t be the number of u ∈ rad(Q)
such that Q(uδ) = 0. Then

t = 2r−1 + Λ(k)2r0−1,

where r = r(k) and r = 2r0.

Proof: Set W = rad(Q). We have W ⊂ L and dim(L/W )⊥ = (k− r)−
(`− r) = ` so that dim L⊥ = ` + r.

Set b(x, y) = x2a
y +xy2a

+x2b
y +xy2b

. Then Bk(u, v) = trkb(u, v). Then,
as trk(L) = 0, L ⊂ L⊥. Pick wi ∈ L⊥ such that

L⊥ =
2r⋃
i=1

(wi + L).

Then pick vi ∈ K \ L⊥ such that

K = L⊥ ∪
2`−2r⋃
i=1

(vi + L).

Now Q(vi + L) = Q(vi) + B(vi, L) as Q(L) = 0. Since vi /∈ L⊥, exactly half
of the B(vi, `) are zero. So regardless of the value of Q(vi), exactly half of
the Q(vi + `) are zero. Since the wi ∈ L⊥ we have Q(wi + L) = Q(wi). Let t
be the number of wi with Q(wi) = 0. Then

N(Q) = t · 2` + (2` − 2r)2`−1 = 2k−1 + 2`(t− 2r−1).

Comparing this to the usual formula t = 2r−1 + Λ(k)2r0−1.

Lemma 4.5. Continue to assume we are in case (5) and that v2(a) < v2(b).
For u ∈ rad(Q) we have

Q(uδ) = QL(u) + tr`(u
2a+1pa(δ) + u2b+1pb(δ)).

Further, QL(u) = 0 for all u ∈ rad(Q) except when k = 4Va.

Proof: We have

Q(uδ) = trk(uδ(u2a

(δ + pa(δ)) + u2b

(δ + pb(δ)))

= trk(δ(u
2a+1 + u2b+1 + u2a+1pa(δ) + u2b+1pb(δ)))

= tr`(u
2a+1 + u2b+1 + u2a+1pa(δ) + u2b+1pb(δ))

= QL(u) + tr`(u
2a+1pa(δ) + u2b+1pb(δ)).

13



As u ∈ radkQ ⊂ L, we have u ∈ rad`Q. By Theorem 2.1 this is zero
except when v2(b− a) = v2(b + a), thus case (5), and ` = 2 · 2v2(b−a). Hence
k = 2Va.

Lemma 4.6. Let s be a 2-power. Then

1. tr`,s(ps(δ)) = 1.

2.

tr`,s(pλs(δ)) =

{
1, if λ is odd

0, if λ is even.

Proof: We have

tr`,s(ps(δ)) = ps(δ) + ps(δ)
2s

+ · · ·+ ps(δ)
(2s)`/s−1

= y + y2 + · · ·+ y2`−1

= tr`(y) = 1.

And for (2)

pλs(δ) = ps(δ) + ps(δ)
2s

+ · · ·+ ps(δ)
2s(`−1)

tr`,s(pλs(δ)) = `tr`,s(ps(δ)),

and apply (1).

Lemma 4.7. Continue to assume we are in Case (5) and that v2(a) < v2(b).
Set V = Va. Let u ∈ F22V . Then

tr`(u
2a+1pa(δ) + u2b+1pb(δ)) =

{
trV (u2V +1), if Vb ≥ 4V

trV (u2V +1) + tr2V (u), if Vb = 2V .

Proof: Write a = V n where n = 2m + 1 is odd. Then a = 2V m + V .
We have that

u2a

=
(
u22V m

)2V

= u2V

.

Note that
(u2V +1)2V −1 = u22V −1 = 1,
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if u 6= 0. Hence u2V +1 ∈ F2V . Thus

tr`(u
2a+1pa(δ)) = tr`(u

2V +1pa(δ))

= trV (u2V +1tr`,V (pa(δ)))

= trV (u2V +1),

by Lemma 4.6, as a/V is odd.
Next, b = 2V mb, where mb is odd iff Vb = 2V . Again u22V

= u implies
u2b

= u. Hence

tr`(u
2b+1pb(δ)) = tr`(u

2pb(δ)) = tr2V (u2tr`,2V (pb(δ)),

which is 0 if mb is even and is tr2V (u) if mb is odd.

Proposition 4.8. Continue to assume we are in Case (5) and that v2(a) <
v2(b). Set V = Va. Then Λ(k) = −1, except when

1. k ≥ 8V , V = 1 and Vb = 2 (that is, a is odd and b ≡ 2 (mod 4)) in
which case Λ(k) = 1.

2. k = 4V , V = 1 and Vb ≥ 4 (that is, a is odd and 4|b) in which case
again Λ(k) = 1.

Proof: We use Lemma 4.4 to find Λ(k). We need to compute t, the
number of u ∈ rad(Q) with Q(uδ) = 0. First suppose that k ≥ 8V . For
u ∈ rad(Q) = F22V set

q(u) = trV (u2V +1) and q∗(u) = q(u) + tr2V (u).

Then t is N(q) when Vb ≥ 4V and t = N(q∗) when Vb = 2V , by Lemmas 4.5
and 4.7. Now if V is even then

tr2V (u) = trV (u + u2V

)

q∗(u) = trV (u + u2V

+ u2V +1)

= trV ((1 + u)(1 + u2V

) + 1)

= trV ((1 + u)(1 + u)2V

),

as V even implies trV (1) = 0. Thus q∗(u) = q(u + 1) and so N(q∗) = N(q).
When V = 1 we get q∗(u + 1) = q(u) + 1 and so N(q∗) + N(q) = 22V .
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We now compute N(q). The map

GF (22V )∗ → GF (2V )∗ by x 7→ x2V +1

has kernel of order 2V + 1. Hence each image in GF (2V )∗ appears 2V + 1
many times. Of the images, 2V−1 − 1 have trace 0. Hence (now including
zero)

N(q) = (2V + 1)(2V−1 − 1) + 1 = 22V−1 − 2V−1.

When Vb ≥ 4Va we have t = N(q) and so Λ(k) = −1 by Lemma 4.4. When
Vb = 2Va and V is even we have t = N(q∗) = N(q) and again Λ(k) = −1.
When Vb = 2Va and V = 1 then

t = N(q∗) = 22V −N(q) = 22V−1 + 2V−1

and so Λ(k) = 1.
Lastly, suppose k = 4V . In this case

QK(uδ) = QL(u) + tr`(u
2a+1pa(δ) + u2b+1pb(δ)),

by Lemma 4.5. Now as in the proof of Lemma 4.7 u2a+1 = u2V +1 ∈ F2V and
u2b+1 = u2. As ` = 2V we have QL(u) = tr2V (u2V +1 + u2) = tr2V (u). Hence,
by Lemma 4.7, QK(uδ) is q∗(u) if Vb ≥ 4Va and q(u) if Vb = 2Va. If V is
even then N(q∗) = N(q) so that regardless of the value of Vb/Va we get the
same value of t as above and so Λ(k) = −1. Finally, if V = 1 and Vb ≥ 4Va

then t = N(q∗) = 22V −N(q) so that Λ(k) = 1. If V = 1 and Vb = 2Va then
t = N(q) and Λ(k) = −1.

We summarize:

Theorem 4.9. Let k = 2n and M = max{v2(b− a), v2(b + a)}.
1. If n ≤ M then Λ(k) = +1.

2. If n = 1 + M and v2(b− a) 6= v2(b + a) then Λ(k) = −1.

3. If n = 1 + M and v2(b− a) = v2(b + a) then Λ(k) = 0.

4. If n ≥ 2 + M and v2(b− a) 6= v2(b + a) then Λ(k) = −1.

5. If n ≥ 2 + M and v2(b− a) = v2(b + a) then

(a) If n = 2 and one of a, b is odd and the other is 2 (mod 4) then
Λ(k) = +1.
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(b) If n ≥ 3 and one of a, b is odd and the other is divisible by 4 then
Λ(k) = +1.

(c) Otherwise, Λ(k) = −1.

5 Applications

Here we fix K and a primitive element α ∈ K∗. Set Qa(x) = trK/F (x · x2a
),

called a gap form in [5]. Let Qa,b denote what has been written as QR,

namely, trK/F (x · (x2a
+ x2b

)). We consider the sequence

Sa : sa
i = Qa(α

i),

for 0 ≤ i < 2k − 1. These are the pull-backs of the geometric sequences in
[7]. The period of Sa is πa = (2k − 1)/(2a + 1, 2k − 1). In particular, if
(2a + 1, 2k − 1) = 1 then Sa is an m-sequence. The cross-correlation of two
binary sequences A = (ai) and B = (bi) of period π is:

A.B =
π∑

i=1

(−1)ai+bi .

Proposition 5.1. Suppose (2a + 1, 2k − 1) = d = (2b + 1, 2k − 1). Then the
cross-correlation of Sa,Sb is:

Sa.Sb =
1

d
[Λ(Aq,b)2

(k+r)/2 − 1],

where r = dim rad(Qa,b).

Proof: We have

d(Sa.Sb) =
2k−1∑
i=1

(−1)Qa(αi)+Qb(α
i)

= [N(Qa,b)− 1]− [2k −N(Qa,b)]

= 2N(Qa,b)− 2k − 1

= Λ(Qa,b)2
(k+r)/2 − 1.
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Example 5.2. Let a = 1, b = 3 and k be even, not divisible by 6. Then
(2a + 1, 2k − 1) = 3 = (2b + 1, 2k − 1). By Theorem 1.5

r(k) =





2, if v2(k) = 1

4, if v2(k) = 2

6, if v2(k) ≥ 3.

Theorem 3.7 and Theorem 4.9, cases 1,2 and 4 give

Λ(k) = Λ(2v2(k)) =

{
+1, if v2(k) = 1

−1, if v2(k) ≥ 2.

Let k = 2`. The cross-correlation is then

S1.S3 =





+1
3
(2`+1 − 1), if v2(k) = 1

−1
3
(2`+2 + 1), if v2(k) = 2

−1
3
(2`+3 + 1), if v2(k) ≥ 3.

For a quadratic form q on a vector space V over F = F2, Z(q) denotes the
zeros of q and N(q) denotes |Z(q)|. Klapper [7] has computed the cardinality
of a conic intersected with a hyperplane. Here we compute the intersection
of two conics.

Proposition 5.3. Let q1, q2 : V → F be quadratic forms. Then

|Z(q1) ∩ Z(q2)| = 1
2
[N(q1) + N(q2) + N(q1 + q2)− |V |].

Proof: For wi ∈ F , let N(w1, w2) denote the number of v ∈ V such
that qi(v) = wi, for i = 1, 2. Then:

N(0, 0) + N(0, 1) = N(q1)

N(0, 0) + N(1, 0) = N(q2)

N(0, 0) + N(1, 1) = N(q1 + q2).

Sum the three equations, noting that N(0, 0)+N(0, 1)+N(1, 0)+N(1, 1) =
|V |, to get the desired formula.

When q1 = Qa and q2 = Qb then q1 + q2 = Qa,b, and so the intersection
can be computed.
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Example 5.4. Let a = 3, b = 102 and k = 2n · 3 · 5 · 13. Note that
b − a = 32 · 11 and b + a = 3 · 5 · 7. Now r(k) = 15 if n = 0 and r(k) = 18
if n ≥ 1 by Theorem 1.5. Theorem 3.7 gives Λ(k) = ( 2

13
) = −1 if n = 0 and

Λ(k) = (2
5
)Λ(2n) = −Λ(2n) when n ≥ 1. And Theorem 4.9, cases 1, 3, 5a, c,

gives:

Λ(2n) =





+1, if n = 0, 2

0, if n = 1

−1, if n ≥ 3.

Combining this with Klapper’s result, Theorem 0.1, and Equation 1 yields
|Z(Qa) ∩ Z(Qb)| =:





1
4
[2k − 2(k+15)/2], if n = 0

1
4
[2k + 2(k+6)/2], if n = 1

1
4
[2k − 2(k+6)/2 + 2(k+12)/2 − 2(k+18)/2], if n = 2

1
4
[2k − 2(k+6)/2 − 2(k+12)/2 + 2(k+18)/2], if n ≥ 3.
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