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Abstract— In this paper we develop distributed resource allo-
cation and scheduling algorithms for the uplink of an orthogonal
frequency division multiple access (OFDMA) wireless network.
We consider a time-slotted model, where in each time-slot the
users are assigned to subchannels consisting of groups of OFDM
tones. Each user can also allocate its transmission power among
the subchannels it is assigned. We consider distributed algorithms
for accomplishing this, where each user’s actions depend only
on knowledge of their own channel gains. Assuming a collision
model for each subchannel, we characterize an optimal policy
which maximizes the system throughput and also give a simpler
sub-optimal policy. We study the scaling behavior of these
policies in several asymptotic regimes for a broad class of fading
distributions.

I. INTRODUCTION

It is well established that dynamically allocating trans-

mission resources can improve the performance of wireless

networks. In this paper, we consider these approaches for the

uplink in a wireless access network which uses orthogonal

frequency division multiple access (OFDMA), such as in the

IEEE 802.16 (WiMAX) standard. In OFDMA networks the

primary resources are the assignment of tones or subcarriers to

users and the allocation of a user’s power across her assigned

tones. Such resource allocation problems have been widely

studied, e.g. see [1]–[4]. Most of this prior work focuses

on the case in which resource allocation decisions are made

by a centralized controller with knowledge of every user’s

channel state. Because of the required overhead and delays

involved, it may not be feasible to acquire this information in

a fast-fading environment or a system with a large number of

users and/or subcarriers. Here, we instead consider approaches

where each transmitter allocates its transmission rate and

power based only on knowledge of its own channel conditions.

This can be obtained, for example, via a single pilot signal

broadcast by the receiver in a time-division duplex system

[5]. This requires much less overhead, but since each user has

incomplete information, a distributed approach for resource

allocation is required.

In prior work [5], [6], we have considered a distributed

scheduling approach based on the Aloha protocol for the

This work was supported in part by the Northwestern-Motorola Center for
Seamless Communications and by NSF CAREER award CCR-0238382.

This work was performed while X. Qin was with the Department of EECS,
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case where all users communicate over a single flat-fading

channel. In this approach each user randomly transmits with

a probability based on its own channel gain. It is shown that

as the number of users increases, the throughput of such a

system scales at the same rate as that obtained by an optimal

centralized controller. In [7], we extended this approach to an

OFDMA-type of system, where each user can transmit over

multiple subchannels, and can allocate transmission power

across these subchannels. In [7], the asymptotic analysis was

restricted to the case where each subchannel had i.i.d. Rayleigh

fading. In this paper, we extend this analysis to a larger class

of fading distributions, which includes Rayleigh, Ricean and

Nakagami fading.

II. MODEL DESCRIPTION

We consider a model of n users communicating to a single

receiver. There are k available subchannels. Each subchannel

may represent a single OFDM tone, or more likely a group

of disjoint tones bundled together.1 Each subchannel between

each user and the receiver is modeled as a time-slotted, block-

fading channel with frequency-flat fading and bandwidth Wc.

This is reasonable when all the tones in a subchannel lie within

a single coherence band; when this is not the case, then this

can be viewed as an approximation in which the channel gain

represents the “average” gain for the subchannel.

At each time t, the received signal on the jth subchannel is

given by

yj(t) =
n∑

i=1

√
Hij(t)xij(t) + zj(t), (1)

where xij(t) and Hij(t) are the transmitted signal and channel

gain for the ith user on subchannel j, and zj(t) is additive

white Gaussian noise with power spectral density N0
2 . To

simplify notation we assume that N0Wc = 1. The channel

gains are assumed to be fixed during each time-slot and to

randomly vary between time-slots, i.e. Hij(t) = Hij for all

t ∈ [mT, (m+1)T ], where T is the length of a time-slot. Here,

{Hij}i=1,..,n,j=1,..,k are assumed to be independent and iden-

tically distributed (i.i.d.) across both the users and subchannels

1For example in 802.16, subchannels are formed by grouping a set of
interleaved tones (the default mode) or by grouping adjacent tones (in the
optional Band AMC mode).
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with a continuous probability density fH(h) on [0,∞).2 We

assume that E(Hi,k) < ∞ and that fH(h) > 0, for all

h > 0 and is differentiable. It follows that the corresponding

distribution function FH(h) is strictly increasing and twice

differentiable. Let F̄H(h) = 1 − FH(h) denote the channel

gain’s complimentary distribution function. For example, if

each subchannel experiences Rayleigh fading, then H will

be exponentially distributed, and so F̄H(h) = e−h/h0 , where

h0 = E(Hi,k).
We focus on the case where at the start of each slot, each

user i has perfect knowledge of Hi1, ...,Hik, but no knowledge

of the channel gains for any other users. For convenience, we

drop the user subscript and let H = (H1, ...,Hk) denote the

vector of channel gains for an arbitrary user. Let P(h) =
(P1(h), P2(h), ..., Pk(h)) be a user’s power allocation, where

Pj(h) indicates the power allocated to subchannel j given

that H = h.3 This power allocation must satisfy a total

power constraint of P̌ across all subchannels in each time-

slot, i.e.,
∑

j Pj(h) ≤ P̌ , for all h. No cooperation exists

among users. In particular, all users are required to employ

the same power allocation and transmission scheme; i.e., they

can not cooperate in selecting these allocations.

During each time-slot, we assume that at most one user can

successfully transmit on each subchannel. If more than one

user transmits on a given subchannel, a collision occurs and

no packets are received. However, a packet sent over another

subchannel without a collision will still be received, i.e.,

the information sent over each subchannel is independently

encoded. Given that only one user transmits on subchannel

j, let R(γj) indicate the rate at which the user can reliably

transmit as a function of the received power γj = hjPj(h).
We assume that R(γ) := log(1 + γ), which is proportional to

the Shannon capacity of the subchannel during a given time-

slot. We assume that there is no coding done over successive

time-slots. Also, we do not consider any multiuser reception

or power capture effects when multiple users transmit on a

subchannel.

III. OPTIMAL DISTRIBUTED POWER ALLOCATION

Next we turn to the power allocation P(h) used by each

user during each time-slot. To begin, consider the case where

there is only n = 1 user who must allocate its power over the k
available subchannels. In this case, for each channel realization

h, the power allocation that maximizes a user’s throughput is

the well-known ”water-filling” allocation, Pj(h) = (λ− 1
hj

)+,

where λ is chosen so that
∑k

j=1 Pj(h) = P̌ .

When there are multiple users, if more than one user

transmits on a subchannel, a collision results and no data is

received. Following [7], we consider an Aloha-based approach,

where each user transmits on each subchannel with a certain

probability p. Since each subchannel is i.i.d., it is reasonable

to require that each user transmits with the same probability

2In an OFDM system different sub-carriers will typically experience
correlated fading. However, if each subchannel is a large enough group of
sub-carriers, then this independence assumption is reasonable.

3If a user does not transmit on channel j, then Pj(h) = 0.

p in each slot and on each subchannel. The probability of

some user successfully transmitting on one subchannel is then

np(1 − p)n−1. Given this probability, for each subchannel j,

each user chooses a subset Hj of the possible realizations

of H with Pr(H ∈ Hj) = p. The user then only transmits

on subchannel j when H ∈ Hj . To maximize the total

throughput, each user will choose channel states in each set

Hj that can achieve higher transmission rates. However, the

transmission rate that can be achieved also relies on the

specific power allocation, e.g. if a state h is in both Hj and

Hl, the user must allocate power across both subchannels,

while if h is in only one set, the user can use all the

available power on the corresponding subchannel. For a given

power allocation, Pj(h), the expected transmission rate on

subchannel j, conditioned on a user successfully transmitting

on that subchannel is given by

EH

(
R(HjPj(H))

∣∣H ∈ Hj

)
= EH

(
R(HjPj(H))

∣∣Pj(H) > 0
)
,

where we have used that the channel gains are independent

across users. We now specify the following distributed optimal
throughput problem:

max
P(H),p

np(1− p)n−1
k∑

j=1

EH

(
R(HjPj(H))

∣∣Pj(H) > 0
)

s.t.

k∑
j=1

Pj(h) ≤ P̌ , ∀h

Pr{Pj(H) > 0} = p, j = 1, ..., k.

(2)

The objective in (2) is the average sum throughput for

all n users over all k subchannels. This is optimized over

the transmission probability p and the power allocation

(P1(H), P2(H), ..., Pk(H)), which is used by each user. The

second constraint ensures that the sets Hj all have probability

p. When this constraint is met, it follows that

pEH

(
R(HjPj(H))

∣∣Pj(H) > 0
)

= EH (R(HjPj(H)) .

Hence, the objective in (2) can also be written as

n(1− p)n−1
k∑

j=1

EH (R(HjPj(H)) . (3)

For a given channel realization h, let (h(1), h(2), ..., h(k))
denote the ordered channel gains from the largest to the

smallest, with any ties broken arbitrarily. It can be shown

that the solution to (2) is symmetric and so it will just

depend on this ordered sequence in each time-slot. Given this

ordered sequence, for j ≤ l ≤ k, let Rl
(j)(h) denote the rate

achievable over the jth best channel when the transmitter uses

the optimal (water-filling) power allocation over only the l best

channels. In other words, Rl
(j)(h) = log(1 + P(j)(h)h(j)),

where P(j)(h) = (λ − 1
h(j)

)+ and λ is chosen such that∑l
j=1 P(j)(h) = P̌ .

Lemma 1: As l increases,
∑l

i=1 Rl
(i)(h) −∑l−1

i=1 Rl−1
(i) (h)

is non-increasing.

1943
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Given a “threshold rate” Rth > 0 for each channel realiza-

tion h, we introduce the following problem:

max
l=1,...,k

l

s.t.

l∑
i=1

Rl
(i)(h)−

l−1∑
i=1

Rl−1
(i) (h) ≥ Rth

(4)

If this problem has no feasible solution, we define the solution

to be l = 0. When k = 1, the constraint in (4) is R1
(1)(h) ≥

Rth, i.e., the rate when only transmitting on the best channel

should be greater than Rth. For k = 2, the constraint in (4)

becomes R2
(1)(h) + R2

(2)(h) − R1
(1)(h) ≥ Rth, which means

that the increase in the total rate from using the best two

channels versus only using the best channel should be greater

than Rth. In general, the objective of (4) is to find the maximal

number of channels l, such that the gain in the sum rate from

transmitting on the l best channels instead of only the l − 1
best channels is at least Rth. From Lemma 1 it follows that

if l∗ solves (4), then any l < l∗ will also be feasible.

For a given Rth, let PRth(h) be the power allocation

that corresponds to solving (4) for each channel realization

h; i.e. this will be a water-filling allocation over the l best

channels, where l is the solution to (4) for each given realiza-

tion (note l may change with each realization). The following

proposition relates this to the solution of (2).

Proposition 1: There exists a constant Rth > 0 such that

PRth(h) is also the optimal solution to (2).

This proposition specifies the form of the optimal power

allocation; the corresponding transmission probability is given

by p = Pr(PRth
i (H) > 0). It follows from this proposition

that the optimal solution to (2) can be found by solving (4)

for a given Rth, and then iteratively searching for the optimal

Rth. An algorithm for solving (4) for a given Rth and channel

realization h is given in [7]. This algorithm uses the property

in Lemma 1, to converge to the optimal solution to (4) in at

most k iterations. The optimal value of Rth must still be found

via a numeric search; however, we note that this search is

now only a one-dimensional search, instead of a k-dimensional

search over the possible power allocations. For a given n and

k, the optimal power allocation could be determined offline

using this procedure. For a large number of channels k this

will result in a large computational cost. Next, we introduce

a simpler sub-optimal algorithm and analyze its performance.

IV. SUB-OPTIMAL POWER ALLOCATION AND

ASYMPTOTIC ANALYSIS

We consider a simplified distributed scheme, where instead

of finding a threshold rate Rth and solving (4), we set a

threshold hth on the channel gain. Each user then transmits

on the kth subchannel when its gain is greater than hth,

resulting in the transmission probability p = F̄H(hth). If a

user has more than one subchannel whose gain is higher than

the threshold, then the total power P̌ will be allocated equally

to each of these subchannels.4 Given that a user transmits on

4Other similar equal power allocation approaches for multi-carrier systems
have been studied, see e.g. [8].

i subchannels, we assume it transmits at a constant rate of

Ri(p) := R(F̄−1
H (p) P̌

i ) on each subchannel. This is a lower

bound on the achievable rate and simplifies our analysis.

The total throughput using this scheme is a function of k, n
and p. For i = 1, ..., k, let qk,p(i) be the probability one user

has i subchannels above the threshold hth = F̄−1
H (p), i.e.,

qk,p(i) =
(

k

i

)
(p)i(1− p)k−i.

Among these i subchannels, for j = 1, ..., i, let ωp,i(j) be

the probability a user transmits successfully on exactly j
subchannels, i.e. the probability there is no collision on exactly

j subchannels, given that i are above the threshold. This is

given by

ωn
p,i(j) =

(
i

j

)[
(1− p)n−1

]j [
1− (1− p)n−1

]i−j
.

The average sum throughput of this system is then given by

s(k, n, p) = n
k∑

i=1

qk,p(i)
i∑

j=1

ωn
p,i(j)jRi(p).

Note that ωn
p,i(j) is a binomial probability mass function

(p.m.f.) and so
∑i

j=1 ωn
p,i(j)j = (1− p)n−1i. Therefore,

s(k, n, p) = n(1− p)n−1
k∑

i=1

(
k

i

)
(p)i(1− p)k−iiRi(p). (5)

We consider how the sum throughput of this scheme and the

optimal distributed scheme scales in three asymptotic regimes.

We define two sequences f(m) and g(m) to be asymptotically
equivalent, denoted by f(m) � g(m), if limm→∞

f(m)
g(m) = c.

In the special case where c = 1, we say that they are strongly
asymptotically equivalent and denote this by f(m) �̄ g(m).
This implies that both sequences asymptotically grow at the

same rate and have the same first order constant. For our

analysis, we make an additional assumption on the tail of the

fading distribution. Specifically, we assume that as h →∞,

fH(h) � f ′H(h), (6)

where f ′H(h) = d
dhfH(h). This is satisfied by any fading

distribution that has an exponential tail, which is the case for

most common fading models such as Rayleigh, Ricean and

Nakagami fading.

Lemma 2: For any continuous, differentiable fading density

fH that satisfies (6), then the following conditions hold:

(a.) F̄H(h) � fH(h), (b.) limh→∞
F̄H(h)
hfH(h) = 0, and (c.)

limh→∞ d
dh

[
F̄H(h)
fH(h)

]
= 0.

These conditions follow directly from evaluating the limits

using L’Hospital’s rule.

We also compare the distributed approaches to an optimal

centralized system that maximizes the throughput in every slot.

1944
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This is given by:5

max
{Pij ,cij}

n∑
i=1

k∑
j=1

R(Pijcijhij)

s.t.

k∑
j=1

Pijcij = P̌ , ∀i,
n∑

i=1

cij ≤ 1, ∀j, cnk ∈ {0, 1}, ∀i, j.

(7)

Here, the integer variables, cij , indicate when user i is assigned

to subchannel j; the second constraint ensures that at most one

user is assigned to each subchannel.

Let sct(k, n) be the average sum throughput obtained

by the optimal centralized scheduling policy. Denote the

throughput of the optimal distributed policy by s∗(k, n) and

the optimal throughput of the threshold-based algorithm by

s(k, n, p∗), where p∗ is the transmission probability that

optimizes s(k, n, p). For all n and k, we have,

s
(
k, n, 1

n

) ≤ s(k, n, p∗) ≤ s∗(k, n) ≤ sct(k, n), (8)

where the first term is the throughput with a transmission

probability of 1/n.

First, we consider the case where k is fixed and n increases.

Proposition 2: Given any finite k, as n → ∞, s(k, n, 1
n ),

s(k, n, p∗), s∗(k, n) and 1
esct(k, n) are all strongly asymptot-

ically equivalent to k
e log

(
1 + P̌ F̄−1

H ( 1
n )

)
.

In other words, asymptotically there is no difference in

the first-order performance compared to the optimal dis-

tributed approach when using the simplified scheme or from

choosing p = 1
n instead of the optimal p∗. The throughput

for each distributed approach asymptotically increases like
k
e log(1+ P̌ F̄−1

H ( 1
n )), as does 1

e times the throughput with the

optimal centralized scheduler. In other words, the distributed

approaches all grow at the same rate as the centralized

approach and asymptotically the ratio of their throughputs

approach 1
e , the contention loss in a standard slotted Aloha

system. As an example, for the case of i.i.d. Rayleigh fading

on each channel the throughput in each case will increase at

rate O(log(log(n)).
The second regime we consider is when n is fixed and k

increases.

Proposition 3: Given any finite n, as k → ∞, s(k, n, p∗),
s∗(k, n), sct(k, n) are all strongly asymptotically equivalent

to nP̌ F̄−1
H ( 1

k ).
Again the threshold based approach is strongly asymp-

totically equivalent to the optimal distributed approach. In

this case, it is also asymptotically equivalent to the optimal

centralized system; i.e. there is no loss of 1
e . Intuitively, this

is because as the number of channels increases, the probability

of collision becomes negligible. In this case, for a Rayleigh

fading channel each of these terms grows like O(log(k)) as

k →∞, with a first order constant that is linear in n.

5This is similar to a problem studied for centralized OFDM systems in [3].

The last regime we consider is where both k and n increase

with fixed ratio k
n = β.

Proposition 4: If k
n = β, as n → ∞, s(βn, n, 1

n ),
s(βn, n, p∗), s∗(βn, n) and 1

esct(βn, n) are all strongly

asymptotically equivalent to βne−1 log
(
1 + P̌ F̄−1

H ( 1
n )

)
.

As in Proposition 2, once again compared to the centralized

scheme there is an asymptotic penalty of 1/e due to the con-

tention, and a transmission probability of p = 1
n is asymptot-

ically optimal for the distributed system. For Rayleigh fading

channels the throughput now grows like O(n log(log(n))), as

n →∞, with a first order constant that is linear in β.

V. NUMERICAL EXAMPLES

We next give some numerical examples to illustrate the per-

formance of the optimal and simplified distributed algorithms

with a finite number of channels and users. All the results

in this section are for an i.i.d. Rayleigh fading model, with

E(Hij) = 1, and a total power constraint of P̌ = 1. The

performance is averaged over multiple channel realizations.

Figure 1 shows the average throughput achieved by the optimal

distributed power allocation scheme from Section III compared

to the simplified power allocation scheme in Section IV. The

throughput of both approaches is shown as a function of the

number of users for a system with k = 10 channels. As the

number of users increases, both throughputs increase and the

difference between the two curves decreases.

Figure 2 shows upper and lower bounds on the ratio of

the average throughput of the optimal distributed scheme

s∗(k, n) to the centralized scheme sct(k, n) defined in (7)

as a function of the number of users, for k = 5 and 10
channels. Calculating sct(k, n) requires solving the optimiza-

tion problem in (7) for every channel realization, which is

complicated due to the integer constraints. Instead we compare

s∗(k, n) to upper and lower bounds on sct(k, n). We upper

bound sct(k, n) by relaxing the total power constraint on the

channels,
∑

k Pnkcnk = P̌ . Instead, we allow each user to

transmit with Pnk = P̌ over each channel. The maximum

throughput is achieved for this relaxed system by letting the

best user on each channel transmit at each time. To lower

bound sct(k, n), we still choose the best user to transmit

on each subchannel, but if one user is chosen to transmit

on more than one subchannel, its power is divided equally

across these channels. The resulting throughput is then a lower

bound on sct(k, n). Figure 2 shows that as the number of

users increases, the two bounds approach each other. It can be

seen that the ratio of the throughputs of the distributed to the

optimal scheme is decreasing as the number of users increases

and is larger than the limiting value of 1/e (see Proposition 2)

for all finite n. As the number of the channels, k, increases,

the throughput ratio also increases for a fixed n. This is due

to the increased frequency diversity with more channels.

Figure 3 shows upper and lower bounds on the ratio of

the throughput of the optimal distributed scheme to that of

the optimal centralized approach as the number of channels

increases, for a system with n = 5 and 10 users. In this case,

we upper bound sct(k, n) by the information theoretic capacity

1945
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of this multi-access system. In other words, joint decoding is

used when multiple users transmit on the same channel. We

lower bound sct(k, n) by only allowing the user who has the

best channel to transmit on a channel. Figure 3 shows that

as the number of channels increases, the two bounds quickly

converge. The throughput ratio increases as the number of

channels increases. From Proposition 3, as k increases, these

bounds should approach 1. In this asymptotic regime, the

convergence appears to be much slower than in Figure 2.

VI. SUMMARY

We have presented distributed algorithms for resource allo-

cation in an OFDMA wireless network, where each user only

has knowledge of its own channel gains. Using a contention

model, an optimal distributed algorithm is characterized. A

simplified distributed approach is also given. In three different
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Fig. 3. Lower and upper bounds on the ratio of the average throughputs of
the optimal distributed scheme to the optimal centralized scheme versus the
number of channels, for n = 5 and 10 users.

asymptotic regimes, the simplified algorithm is shown to be

asymptotically equivalent to the optimal distributed algorithm.

Both algorithms are also shown to scale at the same rate as

the optimal centralized scheduler. These results suggest that it

is possible to develop near optimal approaches for scheduling

and power allocation without requiring a centralized controller

with complete channel knowledge. There are several important

issues that we have not addressed here. For example, we have

not considered asymmetric models, where the fading is not

identically distributed across the channels or the users, or

models where the fading is correlated across the channels. We

also assumed that each user knows the fading distribution; in

practice, an adaptive approach would be required to estimate

this distribution.
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