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ABSTRACT

Studies have shown that when data fusion schemes are used
in cooperative spectrum sensing, there is a significant gap bet-
ween the available resources and the ones perceived by the
network.

In this paper a cluster based adaptive counting rule is pro-
posed, where the local detectors that experience similar sig-
nal conditions are grouped by the fusion center in clusters and
where the data fusion is then done separately at each cluster.

The proposed algorithm uses the correlation between the
binary decisions of the local detectors over an observation
window to select the cluster where each local detector should
go. It was observed that in the case where there is only one
signal source, that the proposed algorithm is able to achieve
the same level of performance when compared to the perfect
clustering algorithm where full information about the signal
conditions at each local detector is available.

Index Terms— Data Fusion, Cooperative Spectrum
Sensing, Exposed Node Problem, Clustering

1. INTRODUCTION

The main appeal of a Cognitive Radio Network (CRN) is its
ability to perform opportunistic access to frequency bands
when they are vacant, which can only occur if accurate in-
formation about the surrounding environment is made avail-
able. The information about which channels are vacant is ob-
tained from the Spectrum Sensing (SS) process, where the
CRN node samples the monitored spectrum and then decides
on the presence of an incumbent signal. The SS serves a dual
purpose, to detect when channels are vacant and also to limit
the interference that the CRN nodes may cause in the incum-
bent network. Therefore the detection performance of the SS
scheme in use by the CRN can affect both the performance of
the CRN as well as the one of the incumbent network.

The detection performance is affected by the channel con-
ditions, which depend on the path loss, multipath, shadowing,
local interference and noise uncertainty [1, 2]. The combi-
nation of these phenomena can result in regimes where the
Signal to Noise Ratio (SNR) is below the detection threshold
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Fig. 1. Data fusion results in the the loss of spatial diversity

of the detector, leading to the hidden node problem. These
regimes can be overcome through the use of a Cooperative
Spectrum Sensing (CSS) scheme, [3, 4, 5, 6, 2]. The main
idea behind the CSS is to enhance the detection performance
by exploiting the spatial diversity in the observations of spa-
tially separated CRN nodes.

The use of CSS schemes also brings a cooperation over-
head, which refers to any extra effort that the CRN node needs
to do to accomplish the CSS. A overhead not considered in
the literature [7, 8] is that although performing the CSS using
CRN nodes which are under correlated shadowing might de-
crease the detection performance, there is a drawback of not
doing it so. In the CSS the local decisions of the CRN nodes
are combined at the fusion center through the Local Decisions
Data Fusion (LDDF) process. When the LDDF is performed
over uncorrelated local decisions, then the decisions of far
apart Local Detectors (LDs) will be combined. So, one will
lose information about possible available spectrum opportu-
nities, i.e. one loses information about the spatial diversity,
which leads to the exposed node problem. This phenomenon
is illustrated in Figure 1, where the coloured regions represent
where the spectrum is occupied and non-coloured where the
spectrum is available. After the LDDF occurs the CRN loses
the information about the vacant regions.

The motivation behind this paper is to provide a LDDF
scheme which minimizes both the hidden and exposed node
problem. The proposed LDDF scheme, groups LDs with sim-
ilar signal conditions in clusters and then performs the LDDF
separately at each of these clusters. The focus of the paper is
on the part of the LDDF where the clustering occurs, while
the data fusion method in place is the Adaptable Counting
Rule (ACR), [9]. The clustering is achieved with the aid of the
sample correlation measured from the LDs local decisions re-
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Fig. 2. Capacity along the paralel data fusion chain

ceived at the fusion center. The performance of the proposed
scheme is measured using the system perceived Capacity (C)
and False Capacity (FC) metrics introduced in [8] and com-
pared to the perfect clustering algorithm, where full informa-
tion about the conditions at each of the LDs is available at the
fusion center.

The remainder of this paper is organized as follows. In
Section 2 it is depicted the system model as well as the met-
rics used to evaluate the proposed scheme performance. In
Section 3 it is presented the proposed clustering mechanism
together with a comparative performance evaluation. Finally,
Section 4 concludes the paper with a recap of the contribution,
the main results and an outlook on further development.

2. SYSTEM EVALUATION

2.1. Introduction

In Figure 2 the steps that constitute the Data Fusion Chain
(DFC) are depicted, where U, ,,, Uy, and Uy quantify the
perceived state of the sensed channel at each step of the data
fusion chain. The U, quantifies the experienced state of
the channel targeted for sensing by the Local Detector (LD).
The U, ,, quantifies the perceived state of the channel after
sensing. Finally, Uy quantifies the perceived channel state
after the data fusion. The values that each of these states can
take, since binary decisions are considered, are,

1 if H
Ue,n7U3~,n’Udf :{ O lfH(l) (1)

To illustrate the meaning of system perceived C, first con-
sider that in a CSS session there are several LDs and that each
of these experiences different signal conditions. Now if one
considers that at the location of each of these LDs, the chan-
nel is deemed free for use if the experienced SNR, vezp, is
below a given SNR threshold, 74,5, then it is expected that
due to the mentioned varying channel conditions, some of the
LDs will experience the same channel as free while other will
experience it as occupied, when the Yeyp, > Yinrs. Note that
what is meant by experienced channel state refers to the ac-
tual state of the sensed channel at a particular location, given
by U.,,, before the sensing takes place. Following the DFC
in Figure 2, in Figure 3 is depicted the status of the perceived
channel state at each step of the DFC, given by U,, U, and
Ulqy. Each of the figure’s blocks represents a LD and its color
the perceived channel state.
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Fig. 3. Spectrum sensing capacity illustration

When comparing the experienced spectrum state, U, and
sensed spectrum state, Us, it can be seen that some of the LDs
fail to detect that the channel is occupied, i.e. a missed detec-
tion occurs, while the other LDs judge the channel as occu-
pied when it is not, i.e. a false alarm occurs. Both events have
impact on the perceived system capacity, the missed detec-
tions because they cause the LD to perceive a channel as free
when it is occupied, and the false alarm because the LD per-
ceives the channel as occupied when it is free. So in the for-
mer, one assumes to have more resources than the ones avail-
able, while in the latter one misses the available resources.
After the LDDF takes place, Uyy, all LDs are assumed to per-
ceive the channel state that resulted from the LDDF. From the
example in Figure 3, after the LDDF all LDs are assumed to
perceive the channel as occupied, although some of the LDs
actually perceive the channel as free, causing a decrease of
the system perceived capacity.

2.2. Performance Metrics

Several metrics are defined to measure the system perceived
capacity at the different stages of the DFC. The capacity in
the CSS context is the ratio of LDs that experience or perceive
the channel state as free.

The potential capacity, C,., is defined as,

Z{\il Ue i
C, === 2
~ @)
The post-sensing capacity, C, is defined as,
Zz\il Us iUe [
Cs — 1= ) ’ 3
=N 3)
The post-data fusion capacity, Cyy, is defined as,
N
i— Ue 7
Cdf = Udf 721_& ’ (€]

The C'., Cs and Cys are the system’s perceived capac-
ity at three different points of the DFC, and the difference
among them accounts for the probability of false alarm. But
these metrics do not account for the effect of perceiving erro-
neously the channel state as free, i.e. they do not account for
the occurrence of misdetections.
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The potential FC, F'C'., is defined as,
FC,=1-0C, ()

The post-sensing false capacity, F'Cy, is defined as,

SN Ui (1—
FCO, = &i=l7s
N

Ue,i)

(6)
The post-data fusion FC is defined, given by F'Cyy, as,
Ue,i)

Y, (1=

FCdf = Udf N

@)

Through these metrics it is possible to characterize com-
pletely the perceived C and FC at each point of the DFC,
and therefore to understand and quantify the capacity limits
achieved by using different LDDF schemes as well on the
case where the LDDF is not performed. In Figure 4 is de-
picted an example where the defined metrics are applied and
where it can be seen that the ACR, [9], LDDF scheme mini-
mizes both the C and FC.

2.3. Clustering motivation

The conclusion of the analysis found in [8], was that it might
be possible to improve the network perceived C by gathering
the LDs in different clusters, and then perform the data fusion
individually at each cluster of LDs, as illustrated in Figure 5.
As a proof of concept consider the plot in Figure 6, where
it is depicted the C and FC at the different levels of the par-
allel data fusion chain. The metrics of interest are the Cy,
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Fig. 6. Perfect clustering in data fusion with N = 40

Car.pc, FCq and FCgy, pc, which measure the C and FC
perceived by using the ACR LDDF and by dividing the LDs
in clusters, respectively. In the latter case, the LDs where
grouped into two clusters, and the division method was given
by the v5,,-s where any LD with vegp, < Vinrs Was assumed
to be experiencing the channel as vacant. The motivation for
defining such threshold, is that it is expected that below a cer-
tain y¢p,s it does not make sense to consider the channel to
be occupied, since the amount of interference that the node
associated to the LD would experience from the signal source
can be neglected. This assumption is done from the CRN
side, i.e. it does not consider the minimization of the inter-
ference of the CRN in the primary network and therefore this
approach might not be applicable to scenarios where the goal
is to minimize interference in the primary network. It should
be noted that the purpose of this algorithm is to identify the
maximum number of available opportunities for the CRN to
use, and whether these will be used by the CRN will depend
on the access control mechanism in place.

From the plot in Figure 6 it can be seen that it is worth-
while to group the LDs in clusters. The main challenge is to
identify which information should be used as basis to perform
the clustering process, since the information about the 7., is
not available at the fusion center. An alternative source of in-
formation is the correlation observed between the LDs local
decisions over time. The issue with this source of informa-
tion is that the LDs are not perfect, i.e. their p; < 1 and their
Pra > 0, and therefore the LDs will most likely never be fully
correlated. Therefore there is a need to define a correlation
threshold which translates to the considered ;5.

3. ALGORITHM AND RESULTS

3.1. Algorithm Description

Consider the plots in Figure 7, where it is depicted the vari-
ation of the Pearson correlation coefficient, p, in regards to
the SNR experienced, 7¢.p, by a pair of LDs in two differ-
ent scenarios. In the first scenario, the blue curve, the pair of
LDs have the same performance, i.e. they have the same p,
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Fig. 7. (a) p between the decisions of two LDs, with signal
duty cycle of 0.5 and the LDs py, = 0.05, (b) pg versus vezp

which is dependent on the v.,,. In the second scenario, the
green curve, in one of the LDs the p, is same in regards to the
minimum <, while in the other LD the py varies with the
Yexp- The LD performance is plotted in Figure 7(b), using as
reference the energy detector model presented in [3].

In the first scenario, it can be seen that the p is higher
than 0.5 only when the 7.y, > 0dB, which from the plot in
Figure 7(b) translates to a py > 0.8. This relationship leads
to that by using the p it is possible to identify whether a LD is
experiencing a SNR above a certain level, if there at least one
other LD which is also experiencing the same level of SNR.

In the second scenario, it can be seen that if the 7.z, by
one of the LDs is low enough, then the p is always near zero.
This is also observed in the first scenario, when the 7.4, by
both LDs is low enough, where in the depicted scenarios low
enough occurs when the e, < —10dB. This occurs due
to the mapping chosen in the local decisions in regards to the
presence and absence of a signal, i.e. when the signal is ab-
sent, Hy, the local decision of the i*" detector is mapped as
u; = 0, while when the signal is present, Hy, the local de-
cision of the i*" detector is mapped to u; = 1, which is the
opposite of the mapping considered in (1).

The clustering algorithm, should perform the clustering
by using the correlation coefficients of the LDs decisions over
time. For simplicity, it is considered that there is only one
signal source, and therefore it is of interest to divide the LDs
in two clusters. One cluster will include all the LDs where
the Yexp > 7Vihrs, While the other will include the remaining
LDs.

In Figure 8 is plotted, for the detector performance curve
depicted in Figure 7(b), the evaluation of different p thresh-
olds in regards to ¢ coefficient, so to measure the performance
of the classification mechanism which puts the LDs in one of
two clusters. It can be observed that the ¢ is maximized when
the p € [0.3,0.4], when all LDs are dimensioned according
to the considered performance curve.

In Algorithm 1 is listed the algorithm which groups the
LDs in clusters. Where |L,| represents the number of ele-

. 0 .
p Threshold

Fig. 8. p threshold variation evaluated through ¢

ments in the decrescent ordered list L,. The ST is the sensing
iteration counter, the S1,,;, is the minimum number of sens-
ing iterations so that the obtained p is statistically significant.
(1 is the LD cluster where are stored the LDs which are ex-
periencing a level of correlation above pyp,-s, Which means
that these LDs have a Yezp > Yinrs, While Cj is the cluster
where all the uncorrelated LDs are stored. The cluster deci-
sion, Cyy,0, for Cy is Hy, because when a LD is uncorrelated
with all others LDs then it means that the vezp < Yinrs-

Algorithm 1 Single source clustering algorithm
if ST < S1,,,;, then
Obtain Cyy using ACR algorithm [9]
else
for all 7, j LD pairs when ¢ # j do
pij < from local decisions u; and uw; and L, < p;;
end for
Add all LDs to C
while |L,| > 0do
Remove p;; from the head of L,
ifi,j ¢ C; then
if pi j > prars then
Cy + 1, J
Remove 4, j from Cj
end if
else
if p; j > prars then
ifi ¢ C; then
Ci < i, remove 7 from Cy
else
C1 < j, remove j from Cy
end if
end if
end if
end while
if |C1| > 0 then
Obtain Cgs 1 using ACR algorithm [9]

end if
if |Cy| > 0 then
Caro = Ho
end if
end if
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3.2. Algorithm Results

In Figure 9 is depicted the comparison over time using the C
and FC metrics when using Data Fusion (DF) with and with-
out clustering, where the indices df, PC' and df, CC refer to
perfect clustering and the correlation based clustering, as de-
fined by Algorithm 1 with a psp,-s = 0.35, respectively. As
seen from the results the proposed correlation based cluster-
ing algorithm is able to achieve the performance level of the
perfect clustering algorithm. This performance was achieved
because a proper py;,-s Was set, which as discussed before de-
pends on the detection performance of the LDs.

4. CONCLUSIONS AND FUTURE WORK

In this paper the concept of C and FC in the CSS context
was introduced, and it was shown how these metrics can be
used to measure the performance along the data fusion chain.
Through these metrics it was observed that when using data
fusion the information about the LDs spatial diversity is dis-
carded, which leads to the aggravation of the exposed node
problem. To overcome this limitation it was proposed an al-
gorithm which groups LDs in a cluster, with the purpose of
minimizing the information loss in regards to the LDs spatial
diversity. These clusters are then created by grouping together
LDs which are correlated in regards to their local decisions.

It was shown, that in the case where there is only one sig-
nal source, that the proposed algorithm was able to achieve
the same level of performance, measured through C and FC
when compared to the perfect clustering algorithm where full
information about the conditions at each of the LDs was avail-
able at the fusion center.

The clustering algorithm can in principle be general-
ized for multiple signal sources, if one considers that LDs
which experience similar conditions can be grouped to-
gether. The maximum number of cluster is expected to be
gsignal sources a1¢hough limited by the number of LDs since
there should be at least 3 LDs per cluster to take advantage of
the LDDF. The generalization of the proposed algorithm and
evaluation is left for future work.
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