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Normal Forms for Nonlinear Discrete Time Control Systems 

Boumediene Hamzi and Issa Amadou Tall, 
Department of Mathematics, 

University of California, Davis, CA 95616, 
email:{hamzi, tall} @math.ucdavis.edu 

Keywords: discrete-time, normal forms, homogeneous denote by 
transformations. m 

Abstract- We study the feedback classification of discrete- 
time control systems whose linear appmximation around an 
equilibrium is controllable. We provide a normal form for 
systems under investigation. 

I. INTRODUCTION 

The method of normal forms has been a useful approach 
in studying the dynamical systems. This method, first in- 
troduced by Poincare in his Ph.D. thesis (see [lSl), has 
been successfully applied by the author to vector fields 
(differential dynamical systems) and maps (discrete-time 
systems), in order to provide a change of coordinates in 
which the system is in a "simplest" form (see also [I]). 
For continuous-time control systems with controllable lin- 
earization, quadratic normal for& were obtained in 1141 
using change of coordinates and feedback. This result has 
been generalized to normal forms of any degree in [13]. 
Later on, normal forms for control systems with uncontrol- 
lable linearization has been derived [12], [16], [ZO], [221. 
Quadratic and cubic normal forms for discrete-time control 
systems has been treated in [21, [61, 191, [171. 
Although this method is formal, it has several applications 
in control theory. It has been used for the stabilization of 
systems with uncontrollable linearization, in continnous and 
discrete-time [4], [7], [5], [8], [IO], [16], [17]. It has led to 
a complete description of symmetries around equilibrium 
[19], [26], and allowed the characterization of systems 
equivalent to feedforward forms [231, [241, [251. 
In this paper, we propose a normal form, at any degree, 
for discrete-time control systems whose linearization is 

h(z)  = h~O](s)+h'1~(s) +h'*](z) +" '=  h'"l(2) 
m=0 

its Taylor series expansion at 0 E W", where h["](s) stands 
for a homogeneous polynomial of degree m. 
Similarly, throughout the paper, for a map 4 of an open 
subset of B" into W" (resp. for a vector field f on an open 
subset of W"), we will denote by $I["] (resp. by f'"]) the 
term of degree m of its Taylor series expansion at 0 E W", 
that is, each component 4Am1 of 41") (resp. f;"] of f["]) 
is a homogeneous polynomial of degree m. 
We consider the problem of transforming the discrete-time 
nonlinear control system 

n : I+ = f(z,.), s(.) E W" U(.) ER, 

where z+ = z ( k + l ) ,  and f ( s , u )  = f ( s ( k ) , u ( k ) )  for any 
k E N, by a feedback transformation of the form 

2 = 4(z) 
: U = -&,U) 

fi : 2+ = j ( Z , U ) ,  

&>U, = f ( 4 - % ) > 7 ( % U ) )  ' 

to a simpler form. The transformation T brings n to the 
system 

whose dynamics are given by 

We suppose that (0,O) E R" x W is an equilibrium point, 
that is, f (0 ,O)  = 0, and we denote by 

nrll : Z+ = F~ + GU , 
controllable. 
The paper is organized as following: Section ll deals with its linearization at this point, where 

basic definitions. In Section JlI, we construct a normal 
form for discrete-time nonlinear control systems whose 

We will assume that this linearization is controllable, that 
is 

h e a r  approximation is controllable. The proofs are given 
in Section IV. 

11. Notations and definitions. 
span{F'G: O < i < n - l } = B "  

Let us consider the Taylor series expansion nm of the 
system II, given by All objects, that is, functions, maps, vector fields, conml 

systems, etc., are considered in a neighborhood of 0 E W" 
and assumed to be Cm-smooth. For a smooth W-valued 
function h, defined in a neighborhwd of 0 Bn, we 
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m 
nm : z+=Fx+Gu+C~[~~(Z ,U)  (1) 

E m=2 
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and the Taylor series expansion 
transformation T, given by 

Tm of the feedback 

Throughout the paper, in particular in formulas (1) and (2), 
the homogeneity of f["I and y["I will betaken with respect 
to the variables ( x ,  U)' and ( x ,  U)' respectively. 
We first notice that, because of the controllability assump- 
tion, there always exists a linear feedback transformation 

2 = Tz " : U = K z + L u  
bringing the linear part 

II['l : x + = F z + G u  

into the BrunOvs!@ canonical form (see [ 111) 

ngb : z+ = A ~  + B ~ .  

Then we study, successively for m 2 2, the action of the 
homogeneous feedback transformations 

(3) 
2 = x + & q X )  

Tm : U. = u + r[" ' (z,u) 

on the homogeneous systems 

IIlml : z+ = Ax + Bu + f'"I(x, U) . (4) 

Let us consider another homogeneous system 

film] : 2' = Ar + Bu + j["l(r, U )  . (5 )  

Dejinition 2.1: We say that the homogeneous system IIlm], 
given by (4).  is feedback equivalent to the homogeneous 
system filml, given by (5), if there exist a homogeneous 
feedback transformation Tm. of the form (3), which brings 
rlw system IIlml into the system fI["l modulo higher order 
remts. 
The starting point is the following proposition giving the 
equivalence conditions. 
Proposition 2. I :  The homogeneous feedback transforma- 
tion T", defined by (31, brings the homogeneous sys- 
tem IIlml, given by (4), into the homogeneous system fi[ml, 
given by (5). if and only if the following relation 

q$"I(Ax+Bu)-q4~Y\(x) = $ " l ( x , u ) - f ! m l ( x , u )  
& ' l ( A x + B u ) + y l m ] ( x )  = f , ! m l ( x , u ) - ~ m l ( i , u )  

hold for all 1 5 j 5 n - 1. 

111. M A I N  RESULTS. 

In this section we will establish OUI main results. Let us 
denote the control by u = r,+l, and for any 1 5 i 5 n+ 1, 

z; = (21 ,... ,2,). 
Our main result for discrete-time nonlinear control systems 
with controllable linearization is as following. 

Theorem 3.1: The control system IIm, defined by ( l ) ,  is 
feedback equivalent, by a formal feedback transforma- 
tion Tm of the form (2), to the normal form 

m 

IIgF : Z+ = A r  + Bu + fmI(z, U )  , 
m=2 

where for any m 2 2, we have 

if j = n. 
(6) 

As the homogeneous feedback transformations Tm leave 
invariant the terms of degree less than m, Theorem 3.1 
follows from a successive application of Theorem 3.2 below. 
Theorem 3.2: The homogeneous control system HIm], de- 
fined by (4), is feedback equivalent, by a homogeneous 
feedback transformation T" of the form (3). to the normal 
form 

IIti : z+ = A z + B u +  ?" ' ( z ,u ) ,  

where for any m 2 2, the vector field flml(r, u) is given 
by (6). 

A. Example 
Consider the Bressan and Rampazzo pendulum (see (31, 
[21]) described by the equations 

e, = 5 2  

2 2  = - g s i n z 3 + x 1 x j  
x3 = x4 
x 4  = U, 

where XI denotes the length of the pendulum, x2 its 
velocity, x3  the angle of the pendulum with respect to 
the horizontal, z 4  its angular velocity, and g the gravity 
constant. 
We discretize the system by taking 

x l  = x: -21 ,  i 2  = x: - 2 2 ,  

x3 = x i - x s ,  x q  = x: - 2 4 .  

The system above rewrites 

x: = X l + X 2  
x: = x 2 - g s i n x 3 + x l x q  
x: = x 3 + 5 4  

x: = 2 4  +U. 

Let us consider the change of coordinates 

21 = 21 

2 2  = 2 2  + X l  

23 = -gsinzs  + 2 x 2  + X I  

2 4  = 
U = 2: 

-gsin(x4 + 1 3 )  + 3x2 - 2gsinx3 + 2 x 1 4  + z1 

whose inverse is such that x4 = h ( q ,  ~ ~ ~ 2 3 ,  r4)  is a smooth 
function. This change of coordinates takes the system into 
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the form 
2: = 22 

2: = 2 4  

2,' = U. 

2: = 2 3 + 2 1 h Z ( ~ l r Z 2 r Z 3 r i l q )  

Actually the function h2(r1,z2, 2 3 ,  z4) could be decom- 
posed as 

h2(z1, 22rZ3r 24) = hl(z1, Z2rz3) + 24hZ(Zlr  z 2 . 2 3 , 2 4 )  

where the 1-jet at 0 of hl is zero and h2(0) = 0. Put 

The objective is to show that we can get rid of the terms 
H I ( z I , z ~ , z ~ ) .  Let ns suppose that the k-jet at 0 of HI is 
zero. 
Consider the change of coordinates 21 = Z I , ? ~  = ZZ.  23 = 
2 3  + H l ( s l , z ~ , t 3 ) , i 4  = 2:. This change of coordinates, 
completed by the feedback i,' = w, takes the system into 
the form 

2: = iz 
i: = 
i: = 5 4  

2,' = w, 

HI (21 I 2 2 ;  23) = 2lhl(zl,22; 2 3 ) .  

i 3  + Hl  (il, 22, i 3 )  + i 1 5 4 H 2 ( ~ z ( i l ,  1 2 , 2 3 , i 4 )  

where f i l ( i l , ? z , & )  and i f 2 ( i l r i 2 , i 3 , i 4 )  are some 
smooth functions. It is enough to remark that the (k+2)-jet 
atOof fil(il,i2,i3) iszerobecause the2-jetof z1z4H2(z) 
is zero. Then by iteration we can cancel terms H l ( z 1 ,  ~ 2 ~ 2 3 )  
and put the system into the desired normal form 

2: = 2 2  

2,' = 24 

24' = U. 

2: = ~ 3 + ~ 1 Z 4 H ( ~ I r ~ 2 ~ ~ 3 ~ ~ 4 )  

IV. PROOFS 
In this section we will prove our main result. Before let us 
state the following useful lemma. 
Lemma4.1: Ifh["'l(r,u) =hlml(rz,... ,zn,u) isahomo- 
geneous polynomial depending exclusively on the variables 
2 2 , .  . . , zn and the control U, then there is a unique homo- 
geneous polynomial H [ " l ( t )  = H[ml(zl,. . . , z,,) such that 

The proof of this lemma is straightforward, and hence will 
be omitted. 

A. Proof of Theorem 3.2 
The proof will be constructive and based on a inductive 
argument. Let ns consider the system I@] given by 

H [ ~ I ( A ~  + B ~ )  = hlml(z,u). 

2: = 2 2  + f p ( 2 , U )  

Applying the feedback U = U + fAm'(z,u). we can anni- 
hilate the terms f,!"'](z, U), and hence we can assume that 
p " ' 2 ,  a) = 0. 

Let us suppose that for some 1 I j 5 n - 1, the system (7) 
has been taken to the form 

2: = 2 2  + f p " l 2 , U )  

2: = x3+1 + f'"I(2,U) + -  4m1 
Zj+1 - .r,+z + f,+l(...) 

2 L  = Z n  + f:?-],(2, U )  

2; = 21, 

... 

... 

where for any j + 1 5 1 5 n - 1, we have 
"+I 

r,'-l(.,a) = 212iPg-~l(zi). 
i=1+2 

We first decompose the component f)"'](z, U) uniquely as 
follows 

j+i + cz lz iP j~ -~ l ( z i )  + R y ' ( Z 2  )... , % , U ) .  
i=l 

We consider the feedback transformation 
2 = Z + ~ ' " ] ( l )  

U = v+y[mI(z, tJ)  
r m  : 

whose components +\"I(z), . . . , +k","](z), and $"l(z, U) 
are defined as following. 
Using Lemma 4.1, we define &"(z) such that 

&qAz+Bu) = -  Rjml(2 %... , X n , U )  (9) 

and we take 

&%) = &!1(~2 + B ~ )  
#"l(s) = +Lm'(Az + Ba). 

The components q+\ml(z), . . . , +!'!l(z) could be taken to 
be zero or arbitraly. Moreover, we can notice that the 
components @](s), . . . , &"'(z) did not depend on the 
control U. Actually, for any j 5 1 5 n, we have 

+ p ( Z )  = ~~"l(Zl,..' ,q). 

Applying Proposition 2.1, we easily deduce that the trans- 
formation Tm whose components are given by (9)-(10) 
takes the system (8) into the form 

2: = 22 + f p ( Z , u )  

23-1 + - - z3 + fJ?i(z,a) 
2; = ZJ+1 + f l " ' ( 2 , U )  

= 2" + f;?l1(2, U )  

... 

... 

z,+ = U ,  
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where for any j 5 1 5 n - 1, we have 

This achieves the proof of Theorem 3.2 
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